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Chapter 1

Introduction

1.1 Background

In 1952, A. M. Turing [21] proposed the idea that, when two chemicals witkrdint difusion
codficients react each other, a spatially uniform state may become unstable, and as a result
a spatially non-uniform state emerges spontaneously. Nowadays his assertion is referred to
as “diffusion-driven instability”. In natural world, various patterns are observed, and it has
been confirmed that there are many phenomena for which this principle can explain how those
patterns are formed.

In 1972, A. Gierer and H. Meinhardt proposed the following activator-inhibitor system as a
model to explain the head formationlydra

A AP .
08 = 20— 0 + a0 S+ o)) in 2
oH ChAr .
GM AL -
(GM) o = DAH = 1i(0)H + pa(x) 5 in Q,
oA oH
5 = E =0 onoQ.

Here,Q is a bounded domain iR" with smooth boundargQ, v denotes the unit outer nor-

mal todQ, A = ZT:l 62/6sz is the Laplace operatocg, ¢y, €, D are positive constantgg(X),

pa(X), po(X), un(X), pn(X) are positive functions. They hypothesized that the head of hydra

is formed at the place where the activator concentrates. Moreover, since the activator grows
auto-catalytically, they assumed the inhibitor has the role of reducing the growth of activator to
prevent the explosion of the activator concentration. In numerical situations, the system (GM)
exhibits various type of patterns. Most typical one is the formation of spike-like patterns in
which the activator concentrates in a very narrow region around finitely many points. Some-
times the activator concentrates around curves or surfaces. Some patterns are stationary, and
others are nonstationary, depending on the parameters and initial data. From a mathematical
point of view, it is very dificult to understand rigorously the process of the formation of pattern

in (GM). For example, we do not know how to find all stationary solutions, and hence it is hope-
less to understand the global behavior of a solution with an arbitrary initial data. Therefore, it
is natural to consider a simplified system. Keener [10] proposed to take the liMit-of co.
Formally speaking, in this limitAH — 0 and henceéd(x,t) — &(t) because of the boundary
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condition. Heres(t) is an unknown. To derive an equation ), we integrate the second
eqguation of (GM) ovef to obtain

A(X, t)"

A(x t)de

gt H(x, t)dx_—fguh(x)H(x,t)dx+fph(x)ch

Hence, as a formal limit, we are led to

p
‘2—? — 2AA - pa(NA + pa(X)(% ; po(X)) for xe Q,t> 0,
(SS) |Q| = —§f,uh(x) dx+ gi f,oh(x)chAr dx fort>0,
6_A:0 for xe 0Q,t > 0,
ov

which is called theshadow systerfor (GM). This shadow system is regarded to preserve
some of the essential properties of the original system, and therefore the initial-boundary value
problem for (SS) is an important one that should be investigated first in theoretical studies.

We note that¢ is an unknown constant if we consider the stationary problem for (SS).
Therefore it is convenient to scale the activatoAgg) = £9(P-y(x), which yields

AU — p1a(})U + pa(X)Call® + € VPV (X)po(x) =0 inQ,

C X)u" dx — S+1—qr/(p—1)f X)dx =0,
(SSS) hfgph( ) '3 Qﬂh( )
% =0 on oQ.

If po(X) = 0, then any (positive) solution of the Neumann problem for the single equation

E2AU — f1a(X)U + Caoa(UP =0  inQ,
{@ =0 onoQ
ov

determines the value @fby the second equation of (SSS). A fundamental question is whether
this Neumann problem has a nontrivial solution or not. There have been a huge amount of
literature concerning this question in the case whg(&) andp,(Xx) are constants. However,
not much has been known about the case of variablficmsts.

The purpose of this thesis is to study the structure of nontrivial solutions of the boundary
value problem for the following single equation with variable fti@éents when the parameter
& > 0 is suficiently small:

(1.1) {825“00“ —a(X)u+bXYUP + 6o-(x) = 0 inQ,

B(X)u=0 onoQ.

Here A(X) is a second order uniformly strictly elliptic operatafx) and b(x) are positive
functions; o (X) is a nonnegative functiors > 0 andé > 0 are sificiently small constants;
and the exponemt > 1 is subcritical in the sense of the Sobolev imbedding. For the detail, see
Section 1.4.



1.2 Concentration phenomena for a homogeneous equation

In this section we review briefly some of the results on the Neumann problem for a single
eqguation with constant céecients:

EAu-Uu+UuP =0 inQ,
(1.2 M _o on o Q.
ov
Clearly this problem has two nonnegative constant solutica®) andu = 1 for anye > 0 and
p > 1. Therefore we are interested in the existence of nonconstant solutions. It ifficottdo
check that bifurcation theory can be applied to obtain nonconstant solutions near the constant
solutionu = 1 by choosing: appropriately. However, Problem (1.2) is expected to have a large
amplitude solution foe > 0 suficiently small. To find such a solution, the variational approach
is more promising. In this case a standard method is the Mountain Pass Lemma (see Lemma 2.7
below) by Ambrosetti and Rabinowitz [1]. To apply this method we have to regiriotthe
range 1< p< (n+2)/(n-2)if n> 3. Then

J.(u) = %fQ(SZIVUIZ +Uu?) dx— p%l fg uPdx

defines &C*-functional onW*?(Q), whereu, = max0, u}. It is well-known thatu is a classical
solution of (1.2) if and only ifu is a critical point ofJ,. Indeed J/(u) is a functional onW2(Q)
defined by

J(u)g = f(sZVu Vo +up—uPp)dx  for ¢ € W-(Q).
Q
Thus, J/(u) = 0 means thati € W2(Q) is a weak solution of (1.2). The smoothnessid$ a
consequence of the standard elliptic regularity theory.

In [12], Lin, Ni and Takagi proved the existence of a positive nonconstant solution of (1.2)
by applying the Mountain Pass Lemma:

Theorem A ([12, Theorem 2]) Under the assumption thdt< p < (n+ 2)/(n-2)ifn > 3
andl < p< o if n= 1,2, there exists a positive nonconstant solutigrial1.2), providede is
syficiently small. Moreover, usatisfies

0 < J.(u.) < Coe",
where G > 0 depends only of and p.
The critical valuec, = J.(u,) is given by

c = [ a3 (h(0).
wherel' = {h € C°([0, 1]; W*?(Q2)) | h(0) = 0,h(1) = €} ande € W*?(Q) satisfies].(€) < O.
Furthermore, it turns out that is the smallest positive critical value df(u). Hence the solution
U, stated in Theorem A is calledlaast-energy solutioof (1.2). The asymptotic behavior as
¢ | 0 of least-energy solutions was studied by Ni and Takagi:
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Theorem B ([14, Theorem 2.1}, [15, Theorem 1.2])et u. be a least-energy solution (a.2).
Then y has at most one local maximum@nand it is attained exactly at one point, ®vhich
must lie on the boundary, provided thatis syficiently small. Moreoverlim.oH(P.) =
maXcyo H(P), where HP) denotes the mean curvatureds® at P. Furthermore, 1(x) — O as
gl 0forxeQ\{P,}.

Therefore, ag tends to zero, we see th@t,} concentrates around only one point in the
neighborhood of a maximum point of the mean curvature functigitof
A similar result was obtained by Ni and Wei for the Dirichlet boundary condition:

Theorem C ([16, Theorem 2.2]) Let u. be a least-energy solution to

g£AuU-Uu+uP=0,u>0 inQ,
(1.3)

u=20 onoQ.
Then, fore syficiently small, we have

() u, has at most one local maximum and it is achieved at exactly one ppint®. More-
over, u(- + P;) - 0in CL_((Q - P.) \ {0}) whereQ - P, = {x— P, | x € Q}.

loc

(i) dist(P,, Q) — maxeeq dist(P,dQ) ass — 0.

It is natural to ask whether this kind of concentration phenomenon occurs only to least-
energy solutions. To be more precise, we define as follows:

Definition 1.1. A family {u}o<<s, Of SOlutions of (1.2) or (1.3) is said to exhibipaint concen-
tration phenomenoif there existM distinct points{P, ..., Puo} C Q a strictly decreasing
sequence; — 0 (j — o) andM sequence$Py,,}>; ¢ Q with P, — P, k= 1,..., M,
such that (i)u,; achievesstrictlocal maxima ak = Py, and (ii) Ug, (X) — Wk((X = Px.;)/&j) — O
asj — oo in B,(Pxo) N Q, wherep is a positive number andj, € C4R") is a positive function
satisfyingWi(0) = maxezn Wi(y) > 1 andWi(y) — 0 aslyl — co. We say thaPyg € Qisa
concentration poindf {u,} if there is a sequenci;}jas such thats; | 0 andPy,, — Pyo as
j = oo forsome 1< k < M.

Notice that the definition above does not rule out the possibility of the coexistence of point
concentration and, say, surface concentration.

If a concentration poin®, is on the boundary, it must be a critical point of the mean curva-
ture functionH(P). The proof of this fact is essentially due to Wei who considered a slightly
different question:

Theorem D ([24, Theorem 1.1]) If u, a solution of(1.2) andlim .o &™"J.(u.) = I(w)/2, then
for & syficiently small y has only one local (hence global) maximum point, &d P, € 0Q.
Moreover,V., H(P;) — O ase — O whereV_, is the tangential derivative at.P

Herew € W2(R") is a unique positive solution afw — w + wP = 0 in R" with w(0) =
max.ees W(y) andl(w) = 27 [ (VWi +w?) dy— (p+ 1) [, wP*tdy.

Also, Wei proved that a nondegenerate critical point of the mean curvature function is indeed
a concentration point:



Theorem E ([24, Theorem 1.2]) Let Py € 0Q. Suppose that fis a nondegenerate critical
point of the mean curvature function(Pl). Then fore syficiently small there exists a solution
U, to (1.2)such thatt™"J.(u,) — 1(w)/2, u, has only one local maximum point,/”and B. € 0Q.
Moreover, B — Py.

So far we have mentioned solutions concentrating at only one point. There are many results
on the existence of solutions which concentrate at more than one points. For instant, Gui and
Wei [9] established the existence of solutions concentratirig; gdoints in the interior of the
domain andK, points of the boundary. It is to be emphasized that other types of concentration
phenomena occur in solutions of (1.2). For example, Malchiodi and Montenegro [13] obtained
a family of solutions concentrating on the entire boundary of the domain.

1.3 Concentration phenomena for a heterogeneous equation

The dffusion-driven instability asserts that patterns can emerge spontaneously even in spa-
tially uniform environments. However, biological pattern formation takes place usually in spa-
tially heterogeneous environments. As a matter of fact, in numerical simulations for head-
transplantation experiments on hydra, Gierer and Meinhardt allowed strong spatial dependence
of the codficientp,(X) (see Fig. 2 in [7]). This suggests that spatial heterogeneity also plays an
important role in pattern formation, and there should be a systematic and quantitative study on
the dfect of spatial heterogeneity. This thesis is motivated by these observations.

Contrary to the spatially homogeneous case, only a few works from a view point of pattern
formation have appeared so far in this direction. The first result seems to have been given by
Ren, who considered

(L.4) {szAu —u+KMXu=0 inQ,

B(x)u=0 onoQ.

Here K(x) is a sdficiently smooth positive function of2, ¢ is a positive constant, and the
boundary operatoB(x) denotes either the identity operator or th&eatential operator in the
normal directiord/dv. Instead ofl, in Section 1.2, he introduces an energy functional

Js(U) = %L(82|VU|2 +Uu?) dx— p%l L K(uP** dx

By applying the Mountain Pass Lemma, one obtains a least-energy salytagain both for
the Dirichlet problem (working in the spawg’z(Q)) and for the Neumann problem (working
in the spac&V?(Q)).

Theorem F ([19, Theorem 1.1]) Let u. be a least-energy solution ¢f.4) under the homoge-
neous Dirichlet boundary condition. Then we have

1. There exist positive constants @nd G independent of such that G < [|ul|L~) < Co.

2. For £ small enough uhas only one local maximum point Rith lim,_ e dist(P,, Q) =
(SO



3. If P is a limit point of{P,} ase — 0, then K(P) = max g K(X).

Theorem G ([19, Theorems 1.2-1.3])Let u. be a least-energy solution @f.4) under the
homogeneous Neumann boundary condition. Assuming

(i) maxK(x) > 22 maxK(x) or (i) maxK(x) < 2P Y2 maxK(x),
o e a oQ

we have the following:

1. There exists positive constants &d G independent of such that G < [|u,||~) < Ca.

2. For £ small enough, upossesses only one local maximum point Foreover, ax | O,
P, stays away from the boundary @fif (i) holds, whereas Pstays on the boundary if (ii)
holds.

3. Every limit point of{P.} ase | 0 must be a maximum point of(K) in the interior ofQ if
() holds, while it must be a maximum point of¥ restricted oroQ if (ii) holds.

On the other hand, in the cage= R" there are many works on concentration phenomena
in bound states of nonlinear Séldinger equations initiated by Floer and Weinstein [4]. See,
e.g., Wang [22] and references there in for fundamental results on the equation

(1.5) h?Au—-V(Xu+uP=0 inR"

Under some mild assumptions ®i(x), Wang proved that the ground state of (1.5) concentrates
at a global minimum point o¥(x). This result was generalizend to nonlinear $climger
eguation with competing potential functions

(1.6) h?Au - V(X)u + KX)UPtu+ Q)u%tu=0 inR"

by Wang and Zeng [23] and they presented the method of locating the maximum point of a
ground state. In fact, our approach is based on theirs.

All the results mentioned above treats the case where the basic productian(tgnm(1.1)
vanishes identically. In this thesis, we are interested in the nontrivial basic production term. For,
in the activator-inhibitor system (GM) the basic production tegx)oo(X) plays an important
role: Without the basic production term, patterns may collapse, that is, there are solutions of the
initial-boundary value problem which form nontrivial patterns for a while, but eventually they
converge to (00) uniformly ast — 0. It is also proved that collapse of patterns never occurs if
pa(X)oo(X) £ 0. For a proof of this fact, see Suzuki and Takagi [20].

1.4 Statement of results

Let Q be a bounded domain iR" with smooth boundargQ, andp a number satisfying k
p<+2)/(n-2)ifn>3,1<p<oifn=12. We are concerned with the following
boundary value problem:

(P)

AU —a(X)u+b(X)uP +sc(X) =0, u>0 InQ,
B(X)u=0 onoQ,



wheree > 0 ands > 0 are stficiently small constantsAi(x) = X',_,(/9%)a;(X)(0/9x;) is a
strictly and uniformly elliptic operator withy; € CL(Q); a; = a;;, both ofa andb are of class
C? on Q and bounded from below by positive constants; and théficanto is a nonnegative
C2-function onQ with lollL@) = 1. Moreover,B(x) = Z{]jzlviaij(x)(a/axj) is the co-normal
differential operator, and= (v4,...,v,) is the unit outward normal taQ.

We are interested in point condensation phenomena, or point concentration phenomena,
observed in solutions of the problem (P) which mean that a8, the distribution of a solution
concentrates around a finitely many pointSrin this thesis, we consider the case of only one
concentration point. Problem (P) is a generalization of [14], [15] and [19], and we would like
to know the &ect of the spatial heterogeneity on the concentration point, especially in the case
of the inhomogeneous terdor(x) # 0, i.e.,6 > 0 by|lo|lL~@) = 1.

First, we introduce an energy functioni(u) corresponding to (P):

1 - du du
Jo(U) = = 2N ai{(X)—— + a(x)u?)dx
(1.7) 2 fg;(é‘ ”2:1 ) 0% an )

———— | b(uPdx—¢ | o(Xudx
o+ 1 Q() , ()

for u e W+2(Q), whereu, (x) = maxu(x), 0}. Then we can prove the following

Proposition 1.1 (Minimal Solution) There exists a positive numbé&r such that for eacld €
[0, 6.) the functional J(u) has a unique local minimizer,y in W2(Q), regardless of the size
of ¢ > 0. Moreover, ifé = 0, then y,.(X) = 0, while if6 > 0, then

) —_
O<Ups(X) < — forallxe Q.
< (%) min, 5 a(x)

Definition 1.2. We call the solution obtained in Proposition 1.1 théimal solutionfor the
problem (P).

Next, we put
(1.8) (V) := Jo(Ume + V) = Jo(Ume)  for ve WH3(Q).

We can apply the Mountain Pass Lemma [1], [18, Theorem 2.2] to this functipaald con-
clude as follows:

Lemma 1.2(Mountain Pass Solution)_etd. be the positive constant given by Proposition 1.1
and0 < 6 < 6,. Then zero is a local minimum qfih W*2(Q) for eache > 0. In addition, there
exists an e W2(Q) such that J(e) < 0. LetI" = {h € C°([0, 1]; W*2(Q)) | h(0) = 0, h(1) = €}.
Then

c, = inf trelr[g'flf]dg(h(t))

is a positive critical point of J. Moreover, ¢ is the smallest positive critical value qf |

7



We remark here that a critical point € W*?(Q) of J, is a weak solution of Problem (P).
Then by the elliptic regularity theory we conclude thgtis a classical solution of (P). In
particular,u; € C%*(Q) (see [8, Theorem6.31 and the remark immediately after its proof in
p.130]). Clearly, a classical solution of (P) gives rise to a critical point,oHence, finding a
solution of (P) is equivalent to finding a critical point &f On the other hand,, € W*?(Q) is
a critical point ofl. if and only if uy . + V¢ is a critical point ofJ.. Consequently our problem is
reduced to finding a critical point of.

Now letv, be a critical point ofl, corresponding ta.: 1.(v.) = c. andl/(v.) = 0. Then

Us = Une + Ve

is a solution of (P). We call, aground-state solutioof (P).
To be precise, we state the definition of “point concentration” for the problem (P).

Definition 1.3. A family {u.}o<.<s, Of Solutions of (P) is said to exhibit @oint concentration
phenomenoif there existM distinct points{P,, ..., Pmo} C Q, a strictly decreasing sequence
gj — 0 (j > ) andM sequencefPy, }2; ¢ Qwith P, — Pyo, k= 1,..., M, such that (i)
Ug; achievesstrict local maxima a = Py, and (ii) Ug; (X) — Umeg, (X) = Wi((X = Pkg;)/&j) — 0
asj — oo in B,(Pyxo) N Q, wherep is a positive number andj, € C4R") is a positive function
satisfyingW(0) = maxegn Wi(y) > 0 andWi(y) — 0 asly] — co. We say thaPyg € Qisa
concentration poindf {u,} if there is a sequenci;}jar such thats; | 0 andPy,, — Pyo as

j = oo forsome 1< k < M.

It will be shown in Appendix A that if there exist two positive constacggandC, (> o)
such that

(19) Co<9n < Js(ua) - ‘Ja(um,s) < Cogn,

then{u,} concentrates at finitely many points &n

A point Py € Q is called a concentration point if there is a sequefagesuch thatg; | O
andPy,, — Po for some 1< k < M.

The purpose of this thesis is (i) to show that the ground-state solytighexhibit a point-
condensation phenomenon, and they concentrate at exactly ondpeii2; and (ii) to give a
method to locaté®, by introducing docator function We remark here that this type of func-
tion was introduced first by Wang and Zeng [23] when they considered a point concentration
phenomenon for (1.6).

Definition 1.4. For anyQ € Q, let

®(Q) := a(Q)F #(P-Dp(Q)¥ PV (detAg) 2,
where Ag = (&;(Q))1xi,j<n-

We call®(Q) the primary locator function

Let uy(Q) denote the smaller of the two non-negative roots of the algebraic equation

(1.10) —a(Q)¢ +b(Q)¢P + 60(Q) = 0.

8



Put

. @ 1/(p-1)
(1.11) W@ = {3t w(Q
Finally we define foty € [0,y.) an important integral as follows:
I(y) = 1(y;w)
1.12 1 1
(1.12) = ELn(|VW|2+W2) dy - plel;n {(y+w)p+1—yp+1— (p+ 1)ypw} dy

wherey, > 0 is a stficiently small constant (see Proposition2.9), and= w, is a unique
positive solution of the following boundary value problem:

AW-w+ (y+w)P-yP=0 in R",
(GS%)

lim w(y) = 0, w(0) = maxw(y).
[y|—00 yeRN

Definition 1.5. For eachQ € Q, let

A(Q) = D(Q)I (»0(Q))-
We call A(Q) thelocator functionfor the boundary value problem (P).

A few remarks are in order here. First, is known to be spherically symmetric with
respect to the origin, and decays exponentiallyyas» o (see [5]). Second, in Section2.3
we shall prove that (G$) has at most one solution défis suficiently small by making use of
the Implicit Function Theorem and the uniqueness of solutionwf w + wP = 0 (due to,
e.g., [11]). Third, note thato(Q) is constant o if and only if either (i) = 0 or (i) o"(X) =
Ca(x)P(P-Dp(x)~Y/(P-1) whereC is a constant. In the case whergQ) is a constant function,
the locator functiom\(Q) reduces to a constant multiple of the primary locator funcg@).

Note also that in the case 6f> 0, we do not know what the upper boundjotiepends
on since we use the Implicit Function Theorem to prove the uniqueness of solution o (GS-
However, by the shooting argument for ordinaryfeliential equations as in [3] and [11], we
can obtain an upper bound gndepending only oipp andninthe cases (a) ¥ p< o if n=1,
(b)l<p<2ifn=2and(c) < p<n/(n-2)ifn> 3.

The main results of this thesis are stated as follows.

Theorem 1.3. Suppose that < Q is a concentration point of a family, },.o of ground-state
solutions. Then, the following holds:

() If mingeso A(Q) < 2ming.5 A(Q), then R € Q. Moreover, B is a minimum point of the
locator functionA(Q) overoQ.

(i) 1f mingeso A(Q) > 2ming5 A(Q), then B € Q. Moreover, B is a minimum point oA(Q)
overQ.

Corollary 1.4. Assume eithefi) thats = 0 or (ii) thato(x) = Ca(x)?P-Db(x)~"-1) where C
is a constant. Suppose thag P Q is a concentration point of a familju,}..o of ground-state
solutions of(P). Then, the following holds:



(1) 1f mingeso @(Q) < 2mingz P(Q), then Ry € 9Q2. Moreover, B is a minimal point of the
primary locator function®(Q) overaQ.

(1) 1f mingeso ®(Q) > 2 Mingg ©(Q), then Reo. Moreover, B is a minimal point ofd(Q)
overQ.

Although we can locate the concentration pd#gby finding the minimum points ok over
Q anddQ, it is in general very diicult to calculate these minimum points. For, we must solve
the boundary value problem (G3-n R" and know the dependence of the enefdyy(Q); R")
on Q explicitly. However, if¢ is suficiently small, then the minimal points of the primary
locator function®d gives us a first approximation:

Theorem 1.5. Suppose that < Q is a concentration point of a famili, } ..o of ground-state
solutions. Then, the following holdsdifis syficiently small:

(1) 1f mingego @(Q) < 2Miny5 P(Q), then R, € 9Q2. Moreover, if all the minimum points of
d|yq 0N OQ are nondegenerate (as a critical point), then there exists a minimum pgint Q
of @ overdQ such thatPy — Qg| = O(6) asé | O.

(1) 1f mingeso ®(Q) > 2 miny5 ©(Q), then B € Q. Moreover, if all the minimum points of

@ in Q are nondegenerate, then there exists a minimum pajraf@ overQ such that
|P0 - Qol = O((S) aso l 0.

Consequently, we know the location®§ by calculating the minimum ab overQ and that
overdQ. Moreover, we find that if the inhomogeneous tetmis suficiently small, therso
does not fect much the location of the concentration point.

So far, we have been concerned with a concentration phenomena observed in ground-state
solutions whose existence is guranteed by the Mountain Pass Lemma. However, it is quite
possible that solutions with higher energy(u) > c, exist and exhibit a point-concentration
phenomenon, as in the case of spatially homogeneous equations. The following result reveals
the role of the primary locator functioh(Q) in locating the concentration point.

Theorem 1.6.Let{u,}o<.<¢, be a family of positive solutions of the following Neumann problem:

gAu—a(X)u+b(XuP =0, u(x) >0 InQ,
(1.13) { ou
pvi
Assume that there exists a positive constans@h that0 < J,.(u,) < Coe" for 0 < & < g and
that u, attains a local maximum at,Pce Qand P. - Pyo € Qase | 0. Then R is a critical

point of the primary locator functiom, that is,V®(Py) = 0. Moreover, for any R> 0,
U:(P. +&2) = vp(2 + O(e) inC*[Br(0)) ase O,

where (2) = (a(Q)/b(Q))YP-Yw(a(Q)¥?2) and w is a unique positive solution of the boundary
value problem

0 onoQ.

AW-w+wP =0 inR",
(GS-0)

lim w(y) = 0, w(0) = maxw(y).
[y|—o0 yeR"
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This theorem says that any solutiapwith 0 < J.(u.) < Coe" looks like vp (X — P.)/€)
near a local maximum poifR, as long ad, stays away from the boundary.

This thesis is organized as follows: In Chapter 2, we construct the minimal soluytion
and then prove the existence of mountain-pass solution stated in Lemmal.2. Moreover, we
prove the uniqueness of entire solution which appears as the first approximation of ground-state
solutions. In the last section of Chapter 2 we derive an upper bound of energy of a ground-state
solution, which is crucial in proving Theorem 1.3. Chapter 3 is concerned with the asymptotic
behavior of ground-state solutions&ag 0. In Chapter 4 we prove Theorem 1.3, Corollary 1.4
and Theorem 1.5. Finally in Chapter5 we consider the boundary value problem (1.12) and
prove Theorem 1.6.

11



Chapter 2

Minimal solution and ground-state solutions

2.1 Existence and local convergence of the minimal solution

In this section we prove the existence of the minimal solutignof (P) stated in Proposition 1.1
and then consider its behaviorag 0.

We begin with the existence of,.(x). First, as an approximate function, we choose the
solution of the boundary value problem for the linear equation

(2.1) {SZﬂ(X)u —a(u+60(x) =0 inQ,

B(X)u=0 onoQ,
which is known to have a unique solutieg, € C*Q) (see [8, Theorem6.31 and also the

remark immediately after the end of the proof in p.130]). By the maximum principle and the
assumptions- > 0 and maxr = 1, we see that

Ollollio )
min, s a(x)  min,ga(x)

provided that > 0. Clearly, if6 = 0, thenup, = 0.
In order to construct the minimal solution, we need the following maximum principle for
weak solutions:

Lemma 2.1. Let f € L2(Q) N L*(Q) and ue W?(Q) satisfy

p
”Zlf aj )(9 a_JdX"‘La(X)U‘PdX:LfgodX

for anyp € W?(Q). Then

(2.2) 0 < Ug(X) < forall x e Q,

f( ) ( X)
|nf <u(x) < su for almost every x Q.
In particular, if f(x) > 0, then
—lnffx<ux_—su f(X for almost every x Q.
max, s a(X) xe () (%) min, 5 a(x) Xegp (%) y
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This lemma can be proved by Stampacchia’s truncation function method as in the proof of
[2, Theorem 9.29].

Putu = ug. + ¢. and substitute this in the equation of (P). Then our problem reduces to
finding a¢. which satisfies

(2.3)  LANXNG: — a(X)p, + b(X){Ugs +¢.})° =0 inQ  and B(Xu=0 o0ondQ.

We construct, by using the contraction mapping principle. For this purpose we introduce a
function spaceéX and an operataf : X — C%(Q) as follows:

X:= {¢ e CY(QY ' IPllL=(o) < 5/ Tg a(x)},
F = —[2AX) —a(x)]  bX)(Uo. +9)"-

Here, the operatofF is interpreted as follows: Fdr € L9(Q) with g € (1, «), the boundary
value problem

EAXV-aXv+h=0 inQ, B(X)v=0 0nadQ

has a unique strong solutiog € W29(Q) andy, satisfies the estimat®yllwaa) < ClIhllLaq).
Let (2A(X) — a(x));* denote the inverse operatior— v,. Note that if 1< g, < go < o0 and
h e L%(Q), thenh € L%(Q) and hence/y, = Vg, by virtue of the uniqueness of strong solution.

By the Sobolev imbedding theorem ([8, Theorem 7.268P%(Q) c COQ) if g > n/2. Thus,
if h e C%Q), thenh € LYQ) and €*A(x) — a(X));'h defines a unique function € C°(Q),
independent of the choice gf> n/2. Let us denote this operathr— v by (s2A(X) — a(x))al,

which is a bounded operator @9(Q). Consequentlyf mapsX into C°(Q).
Let us now show thaf is a contraction mapping oX for suficiently smalls. First, put
v = F¢ for ¢ € X. Thenv may be regarded as a strong solution of

AV — a(X)V + b(X) (U + #)? =0 InQ,
{ B(xv=0 on oQ.

Hence, by Lemma2.1 we see that

info b(Y(Uo, +9)° _ V) < SURs b(X)(Uo.s + ¢)" |
sup, a(x) - - infg a(X) ’

sinceuy,, ¢ € X, we have

sug,b(¥)  (20)°
infoa(x) (infqa(x)®

0<v(x) <

Therefore, if we put

b

_ [ (infga(x))® 1/(p-1)
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then¥ ¢ € X as long as & ¢ < 6;. Next, we observe that for agy, ¢, € X,

Fo1—F d2
= —{2A(0) - &) bO)(Uo. + 62)° + {LAK) —ax)] " bX)(Uo, + ¢2)°
= —{2A() ~ 2} () {(Uos + 62)° ~ (Uos + 62)7)
= —[PAM) - a()] X {P(Uos + g2 + 01 - 2)° (@1 - 92))
(for somes € (0, 1) depending orx by the mean value theorem)
= —{62A00 - a0 PDO)(Uo. + 01 + (1 - 0)62)° (61 — 6.

By Lemma 2.1, it follows that

IF 61— Fgalli(@) < Cillbo,: + 061 + (L= O)alli~q 61 — Balli~@),

whereC; = max;b(x)/ minga(x). From¢; € X and (2.2), we see thdltp, + 6¢1 + (1 -
0)¢allL~() < (26)/ ming a(x). Therefore,

2P-1sup, b(x)
(infq a(x))P

Note that (2)Psup, b(x)/(infq a(x))? < 1/2 if 0 < § < §;. Hence, it is shown thaf is a
contraction mapping ifX, provided that O< 6 < §;. Therefore, there exists a unique € X
such thatF ¢, = ¢,, that is,¢, satisfies-{2A(X) — a(X)}¢, = b(X)(Uo. + ¢:)°. By the regularity
theory for elliptic equationsp, turns out to be &£2-function onQ; and hencely. := Uy. + @.
is a classical solution of (P) withumllL~) = O(5). As a matter of factp.(x) is a nonnegative
function sinceb(X)(Up,. + ¢.)F > 0; therefore 0< Ug.(X) < Um.(X) < 6/ ming a(x) onQ for any
e > 0. Consequently, we have proved all the assertions of Proposition 1.1. Q.E.D.

IF ¢1 — Fdollie(q) < Pl — dallL()-

Next, we consider the limiting behavior @f,.}..0 ase | 0. As a preliminary we prove the
following

Lemma 2.2. For each Qe Q, it holds that

60 (Q)

20) inC2.(R") ase|O0.

Up:(Q + £2) —

Precisely speaking, @ € 9Q, then we have to extena).(x) outside ofQ. This will be
done in the proof of Proposition 3.1 in Chapter 3. The conclusion of the Lemma 2.2 applies to
this extended function.

Proof. We putVvo.(2) = Upe(X), Z:== (Xx-Q)/e, Qg0 = {2z R" | X = Q+ ¢z € Q} and
U := 60(Q)/a(Q).
Case 1): Qe Q. From (2.1) we derive the equation satisfiedvgy:
AQ+e2Vo, —a(Q+ Vo, +00(Q+£2) =0 INQq,
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whereA(Q+¢&2) is an operator with respect mi.e., A(Q+&2) = Z{jjzl(a/az)aj (Q+£2)(0/07;).
Sinceu satisfiesA(Q)Up — a(Q)up + 5o(Q) = 0 in Q, subtracting the equation fog from that
for vo ., we obtain for alz € Q, o that

ﬂ(Q)(VO,s - uO,a) - a(Q)(VO,s - uO,a) = fs
with
fo(2) := —{A(Q + &2) - A(Q)Ivo.. — {&(Q + £2) — aA(Q)}Vo.. — {60(Q + £2) — 7(Q)}.

Puty, = V. — Up. Theny, satisfies

(24) ﬂ(Q)'J/s - a(Q)'J/E =f. in QS,Q'

For anyR > 0, there is arzr > 0 such thaBsr(0) € Q, for 0 < & < &g. SincellVo,llL~(,q) =
lluosllL=(q) is bounded ine, there exists a positive consta@k independent ok such that
el By < Cr holds andf, converges to zero i€? (R") ase | 0. From the regularity
estimate for elliptic equationgliy.|lwer g IS bounded ag | 0. Letr > nand apply the
Sobolev imbedding theorem. Then there exists a congtan, 1) such thaty, is bounded in
C4(B.r(0)). Moreover, by the interior Schauder estimaitgis bounded irC#(Bg(0)). By the
Ascoli-Arzela theorem, for any sequengsg}joy such thate; | O, there exists a subsequence
{&j ke C (&)} jer and a functioyP e C(Br(0)) satisfying

e, — U5 InC3(BR(0)) ask — co.

Note that the choice of the subsequeficgj«: depends orR. Next, we choose a strictly in-
creasing sequendBy ke such thaR, — oo ask — oo, and use the diagonal argument to obtain
a subsequence ¢;,} which we denote by the same symlpo] }iey such that

Ve, = Yo IN CZ.(R") ask — oo,

wherey, € C2(R"). Note thatf, converges to zero locally uniformly as| 0. From (2.4), it
therefore follows that/ satisfies the equatiaf(Q)yo — a(Q)y¥o = 0 inR". Sincey, satisfies
an equation with constant ciheients, we can scalg appropriately so that the scaled function
o satisfies the equatiofy, — o = 0. Here, we recall that the operatar— 1 is invertible
in §'(R") (the space of tempered dlstrlbutlons) Note also nn@an(Rn) is bounded because
of the boundedness t.[|L~q,q)- Hencey, € S'(R"), and hence we hawg, = yo = 0 in
R". Now, the limityy is unique and therefore the entire sequefice} converges tay, = 0.
Hencey,. — 0 ase | 0 becausge;} is arbitrary. Recall thay, = v — 60 (Q)/a(Q); therefore,
Uo.;(Q + £jy) converges téo(Q)/a(Q) in C2.(R" asj — oo.

Case 2): Qe 9Q. It suffices to show thaty.(2) = Uo.(S(eZ, €|z,])) converges téo(Q)/a(Q)
in Br(0) for eachR > 0. For details, see the proof of Proposition 3.1, for example the definition
(3.10) of S and how to extend. outsideQ along the conormal vector. Then, the equation
of ¥ := Vo — Up converges to an elliptic equation similar to (2.4). Frafmboundedness of
., similarly to the case of € Q, there existsyy € C?(Br(0)) such thaty, converges tayg in
C?(Bg(0)) andy satisfies an elliptic equation similar to (2.4). Singg= 0, we see thato,,
converges tao(Q)/a(Q) in C2 (R") ase; | 0. Q.E.D.

loc
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Lemma 2.3. For Q € Q, let uy(Q) denote the smallest nonnegative root of the algebraic equa-
tion —a(Q)¢ +b(Q){P+60(Q) = 0. Then, there exists a subsequefggan C {€}.-0 CONVerging
to zero as j— oo such that

Uns (Q+ 62 > Un(Q)  INCE(R") as j— oo.

Precisely speaking, @) € 0Q, then we have to extengl,.(x) outside ofQ. This will be
done in the proof of Proposition 3.1 in Chapter 3. The conclusion of Lemma 2.3 applies to this
extended function.

Proof. As in the proof of Lemma 2.2, we treat only the cas€é Q. PutViy.(2) := Un.(X),
z:=(Xx-Q)/eandQ,q :={zeR" | x=Q+eze Q}. Lety(2) := Vm:(2) — un(Q). Sinceun(Q)
is the smaller of the two nonnegative roots-@i(Q) + b(Q)ZP + 60(Q) = 0 and is independent
of z, we have

AQWs — a(Q)Yrs + QN (Um(Q) + ¥e)” — Um(Q)®} =

where we have defined

fo(2) = —{AQ + £2) - A(Q)}Vm. + {a(Q + £2) — &(Q)}Vim.
—{b(Q + £2) - b(Q)}Vf,, — 6{o(Q + £2) — (Q)}-

From the uniform boundedness pfi.llL~,q) = llUmellL~() With respect tae, in a manner
similar to that in the proof of Lemma 2.2, we see tliatonverges to zero i62 (R") ase | O.
Moreover,b(Q){(Un(Q) + ¥m.)P — un(Q)P} remains bounded as— 0. Hence for any sequence

of positive numbersge;j} converging to zero, we can find a subsequence, which is denoted by
{ej} again, and a functiost, € C3(R") such that

Vs, = Yo INCEL(R") aseg | 0.

Therefore, it sffices to show)y = 0. Note that the boundednessf implies thatyg is a
bounded function and satisfies the equatit(iQ)yo—a( Q) o+b(Q){(Um(Q)+10)P—un(Q)P} =

in R". Since the cocients A(Q), a(Q), b(Q) and un(Q) are independent of, we get the
equatlonAwo — Yo+ (Un(Q) + Yo)? — Um(Q)P = 0 by a suitable change of variables» 7, where

Uo(2) = (b(Q)/a(Q))¥o(2) anduin(Q) = (b(Q)/a(Q))*PYurn(Q). LetG be the Green's function
for1— A onR". Then

o@ = [ 6z-0){(@(Q + 1) - @) e
By the boundedness ﬂiEOHLm(Rn) and the positivity of5, we see that
0@ < | (2= 0|8n(Q) + o) - (@] ek

< p(Un(Q) + IFolluon)” Wollmgen f G(z- ) de.
Rn
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Notice thatU(2) := fRn G(z-?)-1d¢ satisfies the equationU —U +1 = 0 and thereford&) = 1.
Hence we get the following inequality:

~ - ~ -1~
0@ < p(0n(Q) + IWolliogn)” IWolliwny.  z€ RM.
Sincez € R" is arbitrary, this implies
~ - ~ -1~
Wolleony < P(0n(Q) + IWollsen) oo,
and we obtain -
(2= P(6n(Q) + Wallevgen)” ) Woll ey < .
Here, recall thatin(Q) = (0(Q)/a(Q))¥®"Puy(Q) = O() and|ollL~n = O(S) by Proposi-
tion 1.1. Thereforei,(Q) + ||J/0||Loo(Rn) = O(6) for suficiently smalls, so that
~ ~ -1
1- p(Um(Q) + ||l//o||L°°(Rn))p >0

whenevers is suficiently small. Consequently, by the two previous inequalities, we have
IYollLe@ny < 0, i.e.,y0 = 0. Q.E.D.

2.2 Existence of a ground-state solutiom,

In view of the definition of the energy functionals (1.7) and (1.8), we notice the following:

Remark?2.4. Since u,, is a solution ofP), J.(un.)v = 0 holds for any v W2(Q). Thus, L(v)
may be arranged as follows:

1L(V) = %L(aij(x);—)\(/jg—)\; i a(x)vz)dx

~ 7 [ 00U + v - Ut = (o DU

where we adopt the Einstein convention (i.§<i& meansz{]j:1 ajj&iéj).

Definition 2.1. Let o(X) := a(X) — pb(X)um(¥)P* andg(y,V) := (y + V)® — yP — pyP~v for
y > 0,v € R. For anyu,v € W-2(Q), we define an inner produ¢t -)e, on W2(Q) by

. 2, ou ov B p-1

(U, V)g, = fg(s a.J(x)—éb(j _6xi + (a(x) = pb(x)ur,; )uv)dx
_ 2. (09U OV
= fg(s a.,(x)axj ox + a(x)uv)dx

and denote b¥, the spacaV2(Q) equipped with this inner product. Moreover, we define as
follows:

M, := {ve E.\{O} ‘ M = f b(x)g(um,g,v)vdx}: Nehari manifold
Q

¢, := inf maxl,(h(t)), wherel, := {he C°([0,1]; E.) | h(0).h(1) # 0,1.(h(1)) < O},

hel’; O<t<1

C = inf  maxl(tv),
veE.N{v>0,£0} t>0

c’ = vlenl\}l‘ [-(V).
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Since the cofficientsa;j, a, b and o are bounded, the normh- ||, is equivalent to the
standard norniullwiz) = ([, VU dx+ [ u?dx)¥? onW*4(Q). By the properties of(Un.. V)
with respect tov, the following lemma holds:

Lemma2.5.c, =c; =c.".

Since this lemma is verified in a fashion similar to Lemma2.1 in [23], we omit the proof
here.

Lemma 2.6. The quantity gdefined in Definition 2.1 is a positive critical value gfJ).

This lemma is a consequence of the Mountain Pass Lemma ([1], [18, Theorem 2.2]), which
is stated as follows:

Lemma 2.7 (Mountain pass lemma)_et E, be a real Banach space angd4 C(E,; R") satis-
fying (PS). Supposeg(D) = 0 and

(i) there are constants, o > O such that }|sg, > @, and
(i) thereisanye E, \ B, such that J(v.) < 0.
Then | possesses a critical valug & a. Moreover ¢ can be characterized as

c. = inf max| (n(t
nel t€[0,1] (77( ))

wherel = {n € C}([0, 1], E,) | n(0) = 0,(1) = €)}.
To check the (PS) condition fag, we prove the following claim.
Claim 2.8. If 6 € (max{(1/3,1/(p + 1)}, 1/2), then for any »x Q, ve R,
G(Um (%), V) < 09(Ums(X), V)M

where

v 1 a 1)
60w = [ grndt= o+ u -y - - BEED )

Proof of Claim 2.8. Let ¢(V) := 69(Ums, V)Vl — G(Une, V). We prove thatp(v) > O for any
v € R". In the following we suppress,. in g and writeg(V) = g(Un., V).
Case 1: v> 0. By differentiatingp, we have

¢'(v) = 6g' (Vv - (1 - 6)g(v),
¢"(v) = 69" (V)v - (1 - 26)g'(v),
¢"'(v) = 69" (Vv - (1 - 36)g"(v).
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Recallingg(v) = (Uns + V)? — UR, — pusv, we obtain that

¢ (v) = p(p = 1)[(30 = D, + {6(P + 1) = 1V|(Ums + VP>,

Since,un, is strictly positive by Proposition 1.1, so is&3 1)un. + {6(p + 1) — 1}v for any
60 > max1/3,1/(p + 1)} andv > 0. Hencey’” > 0. Thereforey” is strictly increasing. Thus

¢” (V) > ¢”(0) is obtained fov > 0, and we have” > 0. Sincey”(0) = —(1 - 26)g'(0) =
P{(Ume+0)P1—UPl} = 0, we see thap’ is non-decreasing. Fropi(v) > ¢'(0) = —(1-6)g(0) =

0 forv > 0, it follows thaty is non-decreasing ang(v) > —G(Un,, 0) = 0 forv > 0.
Case 2:-uny. < v < 0. By differentiatingy for v < 0, we see that

¢'(v) = =6g'(V)v — (1 + 6)g(v),
¢"(v) = -6g"(V)v - (1 + 26)g' (V)
¢"'(v) = =69 (V)v - (1 + 36)g" (V).

By the definition ofg, it holds that
¢"(V) = =p(P = 1)0(Une + V)P 2V = p(L + 26){(Um. + V)P = ub )
= p[(P ~ DB(Une + V)P 2(=V) = (1 + 20){(Un + V)" = UF ]
= p|(Ume + VP Z{(1+ (p+ 1)O)(-V) = (1 + 20)ume} + (1 + 20)u |-
In the case > 2, we have for-up,, < v < 0 that
¢ (V) 2 P|(Ums + V)P 2 =(1 + 260)Um,.} + (1 + 20)u )|
= P(L + 20)Ume{U%? — (Ume +V)P2} 2 0,

and¢’(v) is non-decreasing fofuy,. < v < 0. Sincey’(v) < ¢’(0) = —(1 + 6)g(0) = 0 holds,
¢(V) is non-increasing foruy,. < v < 0. Hencep(V) > ¢(0) = =G(Un,,0) = 0.
In the casep < 2, we calculate”’ to see that

"' (V) = P(Ums + V)"
X [(p=2){(X+ (p+ 1O)V) = (1 + 20)ume| — (L + (P + 1)0)(Ums + V)|

= P(Ume + V)P ¥{(p— DL+ (p+ 1)O)(-V) — (P~ 2)(1+ 26) + 1+ (P + 1)0)um}
= P(Ums + V)" 3{(p— DA+ (p+ DO)(-V) — (P~ 1)(1+ 36) U

= p(P = 1)(Um. + VP (L + (p+ 1))(-V) - (1 + 30) . .

Here, for-v < uy,. we observe that
¢"'(¥) < P(P ~ 1)(Ume + V)P *{(L+ (P + 1)0)Um ~ (1 + 30)Um. |
= (P — 1)(Une + V)*3(p — 2)0Um. <O,

and hencey”(v) is decreasing foru,. < v < 0. Sinceg¢”(v) > ¢”(0) = 0, we see that
¢’(v) is non-decreasing forun. < v < 0. Hencey'(v) < ¢’(0) = 0 andy is non-increasing.
Consequentlyp(V) > ¢(0) = =G(Une, 0) = 0.
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Case 3: V< —Un,. By virtue of (U + V), = 0, we calculate’ as follows:

¢'(V) = —-0g' (V)v — (1 + 6)g(V)
= —p&{(Ume + V)E_l - Ur?{gl}v — (14 0){(Ume + V) - U = puﬁl‘jv}
= —po{—uR IV — (1 + O){-UR, — PUn:V} = (1 + 20)pul v + (1 + 6)uf,
< (1+20)put(—Ume) + (L+ OUR, = —uP {(1+20)p— (1 +6)} < 0.

Thus,¢(v) is decreasing fov < —un,.. Hencep(v) > ¢(—Uun.) holds. Here, from

¢(=Ums) = 09(=Ume)Ume — G(=Um,)

_ 1 +1 +1 p(p + 1) +1
= 0(—u,ﬁ’1€ + pq‘iw)um,g - pTl{_u’?‘s +(p+ 1)U - Tuﬁw}
1 -1
= SE |- D+ 12— 2p+ p(p+ 1) = 58-S P+ D2+ p) > 0
it follows thate(v) > 0 forv < —Un..
We therefore have proved thafv) > O for allv € R. Q.E.D.

To use the Mountain Pass Lemma, we verify only the (PS) condition by using Claim 2.8,
since the other conditions are verified easily (see, e.g., [12]).

Verification of the (PS) condition. Suppose thafvilkear C E, is any sequence such thHafvi)

is bounded and’(v) — 0 ask — oco. By /(i)W = ”Vk“Eg - fQ b(X)9(Um,e, Vi)V dX, we can
calculatel (v¢) as follows:

R RN AT3ATS _ p-1
1) = 5 [ (U005 (a0 - pbOun 09 g x
-~ ifb(x) (Ume + V)P = UPHL — (p+ 1)UP vy — IO(p—+l)up‘1v2 dx
p+ 1 o me + me me 2 me Yk

1

= Elle”ZEg —fb(x)G(umg,vk)dx
Q

:}I;(vk)vk+} f b(X)9(Um.e, Vi)Vk dX — f b(X)G(Um, V) dX

2 2 Jo 0

:%I;(vk)vk+ fg b(x){%g(ums,vk)vk—G(umg,vk)}dx

We verify the (PS) condition in the two casdéSase 1 liminfy_. [Wlle, = 0, andCase 2

liminfy_ o [IVle, > O; we may assume that there exisgs> O such thaty < ||wllg, for any
k e N.

Case 1 By the assumption, there exists a subsequékgea, such that||vkj||Eg — 0 as
j = oo. This{vi}jav is a convergent subsequencegn
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Case 2 By the above identity, it holds that
2 G(Vk)}
b(x){ = dx
f (){ 9 e ™ e,
| k|— k f { }
=— | b(X)g(Vv dx+ b(x V
; f (990" B9{ 5000, MHE G

ls(Vk) 1
= b(xX)g(Vv dx+
Lm{vk<0} (99l k) | k”E [IVidE. ) g ) |Vk||

Sinceg(vy) < —purﬁ’{glvk holds forvi < 0 and||wlle, > Co, We see that

1Ml GW)
fg b(x){ 29 e Twde, } dx

V2 I 1
< f po(X)uPt —— dx + M) _ k)
QN{Vic<O0) [IVi

de i
11 l.(V 1
< bl o I + S i

Here, we note thaltl.(v)llze.ry — 0 ask — oo andl.(v) is bounded by the assumption,
thereforel .(v)/co — I2(Vi)Vk/(2lIVille,) is bounded, that is, there exists a constéint- 0 such
that|l(vi)/Co — 12(M)Vi/ (2lIwklIe, )l < M. By [IVIZ, < (1/ infq a(X))IIwlIE, , we obtain

Vil G(w)
fb( ){— S e, ™ ||Vk||Eg}dX

pllbll e p-1 1 2 -1 2
< —— |UnellPt I + M = C6P V2 + M
mingga(®)™ O Ivdle, IVdle,

Substituting||vk||§8 = 12(igwk + fg b(X)9(Ume, Vi)Vk dX in the right-hand side of the above in-

equality, we have
1 (Y G(Vk)}
b(x)< =a(v - dx
fg (){ 9 e~ Tdle

< CoP? L {I (Vi) + f b(X)g(Vi) vk dx} +M

lIViclle

p-1)/ Vi Vil
<Co {Ig(vk)|| Ve, + f b(x)g(vk) Ve, dx} +M
<Cs" ! f b(X)g(Vi) ALY

lIVidlle.

Therefore, we get

f b(x){ (5-Co" o )||vk||E (k)nvkuE} x< M-
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By using Claim 2.8, we have (2 - C6P* - 6) [ b(X)g(vi)Vil/IIVille, dx < M”. For smalls, we
can choose éasuch that mapd/3,1/(p+ 1)} < 6 < 1/2 - CsP1, and hence

f ()9 dx < M” < oo.
Q [IVidl[e,

Sinceg(v) > 0 forv € R, it follows that

f DS Tt < f (x)g(vk)H k“E <M <o

Therefore,||vlg, is bounded sincévlle, < M” + I2(vigW/|IVlle, = M” ask — oo. By the
equivalence of| - [lg, and|| - [lwez(q), the sequencfvliar is bounded inV-2(Q). Hence, there
exists a subsequenbz%)} i C {Vidkar @ndvp € WH2(Q) such that/(k? converges ta, weakly in
W2(Q). By the compactness of the imbeddM§?(Q) — LP*(Q), there exists a subsequence
{vf?}jeN c {vfi)}jeN andvp € L2 LP*(Q) such thalv(kf) converges tag'strongly inL2 N LP*L(Q).

By the uniqueness of the weak limi = Vo in L2 N LP*(Q). Sincelg(v(k?)) -0 andvfj) — Vo
weakly inW*?(Q) asj — oo, it follows that

<V(?),VO>E5 - f b(X)g(\é(?))VO dx= |;(V(k?))V0 — O,
Q

2. vope, — el and [ bO9a0ZNodx— | Bgeodx
Q Q

Thus, vo € M, is obtained. Sinc¢|;(v‘k?)v(k?)| — 0 and fgb(x)g(\/(kf))v(kf)dx converges to
|, b(x)g(vo)vo dxasj — oo, we obtain

2B, = 2N+ [ BOgaf2M? x| bo9atlvedx= el as] — o

Fromv® - vol2, = V7112, — 2042, Vo)e, + IIvol2,, by taking the limit as — oo, it is shown
that vlf) converges tog in E, asj — oo. Therefore the sequende}wy has a convergent
subsequenca/(kf)}jeN in E,. Hence, the (PS) condition is satisfied.

Consequentlyg, in Definition 2.1 is a positive critical value &f(v). Q.E.D.

Definition 2.2. Let v, be a critical point of.(v) corresponding te@.. We callu, = Uy + V. a
ground-state solutioof (P).

2.3 Entire solution onR" to approximate ground-state solu-
tions

In this section we consider a slightly general nonlinearity includifw) = u?, 1 < p < (n+
2)/(n—-2). Let f be aC#-function onR" satisfyingf(t) > 0ift > 0 andf(t) = 0ift < O.
Moreover, we assume that the boundary value problem
Aw-w+ f(w)=0 inR",
(P w(0) = maxw(y).  lim w(y) = 0
yeR" y|—c0
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has a unique positive solutiaw, and the linearized operator

L=A-1+ f'(W): W>P(R") — LP(R"

j:l,...,n}.

Proposition 2.9. There exists a constapt > 0 such that for anyy € [0, v.), the boundary
value problem

satisfies

Aw-w+ f(w+7y)-f(y)=0 inR",
. |

w(0) = maxw(y), lim w(y) =0
yeRN [y =00

has a unique positive solution®w,. Moreover, w is symmetric with respect to the origin and
decays exponentially at infinity.

The symmetry and exponential decaywgfhave been proved by [5]. (Notes that, foffsu
ciently smally > 0, 4/1 — f’(y) is bounded below with a positive constant.)
We outline the proof of uniqueness:

0°) Assume that such a positive numbheroes not exist. Then there is a sequenghey such
thaty; | 0 asj — co and (P), has two distinct positive solutiong” andw!”.

1) Wi — w® andwl? — w®. Moreover botw® andw® are solutions of (R)

2°) There exists a neighborhoad of w, such that (B) has a unique solution i if y > 0 is
suficiently small.

3°) By 2°), WY £ w@, A contradiction with the uniqueness assumptiomfer 0.

To prove ) we begin by noting thatf(t + y) — f(y))/t? - ¢, > 0 ast — oo. We point
out also thatv,, attains its maximum only at the origin. By the same method as in the proof of
Theorem 3 of [12, pp.18-20] (or more precisely, [6]) we can prove that there exists a positive
constantM such thatwy?|| <) + IIM]lo@n < M for any j = 1,2,3,.... Moreover, they
decay exponentially dg| — ~ (see, e.g., [5]). Hence for amye (0, 4/1 — f’(y)) there exists
a positive constar€, such that 0< wi)(y) = wl)(ly)) < C,e™™ and|D*w{)(y)| < C,e™M for
ol < 2 andi = 1,2. Therefore{vvgj)} and{Vvvgj)} are uniformly bounded and equicontinuous,
hence it contains a subsequemng)k} convergent irC: (R"). Letw® be its limit. Clearly, it
satisfies (B)fori =1, 2.

2°) Let G be the Green’s function for £ A onR". Then, for a bounded and continuous
functionh onR", the solution of the equatiotiu —u + h = 0inR" is expressed as

)= [ 6ty-an@dz(~ [ G ana .

We call the standard implicit function theorem on Banach spaces. The following version is
found in [17, Theorem 2.7.2].
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Lemma 2.10(Implicit function theorem)Let X, Y and Z be Banach spaces &nd continuous
mapping of an open setd X x Y — Z. Assume thaf has a Frechét derivative with respect
to X, Fx(X,y) which is continuous in U. Ldx, Yo) € U and ¥ (Xo, Yo) = 0. If A = Fy(Xo, Yo) IS
an isomorphism of X onto Z, then

(i) there is a ball B(yo) = {y : lly — Yoll < r} and a unique continuous map:uB;(yo) — X
such that @yo) = X and 7 (u(y),y) = 0.

(i) If 7 is of class G, then Wy) is of class C and
Uy(y) = ~{Fxu(y), )} o fy(u(y), y).

(iii) uy(y) belongsto @ if FisinCP, p> 1.

To use the Implicit Function Theorem, we formulate our problem as followsXLet {w €
CORM) | w(y) = w(ly]), lim ., w(y) = 0} andd, > O be stiiciently small. We define a mapping
F from X; x (=89, 6) into X; by

F(W,y) = wW— f G| f(y +w@) - f()}dz

It is easy to verify thatF € CY(X; x (=60, d0), %), and F(wp,0) = 0. Moreover, we
can prove thaD,F (wp, 0) is an isomorphism fronX; onto X;. Indeed,D,# (Wp,0)¢ = ¢ —
fRn G(y, 2 f'(Wo(2))#(2) dzis a Fredholm operator and KB, (W, 0) = {0} on X; by the as-
sumption that KeL = sparjow/dy; | j = 1,..., n}. This implies the assertion. Therefore
by the Implicit Function Theorem there existECa-function W : (=61,61) — X, such that
W(0) = wp andF (W(y),y) = 0 fory € (-61,01), wheres; > 0 is a stficiently small con-
stant. Moreover, in the balw — Wo|| .~ < 61 Of X, there is no solution of (w,y) = 0 in
{we X | [|W—=WollLe@n < 01} X (=0, do) other tharwW(y).

2.4 Upper bound of the energy for ground-state solutions

By the Mountain Pass Lemma, we know tltat> O for anye > 0. Moreover,v, belong to
C2(Q) n CL(Q) and is positive o2 by the regularity theory for elliptic equations and by the
maximum principle (see, e.g., [12, p.9]). Recall that the endy@y) of a ground-state solution
Us = Ume + V. iS given byJ.(U;) = J:(Ume) + 1:(V:) and thatd.(un.) is a unique fixed constant
oncee > 0 is given. Therefore, we are interested in the behaviay, 6f 1,.(v,) ase | 0. Itis
convenient to introduce the following notation.

Definition 2.3. Letw = w, be the positive solution of (Pptated in Chapter 1. We define

QR = 5 [ (Vi + wydz- [ Gwdy wherey = 3o(Q)

Here,Rg is given by

- _ R" if QeqQ,
(2.5) RQ'_{RQZ{yeR”|yn>O} if Qe Q.
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Remark2.11. (i) By Proposition 1.1 anq1.11) 0 < y(Q) < {b(Q)/a(Q)}¥P-1s/ ming a(x).
Therefore sup,.g W, gl @n < oo forany r e [1, oo]. (ii) The function ¥(Q; Ro) depends only
on the value ofy(Q) and the domain of integrationdX Moreover, by the symmetry of w

(2.6) I,(QRY) = —|5(Q R") = —f(yo(Q))

The goal of this section is to prove the following estimate.

Proposition 2.12. For syficiently smalle, c./&" is bounded, that is, the following holds:

(2.7) lim sup— < mln{mln O(Q)Is(Q;RM), = m|n O(Q)I5(Q; R”)}
&l0 en QeQ
To prove this result we use the characterizatips: c; (see Lemma2.5). Hence

C. < maxl(tv)
t>0

for anyv > 0 with v # 0. We choose an approximately scaled entire solutiggy, asv. To do
so, we need a few definitions.

Definition 2.4. For eachQ € Q andk = 1, .. ., n, let 1,(Q) denote an eigenvalue of the symmet-
ric matrix Aq = (&(Q))1<i j<n Which is numbered so that(Q) < 4,1(Q) forl = 1,...,n- 1.

Put
1(Q) 0
Dq = [ ’ = diag(11(Q)s - - -, 4n(Q))

0 /ln(Q),
and letBq be the orthogonal matrix which diagonaliz&s: BoAg'Bg = Do.

With these notations, we defivaas follows:

28 v0= (2] o VA ore 2 Y - (A2

and its scaled versiovi by

1/(p-1)
) Wyo@(Y)

(2.9) V(2 :=v(X), z:= X;Q, Q.o0:={zeR"|Xx=Q+eze Q}.

Notice thatV is no longer dependent an
The following lemma is crucial.

Lemma 2.13. For each Qe Q,

oV oV

1 1
@10) g man o) = 3 [ {5 5

a(Q>v2}dz— fRQ B(QG(Un(Q). V) dz
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Proof. Let¢(t) = I.(tv). Theng(0) = 0 andgp(t) — —oco ast — oco. Moreoverg(t) > 0 fort > 0
suficiently small. Thereforej(t) attains the global maximum, which is positive.

Stepl. Lett, be the maximum point of the functia#(t). We prove that, — 1 ase | O.
Sinceg¢’(t) = I.(tv)vand¢’(t,) = O, itis easily seen that

IR = f B0 (Une (X LV dX
Q

hence

1
IMIZ, =  POIG(Ume(X). t.v)v dX
Q te

After performing the change of integration varialle-> zand dividing bys", we obtain

f {aij(Q+sz)ya—V +a(Q+sZ)V2} dz

(2.11) o 020z,

= f tlb(Q + £2)9(Um(Q + £2),t.V)V dz
Q

£,Q &€

We observe that if we put
1
0O = [ {BQ+ DUn(Q+ eV dz
Qc0

then
1

V=5 f b(Q + £2){0 (Um.(Q + £2), V)V — g(um.(Q + £2),tV)}V dz
QcQ
On the other handy (Un(Q+£2), £)é —9(Um(Q+£2), &) > O for all¢£ > 0 since the left-hand
side is zero fo¢ = 0 and its derivative with respect tois equal top(p — 1)(Um. + f)f‘zf >0
for &£ > 0. Thereforey is strict increasing i > 0, and hence (2.11) determingsiniquely.
Now recall thatw,,q decays exponentially together with its derivatives up to order 2 as
Yl = oo

ID*W,oq)(Y)| < CoeM forally e R", |a| < 2.
Therefore,
(2.12) IDV(2)| < Ce*™  forallze R", |o| < 2.
Let us consider the cagg € Q. Then there exist aR > 0 such thaBg(Q) c Q. By (2.12) it is
readily seen that

f {aij(Q+sz)ﬂﬂ +a(Q+sZ)V2} dz
Q.0

) j;bR/s {aij @+ SZ)Z_Zg_;/j +a(Q+ SZ)VZ} dz+ O(e‘#z/‘g)
and
f b(Q + £2)9(Ums(Q + £2), t,V)V dz
(2.14) Qe

= f b(Q + £2)g(Um:(Q + £2), t.V)V dz+ O(e #2/%).
[2<R/e
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Note thata;(Q + £2) — &j(Q) = &Va;j(Q + 0e2) - z = O(eld). Also, a(Q + £2) — a(Q) =
a(Q+£2) — a(Q) — p{b(Q + £2) — b(Q)}Um+(Q)P* + b(Q + £2){Um+(Q + £2** — Uy (Q)P*} and
Une(Q+£2)P! —Um(Q)P* = O((el2))™":P-Y, and hence/(Q+£2) — a(Q) = O((slz))™"-P~1).
Therefore,

oV oV

(2.15) fm . {(aj (Q+ed a5, 7+ (@(Q+ed - a(Q))VZ} dz= O(m"1P),

Likewise, we get

(2.16) {b(Q + &2)0(Uns(Q + £2), V)V — b(Q)9(Um(Q + £2), tEV)V} dz= O(gmniLp-1)).

Q.0

Putting (2.13), (2.14), (2.15) and (2.16) together, we obtain from (2.11) that
] gﬂ 2 min{1,p-1}
- lf'zk% {a”(Q 9z 0z, +e(QV } dz+ O )

(2.17)
= f B(Q)9(Um(Q), t,V)V dz+ O(g™"-P-1),
|[4<R/e

We notice here tha¥ is a solution of the boundary value problem

AQ)V - a(Q)V + b(Q)g(un(Q). V) = 0.

Hence

[{n@f 5 +a@v) dz- [ bQuun(@.vv ez

Therefore, from (2.17) it follows that

el0 1

(218)  lm? f B(Q)Y(Une (Q), V)V dz= f B(Q(Un(Q). V)V dz
|4<R/e RN

We observe that. remains bounded as| 0. Indeed, ift,, — oo along a sequencs | O, then
I(Um(Q), t:V)/(t.V)P — 1 for eachz. This means that

1

t) Jia<rye;

(U, (Q). 1, V)V dz— f VP dz

Rn

Hence the left-hand side of (2.18) diverges, a contradiction. Ngwurned out to be bounded,
and hence for anfg;}, ¢; | 0, {t;;} has a convergent subsequeftgg, andtajk — t,. Then

o[ D0, (@6, V)V bz & [ Q@ tV)V iz

tgjk |ZI<R/8jk s
thus from (2.17)

L[ bQuaun(@.tv)v de= [ bQuun(@.v)v
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Clearlyt. = 1 satisfies this condition, and there is no othesatisfying this condition. Hence
t. = 1. Because the limit. = 1 is independent of choice of the subsequeftgg {t.,} must
converge to 1. This proves our assertipr» 1 ase | O.

Step 2. Recall that

1 1 2 V oV 2
pr rg%xls(tv) =5 LE,Q ts{a”(Q + gz)aa—J +a(Q+ g2V }

- b(Q + £2)G(Un(Q + £2),t.V)dz

Q0

By the same reasoning as above, we obtain (2.10) in theQase.
Step 3. In the cas&) € 9Q, we have to show that

fg { (Q+gz)a—g—\f+a(Q+gz)V2}dz—> f { J(Q)Z\Z/ZZ a(Q)VZ}dz,

[ bQ+edgun(@+ At VIV dz— [ BQUNQ. VIV iz
Qc0 RY
[ BQ+ 20U+ etV a2 [ BQIGEAQ. V) dz
Qo R?
These will be done in Chapter 3. Q.E.D.

Proof of Proposition 2.12 First of all, we express the right-hand side of (2.10) in terms of

W, (). Since
ay, o
Z 2 o1 - (Q)Z(\/ BQ) e
we compute
L oV oV
> ai(Q~ 72 57

ij=1
2

) % p 1a(Q) Z a”(Q){ I= n (\/?BQ)U avgy;l@ }{kil( \/DiélBQ)ki av;;;i@}

i,j=1

2

- (22)7a@ ) [ PaBa), (@) yDaea), M2 e

kl=1i,j=1
_(2Q))" o1 OWy(Q) IWyo(Q)
- (50 a(Q);mzl(\/i Bo), 1(Q) ( D5'Bo) @
Q)" ﬁwyo Oy,
IS klZ{f BoAq 'Bo | Dg } A,

By Definition 2.4 we havéBoAq'Bg = Do, and hence

rBQAQ(rBQ) D5 (BoAq 'Bo) /D5t = \/DgiDg DG = E,
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whereE, denotes th@-dimensional unit matrix. Therefore,

L VY (aQ) N (W) (a(Q))
P F R | = (22 a@imwo

i,j=1

Note also thatlz = {det \/a(Q)1Do}dy = a(Q) "?(detAg)"/2dy and

;f{ J(Q)?Z'/gvj+a(Q)V2}dz f B(Q)G(Un(Q), V) dz

—;f%{ (QF 5y +aQV?} oz

- m fRQ B(Q{(Un(Q) + V)P = Un(Q)"" = (p + 1un(Q)PV} dz

We thus have

3 [ {55 v az

n 1 ﬁ pl
- a(Q) " dene); [ {(%) 2@ o + 29 i) méo@} dy

= a(Q) "> I(Q) M detao)? 2 f (VWi + Wiy dy
Re

and
pll B(Q{(Un(Q) + V)P = un(Q)P™ = (p + un(Q)"V} dz
_ -n 1/2
__pTa(Q) /Z(detAQ)
b(Q)(EES;) fRQ ((6(Q) + W)™ — 76(Q)P™ — (p+ 1yo(Q)PWyyiq) ly

— a(Q)l n/2+2/(p- 1)b(Q)‘2/(p‘l)(detAQ)1/2

1 [ 000 w0 - 76@ - (o 170 -

% p+1

Hence, the right-hand side of (2.10) is equal to
a(Q)* "2/ Np(Q) PN (detAq) ™

1
> fRQ (lVWYO(Q)l +W20(Q))dy

“pr1 fRQ {(0(Q) + Wy(@)"™ = ¥6(Q)P™ = (P + 1)y0(Q) "Wy d)’]
= O(Q)15(Q; Ry)-

X
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Therefore c —
lim supg—f1 < ®(Q)15(Q; Ro) forall Q € Q.
el0

Taking the minimum of the right-hand side ov@rwe obtain (2.7) due to (2.6). Q.E.D.

By the boundedness ¢f = I.(v,), the following proposition holds for a critical poiwg.

Proposition 2.14. For any r € [1, =), there exists a constant.G 0 such that for sgficiently
smalle > 0,

(2.19) fvj;dxs C&"
Q

holds and ¢'" is bounded in r.

We can prove this proposition biy,|[Z = fQ b(X)g(Um., V) dx, Claim 2.8, the Sobolev in-
equality, and the estimatg = ||v€||2E£/2 - fg b(X)G(Ume, V:) dX = O(e") (for more detail, see the
proof of Lemma 2.3 in [12]).
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Chapter 3

Asymptotic form of ground-state solutions

In this chapter, we investigate the asymptotic form of a ground-state solutiorj &around
its (local) maximum point.

Recall that a ground-state solutiopis the sum of the minimal solutiam, . and a mountain-
pass solutiorv,: U, = Uy, + V.. In Lemma 2.3 we have shown thaf.(Q + &y) — un(Q) as
e 1 0in C%(K) in each compact set &". Therefore in this chapter we focus on the asymptotic
behavior of the mountain-pass solutian which satisfies

(3.1) {82?‘(")" —a(X)V+b(X)(Um: + V)P —UP, =0, v>0 inQ,

B(x)v=0 onoq.

The main results of this chapter hold under the assumptiorstisasuficiently small. We
begin by describing how small must be. First of all, we require that the algebraic equation
(1.10) has exactly two nonnegative roots for @ Q. Since the function-a(Q)¢ + b(Q)ZP
achieves the global minimur(p- 1)a(Q)” ®9/{p(p(Q))"*Y} at{ = {a(Q)/(pP(Q))}PY,
this condition is satisfied if and only if

50(Q) < p_l(

pp/(p—l)

a(Q)P)l/(p—l)

e) forall Q € Q.

By virtue of max; o = 1, we see that

o<

p-1 (min a(x)p)l/(P‘l)
pP/(P-D\ maxb(x)

is a suficient condition for the first requirement. Moreover, we require the algebraic equation

(3.2) —a(Q)n + b(Q)n” + a(Q)uUm.(Q) — b(Q)un(Q)* = 0

has exactly two nonnegative roots for @@y Q ande > 0, which is equivalent to the condition

_ 1/(p-1)
a(Q)Umg(Q) - b(Q)ums(Q)p < p?)/(P—];-)(%) p

forall Q € Qanda > 0. Since there exists a positive const@ptsuch that 0< up(X) < Cnd
foranyx € Q ande > 0, for the second requirement it isfBaient to assume thatsatisfies

p— 1 a(Q)p 1/(p-1)
pp/(p—l)( b(Q) ) )

(3.3 maxa(x)Cnd <
Q
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Proposition 3.1. Given a family of ground-state solutiofs;, }o-.<., of (P), let P, be a local
maximum point of u Assume that there is a sequerieg}j: converging to zero such that
P., — Po€ Q. Then, as j> o,

um,s]'(Paj + SjZ) — um(PO)
Ve, (P, + £12) — (a(Po)/b(Po)) " "w, (/a(Po) yDr, *Br,2)

on each compact set K &', where w is a unique positive solution ¢6S+), y = yo(Po) and
the functiony, onQ is defined by1.11)

(3.4) } in C3(K)

Remark3.2. We note tha(3.4) is not the precise expression in the case $yficiently close
to the boundary (e.g., P 9Q). In such a case, we have to extend the functigns and u,
to the outside of2 because the point P+ £;z may be in the outside 6f. See Case (ll) in the
following proof for the precise expression in the case whefesRelose taQQ.

Proof. We treat the two cases Py € Q and (Il) Py € 0Q separately.

Case (I):Py € Q. SinceQ is an open set iiR", there exists a positive constagtsuch that
Baro(Po) € Q. By P;; = Pgandgj | 0 asj — oo, we see that; € (0,ro) andP;, € By, (Po) for
suficiently largej. Let

Ve(2 =Vv.(X) withz=(x-P,)/e

and
Q.p, ={zeR" | x=P.+¢ez€ Q).

Note that ifz € By, (0), then|x — Po| = [P, + &2~ Po| < ro+ 2ro = 3ro, and hence € ng’psj.
Sincey, satisfies (3.1) i, we see tha¥, satisfies

AP, + e2)V, — a(P, + £2)V,

(3.5) P P '
+ b(P, + £2){(Ume(P + 2) + V) = Umo(P: + £2)P} =0 inQyp,,

whereA(P, + e2)V, = Zﬂ,lzl(a/azk){ak,(Pg + £2)(0V,/0z7)}. Recall also that

1/r 1/r
IVellLr@up,) = (f V! dz) = (s‘”fv;dx) <CY" forr e[1,)
QE,Pg Q

by Proposition 2.14. In particular, for eagh> 0,

(3.6) SUP IV |l @goy < SUP CFF < oo,

O<ej<ro O<e<ro

which implies that the nonlinear terbP,; + £;2){(Um,, (P, + £;2) + Vsj)f — Unmg,(Ps; +£;2P}is
bounded irL"(Bzr(0)) for 0 < g < ro. By the interior elliptic estimate, we hayi¥,, [lwzr g0 <
C, so thatllvgjllcl,a(gm(o)) < C by the Sobolev imbedding theorem if we choese n. Finally
by the interior Schauder estimate, we conclude MM@jﬂlcz,ﬁ@R(o» < C. Therefore, the Ascoli-
Arzela theorem allow us to select a subsequence, which we denote agaip fpxonverging

to aC2-functionV" in the topology ofC?(Bg(0)). Now we take a strictly increasing sequence of
positive number$R,} divergent taco, and apply the diagonal argument to obtain a subsequence
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} converging tovo € C?(R") in C2 (R"). For simplicity we write{s} instead of},}. From

loc

{Ve,
(3.15k) we see tha¥, satisfies

(3.7) A(Po)Vo ~ a(Po)Vo + b(Po){ (Un(Po) + Vo) = Um(Po)?} = 0

by virtue of Lemma 2.3, wheréA(Po)Vo = Y| Ay (Po)(0°Vo/0202). Since||Vy, lILrgxr()) 1S
bounded by a constafy’" independent oR, the limit V, belongs ta"(R") for anyr € [1, o).
In addition, limsup__, C!'" < o impliesVy € L*(R").

Furthermore, we claim that ma4(z) > 0. To prove this we notice thitﬂ,':l(a/azk)am(Paj +
&i2)(V,,/927)l,-0 < 0 sinceV,,; attains a local maximum at= 0, and hence

~a(Pe Ve, (0) + (P (U (o) + Vi, (0))” = U, (PP} 2 0
On the other hand, we know that
(3.8) AP, )Ume, (Pe;) = &Py )umg, (Pe;) + B(P U, (Ps))P + 60(P;) = O,
hence, combining these two together, we obtain
AP )Ume, (Pey) = aPy,)(Ume, (Pe) + Ve, (0)) + b(P ) (Ums, (Pey) + Vi, (0)” + 60(P,) > O.

Putn = Un,(Pg;) + V,(0) and eliminateA(P,,)um.,(P,,) + 6c(P,,) by using (3.8). Then we
have

(39) _a(PsJ‘)n + b(PsJ‘)np + a(Psl')umsj(PsJ') - b(Pé‘j)umé‘j(Pé‘j) 2 0.

By (3.3), the equatior-a(P,,)n + b(P.)nP + a(P)ume,(Ps;) — b(P,)um,, (P:;)? = 0 has two
nonnegative roots & n:(g;) < 172(¢;) and they satisfy the inequality

a(Pg) 1/(p-1)
0< 7]1(8j) < {ij)} < 772(‘9])'

Note also that (3.9) holdsif < n1(g;) orn > n2(;). Butif n < ni(gj), thenuy,, (Pe;) + Ve, (0) <
C’0; this means that ma¥;, (z) = O(6) and therefor@(P,, + £2) —b(P, +£;2){(Um,(P,; +&j2) +
Ve, )P = U (Pg; + g.jz)p}./vgj = a(P,, + &2) — pb(P;; + &;2)(Um,,(Ps; + £;2) + ngj)P‘l >0 fo.r QII
z € Br(0). Hence in this case we hav@(P;, + £;2)V,; > 0 onBr(0), which is a contradiction
sinceV,,(0) is a local maximum. Therefore,

Ve, (0) = 1a(g5) = Ume, (Pe;) > {a(Pe;)/ (PP )P — U (P)),

and this proves our assertid(0) > 0 becausein,,(P,;) = O(9).
Finally we put

1/(p-1)
wy) = {zgg} Vo@ withy = va(Po) /DaBr,z

It is easily checked that is a positive solution oAw — w + (yo(Po) + W)P — y9(Po)? = 0 inR",
andw € W2"(R") for anyr € [0, o). Fromw € W2'(R") with r > n it follows thatw(y) — 0 as
lyl = co. Hencew = w,p,) by the uniqueness of solution of (G§-

Case (I1):Py € 9Q2. There are two possibilities to be considered.
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(@) liminf dist(P.,. 90)/s; = o,

(b) limsupdist(P;, 9Q)/¢&; < oo,

J]—00

where distQ, 0Q) = infpcsn |Q — P.
_ Firstwe rule out the possibility of (a). Suppose that (a) occurs. Then foRan9 we have
Ba:;r(Ps;) C Q, provided that; is suficiently small. This is the same situation as in Case (I),

o2

Figure 3.1: A typical situation of case (a)

and we can argue in the same way to prove Yhdl) = v, (P, + £;2) converges t&/ € C2(R")
asj — oo in C%C(R”). Moreover,V, is a positive solution of (3.7). Therefore

c; 1 OV, OV )
8—? > > fBR(O) au(Ps; + €2 97 0% + a(Py, +8jZ)V€j dz

- b(P;; + £;2)G(Ume;(Ps; + €j2),V,,) dz

Br(0)
1 f Vo Vo 2}
== a(Po)—— + a(Po)V§ p dz— b(Po)G(Umo, Vo) dz
2 BR(o){ (Po) 9z 0z (Po)Vo 5 0) (Po)G(Umo, Vo)
1 OV, OV, Vo OV
z P,. ) i i p.y2Vo Vo
+2fBR(o){(akl( el 0z 07 2(Po) 97 0z, )

+ (a(P,, +&2)V2 - a(Po)vg)} dz
_ f {b(pgj + £2)G(Uns, (Ps, + £, Ve, ) — b(Po)G(Un(Po). vo)} dz
Br(0)
Lettinge; | O, we see that

Ce,
limsup— > 1 fl; (()){akl(Po)(;—\Z/faa—\;0 + a(Po)Vg} dz- o0 b(Po)G(Um(Po), Vo) dz
R R

el 2
1 9Vo Vo 2 _f
> 1 [ {aPaZ2 08 s o) cz- [ bPoGPY. V)

— O™ (with x> 0)
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because of the exponential decaywgftogether with its derivatives of order up to 2|gs— .
Therefore, by Proposition 2.12, we obtain

®(Pg)ls(Po; R") — O(e™F) < min{min D(Q)I5(Q; R”),% min ®(Q)15(Q; R“)}.
QeQ QedQ
SincePy € 9Q, this results in

D(Po)(Po; E) < 50(Po)ly(Po; E") + O(e ).

This is a contradiction becaudgPo)l;(Po; R") is a positive number, while we can take> 0
as large as we wish. Therefore, (a) cannot occur.

Note that (b) is the only possible case, and hence, there exiBs>a0 such thaB, r(P,;)N
0Q # O wheneveR > R, and | is suficiently large. SinceB, r(P,;) protrudes from the domain
Q, we cannot argue as in the case (l) or (a) above and we have to takeettteobthe boundary
0Q into consideration. We therefore introduce igdmorphism flattening the boundary portion
aroundPy, and extend the solution outsideQ along the conormal vector.

Step 1: Difeomorphism. By translation and rotation of the coordinate system, we may
assume thak®, is the origin and the outer normal &2 at Py points in the negative direction of
the xp-axis. We writex' = (Xg, ..., X,-1) andx = (X, X,). Then there exists a smooth function
¥ (X') defined inX| < ko, Wherexg is a small positive number, such that

(i) ¥(0)=0and Qy/0x;)(0)=0forj=1,...,n-1,
(i) QNN ={(X, %) | %0 > (X))}, 0QNN = {(X, (X)) [ X < «}.

Here, N is a neighborhood of the origin. Ppt(x) = (9y/ox)(X) fori = 1,...,n-1, and
pn(X) = =1. Thenp = (p1(X), ..., pPn(X)) gives an outer normal at poink’(y(x’)) € 9Q, and
v = p(X)/|p(X)| is the unit outer normal.

In what follows (until the proof of Proposition 3.1 is completed), we make a convention that
Z denotes a generic point with coordingte R", 2 denotes a point on the hyperplafie= 0,
i.e., 5 = (&,0) with & € R™1L Likewise, X denotes a point with coordinatee R" and X’
denotes a point on the boundary, i.¥!, = (X,¥(X)). This notation will be used especially
when we designate the point at which thé&etiential of a mapping is computed.

Now we are ready to define the firstidiomorphismS(¢) = (S1(é), ..., Sn(&)) by

{Sl(é:) = é:i _fnpi(f,) for i= 1a 2""’n_ 15

3.10
(3.10) Sul8) 1= &n + wl&).

We observe that

o ({4

andDS(0O) = E, whereE, is the unit matrix of dimensiom. Hence, there existsg > 0
such thatS is the inverse mapping fg¢| < 3«o. Let us definer (x) = S1(x) with 7(x) =
(72(%),...,7n(X). Itis to be noted thaf™ mapsoQ N Ny into the hyperplangs, = 0} and
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Po =0 O 3’4/0

Figure 3.2: Diteomorphism to make the boundary n€agrflat

Q N Ny into the upper half spacg, > 0}, whereNy = {x = S(¢) | |€] < 3ko}. Indeed, since
DS(0) = E,, by continuity we may assume that de(=)) > 0 for |£] < 3xo. Hence, ifé, > 0
thenSn(€) > y(¢£'), which means tha$(B;, (0)) ¢ Q, and this proved (Q N Np) = B3, (0). If
we putu(é) = u(€’) = (DT (X)Aw)Ix=si), thenu is the vector in th&-space corresponding to
the conormal vectoA,v. Moreover, we have ddiXS(=")) = |p? = |p(¢’, 0)]> and

Ip?P=pf -pip2 ... —PiPna : P
L | PP IBE-R e |2
DT(S(E’)):DS(E’)*:W : : 25 ) o
(3.11) —P1Pn-1 —P2Pn-1 ... [PT—Php | Paa
~p1 ~p2 “Pr1 P
1 ( Syl -pipy o P
-4

Now, we define the secondftBomorphismi{ () = (UL(0), . .., Un()) by

{ﬂi({) =4 —pi(d) for i=1...,n-1,
Un() = —pnl& )

Then, we obtain that

DU = [ i~ OmI06) | € ]
0 ] —1n(")
detDU(0)) = ~1n(0) = (DS(O) Apy¥)n = am(Po) > 0.

Hence there existsg > 0 such thatl{ is the inverse mapping fd¢| < 3«o. We writek, instead
of min{xg, Ko}, and putV(¢) = UL(E) with V(E) = (V(é),. .., Va(&)). In similar way toS,
by detD/(0O)) > 0, we may suppose that dBt{/(¢)) > 0 for |{] < 3ko. Hence, ifZ, > 0 then
Un(¢) > 0, which means that'(B;, (0)) = B, (0). Therefore we see that

T Vv
X = & = (.
S Uu
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Step 2: Extension of functionsGiven a smooth function(x) defined onQ, we obtain a
function¢(?) defined on the upper semibﬁTKo(O) = {¢ € R"| |£] < 3ko and{, > O} by putting
#(0) = V(SU(Z)), which we call the pull back of by ST whereSU = S o U. We can extend
¢ into the lower semibalB;, (0) by defining

(¢ ) =9, ~&)  forén <O.

Therefore
$(0) = (. 1al)  for (&', Zn) € Bae (0).

Hence, we extendto the outside of2 nearP, as in the following figure:

A

e

Figure 3.3: extension of o SU(¢) along the vectop.

Next, let us examine the smoothness of the extended function wéetisfies the boundary
conditionB(x)v = 0 on9dQ. In terms ofé-variables, the boundary operator is expressed as
follows:

BOW = ¥ - AVV(X)x=uix) = Axvlxesuer0) - (DISUNL, 0) Y USU)))(L', 0)
= (D(SUNL', 0) ™ Asue v - V(L' 0)
= DU, 0) p(¢) - VO(O)lzmo,

wherea - b denotes the Euclidean inner product of the vectpise R" and

(3.12) DU, 0)! = 1 [ —Hn(&)dij i) J

—Hn({") Wﬁofﬁjhif

Therefore, fokp = vo SU, B(X)v = 0 is equivalent tdU(L)  p - Vol;,-0 = O, where it is to be
noted that£’,0) = U(¢’,0) = (¢’,0) andDU()1u is the vector in the-space corresponding
to u(¢).

Step 3: Equation of v Let ¢({) := v, o SU(Z) andy(¢) = ¢(,1¢n). Then, we calculate
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derivatives ofp as follows:

0P Oy o {n Op
_ = — /, n 1_k_ —1, - = - /’ nl/s
0= GEia) (sksn-1, Q= I IG)

% 0% 0%¢

(1a) @<kl<n-1), %@)%—g(gcm),

&, 15), (L<k<n-1).

HZQZ B
3505 ) = 3zt

Pe = TP = b O
agkagn B afn(?{k B |§n|a§ka§n

Now, to derive the equation far(¢) (= v.(X)), we first substitute fo A(X)v,. From/ = VT (X),
noting that

(3.13)

&)

= 0] =Y e,

an = an a_évl x=SUQ) 13 X=3'U(§)’
we have
N9 PN oS 9%
AV, = ,Z 1005 V09 = JZ a0 2OV | o
n n azsz
= D a1 (X)(D .
ZZ< (VDD OOV 2o
SRS 9%
+ ,Z.Z 7 [BI0IOVTI), ) suo T

In view of (3.13), we define
(3.14)

OOV COVTIN |,

ij=1 ‘
aw(l) = forl<kl<n-21lork=Il=n,

& N ) _

o UZZI(D("VT)(X))kia.J(x)(D(‘VT)(x))nj esu ortsksn-t,

i,

3 —{aj(x)(D((VT)(x))l j} forl<l<n-1,

4ot 0% X=SU()
Bi(¢) = L

Sn —la: () (D(VT . forl =n.

2 OO ort =
Then, we havey, = o and
(3.15) AXV: = an akl(()az—gp(fﬁ \Znl) + Zn:ﬁl(f)a—go(f', |Zal).

ki=1 04i0¢] I=1 a4
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Sinceyv, satisfies (3.1) andQ N Uy = {&, = 0} N B, (0) = {¢n = 0} N Ba,,(0), it follows that

(3.16) = 5 5

+B(SU, |§n|)){(um.g(8fm§', ) + ¢(C. |4n|>) - Un (ST, |§n|))p} -0,

where( € Bg,,(0) \ {¢n = 0.
Now, we note that (3.16) holds & = 0. Actually, by (3.14), the continuity ob(V7),
anda; € C?(Q), the codficientay is Lipschitz continuous for < kI < n-lork =1 =

n. Moreover,ay, is Lipschitz continuous excegdt, = 0. Therefore, it remains to verify the
Lipschitz continuity ofay, atZ, = 0. Since

é—:lakn = (D((VT)(X))maij(X)(D((VT)( ))nJ X=SU(?)
(3.17) = (DY@ CHOVTIODni| gy
[(D(‘V‘T )(X))i@; ()(D(VT)( ))m] zzg),o)

it suffices to prove that whef), = 0, Z{szl(D((VT)(x))kia,-j(x)(D((VT)(x))nj|X:3ﬂ(§,,§n) =0. In
fact, the second term of the right-hand side of (3.17) is Lipschitz continuous by the continuity
of D(V7) anda;;. Hence, one obtains

() = Z(D((Vfr)(x))k.a.,(x)(D(vT)(x)>n,(4)j

(3.18) 5 o o
= ”Zl(D(WXx))k.a,(x)(D((Vfr)( Dol a0+ O

Since it holds thaD(V7)(X) = DV(Z')D7 (X) = DU(’,0)1DS(E")~t atx = SU(Z’,0), by
(3.11) and (3.12), we calculate as follows:

i ‘ i/Mn 5| 2 i ; i
OV = 1/|p|2[ [ i | Ak ] [ Gl BBy B ) ]

1 —1/pn —Pj ' —Pn
(3.19) _ 1/|p|2{5ki|p|2 — PP — Piluk/pn) forl<i<n-1,
Px + Pn(k/tn) fori =n,

= pj/(unlp?)  forl<j<n

N{x=s0U(’,0)

Then, the following holds for the second term of the right-hand side of (3.18):

i Z(D((Vfr)(x))k.aj(x)(D(for)(x»n,
ntij=1

Sl L BB e - - b+ (s ) i1
= oo (6l P* = Py P )a, P pn anjp = Tkn

j= 1 i=
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wherea;; = a;(SU(¢’,0)). Calculatind’, and making use of, = -1, we have

n n-1
é”lunlpﬁrkn ij{lnzak,-—(pw“—)za”(x)p. (P + Pos )am}

n = Hn” = Mn
n 1

> pj{|p|zakj (Pc+ po— )(Z ajpi — anj(x))}

j=1 i

(3.20) j

S |l

1 S
=

2

©
——

pj{|p|28kj - (pk + pn/ﬂ)
1 Hn™ 4

PP akjpj_(pk“‘pnz_k)' aj Pi P;-

=1 n =1

j=

=}

Substitutingu(£) = DS(¢’, 0) *As o) P(S(£’, 0)) whereg = U(¢), we verify that (3.20) is equal
to zero. By the definition of, it holds that

SijlpP — PPy P 1 [
i = —2[[ R Lol ) AS({’,O)tp] =5 Z{Z(6k||p| — PxP)ai; pj + pkanjpj}
e -pj ' —Pn « PP

n n

1 n-1
= WZ{mZakjpj - kaaijpipj + pkanjpj} = ) &jpj— l%kz Z aijpip;s
= :

=1
1 & 1 ¢

Mn = W Z(_pi)aij Pj = _W Z aijpip;-
=1 =1

Now, by usingp, = —1, these identities and (3.20), we obtain

é_nlﬂnln kn—lﬂ Zak]pj_lu_za”p'pj Pxun + pnﬂk)
i,j=1
] lplzzakjpj ) _(_ﬂ”mz){__kzza"p‘ P+ Pol . 8Py~ o Z a;p p,)}
=1 Hn 1P = — P2 &4

n n
= 1p > ap; + IpPpn Y &p; = 0.
=1 =1

Thus, we havey, = O(|&,|) and proved that,, is Lipschitz continuous &, = 0. Consequently,
(3.16) holds at, = 0, and we see that Satisfies the following in the sense of weak solution:

2 ik 6008 o e
& 14;] M7, ag Zﬁl + B e |~ ASE L&D
(3.21) orkelon

 DUSE ) (U (SCE )+ ) — U (S(E )P} = 252 3 a2
é‘u H é:n me éj L é‘:n @ m,e f s fn - - akn|fn| aé—‘k(’)é‘n
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By using the regularity theory, we know thais a classical solution of (3.21) iBs,,(0).

Step 4: Convergence of.v For a while, we suppresgin g; for simplicity. We let{ :=
Q. + ezandV,.(2) := ¢(¢) whereQ, := V7 (P.). Then by (3.21)V, satisfies the following
elliptic equation forQ, + &z € Bg,,(0)

Qs,n + &Zy 62\/5
|Q¢n + €24l 0202,

&2V, s
Z an(Q; + £2) azka; +2 Z an(Q: + £2)
k=1

1<kI<n-1
ork=l=n

S avs Qs,n + 8Zn avs
t+e& {;ﬁl(Q& + 82)5 +ﬁn(Q& + 82) |Qa,n + 8Zn| 8Zn

- @0 SUN, + (00 SU((Un. 0 ST + Ve’ = (Uns 0 SUP| =0

SinceQ, —» V7 (Py) = Oase | 0 anday, = O(|Zy]), for eachR > 0, we haveBs.r(0) C
B2, (Q:) C Bs,,(0) and|Q: + 7 = |'VT (Po)| + 0o(¢(1 + R)) by takinge sufficiently small. Hence,
sinceez € Bs.g(0) is equivalent ta € Bsr(0), we see thaV,(2) satisfies the following equation
in BgR(O):

%V
(T(Po))=—= — a(Po)V. + b(Po){(um(Po) + V;)? — um(Po)®}
1gk|,(|zjli_1 o 0 0207 0 o) 0 0

(3.22) +{0o(|P, — Pg|) + O(eR)}
y {”‘1 &2V, . BV,

E
kl=1 62k02| =1 (924

£V, 4 (Une © ST + V) = (Uns 0 Sfu)P} -0

To prove the convergence 9f, we begin by verifying the boundedness|®f|| r(z0)- BY
using Proposition 2.14, we have

Ce" > VLdXZf
UpNQ Bt (O

3k0 (

Sincel = Q. + €z, B3.r(0) C By, (Q:) € By, (0), V(2 = ¢(¢) andd{ = £"dz one obtains

Joo
Bsr(0)

Moreover, noting detD(SU)(Q. + £2))| = ann(Po) + o(|P,. — Pol) + O(eR) for suficiently small
g, we have

r _1
o etpesto@)|ac = 5 |

B3KO

)95' |det@(SU)())| de.

detO(SU)(Q. + £2))| dz< 2C,.

f Vi{an(Po) + o(IP. — Pol) + O(sR)} dz < 2C..
Bsr(0)

From the assumption of (b), since lim sydP. — Pol/e < C, ase | 0, we get

ann(Po) V; dz< 2C,.
B3r(0)

Thus,
f V! dz < 2C; /any(Po).
Bsr(0)
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Noting thatC}" is bounded irr € [1, o) by Proposition 2.14, in a way similar to (3.6), we see
that||V. || es(0) IS bounded for any € [1, o) ase | 0. Therefore, using the regularity theory
for the equation (3.22), we see thHAL|lwzr (0 IS bounded. From the Sobolev imbedding
theorem and the interior Schauder estimteis bounded irC%#(Bg(0)). By using the Ascoli-
Arzela theorem, there exists{® i < {g)} andV" € C3(Br(0)) such that

V.m — V' inC*Bgr(0)) ask— oo.
Jk

Then, taking a sequen¢B,} with R T co and applying the diagonal argument, we obtain that a
subsequencg/,, } converges td/, € CZ(R”) in C2 (R"). From (3.21)\V, satisfies

loc

akl((VT(PO))
(3.23) 1<kT=n-1 azkaz,

ork=l=n

— a(Po)Vo + b(Po){(Um(Po) + Vo)? — un(Pg)P} =0 inR".
Here, by (3.14),

Z (D(VT)(Po))xiasj (Po)(D(VT)(Po))i;

VT (Py)) =1 ™
(3.24) (VT (Po)) forl<kl<n-lork=I=n,

0 forl<k<n-11=n
= (D(VT)(Po)Ap,' D(VT)(Po))u

where we note that

AR R o | S

by virtue of p= —€,, u = —Ap,&n, P- 1 = ann(Po) atx = Py, and (3.11).
Step 5: Limit of the energy.£=". Let

1/(p-1)
W(y) = {%} Vo@ Wity = a(Py) |/D3Bs, D(SU)(0)2

whereD(SU)(O) = (D(VT)(Py))™t. Then, since
n —~ g
2 Ja(Py) mzl( D;:Br,D(SU)O)) -
we obtain by (3.23) and (3.24) that

62 0°
Z(D((VT)(P())APO‘D((VT)(PO))k.

1 ( ann(l:)0)5|1 \ _am(PO) )

Z ax (VT (Po)) 7z

1<kl<n-1 kl=1 9 62|
ork=I=n
, N 2 0°
_ JaP) ( 1Bp. Ap.'Br, /D ) = a(P 5
a(Po) Z Po =Po/Po BP0 /Py mnt OYmOYny = &P Z ™ BYmOYrmr

mnY=1

= a( Po)Ay.
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Therefore, by substitutingo(2) = (a(Pg)/b(Po))YP-Yw(y) in (3.23), we see that satisfies
AW — W + {(y0(Po) + W)? = y0(Po)?} =0 inR"

where it is to be noted that(Po) = (b(Po)/a(Po))YP-Yu,(Py). Moreover, in a way similar to
the latter half of the proof of Case (I), we have méxz) > 0. In addition, since{V,, || e

is bounded by a consta@}’" independent oR, we obtain that|Vol|.r=n) is bounded for any
r € [1,00). Thus, we see that — 0 as|]y] —» o because/, — 0 as|Z — . Hence,
W = W,p,) holds by the uniqueness of solutions of (g5-Using these results and noting that

Vo(2) = lim.0o(Q. + €Z,|Q:n + €Z4l), Q. — O, and| detD(SU)(Q: + £2))| = ann(Po) + 0(e) as
e | 0, we then obtain thaty(2) = Vo(Z, |z,|) and the energg,/&" of v, converges to

Vo avo
07 62.

ann(PO)
2

1
- f {kIZl(D(fVT)(PwAPJD(W)(Po))k| +a(PoV3 2

(3.25)

p+l fR b(Po){(um(Po) + Vo)*** = Um(Po)”"* — (P + 1)um(Po) Vo dZ] .

Recall that we ley = a(Pg) \/D?,gBPOD(Sfu)(O)z. Then, byD(SU)(O) = D(VT)(Po) L, it
holds that
a(Po)"2(detAp, )12

ann(Po)

dz= de{ y/a(Po) *D(VT)(Po)'Br, VD, Jdy =
Therefore, (3.25) becomes

ann(Po) a(Po)~"*(detAg,)"?

2 ann(PO)
2/(p-1)
di ) I
(p+1)/(p-1)
B k;(foil).(zgzg) Rn{(VO(PO) +W)P — yo(Po)Pt = (p + 1)70(p0)9‘1w} dy

_ a(Pp)"*(detAp,)"? ( a(Po) )2/<p—1)

. ny __ 1 . n
> b(Py) I5(Po; R") = E(D(PO)Ié(POa R").

Finally, we verify that, (P, + £q) converges tod(Po)/b(Po))Y P~ py)( Va(Po) /D, *Bp,0)

in C2(K NR") whereK is a compact set ii". Let P, = 0 and rotate the coordinate system so
thatv(Po) = —e, = (0,...,0,-1). We also leg € Bg(0) (= K) for anyR > 0. From the relation
of y andz, it follows that

Y= Va(Po) \[D7iBe,D(SU)(O)z = a(Ps) \[DslBe, D(STU)(O)
= Va(Py) D58 D2y 0) e D = VTR
= Va(Po) D;;BpoD(S(LI)(O)é(D((m(Po)(aq)+0(82>) = a(Po) \/D;!Bp,q + O(e).
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Hence, for anyg € R N Bgr(0) andR > 0, it holds that

a(Po)

Vs(P, + £0) = ( )plWyo(Po)( Va(Po) \/D5!Brd + O(e)) + o(1)

b(Po)
a(Po) & -
= (b(—PZ)) Wyo(Po)( va(Po) ngBqu) +0(1) aselO.

Thus, v, (P, + 0) — (a(Po)/b(Po))" P, (e, ( Va(Po) /D5 Br,0) in CX(R] N Br(0)). Since
R > 0 is arbitrary, we see that

P\ .
Vo(P, + £0) — (%) Wyoe( Va(Po) DplBr,d) iInCA(KNRT)  ase | 0.

Q.E.D.

By Proposition 3.1, we know the limit of the energy/s? asgj | 0:

Proposition 3.3. Let Py € Q be a concentration point of a family,}..o of ground-state solu-
tions. Then, there exists a sequefigj«y tending to zero as 4 o such that

{‘I)(PO)J(VO(PO); R") ifPyeQ,

IS' Ej
ECD(PO)I(VO(PO); R") if Pp € 0Q

jooo srj‘

where y;, = Ug; — Un,g, and

I (yo(Po); R")

- % (VW + ey dy - p%l fR {(70(Po) + W)P*™ = yo(Po)P*™ = (p + 1)yo(Po)"w] dy

with W= W, p).
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Chapter 4

Point concentration for ground-state solutions

In this section, we prove Theorems 1.3 and 1.5 stated in Section 1.4.

Proof of Theorem1.3 First we verify that any ground-state solutiognhas exactly one local
maximum point onQ, provided thats > 0 is suficiently small. Assume that there exists a
sequencee;} such thats; | 0 andu,; attains local maxima at two distinct poirf; and Q.
We may assume th@®,, — Py € Q andQ,, — Qo € Q asj — co. Then by Proposition 3.1,
Vg, = Uy, — Umg; IS approximated by

1/(p-1)
Ve, (Pg; + £j2) = {Sgg} Wyo(po)( va(Po) \/D7538p02) + 0(1)

" a(Qy) | o
Vs, (Qs; + £j2) = {b(Qo)} WYO(QO)( va(Qo) /D BQOZ) +0(1)
in C2_(R") at the same time. Therefore,
=2 > @(Po)1s(Py; Rey) + B(Qo)ls(Qs; Ray) + (1)
J
so that

Iirer inf % > O(Po)15(Po; Re,) + ©(Qo)15(Qo; Ray)-
J

Then by Proposition 2.12 we obtain
®(Po)!5(Po; Rp,) + ®(Q0)15(Qo; Ra,) + 0(1)

< min{ min®(Q)L(Q/ ). 3 min (O (QiE")|

QeQ

. min{<D(Po)|5(Poi Rey). ©(Q0)15(Qs RQO)}.

This is clearly a contradiction. Hence, has at most one local maximum point. Since it is
continuous o, it must have a maximum point i©. Therefore,u, has exactly one local
maximum point, hence the maximum point.
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We now proceed to the proof of assertions (a) and (b). From Propositions 2.12 and 3.3, we

know that
A(Po) if PO e

1
%A(Po) £ Py e GQ} < mln{rglnA(Q) m|n A(Q)}

Therefore, ifPy € Q, thenPy must be a minimum point ok over Q, while if P, € 6Q, then
it is necessarily a minimum point & overoQ. Hence, it stfices to know whethelPy € Q or
Po € 0.

(i) Suppose that mig, A(Q) < 2ming A(Q). If Py € Q, then

A(Pp) < mln{mlnA(Q) = m|n A(Q)} = }gnln A(Q) < mlnA(Q)
Q<0 Q<0

which is a contradiction. ThereforBy € 9Q, and it is a minimum point oA overoQ.
(if) Suppose that 2 mg A(Q) < minyg A(Q). If Py € 0Q, then

—A(Po) < mln{mlnA(Q) m|n A(Q)} min A(Q) < }(r?nln A(Q),

QeQ QeQ

and this is a contradiction. Therefof®, € Q, and it is a minimum point oA overQ.  o.E.p.

To prove Theorem 1.5, we investigate the dependendéye{Q); R") oné > O suficiently
small.

Proposition 4.1. The functionZ (y0(Q); R") belongs to &(Q) and
0
—=1(7(Q)

maf 7o)
whereZ (yo(Q)) = 7 (yo(Q); R"). Moreover,

1(7(Q)) =0(¢) assl0,

9
= 00) Qi)éHaQian

L=(Q)

(A1) T0o(Q) = lo—yo(Q){ Rnwc,dy+o(1)} with |0:(%_ : 11) [ vz an

where v is the unique positive solution afv — w + wP = 0 in R" satisfyinglimy_,.. w(y) = 0
and W0) = maXcgn W(Y).

Proof. First, we prove|(d/0Q;j)Z (yo(Q))llL=) = O(6). We show thatv, is aC!-function with
respect toy. Let us compute the derivative bfy):

dr d|1 1 . .
d_y(w = @ [§||Wy||\2/v1,z(Rn) - m fRn{(V + W)~ L yPt—(p+ 1)y w, }d)’]

ow, ow ow
- 7 _ P(1 _7) — P~ pyP e — P2 gy
<Wy, 8’)/ >W1-2(R”) Ln{(y * Wy) ( * (9)/ Y p7 Wy Y (9’)/ } y

However, sinceav, satisfiesAw —w + (y + w)? —yP = 0 in R" and limy_,.. W(y) = 0, we have

(9W oW
. ) Sy [ forewpr-v)ay= [ way
(W ) = [ fr e wr =) S [ ooy =yo)ay= [ way
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From these two identities we obtain
dr f ow, ow, 0
—(y) = +w,)P - +wW)P(l+ — ) +yP
50 = | o+ w)P =y = e w1 )yt
- _f {(y+wy)p—yp— pyp‘lwy} dy = —f {wy— pyp‘lwy}dy
Rn

Rn
=-(1-py"™) fRn w, dy.

W
—L P+ pyp‘lwy] dy

Hence,

0
@2) 7 706(@) = = (1= pr(@7 ) F2(Q) [ Wy
J
From @yo/0Q;) = O(0), we Obtainl|(3/5Qj)f(70(Q))||Lw(g) = 0(9).
Next, we provel|(%/0Qi0Q;)I (yo(Q))llL-@ = O(5). By (4.2) and partial dierentiabil-
ity of w,,q with respect toQ, it suffices to prove only the partial fierentiability of (1-

PYo(Q)P ) (dy0/0Q;) with respect tdQ. In particular, we note that & pyo(Q)P)(0y0/9Q)) is
differentiable even whep < 2. Indeed, from the algebraic equation tg(Q) and the definition
of y0(Q), we see thayo(Q) satisfies the following equation @:

—70(Q) + %(Q)P + 65(Q)a(Q) PP Vp(QYP Y = 0

Differentiating this equation b;, we have

1\ 9 /(p-1) 1/(p-1)

(4.3) -(1- pro(Q") =5 70 * 050 (a(Q)a(Q) PIe-Dp(Q)M V) = 0.
Sincea, b, o € C%(Q) anda(Q) is strictly positive, we see that(Q)a(Q) ™ (P-Db(Q)Y(P-D s a
C2-function onQ. Hence, by (4.3), we obtain that€Ipyo(Q)P 1) (dy0/0Q) is differentiable on
Q, and it holds that
(4.4) _9 {(1 — pyo(Q)P ) Oyo (Q)} o (O‘(Q)a(Q)—p/(P—l)b(Q)l/(p—l)).

0Q 0Q; aQian
Therefore, we haved(dQ){(1 - pyo(Q)P1)(0y0/9Q;)} = O(6). Noting @yo/dQ;) = O(5), we
see that (1 pyo(Q)P 1)(@y0/3Q;) = O(6), 50 that|(3?/0QiQ) I (yo(Q)llL- = O). Q..

Proof of Theorem 1.5 First, we investigate wheth& € Q or Py € 6Q. By (4.1) andyo(Q) =
O(6) uniformly in Q, we see that\(Q) = ®(Q)lo — O(6) holds uniformly inQ € Q.
(I): Suppose migegn @(Q) < 2minyg ®(Q). Sincel, is a constant and > 0 is smalll,

(rgn(lan A(Q) < m|n d(Q)lp< 2 mln{(D(Q)I } = O(5) < 2minA(Q).
QeQ QeQ

Hence Py € 0Q is a minimum point ofA(Q) overdQ by Theorem 1.3.
(1): Suppose Mifes P(Q) > 2 Mingg P(Q). Similarly to (1), we have

min A(Q) 2 min{®(Q)lo} -~ O() > 2MiIn{&(Q)lo} = 2MINA(Q).
S9) Qe QeQ
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andP, € Q is a minimum point ofA(Q) overQ by Theorem 1.3.

Next, we prove thaP, must be close to a nondegenerate minimum pQyof ©(Q).

(I): Let Py be a minimal point of the locator functioN(Q) restricted todQ. As in the
proof of Proposition 3.1, we introduce the coordinate system with the orig?g, @ndv(Py) =
-e, := (0,...,0,-1). We express the boundadf2 nearP, as a graphx, = ¢(x). For a
smooth functionf (x) defined onQ, we denote its restriction on the boundary portion riear
by fo(X) := f(X,¥(X)). MoreoverV’ := ((8/0%4), . - ., (0/0%q-1)), HESS = (02/9%0X;)1<i.j<n-1-
Hence,

e of | , of , N/
V) = 5060000 + Su0N L)

Recalling thatPy is a minimum point ofA,,, we obtainV’A,(Po) = 0, that is,
0 = V'Ap(Po) = Z(y0(Po)) V' @p(Po) + @(Po)V'(Z o yb)(Po),

whereyp(Q) = volsa(Q). From this follows that

®(Po)

(45) V’q)b(Po) = —m

V'(Z 0 b)(Po)

by Proposition 4.1, we have

’ (I)(PO) _

Suppose thaf), is a critical point of®d,. SinceV’'®y(Qp) = 0, by the mean value theorem, we
see that

V' ®p(Po) = Hessdp(Qo)(Py — Qp) + 0(1)(Pg — Q).
Substituting this in (4.5) and multiplying by the inverse matrix (H®s6Q,)) 1, we see that
®(Po)

lo

1Py — Qol = (Hes$®y(Po))V'(Z o y5)(Po)| + 0(IP5 — Q) + O(67).
Since (Hes$d(Q)lan)(Po))™* is bounded, we obtaif, — Q| = O(5) + o(|P; — Q). Hence,
Py — Qul = O(9) is shown. By the Lipschitz continuity af, we see thalP, — Qo = O(9).
Although we assumed th&}, is a critical point of®, Qg is actually a minimum point ob over
0Q because of\(Py) = mingesq P(Q)lo — O(S) = D(Qo)lo — O(9).

(I1): Suppose that all minimum point® in Q are nondegenerate. Then the Hesse matrix
Hess{(Q)) is invertible. SincePy is the minimum point ofA,

O(Po)
1(yo(Po))

Now, suppose tha}, is a critical point ofd. We expand® at Qg to see that, bW d(Qg) = 0,

(4.6) VO(Po) = — V(Z(ro(Q))(Po).-

VO(Pg) = HessP(Qo) (Po — Qo) + 0o(1)(Po — Qo).
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Substituting this in (4.6) and multiplying by the inverse matrix (HB69,))~*, we obtain
O(Po)

lo

+ 0(|Pg — Qol) + O(6?).

-1
IPo - Qol = (Hessp(Po)) V(7 (yo(Q)))(Po)

Noting that (Hes®(Py)) ! is bounded thanks @ € C%(Q), we havePy — Qg = O(8) + o(|Po —
Qol). Hence,|Po — Qo = O(6) is shown. Although we have assum@d to be a critical point
of @, Qo is actually a minimum point of> over Q since A(Po) = mingg ®(Q)lo — O(5) =

D(Qo)lo — O(6).
Q.E.D.
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Chapter 5

Point concentration and the primary locator
function

In this chapter we study the relation between the primary locator fun@{@) and the location

of a concentration point of a solution exhibiting a point-condensation phenomenon. Here, we
consider any concentrating solutiapwith J(u,) = O(&"), henceu, may not necessarily be a
ground-state solution.

Let u, be a solution of the Neumann problem (1.13). We note that this equation is the case
of A =Aandé = 0 in A(X)u — a(x)u + b(X)uP + so-(x) = 0.

Theorem 1.6 asserts that the conditid®b{Py) = 0” is a necessary condition for a poiRg
to be a concentration point of a family of solutidg}o.., Of (1.1). This gives us an important
clue when we try to construct solutions concentrating at some point.

The objective of this chapter is to prove Theorem 1.6. The proof relies on Lemma 5.1 below,
which claims that the second term in the asymptotic expansiopiafthe neighborhood of the
concentration point is of the order efvhens — 0. Since we consider only the caseRafe Q,
there exists a positive constaRsuch thaBsz(Po) ¢ Q. For eachR, € (0, R), taking any point
Q. € Bg,(Po), we have

(5.1) B2r,(Q:) C Bar(Po) € Q.
To prove Theorem 1.6, we would like to approximatearoundQ,. Hence, we take a cutfo

functiony € C3’(R") satisfying O< y < 1 and

1 ,
52) O =xty={ =

and put

x(X = Qu.(X) = VQS( X~ QE) + s¢( X _SQ‘Q )

g

Herevg(2 = (a(Q)/b(Q))YP-Dw(y), y = a(Q)¥?z andw is a unique positive solution of the
boundary value problem (GS-0) stated immediately after (1.12).uL&e™a function inR"
which we extendu, by puttingu, = 0 outsideQ. In what follows, we denote, by the same
symbolu,. Note thaty(x — Q.)u.(x) = 0 on|x — Q.| > 2R, by (5.2). Hencey (- — Q:)u. is a
C?-function inR" from (5.1) andy(- — Q.)u, = 0 onR"\ Byr, (Q.).

To have an approximation gf- — Q,)u,., we need to prove the boundednessgof
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Lemma 5.1. Assume that for anyR> 0, y(x— Q,)u.(X) decays exponentially #&x— Q,)/e| —
oo. If ep((x — Q.)/&) converges to zero in W(Q) and G, (Q) ase | 0, theng((x — Q,)/s) is
bounded in W?(Q) ase | O.

To simplify the notation we writ&) instead ofQ,.
Proof. Puttingz:= (x— Q)/e, we have
x (€U (Q + £2) = vo(2) + £¢(2).
By the definitions ol/g andw, vq is a unique positive solution of the boundary value problem

Avg - a(Q)vq + b(Q)vg = 0 inR",
|ZI‘im Vo(2) = 0, Vo(0) = @I%XVQ(Z)'

Sincew(y) = w(ly]), w decays exponentially dg| — oo, andy = a(Q)¥?z, we see that
Vo(2) = Vo(/4) andvg decays exponentially dg — co. Moreover, since(e2)u.(Q + £2)
decays exponentially 88 — oo by the assumption, there exist positive constagt€,; andC,
such that

ly(e2)Us(Q + &2)| + Vo(2)| < C1e7#2  for all |Z > ro.

If we take a sfficiently smalle > 0 again satisfyindry/e > ro, then we obtain
elp(2)| = [x(e2u.(Q + £2) — V()] < C1e722R/e forall |7 > Ry/e.
Sincee “R/# < ¢ is satisfied by taking > 0 even smaller, it holds that
lp(2)| < C,e R/ forall |7 > Ry/e.

Now, we derive an equation thatsatisfies. First, we calculate(y(e2)u.(Q + £2)):

A(x(e2)u:(Q + £2))
= £2AU,(Q + £2)x(€2) + 26*Vx(£2) - VU.(Q + £2) + £°U,(Q + £2)Ax(c2)
= x(e2){a(Q + £2)us(Q + £2) — b(Q + £2)u.(Q + £2)°}

+ e4{2VU,(Q + £2) - Vx(e2) + U(Q + £2)Ax(e2))
= a(Q+ &2)(Vo + £¢) — b(Q + £2)(vq + &)

- b(Q + £2)x(e2)(1 - x(£2* H)ue(Q + £2)°

+{2VU,(Q + £2) - Vx(22) + U.(Q + £2)Ax(c2)}.

Putting
E(x(2)) == - b(Q + s2x(£2)(1 - x(2* H)u.(Q + £2)°

(5.3) " SZ{ZVUS(Q +&2) - Vy(£2) + u,(Q + sZ)A)((sz)},

and notingA;(y(e2)u.(Q + £2)) = Avg + £A¢, we get that

Avg + eA¢ — a(Q + £2) (Vo + £¢) + b(Q + £2) (Vg + £¢)P + E(x(€2)) = 0.
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Note that&(y(s2)) = O(e“2R/?) since&(y(e2)) = 0 on|z < Ry/e from (5.2) and (5.3). More-
over, fromAvg — a(Q)vg + b(Q)vg = 0inR", the last equation becomes

(5.4) a(Q)vq — b(Q)V + eA¢ — &(Q + £2)(Vg + &¢) + b(Q + £2)(Vq + £¢)° + O(e” /%) = 0.
In deriving the equation above, we have computed as follows:

eNp — a(Q + £2) e
~ (&(Q + £2) - a(Q))vq — B(QVE, + b(Q + £2) (Vg + &¢)° + O(e /%) = 0,
eA¢ — a(Q)eg + PH(QVE “e¢ — (a(Q + £2) — a(Q))s¢p — PHQ)VG 'z
— (a(Q + £2) — a(Q))vq — b(QVS + b(Q + £2){v] + PV{ "¢}
+0(Q + £2){(Vg + 80)P — VG — PG ‘eg} + O(e %) = 0,
eAg — a(Q)eg + PHQVS "£d
+{~(a(Q+£2) - a(Q)) + (b(Q + £2) - b(Q)) PV} * |4
+{-(a(Q+ £2) — a(Q)) + (b(Q + £2) — (QVH *Jvg
+b(Q + £2){(vq + &¢)° — V§ — PV} “ee} + O(e /) = 0.
Dividing (5.4) bye, we see thap satisfies

Ag - a(Q)¢ + P(QVG ¢ + fzg + gvg + h(g) = O,

where
(@ = _aQ+#2)-a(Q)  bQ+22)-b(Q PV,
o) = _aQ+ 8? aQ) , b(Q+ 82) b(Q) Vo + O(e Gl

h(6(2) := b(Q+ a);{(vQ +£0)° — VG - PV eg).

Next, we prove the boundedness|@flw.-gn by using that off andg ase | 0. If this
assertion is proved, then we see that the principal term (@ + £2) is vq and the second term
of u.(Q + £2) is of the order ok. Let

Lo =A-a(Q +pHQV -
Then the equation fap is written as
(5.5 Log + fep + gV + h(¢) =0

Fromep = x(e2)u.(Q + €2) — Vo(2), for e > O fixed, ¢ is a C>-function inR". Then, we
decompose as follows:

(5.6) ¢ = Bovg + Z,BI o
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Here,Bo, B, andy in (5.6) satisfy
oV Vo™
W1.2,

0
<w,vQ>W1,z—< VQ> —0,k:1,...,n}
W12

where(u, vz = [ {VU- Vv + a(Q)uvidzand|ullwiz = ({U, Uwi2)"/2. From (5.6) and the
boundedness o, and Qvo/0z), ase | O, if Bo, B and||y|lw22 are bounded, thegiis bounded.
Therefore, the proof reduces to showing the boundednegss 8f and||y|wzz.

By taking theL?(R")-inner product between (5.5) ang, we have

0
fo= (@ VQwalNalide i = (s ﬁ}

(5.7)

Y eE = {:// e WH(RM)

(LQ¢, VQ)LZ + (f8¢, VQ)LZ + (gVQ,VQ)LZ + (h(¢),VQ)L2 =0.

Let us calculatel{op, Vo) 2. Sincelg is a self-adjoint operator ob?(R"), recallingLqvg =
(p - 1)b(Q)VE, (5.6), andvo(2) = Vo(Z), we get

(Lot 40l = 9 Lovah = 6.~ DB = (b~ QB
- (- D0(@po [ V3" dzs Zﬁ. [ @52z | vavar)
- pulp- 0@ [ Vg oz (p-) [ biQMw
Now, byy € E, we have[, b(Q)vay dz= [ (Avg — a(QVo)y dz = (Vo, Y)w2 = 0, S0 that

(Lot vz = o~ DD(Q) [ V" dz
Therefore, we obtain
(5.8) Bo(p — 1)b(Q) fR ) Vgt dz+ (h(g), Vo) = —(fed, Vo)L — (9Vo. Vo)r2-
Note that fi(¢), o).z is estimated as
(h(¢), V)2l = \ f POQ + e2)|(Vo + Be) — VG ovg d4 (for somed € (0, 1))

{ (Vg + Oeg)P ™t - vg_l}vQ

< plibllLe@n) |l Lp+1gn).

L(P+1)/p(RN)
Since we assume thap converges to zero as| 0 in W' (R"), it follows that

I(h(®), V)2l = o(1)lIllLp2eny ase | 0.
Therefore,|(h(¢), Vo)i2| = 0(1)llgllwz2wny ase | O by the Sobolev inequality. Moreover, from

(5.6) and definition of-, - )2, we have

2
2
+ .
HWLZ ||w||wl2

4 oV,
2 2 2 2 Q
lpllye2 = BollVallyee + 21 Bi 7
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By these observations and (5.8), we obtain

. n 8V 2 1/2
l(p - 00X [ V& dz- o vl + D |2+ e
RN = Z [[w12

< (Ifegllz + llgvallLz)Ivgll ~ ase | O,

Clearly, since

n
{ﬁéannsvl,z + B
1=1

it follows that

Iﬁol{(p - 1b(Q) fR Vg dz- o(1)||vQ||W1,2}

ol 112 " v,
2
o L e 3 [

Y
< (Ifellcz + liglla)lvlee + 0(1)(2 L8||Ha—;HW12 + ||w||wu) ass | 0.
I=1 '

We note that|(fe¢|l 2 + |0l 2)lIVollL.2 and||(0Vo/d7)llw:2 are bounded, so that we have

(5.9) 1Bl < Cs + o(1)(Z 161l + ||w||wu) ase | 0.
1=1

Next, by taking the inner product i’(R") between (5.5) and, we have

(5.10) (Lao, )iz + (fe, )2 + (QVq. )iz + ((9), )2 = 0.
Note that (Q)vg, ¥).» = 0 and

N0
Lo¢ = LQ(ﬁoVQ + Zﬁ'aiz? + l//) = (P~ 1)Bob(Q)vg + Loy
=

Therefore, we see that
(Lag, )iz = (Bo(p — 1IB(Q)P + Ly, )12 = Bo(p — DB(Q)(vVg, )iz + (L, ¥
= (Llﬂ’ w)LZ'

Hence, we have
(Low, )iz + (h(9), ¥)i2 + (fed + Qv ¥)12 = 0.
Here, we divide [i(¢), ¥), - into two integrals as follows:

(h(¢), ¥) .2 = f PO(Q + £2){(vq + 02¢)"* — V& |y dz  (for somed € (0, 1))
-
= | pBQ+ (v +0e)t ~ G |y + ¢ — Y)u dz
(5.11) -
= | PbQ+e2)|(vo+beg)Pt — g 'yt dz
Rn
_ _ AN,
[ pbx@ s enve + 0Pt v v + ;ﬁla—;)w dz
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Substituting (5.11) in (5.10), we find
(Lot + [ PUQ+ ea){(vg-+ 00)™ "~ o oz

[ ob(Q+ ed|(vo + 0o0)” -5 pove + Zm oy

+ (f8¢ +0Vo, ¥)2 = 0.

By Holder’s inequality, we have the following inequality:

(~Loy. )iz = Pllblls (Vo + 026)* ™ = V& o 1)||w ooz
-1 p-1
< pliblles ||(V + 62¢)P — vg ‘ L(pﬂ)/(pl)(”ﬁ LP+1) [l e
+ (Ifeglliz + [1gvallLz)llll.e.
BY Y2l vz = ||z,//||Lp+1 and using the Sobolev inequality,
(_ LQlﬁ, w)LZ CS pp”b”L"" (VQ + 98¢)p t- (pg L(p+1)/(p71)||w”\2N1>2

< Csppliblle||(Vo + feg)Pt -

n
L<p+1)/(p 1)( Z 1B |)||l//||wl’2
=1

+ (IIfegllz + llgvalli2)llllwe

whereCs, is the Sobolev imbedding constant ff-2(R") < LP*{(R"). On the other hand,
when we defineQ(u,v) = (—Lou, V)2 for anyu, v e E ¢ W(R"), thenQ is a bounded,
coercive bilinear form orkt (see Appendix B). Hence there exists a constgnt 0 such that
Colllig ., < (~Lqv.¥)2. Since we assumgp — 0 in W>'(R") ase | 0,

{Co — (DG < {0(1)(|ﬁol + Z IB|I) +|Ifedll2 + “gVQHLZ} l¥llwez  ase | 0.
=1
Sincecy — 0(1) > 0 ase | 0, dividing the above inequality bigg — o(1)}¥lwe2, We see that

W lhwre < o(l)(w £y wn) +Ifegllz + lgvoll:  ase L O.
=1

Moreover, by using (5.9) fgB,| in the right-hand side, we obtain
n n
Wliwez < O(1)Cs + o(l)(Z Bl + ||w||wl,z) +0(1) )" 1Bl +IIfegllz + llgvall>  ase L O.
I=1 =1
Hence, we conclude that

(5.12) lWlwez < Ca+0(1) ) 1Bl ase L0,
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where||fegll 2 = 0(1) ase | 0 and||gvgll 2 is bounded. We use (5.12) to estim##gl:2 in
(5.9), so that (5.9) yields follows:

(5.13) [Bol < Cs +0(1) > 18I ase L 0.
=1

Therefore, if|8y| is bounded for alk = 1,...,n, then the boundedness |@f||\.2 is proved by
(5.6).

Now, we turn to the proof of the boundednesgaaffor all k = 1,...,n. Let|8] := max|Bl,
and assume thag| is not bounded as | 0. Then, there exists a sequeriegja; With ; | 0
such thatf| — o asj — oo. Recall that we put.(Q + £2)y(£2) = Vo(2) + e¢(2) and decompose
¢ as (5.6). Then, it follows that

OV,
U(Q + £Dx(eD) = (1+ 86olVo(d) + & ) fi——2(D + su (D).
=1 62.
Differentiating both sides with respectag we see that

s{z—i:(Q + £2)x(e2) + u,(Q + sz)g—/z\’/k(sz)}

2
a (2.

BVQ : GZVQ
= (1+ o) 5 2@ + egﬁl G

We evaluate this identity &= 0 and notey(0) = 1, (@x/dz)(0) = 0, and Qvq/0z)(0) = 0O, so
that we have

(0)

Dividing both sides by, we obtain

ou, SPNAL oy
(= ;:ﬁl T O+ 5 0
Multiplying this by (8x/|8?) and summing the resulting identity frokn= 1 tok = n, we obtain
n
P U BB 0V B v
24 Z {11181 7202 )" Z 7 a2,

By |8] — o and the boundedness @i(./9%)(Q),

o Bi U
21167 3%,

asj — oo.

Moreover, by the equation (5.5) @f we note thaty satisfies the equatiohqy + Bo(p —
1)b(Q)vg + fegp + gvo + h(¢) = 0. Then, by (5.12), we see thatis a weak solution of the

elliptic equationAy — a(Q)y = f for eache > 0 where—f := pb(Q)VG v + Bo(p — )b(QVE +
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feg +gvo +h(¢). Since O< |Bi|/|6] < 1 is bounded anf| — o ase | 0, by using (5.12) again,
we have

(5.14) Huwnwlz < ﬁ + 0(1)2 Plco  asj— .

Therefore |37/ f]|Ls is bounded independent effor anyq € [1, ). Applying the regularity
estimate to the solutio)| =1y of the elliptic equatiom\(|8"1y) — a(Q)(|8 *y) = |87 f, we have

(5.15) Z s < (||f||Lq + ¥lla)

& ~ 8

Hence, 8|1y is a strong solution of this equation and we obtain tBiat||y|lw.- is bounded as

j > o from (5.15) and the boundednessfofindy proved by (5.14). By using the Sobolev
imbedding theorem fog > n, it holds thatw?9(B,(0)) — C(B,(0)) for anyr > 0, that is,
lUllcrog, o) < CsllUllwzags, o)) for anyu € W?9(B,(0)) whereCs is a constant. Therefore, since
the estimates of (5.14) and (5. 15M|C10<Br(o)) < Csllullwzag, oy atu = |6 Yy and Y|g| — 0 as

j — oo, we see that

1 Cg ol ,
—NWllermon < — +0(1) Y — -0 asj— oo,
B ST B ( ); ] J

hencey.p_, (Bx/I81%)(8y/6z)(0) — 0 asj — oo. Moreover, for eaclk = 1,...,nfrom |B/|8] €
[0, 1], max«k<1 |Bkl/IBl = 1 # O, there existgy € [-1, 1] such that

Pr — vy asj— oo and maxyl =1
1<k<n

&

Hence, ag — oo, we haveXy_; vy (9°Vq/d202)(0) = 0. Fromvg(2) = vo(12) andv,(0) = 0,
we calculate §?vq/0z0z) as follows:

g Vold)  zaz ,
8Zk(92|() {ZI Q(|Z|)} on——— 7 - |Z|_3\/Q(|Z|) |Z|2 \/Q(|Z|)

o Vo(ld) —vo(0) Vo(lZ) -vo(0)
= 61V(0) + 6k {|z|——0 - \/Q(O)} B {lzl——o - Vq(|2|)} :

As |z — 0, we see thatdvq/dzdz)(0) = oV (0). Hence it holds that

n

YV'(0) = > ynouv’(0) = 0
k=1

wherey = (y1,...,vn) andlyl® = i, 7. Note thatvj(0) < 0 is proved by the assertion
w”’(0) < 0 which is obtained fromwv(y) = w(lyl) and (GS-0). However, may| = 1, that is,
y # 0 andv(0) < O is in contradiction t¢y|2\/é(0) = 0. Therefore|s] = max|Bx| is bounded as
e | 0. Consequently, the boundednesgdif,.- is proved by (5.12) and (5.13). Q.E.D.
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Proof of Theorem 1.6 First, we assume that (i}Q € Bg,(Po), (ii): x(s2)u.(Q + £2) decays
exponentially agzl — oo, and (iii): x(2)u.(Q + £2) — Vo(2) =: &p — 0in W>'(R") ase | O.
Taking the inner product ib?(R") between (5.5) and{o/dz), we have

an (’)VQ _
(fs¢ - )Lz (ng, a)g ; (h(¢), E)Lz - 0.
Now, we estimatel((¢), (0vVo/0z)).2 and (feg, (0vo/dZ)). 2 as follows:

J T
‘(h(fﬁ)’alzf) ‘ < pllbll.- f {(vo +1eg)” ~ Vg 1}|¢|‘¥‘dz

© p-1_ p-1 +1
< plblle=|f{(vo + leg)™* ~ V5 ) 6Zk1 ol
< Cplibll=ll¢llwz2 0(1) ase | O,
6VQ 6VQ”
. 4 fll) =0(1 0.
‘(fa¢, azk)Lz‘S“ Islledllz)| 72|, =01)  asel
Therefore 5
VQ _
(ng,a)LZ_o(l) ase | 0.
Then, we calculategig, 0vo/0%), > as follows:
8VQ
1) =
o) = (ove- 52,
— 0
[ aQ+2) - Q) an v [ DQ+ 2= B(Q) Mg
RN & RN € 0

oV
fR va(Q- QO— dz+ f VB(Q)- zvga—zf dz+ O(e).

Now suppose thaD, — Q ase | 0. Then in the limit ofe | O,

3 8VQ _
fRn va(Q) - ZVQ(?_ dz+ ‘L;n Vb(Q) - Z\%a dz=0.

Since Qvo/dz) is an odd function with respect &, we obtain

——(Q)f ((992(5 dz+ —(Q)f (Z—Zf dz=0.

Now, forr = 2, p+ 1, we have

aVQ 1 +1 A= 1 +1
f ZerQ dz= jl;nl {[r + 1VrQ ZkL(:_oo r+1 L\/Q d@} dz

1 +1
piE AR
We therefore see that
1 ha 1 6b D+l g
(5.16) 2an(Q)f ot 16xk(Q) fRn Vo dz=0.
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Second, we prove that (5.16) holds@t= P,. Recall that we are given a family. }o<c<e,
of solutions of (5.12) such that,(u,) = O(g") andP, — Py, € Q ase | 0, whereP, is
a local maximum point ofi.. Now we takeQ, = P,. ObviouslyP, € ERO(PO) holds for
e > 0 suficiently small, and hence the assumption (i) made at the beginning of this proof is
satisfied. Next, in a way similar to the proof of approximation of ground-state solutions (see
Proposition 3.1), we can verify that(P. + €2) — Vp,(2) in C2_(R") N L"(R") ase | O for
anyr € [1,) by using the estimatd,.(u,) = O(¢") and the equation satisfied hy. Put
ed(X) = x(2u.(P: + £2) — vp (2) with z = (Xx— P.)/e. Sincevp, decays exponentially 8 — oo,
there exist constants > 0 andc; > 0 such thavp,(2) = O(e™?) for any|Z > ry, uniformly in
e. Also, we know thau, (P, + £2) for anyz satisfyingr; < |7 < Ry, whereR, is an arbitrarily
fixed constant. Therefore, we have checked that the assumption (ii) is also satisfied. Moreover,
by a computation similar to that in deriving (5.5), we see thasatisfies the elliptic equation

Lp,(e¢) + &(flo-p,)ed + &(Qlo-p,)Vp, + e(¢)lq-p, = O.

Frome¢ — 0in C2 (R") N L"(R") asj — oo, applying the ellipticL"-estimates ta¢, we get
ep — 0in W2'(R"). Hence, the assumption (iii) is satisfied. Consequently, we have proved that
(5.16) atQ = Py holds for anyk = 1, ..., n, sinceP, — P,.

Finally, we put

Q= 55 [ Bdz- 522 [ vdz
and prove
5.17) 1Py = 525 [ weray 22 po)

From the definition ofvp,, i.e., vp,(2) = (a(Po)/b(Po))Y*Yw(va(Po)2), y = va(Po)z, we
calculate the left-hand side of (5.16) @h= Py as follows:

1 da a(Po))Z/(p‘” 2 f
Po) = =— a(P w2 dz
WP = 5Pl Se] ™ [
1 6b a(Po))(p+1)/(p_l) _n/zf 1
— a(P, wPttdz
" priax. O)(b(Po) (Po) ™ ).,
= a(P, )l n/2+2/(p—1)b(p )—2/(D—l)
1 1 oa 1 b
p+1
{2a(Po)axk ")f p+1b(Po)axk Po) f W dz}'

Note that the primary locator functioh = al™"V2%(P-Up-2/(-1) Then, the left-hand side of
(5.16)q-p, becomes

(5.18) @(Po){l L %, f 1 1 b, f wp+1dy}.

On the other hand, sinaeis symmetric with respect to the origin and satisfi@s— w+wP = 0,

we have N1
V\/'+%V\/—W+Wp:0 r = V).
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Multiplying this equation by "w’ and integrating it on [(x), we see that

f V\/V\/’r”dr+(n—1)f (\/\/)zr”‘ldr—f W\I\/I’ndl’+f wPw'rdr = 0.
0 0 0 0
We calculate each term of the above identity:

f V\/V\/’r”dr:f }E(W)Zr”dr:[}r”(vv)z] —Qf (W)™ dr
0 o 2dr 2

__E - 2.n-1
= 2j(;(\/\/)r dr,
forg=2andg=p+1,

- n _ =1 d +1
fOV\/Wr dr_f0 T 1dr(Wq y"dr

— 1 f Wq+1n1dr
q+1 0 q+1

— +1n1
= q+1qu dr.

Hence, the above identity becomes

_n - " WL n " 2l __n ” p+l.n-1 4y _
(2+n 1)f0(V\/)I’ dr+2f0 wr-tdr p+1f0w r1dr = 0.

Multiplying this identity bynw, and transforming the integration oto that ofy,

n_ 2 n __n P+l vy —
(5.19) (2 1)LH|VW| dy+2fanv2dy ] Rnw dy =0,

wherewy, is volume of unit ball irR" and notev' = |Vw|. Moreover, multiplyingAw—w+wP = 0
by w and integrating it oveR", we have

(5.20) IVWi? dy = —f w2 dy + f wP dy.
Rn Rn Rn

Substituting (5.20) in (5.19), we see
n +1 n +1
(——1) - | wWPdy+ Wp dyp + = vv2dy—— wPldy = 0.
2 RN 2 RN

Therefore, we have
wAd :(1_9+ n )pr”d.
fRn y 2" p+1) ) y
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Substituting this to (5.18), we calculate as follows:

11 oa 1 1 b .
(P ){Za(maxk Po) anﬁdy‘p+1®&m°)fwwpldy}

n n 1 oa 1 1 ob .
ZQ(P°){E(1_§+p+1)ma_xk(P°) D+ 1b(Py) % 0)} WP dy
3 1 n(p-1)) 1 oa 1 ob .
‘q’(P‘”E[{l‘2<p+1)}a<Po)axk( Po) = p+1b(Po)axk(P°)U wPrtdy

B p-1 p+1 n\ 1 oa 1 ob .
‘Q(P°)2(p+1){(p 1‘§)a(Po)axk( P~ 5 TPy O)}prldy

Pz [ ey

c{[1-5+ 525) gtonat)|_ - 55 toabt)| |
= prfl) fR n Wp+1dY[<D(Po)£ {Iog(a(Po)l—"/M“P-”b(Po)-z/(p—”)}]
= prfl) B Wp+1dy{CI)(PO)&(|og cD(Po))}
e S W P

We thus obtain (5.17). Recall that the left-hand side of (5.16) vanish@s=aP,. Hence, we
have

p-1
2(p+1) Jgn

Now, note thatp— 1)/2(p+ 1) > O anden wPrldy > 0 sincew is a positive solution of

(GS-0). Consequentlyg®/0x¢)(Po) = 0 holds. Sinced®/dx)(Po) = 0 forallk = 1,...,
we conclude thaV ®(Py) = 0.

103
P+ dy —(Pp) = O.
W yaxk( 0)
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Appendix A

In this appendix, we prove the following

Lemma A.1. Let{u,} be a solution ofP) satisfying
(19) Coé‘n < ‘]s(us) - ‘Je(um,s) < C08n7

where g and G are some positive constants with € Co and uy, is the minimal solution of
(P). Then{u.} concentrates at finitely many points &n

Proof. We suppose that; is a solution of (P) and satisfies (1.9). By the positivityugf. and
the maximal principle applied to (3.1), we see thiat= u. — un, is positive onQ2. Recalling
the definition ofJ, (see (1.7)) and, (see (1.8)), we see that

Is(Vs) = ‘Js(us) - Js(um,s) = %”VS”ES - L b(X)G(urTLS(X)’Vs(X)) dX,

where|| - |lg, is defined by Definition2.1. Hence, by Claim 2.8, we see that for @&ny
(max1/3,1/(p+ 1)}, 1/2)

(A1) 16 > SIVE, =0 | DO (9. w99 dx
Q

where we have used the fact thats a constant. Moreover, sincg satisfies the equation
2AXV — a(X)V + b(X){(Ums(X) + V)? — um(X)P} = 0, we have

(A.2) fg b()G(Um (%), Ve (X)Ve(X) dX = [IVelIZ, -
Substituting (A.2) in (A.1), one obtains that
(A.3) 00> (5 - .

Therefore, from the assumption (1.9), we havE(2 9)||v8||2E8 < Cpe", and hence
IV.IIg, < Cpe"

with Cj = Co/(1/2 - 6). Starting with this estimate, we can prove, as in Proposition 2.14, that
there exists a positive constayt for everyr > 1 such that

(A.4) f V.dx < Ce"
Q
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and sup,, C/’" < .

Now, let P, be a local minimum point ofi,. In a way similar to that in the proof of Propo-
sition 3.1, we can check that there exists a sequé¢en with € | 0, a pointP, € Qanda
functionV,(2) in R" such thatP,; — Py and

(A.5) V.(X) = Vo(@) = V(@) in CA(K),

wherez = (x— P,)/e andK is any compact set iR". We prove in the case &f, € Q only. The
casePy € 9Q can be treated in the same line as in the proof of Proposition 3.1 Case (ll). Hence,
by (A.4) and (A.5), we haviVol|rrn) < CH'" foranyr > 1. Sinceuy,, is the minimal solution of

(P), we can use Lemma 2.3, and hengg (P, +¢j2) converges tain(Po) in CI%C(R”). Recalling
thatv,(x) satisfies the equatiastA(X)V — a(X)V + b(X){(Uns(X) + V) — Un.(X)P} = 0, we obtain
thatV,, satisfies

A(Pe; + &2V = &P )V + b(Pe; + £D{(Une; + V)Y —Uh, } =0 in Qp, s

whereA(P,, +&;2)V = Z{szl(a/az,-)(a”(ng +£;2)0V/0z;) anngj,pﬂ ={zeR" | x=P, +¢gjz¢€
Q}. Sincngj,psj tends taR" asj — oo, we see tha¥/, satisfies

A(Po)V — a(Po)V ~ b(Po){(Um(Po) + V) — Um(Po)?} =0 inR",

whereA(Po)V = Zﬂjzl aj(Po)(6°V/8zdz;). Noting thatV, satisfies the same equation as (3.7)
and|[Vollurgny < CY forr > 1, by the uniqueness of the solution of (GH-we have

1/(p-1)
Vo = {501 W) withy = VAP |DsiBnz andy = (P

Therefore, we see that

1/(p-1) _
(A.6) u,(¥) = um(Po)+{SEE3} Wyo(po)(\/a(Po) \/D7538p0X PO)+0(1) ase; | O.

€j

Recalling thatv, is symmetric with respect to the origin anci(y]) is decreasing in & |y| < oo,
for £; small enoughP,; becomes a strict local maximum pointwf. In view of the expression
(A.6) and noting thatv, decays exponentially at infinity, we see thg(x) = U, (X) — Un,;(X)
converges to zero fax € B,(P,) N Q\ {Ps; | 0 < &j < &} Wherep is some positive constant.
Consequently, we obtain th@t,} concentrates a,. Q.E.D.
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Appendix B

In this appendix we give a detailed proof of the coercivity of the quadratic f@(mv) on E
due to Wei [24, 25].
Lemma B.1. The eigenvalue problem

Au - a(Q)u+ ub(QV2'u=0 inR",
(EvP) 1(2Q) Hb(QV

ue W-5(R"

has the family of real eigenvalugg;};« Which diverge to infinity, and 4R") is spanned by

.....

eigenvaluegu; and n(j) is the multiplicity ofu;. Moreover, the principal eigenvalue jg = 1
and the second eigenvalueus = p.

Proof. We define an operat@q on L2(R") by
Gold] := (a(Q) - A) ¢,

so that from the regularity estimate of elliptic equation, we hgg[¢]llwezrny < CligllLz@n.
Moreover, defind g by

Tad = Go[b(QVS '¢]  forany¢ e L*(R").

Then, it holds thalg : L?(R") — W2(R")(c L?(R")) andTq becomes a compact operator on
L%(R") by vo(2) decaying exponentiallfl — co. Note thatTq is a symmetric operator oi?,

i.e., (Too, ¥)2 = (¢, Toy)2(R"). Hence, the spectrums ®f, are comprised of the eigenvalues
and the multiplicity of each eigenvalue is finite. Put the eigenvalues in order and let the set of
these eigenvalues Q&;}ja:. Then,{4j};av does not have an accumulation point except 0, and
A; have to be a real number from the symmetryrgf Moreover, a family of the eigenfunctions

eachj, ¢; satisfies
1 _
Ag; - a(Q)p; + -b(QVG "¢ = 0.
J

Comparing this equation with (EVP), we see that the eigenyabf¢ EVP) corresponds to/1.
Therefore, putting; = 1/4;, sinced; — 0, we obtain thaf;; — co asj — co.

First, we proveu; > O for all j € N. Since the eigenfunction; of u; satisfiesA¢jy —
a(Q)¢jx +,Lljb(Q)Vg_1¢j,k = 0, multiplying this byg;x and integrating it irR", we have

ub(Q [ VB dz= [ (V6P + a(Qo)dz> 0
RN RN
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By b(Q) .. p‘1¢Jkdz> 0, hencey; is positive
in L2(R") W|th the Welghtb(Q)vp ! where</>“,k’lwandq’)Jz,k2 are dfferent AssumgiatJl < uj,. Let
¢;, be an eigenfunction qf;, for i = 1,2. Sincey;, satisfies (EVP) om = y;,, it follows that

$i,Apj, — P Adj, + (), _ﬂjz)b(Q)Vg_l¢jl¢jz
= ¢j2(A¢j1 - a(Q)¢j1 +ﬂj1b(Q)Vg_l¢j1) - ¢j1(A¢j2 - a(Q)¢j2 +ﬂj2b(Q)Vg_1¢j2) =0

Integrating this irR", by [[.(¢,Ad}, — ¢;,A¢},) dz= ~ [[.(V$j, - Voj, — Vo, - Voj,) dz= 0, we
obtain

(ujy — 1) fR ) b(QV, ";,),dz= 0.

Since we assume;, # uj,, it holds thatf]Rn b(Q)vg‘lqul(/),-2 dz= 0. Inthe case qf;, = u;,, there
exists linearly independent functiong 1, . . ., ¢}, m(j,)- HeNce, it siices to orthogonalize those
functions inL?(R") with weightb(Q)v5 ™.

Third, we start to provey = 1 wherey; is the principal eigenvalue of (EVP). Taking
¢ = Vo, by the definition of/q, it follows thatA¢ — a(Q)¢ + b(Q)vg‘ld) = 0. Hence, there exists
j>1andk e {1,...,m(])} such thaj; = 1. By vg > 0, vog must be the principal eigenfunction
of (EVP) where we note that the principal eigenfunction is a definite sign. Moreover, by the
variational characterization of eigenvalues, the following holds:

JenllVeP + a(Q)¢%) dz
M1 = in =)
sewrEm\0 [ b(Q)Vg ¢?dz
Vo[? 2)d
= - Ja(IV8P + a(Q)¢?) dz

seWi2EM\OL o101 [ D(QIVG '¢? dz
wherey; is the j-th eigenvalue of (EVP). Now, fromvg — a(Q)vg + b(Q)vg =0, we have

0
AR -a (Q)—+pb(Q) - aa )

Hence,pis an eigenvalue andYy/0z) is the eigenfunction of (EVP). Now, by (2) = vo(12),
since Qvq/0z) = v’Q(|z|)z|/|z| holds, the nodal set becomés e R" | z = 0}. Therefore,
(0vo/07) is the second eigenfunction. Q.E.D.

Lemma B.2. Let Lo := A — a(Q)vo + b(Q)V2 ™, and define a bilinear forr@ on W-(R") by
Qu,v) := f {Vu- Vv + a(Q)vouv — b(Q)vg‘luv} dz
Rn

ThenQ@ is bounded and coercive on E defined (8y7) where (y, p)pi2 = fRn(w - Vo +
a(Q)y¢) dz and|dllwez 1= (¢, Phwrz.
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Proof. The boundedness @ is easy to check. Indeed, by the Cauchy-Schwartz inequality, it
follows that

QU V)| < f {IVUl 19Vl + |[a(Q)vg — b(QVS | lum} dz
Rn
< ma><{1, rzrel]an{VQ(Z) - b(Qvo(2™ Y/ a(Q)}] lullw2(eny VI w2 (gn)-
Next, taking anyy € E, from E ¢ W-(R") c L2(R") = spard¢ix | k=1,...,m(j), j € N},

we have
oo M(j)

W= Z Z Cik ¢j,k-

j=1 k=1
To simplify the description, denofg;’ Z”f ) by >’;. By the definition ofE, we see also that

b(Q)vgw dz= f (-Avg + a(Q)vo)y dz = f (Vvg - V¥ + a(Q)voy) dz= 0,
RN RN

me [ Qg TR0 dz= [ (-a%2 a@ 2z
f(v‘z— V¢r+a(Q)—¢)dz 0.
R" 4

Hence,y is orthogonal inL2(R") with weight b(Q)vg . Sinceg11 = Vo andeyx = (0Vo/0Z),
we havecj = 0 for j = 1, 2. From now, we calculat@(y, y):

Q) = [ (V-0 -+ a(Q - Qe dz= [ wLoudz

= f Zc,-,kqs,-,kLQ{Zc,-/,qus,-,,k/}dz: f D Cixbix ), CrirLady dz
RN = 7 RN i 7
- [ D cutud Dt~ PIBQVE it oz

- Z CikCyr ke (1 — p)f b(Q)vp‘ dikdix dz

=1

where we note thatqpj v = (uj — p)b(Q)vg‘lgb,-/,k,. Recall thaip; and¢; ,» are orthogonal in
L2 with the weighﬂ)(Q)vg‘l. Then, it follows that

f BQVG ki dZ= 5j:Siue f b(QVE "¢% dz
R" RN
Therefore, byc; = 0 for j = 1,2, we obtain

CCURDIATRL | gz

= Y Gl [ BNz

j#1.2

= (12 R CE G

j#1,2
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Now, fromus < u; for j > 3, we see that

Q) = (1= 2) 37 [ ub(QVg (e dz

H3 j#1,2

( )Z f . {1iDQVE (Cixd 0 f(Cywdiri) d2

T ,U%) V[Rn Z —A(Cixdix) + a(Q)(Cixg;, k)}'/f dz

p
- —,u—a)f(IVl//I +a(Q)y*) dz= ”‘/’”W”(R”)

Noting thatp = u, < usz, we obtain 1- p/us > 0. Consequently, there exists a positive constant
Co = 1 - p/us such that

QY. y) > COHw”\ZNl,Z(Rn) foranyy € E.

Q.E.D.

We emphasize that depends orQ € Q, but it is uniformly bounded away from zero on
each compact subset since the eigenvaludepends continuously d.
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