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Abstract. Sufficient conditions for the existence of strong solutions to the Cauchy
problem are given for the evolution equation du(t)/dt+∂ϕ1(u(t))−∂ϕ2(u(t)) ∋ f(t)
in V ∗, where ∂ϕi is the so-called subdifferential operator from a Banach space V
into its dual space V ∗ (i = 1, 2).

Studies for this equation in the Hilbert space framework has been done by several
authors. However the study in the V -V ∗ setting is not pursued yet.

Our method of proof relies on some approximation arguments in a Hilbert space.
To carry out this procedure, it is assumed that there exists a Hilbert space H satis-
fying V ⊂ H ≡ H∗ ⊂ V ∗ with densely defined continuous injections.

As an application of our abstract theory, the initial-boundary value problem is
discussed for the nonlinear heat equation: ut(x, t)−∆pu(x, t)−|u|q−2u(x, t) = f(x, t),

x ∈ Ω, u|∂Ω = 0, t ≥ 0, where Ω is a bounded domain in RN . In particular, the
local existence of solutions is assured under the so-called subcritical condition, i.e.,
q < p∗, where p∗ denotes Sobolev’s critical exponent, provided that the initial data

u0 belongs to W 1,p
0

(Ω).

1. Introduction. Let V be a real reflexive Banach space and let H be a real
Hilbert space whose dual space H∗ is identified with H such that

V ⊂ H ≡ H∗ ⊂ V ∗, (1)

where V ∗ denotes the dual space of V and each injection is densely defined and
continuous.

In this paper, we investigate sufficient conditions for the existence of strong
solutions of the following Cauchy problem:

(CP)
du

dt
(t) + ∂ϕ1(u(t)) − ∂ϕ2(u(t)) ∋ f(t) in V ∗, u(0) = u0,

where ∂ϕ1 (resp. ∂ϕ2) is the subdifferential of a proper lower semicontinuous convex
function ϕ1 (resp. ϕ2) from V into (−∞,+∞].

The theory of evolution equations governed by subdifferentials was first studied
by Brézis (see [4], [5]) and its generalization in various directions has been vigorously

studied by many people. Among them, Ôtani [11] (see also [6], [8] and [12]) studied
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(CP) in the Hilbert space framework (i.e., V ∗ = H) and applied his abstract results
to the following initial-boundary value problem:

(NHE)



















∂u

∂t
(x, t) − ∆pu(x, t) − |u|q−2u(x, t) = f(x, t), (x, t) ∈ Ω × [0, T ],

u(x, t) = 0, (x, t) ∈ ∂Ω × [0, T ],

u(x, 0) = u0(x), x ∈ Ω,

where ∆p is the so-called p-Laplacian given by ∆pu(x) := div(|∇u(x)|p−2∇u(x))
and Ω is a bounded domain in R

N with smooth boundary ∂Ω.
The existence of weak solutions of (NHE) is also studied by using Faedo-Galerkin’s

method in [9] and [13]. The theory of perturbations in the Hilbert space framework
(such as in [6], [8], [11], [12]) has an advantage over Faedo-Galerkin’s method in
that it can assure a better regularity of solutions. At the same time, however, it
needs a stronger restriction on the growth order q of the perturbed term |u|q−2u
when p 6= 2, which is caused by the loss of the elliptic estimate for the p-Laplacian
with p 6= 2.

It is readily suggested from the study of nonlinear elliptic equations that the
perturbation theory for subdifferentials in the V -V ∗ setting should remedy the
deficiency mentioned above. However the study in this direction is not fully pursued
even for the non-perturbed case where ∂ϕ2 ≡ 0, whose study can be founded in [2]
and [7]. The main purpose of this paper is to present an abstract setting which can
cover the deficiency of the Hilbert space setting. In fact, as an application of our
abstract results, we can assure the local existence of solutions of (NHE) under the

so-called subcritical growth conditions, q < p∗, (i.e., W 1,p
0 is compactly embedded

in Lq), for all u0 ∈ W 1,p
0 (Ω). This fact has been conjectured but left as an open

problem for a long time.

2. Main results. Let Φ(X) be the set of all proper lower semicontinuous convex

functions ϕ fromX into (−∞,+∞], where “proper” means that the effective domain

D(ϕ) of ϕ defined by D(ϕ) := {u ∈ X ;ϕ(u) < +∞} is not empty. Define the
subdifferential ∂Xϕ of ϕ by

∂Xϕ(u) := {f ∈ X∗;ϕ(v) − ϕ(u) ≥ X∗〈f, v − u〉X for all v ∈ D(ϕ)}

with domain D(∂Xϕ) = {u ∈ X ; ∂Xϕ(u) 6= ∅}, where X∗〈·, ·〉X denotes the natural
duality between X and X∗.

Let ϕ1, ϕ2 ∈ Φ(V ) be such that D(ϕ1) ∩D(ϕ2) 6= ∅. For simplicity of notation,
we write ∂ϕ and 〈·, ·〉 instead of ∂V ϕ and V ∗〈·, ·〉V respectively if no confusion arises.

Here and henceforth, we are concerned with strong solutions of (CP) in the
following sense.

Definition 1. A function u ∈ C([0, T ];V ∗) is said to be a strong solution of (CP)
on [0, T ], if the following conditions are satisfied:

(1) u(t) is a V ∗-valued absolutely continuous function on (0, T ],

(2) u(+0) = u0,

(3) u(t) ∈ D(∂ϕ1) ∩D(∂ϕ2) for a.e. t ∈ (0, T )

and there exist sections g1(t) ∈ ∂ϕ1(u(t)) and g2(t) ∈ ∂ϕ2(u(t)) satisfying:

du

dt
(t) + g1(t) − g2(t) = f(t) in V ∗, a.e. on (0, T ). (2)
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Throughout the present paper, we denote by C, Ci (i ∈ N) positive constants
which do not depend on the elements of the corresponding space or set. Moreover let
us denote by L the set of all monotone non-decreasing functions from [0,+∞) into
itself. For p ∈ (1,+∞), p′ designates the Hölder conjugate of p, i.e., p′ = p/(p− 1).

Our basic assumptions are the following.

(A1) |u|pV − C1|u|2H − C2 ≤ C3ϕ
1(u) ∀u ∈ D(ϕ1),

(A2) D(ϕ1) ⊂ D(∂ϕ2). Furthermore, if supt∈[0,T ]{ϕ
1(un(t)) + |un(t)|H}+

∫ T

0 |dun(t)/dt|2Hdt is bounded, then for every gn(·) ∈ ∂ϕ2(un(·)),
{gn} forms a precompact subset in C([0, T ];V ∗),

(A3) There exists an extension ϕ̃2 ∈ Φ(H) of ϕ2, i.e., ϕ̃2(u) = ϕ2(u) ∀u ∈ V,
such that ϕ1 (Jλu) ≤ l1

(

ϕ1(u) + l2(|u|H)
)

∀λ > 0, ∀u ∈ D(ϕ1),where
li ∈ L (i = 1, 2), Jλ denotes the resolvent of ∂H ϕ̃

2, that is, Jλ = (I + λ
∂H ϕ̃

2)−1,
(A4) ϕ2(u) ≤ kϕ1(u) + C4|u|2H + C5 ∀u ∈ D(ϕ1), 0 ≤ k < 1.

We note that the continuity of ϕ2 can be derived from (A2).

Proposition 1. Assume that (A2) is satisfied. Let un ∈ D(ϕ1) be such that un → u
weakly in V and ϕ1(un) is bounded. Then there exists a subsequence un′ of un such

that ϕ2(un′) → ϕ2(u).

Proof of Proposition 1. Let un ∈ D(ϕ1) be such that un → u weakly in V as
n → +∞ and ϕ1(un) is bounded. Then from the fact that ϕ2 ∈ Φ(V ), it follows
that

ϕ2(u) ≤ lim inf
n→+∞

ϕ2(un). (3)

On the other hand, let gn ∈ ∂ϕ2(un) and set vn(t) = un and hn(t) = gn for
all t ∈ [0, T ]. Then we see that supt∈[0,T ]{ϕ

1(vn(t)) + |vn(t)|H} = ϕ1(un) + |un|H
is bounded, dvn/dt ≡ 0 and hn(·) ∈ ∂ϕ2(vn(·)). By (A2), we can extract a sub-
sequence n′ of n such that hn′ → h strongly in C([0, T ];V ∗), which implies gn′

becomes a strongly convergent sequence in V ∗.
Hence since ϕ2(un′) ≤ ϕ2(u) + 〈gn′ , un′ − u〉, we get

lim sup
n′→+∞

ϕ2(un′) ≤ ϕ2(u) + lim
n′→+∞

〈gn′ , un′ − u〉 = ϕ2(u). (4)

Therefore it follows from (3) and (4) that limn′→+∞ ϕ2(un′) = ϕ2(u).
Our main results are stated as follows.

Theorem 1. Assume that (A1), (A2), (A3) and (A4) hold. Then for all u0 ∈ D(ϕ1)

and f ∈ W 1,p′

(0, T ;V ∗), (CP) has a strong solution u on [0, T ] satisfying:

u ∈ Cw([0, T ];V ) ∩W 1,2(0, T ;H),

u(t) ∈ D(∂ϕ1) ∩D(∂ϕ2) for a.e. t ∈ (0, T ),

g1 ∈ L2(0, T ;V ∗), g2 ∈ C([0, T ];V ∗),
sup

t∈[0,T ]

ϕ1(u(t)) < +∞, ϕ2(u(·)) ∈ C([0, T ]),























(5)

where gi (i = 1, 2) are the sections of ∂ϕi satisfying (2) and Cw([0, T ];V ) denotes

the set of all V -valued weakly continuous functions on [0, T ].

Theorem 2. Assume that (A1), (A2) and (A3) hold. Then for all u0 ∈ D(ϕ1) and

f ∈ W 1,p′

(0, T ;V ∗), there exists a number T0 ∈ (0, T ] such that (CP) has a strong

solution u on [0, T0] satisfying (5) with T replaced by T0.
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Remark 1. We can give another type of sufficient conditions for the global existence
when (A4) is not satisfied. Moreover the asymptotic behavior of solutions and

the smoothing effect for the solution of (CP) with the initial data u0 ∈ D(ϕ1)
H

falls within the scope of our V -V ∗ setting. These topics will be discussed in our
forthcoming papers.

3. Proof of Main results.

3.1. Proof of Theorem 1. One of key steps of our proof is to introduce approxi-
mation problems for (CP) in the Hilbert space H . To this end, we first define the
extension of ϕ1 on H by

ϕ1
H(u) =

{

ϕ1(u) if u ∈ V,

+∞ if u ∈ H/V.

Then, by virtue of (A1), we can verify that ϕ1
H ∈ Φ(H) (see [2]).

Now our approximation problems for (CP) are given by

(CP)λ
duλ

dt
(t) + ∂Hϕ

1
H(uλ(t)) − ∂H ϕ̃

2
λ(uλ(t)) ∋ fλ(t) in H, uλ(0) = u0,

where fλ belongs to C1([0, T ];H) such that fλ → f strongly in W 1,p′

(0, T ;V ∗) as
λ→ 0, ϕ̃2 is the extension of ϕ2 on H given in (A3) and ∂H ϕ̃

2
λ denotes the Yosida

approximation of ∂H ϕ̃
2. We note by Proposition 2.11 of [4] that ∂H ϕ̃

2
λ = ∂H(ϕ̃2

λ).
Since ∂H ϕ̃

2
λ is Lipschitz continuous in H , Proposition 3.12 of [4] assures the

existence of a unique strong solution uλ of (CP)λ on [0, T ] satisfying:

uλ ∈ W 1,2(0, T ;H), uλ(t) ∈ D(∂Hϕ
1
H) a.e. on (0, T ),

t 7→ ϕ1
H(uλ(t)), ϕ̃2

λ(uλ(t)) are absolutely continuous on [0, T ].

Here and henceforth, we can assume that ϕ1 ≥ 0 without any loss of generality.
We are going to establish a priori estimates in the following Lemmas 1-3.

Lemma 1. There exists a constant M1 such that

sup
t∈[0,T ]

|uλ(t)|H ≤ M1, (6)

sup
t∈[0,T ]

ϕ1(uλ(t)) ≤ M1, (7)

∫ T

0

∣

∣

∣

∣

duλ

dt
(t)

∣

∣

∣

∣

2

H

dt ≤ M1, (8)

sup
t∈[0,T ]

|uλ(t)|V ≤ M1. (9)

Proof of Lemma 1. Multiply (CP)λ by duλ(t)/dt. Then, by Lemma 3.3 of [4],
we obtain

∣

∣

∣

∣

duλ

dt
(t)

∣

∣

∣

∣

2

H

+
d

dt
ϕ1

H(uλ(t)) −
d

dt
ϕ̃2

λ(uλ(t)) =

(

fλ(t),
duλ

dt
(t)

)

H

, (10)
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where (·, ·)H denotes the inner product of H . Hence, integrating (10) over (0, t), we
have

∫ t

0

∣

∣

∣

∣

duλ

dτ
(τ)

∣

∣

∣

∣

2

H

dτ + ϕ1
H(uλ(t)) + ϕ̃2

λ(u0) (11)

= ϕ1
H(u0) + ϕ̃2

λ(uλ(t)) + 〈fλ(t), uλ(t)〉 − 〈fλ(0), u0〉

−

∫ t

0

〈

dfλ

dτ
(τ), uλ(τ)

〉

dτ.

By (A1) and (A4), it follows that
∫ t

0

∣

∣

∣

∣

duλ

dτ
(τ)

∣

∣

∣

∣

2

H

dτ + (1 − k)ϕ1(uλ(t)) (12)

≤ ϕ1(u0) − ϕ̃2
λ(u0) + C4|uλ(t)|2H + C5

+{C3ϕ
1(uλ(t)) + C1|uλ(t)|2H + C2}

1/p|fλ(t)|V ∗ + |u0|V |fλ(0)|V ∗

+

∫ t

0

{

C3ϕ
1(uλ(τ)) + C1|uλ(τ)|2H + C2

}1/p
∣

∣

∣

∣

dfλ

dτ
(τ)

∣

∣

∣

∣

V ∗

dτ.

From the fact that d
dt |uλ(t)|H ≤ |duλ

dt (t)|H , Young’s inequality and Gronwall’s in-
equality imply

|uλ(t)|2H + ϕ1(uλ(t)) ≤ C

{

|u0|
2
H + ϕ1(u0) + |ϕ̃2

λ(u0)| + |u0|
p
V + C2 + C5

+ sup
τ∈[0,T ]

|fλ(τ)|p
′

V ∗ +

∫ T

0

∣

∣

∣

∣

dfλ

dτ
(τ)

∣

∣

∣

∣

p′

V ∗

dτ

}

,

where C depends on C1, C3, C4, k and T . Since fλ is bounded in W 1,p′

(0, T ;V ∗)
and ϕ̃2

λ(u0) is bounded, it follows that (6) and (7) hold. Moreover, (6), (7) and (12)
imply (8). Furthermore, by (A1), we get

|uλ(t)|pV ≤ C1|uλ(t)|2H + C2 + C3ϕ
1(uλ(t)).

Hence, (6) and (7) imply (9).

Lemma 2. There exists a constant M2 such that

sup
t∈[0,T ]

|Jλuλ(t)|H ≤ M2, (13)

sup
t∈[0,T ]

ϕ1(Jλuλ(t)) ≤ M2, (14)

sup
t∈[0,T ]

|Jλuλ(t)|V ≤ M2, (15)

∫ T

0

∣

∣

∣

∣

d

dt
Jλuλ(t)

∣

∣

∣

∣

2

H

dt ≤ M2. (16)

Proof of Lemma 2. Since Jλ is non-expansive in H (see [5, P102]), we can derive
(13) from (6). By (A3), (6) and (7) yield (14), which together with (A1) and (13)
implies (15). Moreover since |Jλuλ(t+ h) − Jλuλ(t)|H/h ≤ |uλ(t+ h) − uλ(t)|H/h
for all h ∈ R with t+ h ∈ [0, T ], we have

∫ T

0

∣

∣

∣

∣

d

dt
Jλuλ(t)

∣

∣

∣

∣

2

H

dt ≤

∫ T

0

∣

∣

∣

∣

duλ

dt
(t)

∣

∣

∣

∣

2

H

dt,

which together with (8) implies (16).
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Lemma 3. There exists a constant M3 such that

sup
t∈[0,T ]

∣

∣∂H ϕ̃
2
λ(uλ(t))

∣

∣

V ∗
≤ M3, (17)

∫ T

0

∣

∣g1
λ(t)

∣

∣

2

V ∗
dt ≤ M3, (18)

where g1
λ(·) = fλ(·) − duλ(·)/dt+ ∂H ϕ̃

2
λ(uλ(·)) ∈ ∂Hϕ

1
H(uλ(·)).

Proof of Lemma 3. Since Jλuλ(t) ∈ D(∂H ϕ̃
2) ∩ V for all t ∈ [0, T ], we get

∂H ϕ̃
2(Jλuλ(t)) ⊂ ∂ϕ2(Jλuλ(t)) for all t ∈ [0, T ]. Furthermore, since ∂H ϕ̃

2
λ(uλ(·)) ∈

∂H ϕ̃
2(Jλuλ(·)) (see [5, p104]), it follows from (A2), (13), (14) and (16) that

{∂H ϕ̃
2
λ(uλ(·))} forms a precompact subset of C([0, T ];V ∗), (19)

which yields (17).

Since fλ is bounded inW 1,p′

(0, T ;V ∗) and g1
λ(t) = fλ(t)−duλ(t)/dt+∂H ϕ̃

2
λ(uλ(t))

for a.e. t ∈ (0, T ), (8) and (17) imply (18).
From Lemmas 1–3, we can extract a sequence λn such that λn → 0 and the

following lemma hold.

Lemma 4. There exists u ∈ Cw([0, T ];V ) ∩W 1,2(0, T ;H) such that

uλn
→ u weakly in L2(0, T ;V ) ∩W 1,2(0, T ;H), (20)

uλn
(t) → u(t) weakly in H for all t ∈ [0, T ], (21)

Jλn
uλn

→ u weakly in L2(0, T ;V ) ∩W 1,2(0, T ;H). (22)

Moreover we have u(t) → u0 strongly in H as t→ +0.

Proof of Lemma 4. Since H and V are reflexive, (8) and (9) imply (20). More-
over, let q ∈ [1,+∞). Then by (6), we can extract a subsequence λq

n of λn depending
on q such that uλq

n
− u0 → u− u0 weakly in Lq(0, T ;H). Hence since uλq

n
(0) = u0,

it follows from (8) that

‖u− u0‖Lq(0,t;H) ≤ lim inf
λq

n→0
‖uλq

n
− u0‖Lq(0,t;H)

≤ lim inf
λq

n→0







∫ t

0

(

∫ τ

0

∣

∣

∣

∣

duλq
n

ds
(s)

∣

∣

∣

∣

2

H

ds

)q/2

τq/2dτ







1/q

≤ M
1/2
1

(

2

q + 2

)1/q

t(1/2+1/q).

Thus we have

|u(t) − u0|H ≤ sup
τ∈[0,t]

|u(τ) − u0|H = lim
q→+∞

‖u− u0‖Lq(0,t;H) ≤M
1/2
1 t1/2,

which implies u(t) → u0 strongly in H as t→ +0.
Now let t ∈ [0, T ] be fixed. Since uλn

(0) = u(0) = u0, (20) shows that

(uλn
(t) − u(t), φ)H =

∫ t

0

(

duλn

dτ
(τ) −

du

dτ
(τ), φ

)

H

dτ → 0 for any φ ∈ H,

which yields (21).
By (9) and (21), we can take a subsequence λt

n of λn depending on t such that

uλt
n
(t) → u(t) weakly in V. (23)
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Hence, by (9), it follows that |u(t)|V ≤ lim infλt
n→0 |uλt

n
(t)|V ≤ M1, where M1

is independent of t. Therefore we conclude that supt∈[0,T ] |u(t)|V ≤ M1 < +∞.

Moreover, since u ∈ L∞(0, T ;V )∩C([0, T ];H), by Lemma 8.1 of [10, Chap.3, §8.4],
we can deduce that u ∈ Cw([0, T ];V ).

By (14) and (16), we find that Jλn
uλn

→ v weakly in L2(0, T ;V )∩W 1,2(0, T ;H).
Here, by (17), we notice that

|uλn
(t) − Jλn

uλn
(t)|V ∗ = λn|∂H ϕ̃

2
λn

(uλn
(t))|V ∗ ≤ λnM3

for all t ∈ [0, T ]. Hence since uλn
−Jλn

uλn
→ 0 strongly in C([0, T ];V ∗) as λn → 0,

it follows that v = u.

Lemma 5. There exists g2 ∈ C([0, T ];V ∗) such that

∂H ϕ̃
2
λn

(uλn
(·)) → g2 strongly in C([0, T ];V ∗) (24)

and g2(t) ∈ ∂ϕ2(u(t)) for a.e. t ∈ (0, T ).

Proof of Lemma 5. By (19), there exists g2 ∈ C([0, T ];V ∗) such that ∂H ϕ̃
2
λn

(uλn
(·)) → g2 strongly in C([0, T ];V ∗). Hence Lemma 1.3 of [3, Chap.II] and Propo-

sition 1.1 of [7] imply g2(t) ∈ ∂ϕ2(u(t)) for a.e. t ∈ (0, T ).

Lemma 6. There exists g1 ∈ L2(0, T ;V ∗) such that

g1
λn

→ g1 weakly in L2(0, T ;V ∗) (25)

and g1(t) = f(t) + g2(t) −
du

dt
(t) ∈ ∂ϕ1(u(t)) for a.e. t ∈ (0, T ).

Proof of Lemma 6. By (18), it is obvious that g1
λn

→ g1 weakly in L2(0, T ;V ∗).

Moreover, by (CP)λn
, it follows from (20) and (24) that g1 = f + g2 − du/dt.

Hence it remains to prove that f(t) + g2(t) − du(t)/dt ∈ ∂ϕ1(u(t)) for a.e. t ∈
(0, T ). Multiplying g1

λn
(t) by uλn

(t) and integrating over (0, T ), we get
∫ T

0

〈g1
λn

(t), uλn
(t)〉dt =

∫ T

0

〈fλn
(t), uλn

(t)〉dt+

∫ T

0

〈∂H ϕ̃
2
λn

(uλn
(t)), uλn

(t)〉dt

−
1

2
|uλn

(T )|2H +
1

2
|u0|

2
H .

Since fλn
→ f strongly in W 1,p′

(0, T ;V ∗), it follows from (20), (21) and (24) that

lim sup
λn→0

∫ T

0

〈g1
λn

(t), uλn
(t)〉dt ≤

∫ T

0

〈f(t), u(t)〉dt+

∫ T

0

〈g2(t), u(t)〉dt (26)

−
1

2
|u(T )|2H +

1

2
|u0|

2
H

=

∫ T

0

〈

f(t) + g2(t) −
du

dt
(t), u(t)

〉

dt.

By Lemma 1.3 of [3, Chap.II] and Proposition 1.1 of [7], we conclude that g1(t) =
f(t) + g2(t) − du(t)/dt ∈ ∂ϕ1(u(t)) for a.e. t ∈ (0, T ).

Now, let t ∈ [0, T ] be fixed. Then since ϕ1 ∈ Φ(V ), (7) and (23) imply ϕ1(u(t)) ≤
lim infλt

n→0 ϕ
1(uλt

n
(t)) ≤ M1, where M1 is independent of t. Hence we conclude

that supt∈[0,T ] ϕ
1(u(t)) ≤M1 < +∞. Moreover let tn ∈ [0, T ] be such that tn → t.

From the fact that u ∈ Cw([0, T ];V ), it follows that u(tn) → u(t) weakly in V . Since
ϕ1(u(tn)) ≤ supt∈[0,T ] ϕ

1(u(t)) ≤ M1, where M1 is independent of n, Proposition

1 assures that there exists a subsequence tn′ of tn such that ϕ2(u(tn′)) → ϕ2(u(t)).
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Hence, since this argument does not depend on the choice of subsequence tn′ , we
deduce that ϕ2(u(·)) ∈ C([0, T ]).

3.2. Proof of Theorem 2. We first introduce an auxiliary problem. Let r ∈ R be
such that r > ϕ2(u0) and define the cut off function of ϕ1 by

ϕ1,r(u) =

{

ϕ1(u) if ϕ2(u) ≤ r,

+∞ otherwise.

Then, it follows that ϕ1,r ∈ Φ(V ) and D(ϕ1,r) = D(ϕ1) ∩ {u ∈ V ;ϕ2(u) ≤ r}. Let
us consider the following Cauchy problem:

(CP)
r du

dt
(t) + ∂ϕ1,r(u(t)) − ∂ϕ2(u(t)) ∋ f(t) in V ∗, u(0) = u0.

We then easily find that (A1) and (A2) with ϕ1 replaced by ϕ1,r hold. Moreover
since ϕ2(u) ≤ r for all u ∈ D(ϕ1,r), (A4) is satisfied with k = 0, C4 = 0, C5 = r
and ϕ1 = ϕ1,r.

Let u ∈ D(ϕ1,r). Then since Proposition of [4] says that ϕ2(Jλu) ≤ ϕ2(u) ≤ r
and (A3) implies Jλu ∈ D(ϕ1), it follows that ϕ1,r(Jλu) = ϕ1(Jλu). Hence (A3)
with ϕ1 replaced by ϕ1,r holds true. Therefore, since the fact that ϕ2(u0) < r and
u0 ∈ D(ϕ1) yields u0 ∈ D(ϕ1,r), Theorem 1 assures the existence of strong solutions
of (CP)

r
as follows:

Lemma 7. Assume that (A1), (A2) and (A3) are satisfied. Then for all u0 ∈

D(ϕ1), f ∈W 1,p′

(0, T ;V ∗) and r ∈ R with r > ϕ2(u0), (CP)
r

has a strong solution

u on [0, T ] satisfying (5) with ϕ1 replaced by ϕ1,r.

In order to show that u(t) becomes a strong solution of (CP) time-locally, it is
sufficient to prove that there exists a number T0 ∈ (0, T ] such that ∂ϕ1,r(u(t)) =
∂ϕ1(u(t)) for all t ∈ [0, T0). To this end, we prepare a couple of lemma.

Lemma 8. There exists a number T0 ∈ (0, T ] such that ϕ2(u(t)) < r for all t ∈
[0, T0).

Proof of Lemma 8. We here remark that ϕ2(u(·)) ∈ C([0, T ]). Hence, for the
case where maxt∈[0,T ] ϕ

2(u(t)) < r, we can take T0 = T . For the case where

maxt∈[0,T ] ϕ
2(u(t)) ≥ r, since ϕ2(u0) < r, there exists a number T0 ∈ (0, T ] such

that ϕ2(u(t)) attains r at t = T0 for the first time.

Lemma 9. If u ∈ D(∂ϕ1,r) and ϕ2(u) < r, then ∂ϕ1,r(u) = ∂ϕ1(u).

Proof of Lemma 9. It is obvious that ∂ϕ1(u) ⊂ ∂ϕ1,r(u) for all u ∈ D(∂ϕ1,r).
Hence it suffices to show that ∂ϕ1,r(u) ⊂ ∂ϕ1(u) when u ∈ D(∂ϕ1,r) and ϕ2(u) < r.
Let [u, ξ] ∈ ∂ϕ1,r be such that ϕ2(u) < r and take an arbitrary element v ∈
D(ϕ1). Then since us := (1 − s)u + sv → u strongly in V as s → 0 and ϕ1(us) ≤
(1 − s)ϕ1(u) + sϕ1(v) ≤ ϕ1(u) + ϕ1(v), where ϕ1(u) + ϕ1(v) is independent of s,
for all s ∈ [0, 1], Proposition 1 assures that there exists a sequence sn such that
ϕ2(usn

) → ϕ2(u) as sn → 0. Hence from the fact that ϕ2(u) < r, it follows that
there exists a number s0 ∈ (0, 1) such that ϕ2(us0

) < r. Since us0
∈ D(ϕ1,r), we

get ϕ1(us0
)−ϕ1(u) = ϕ1,r(us0

)−ϕ1,r(u) ≥ 〈ξ, us0
−u〉. Hence, by the convexity of

ϕ1, we have s0(ϕ
1(v)−ϕ1(u)) ≥ 〈ξ, s0(v−u)〉. By dividing both sides by s0 > 0, we

deduce ϕ1(v)−ϕ1(u) ≥ 〈ξ, v−u〉 for all v ∈ D(ϕ1), whence follows ξ ∈ ∂ϕ1(u).
By Lemmas 7, 8 and 9, there exists a number T0 ∈ (0, T ] such that u(t) ∈ D(∂ϕ1)

and ∂ϕ1,r(u(t)) = ∂ϕ1(u(t)) for a.e. t ∈ (0, T0). Consequently we deduce that u
becomes a strong solution of (CP) on [0, T0].



EVOLUTION EQUATIONS AND SUBDIFFERENTIALS IN BANACH SPACES 9

4. Application. In this section, we apply the preceding abstract theory to (NHE)
and give sufficient conditions for the existence of solutions.

The sufficient conditions for the existence of solutions in [11] are weaker than
those in [13] except for the case where p < q and p < N . For this case, [13]
requires q < 2p/(N + p) for the local existence and that q < p∗ for the global
existence for small data, where p∗ is the so-called Sobolev’s critical exponent given
by p∗ = Np/(N − p) if p < N ; and p∗ = +∞ if p ≥ N . The latter condition is
called subcritical growth condition. On the other hand, [11] requires q < p∗/2 +
1 for the local existence and the global existence for small data. Moreover, [12]
succeeded in relaxing the sufficient condition for the local existence to subcritical
growth condition when p = 2.

Thus the sufficient conditions for the local existence in [11] and [12] are strictly
weaker than those in [13]. However, as for the global existence, the sufficient con-
ditions in [11] and [12] are more restrictive than those in [13] when p 6= 2.

Moreover when p 6= 2, there still exists a considerable gap between the subcrit-
ical growth condition and the sufficient conditions for local existence in [13], [11]
and [12]. It is remarkable to note that our abstract theory enables us to relax the
sufficient condition for the local existence of weak solutions to the subcritical growth
condition. This fact has been conjectured but left as an open problem for long time.

To apply our abstract theory, we set V = W 1,p
0 (Ω) and H = L2(Ω) with norms

| · |V := |∇ · |Lp(Ω) and | · |H := | · |L2(Ω) respectively. Here we assume that
2N/(N+2) ≤ p < +∞ and 1 < q < p∗. We then find that V, V ∗ and H satisfy (1).
Moreover, by Sobolev’s embedding theorem, the injection V ⊂ Lq(Ω) is compact
(see [1]). Now let ϕp, ψq ∈ Φ(V ) be given by

ϕp(u) =
1

p

∫

Ω

|∇u(x)|p dx, ψq(u) =
1

q

∫

Ω

|u(x)|q dx ∀u ∈ V.

Then it is obvious that ∂ϕp and ∂ψq coincide with −∆pu and |u|q−2u in the distri-
bution sense, where D(ϕp) = D(∂ϕp) = V and D(ψq) = D(∂ψq) = V respectively.
Therefore (NHE) can be reduced to (CP) with ∂ϕ1 and ∂ϕ2 replaced by ∂ϕp and
∂ψq respectively.

Lemma 10. (A1), (A2) and (A3) with ϕ1 and ϕ2 replaced by ϕp and ψq hold.

Proof of Lemma 10. We see that ϕp(u) = (1/p)|u|pV , which implies (A1) with
C1 = C2 = 0, C3 = p. From the definition of ϕp and ψq, it is obvious that D(ϕp) ⊂

D(∂ψq). Let un be such that supt∈[0,T ]{ϕp(un(t)) + |un(t)|H} +
∫ T

0
|dun(t)/dt|2Hdt

is bounded. Now since V is embedded in Lq(Ω) with compact injection, it follows
that {un(t)} is compact in Lq(Ω) for all t ∈ [0, T ]. Moreover since q ∈ (1, p∗)
and Ω is bounded, we observe that there exists a number θ ∈ (0, 1] such that

|u|Lq(Ω) ≤ C|u|θH |u|1−θ
V for all u ∈ V, whence follows that un(·) is equi-continuous

in C([0, T ];Lq(Ω)). Hence, by Ascoli’s lemma, there exists a subsequence n′ of n
such that un′ → u strongly in C([0, T ];Lq(Ω)). Then we can easily check that

|un′ |q−2un′(·) → |u|q−2u(·) strongly in C([0, T ];Lq′

(Ω)).

Therefore we deduce that ∂ψq(un′(·)) → ∂ψq(u(·)) strongly in C([0, T ];V ∗). More-
over (A3) also holds true (see [5, Proof of Corollary 16]).

4.1. The case where p ≤ q and u0 ∈W 1,p
0 (Ω).
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Theorem 3. (Local existence) Suppose that p ≤ q < p∗. Then, for all u0 ∈W 1,p
0 (Ω)

and f ∈W 1,p′

(0, T ;W−1,p′

(Ω)), there exists a number T0 ∈ (0, T ] such that (NHE)
has a solution u on [0, T0] satisfying:

u ∈ Cw([0, T0];W
1,p
0 (Ω)) ∩ C([0, T0];L

q(Ω)) ∩W 1,2(0, T0;L
2(Ω)).

Proof of Theorem 3. By Lemma 10, we infer that (A1), (A2) and (A3) hold.
Hence, by Theorem 2, there exists a number T0 ∈ (0, T ] such that (NHE) has a
solution u on [0, T0]. Moreover since ψq(u(·)) ∈ C([0, T0]), the uniformly convexity
of Lq(Ω) implies u ∈ C([0, T0];L

q(Ω)).

4.2. The case where p > q and u0 ∈W 1,p
0 (Ω).

Theorem 4. (Global existence) Suppose that p > q. Then, for all u0 ∈ W 1,p
0 (Ω)

and f ∈ W 1,p′

(0, T ;W−1,p′

(Ω)), (NHE) has a solution u on [0, T ] satisfying:

u ∈ Cw([0, T ];W 1,p
0 (Ω)) ∩C([0, T ];Lq(Ω)) ∩W 1,2(0, T ;L2(Ω)).

Proof of Theorem 4. By Lemma 10, we see that (A1), (A2) and (A3) hold.
Moreover, since p > q, we find

ψq(u) =
1

q
|u|qLq(Ω) ≤ C|u|qV ≤

1

2
ϕp(u) + C ∀u ∈ V,

which implies (A4). Therefore, by Theorem 1, (NHE) has a global solution on
[0, T ].

Remark 2. In Theorem 3, if we assume the smallness of given data, we can assure
the global existence of solutions.
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