
ISSN 1343-9499

TOHOKU
MATHEMATICAL
PUBLICATIONS

Number 37

Exact WKB approach

to 2-level adiabatic transition problems

with a small spectral gap

by

Takuya Watanabe

July 2012

c©Tohoku University

Sendai 980-8578, Japan



Editorial Board

Shigeki Aida Shigetoshi Bando Masaki Hanamura
Nobuhiro Honda Masanori Ishida Kazuhiro Ishige
Shigeaki Koike Motoko Kotani Reiko Miyaoka
Takayoshi Ogawa Takashi Shioya Izumi Takagi
Masayoshi Takeda Kazuyuki Tanaka Nobuo Tsuzuki
Takao Yamazaki

This series aims to publish material related to the activities of the
Mathematical Institute of Tohoku University. This may include:
1. Theses submitted to the Institute by grantees of the degree of Doctor

of Science.
2. Proceedings of symposia as well as lecture notes of the Institute.
A primary advantage of the series lies in quick and timely publication.
Consequently, some of the material published here may very likely
appear elsewhere in final form.

Tohoku Mathematical Publications

Mathematical Institute
Tohoku University

Sendai 980-8578, Japan



TOHOKU
MATHEMATICAL
PUBLICATIONS

Number 37

Exact WKB approach

to 2-level adiabatic transition problems

with a small spectral gap

by

Takuya Watanabe

July 2012

c©Tohoku University

Sendai 980-8578, Japan





Exact WKB approach

to 2-level adiabatic transition problems

with a small spectral gap

A thesis presented

by

Takuya Watanabe

to

The Mathematical Institute

for the degree of

Doctor of Science

Tohoku University

Sendai, Japan

March 2007





Contents

0 Introduction 1

1 Results 6
1.1 Scattering matrix and transition probability . . . . . . . . . . . . . . . . . . . 6
1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Exact WKB method 11
2.1 Formal construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Convergence and Wronskian formula . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Asymptotic property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Turning points and Stokes lines . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Connection of the exact WKB solutions 20
3.1 WKB expression of the Jost solutions . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Stokes geometry around the avoided crossing . . . . . . . . . . . . . . . . . . 25
3.3 Transfer matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Asymptotics of the Wronskians as h → 0 . . . . . . . . . . . . . . . . . . . . . 39
3.5 Asymptotics of the action integral . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Avoided crossings at several points 47
4.1 Scattering matrix in several avoided crossings . . . . . . . . . . . . . . . . . . 47
4.2 Avoided crossing at two points . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Appendix 63
5.1 Landau-Zener formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



abs



Chapter 0

Introduction

Let us consider the time-dependent Schrödinger equation

(0.0.1) ih∂tψh(t) = H(t)ψh(t), t ∈ R,

on a separable Hilbert space H along the paper by [HJ]. The Hamiltonian H(t) is a family
of bounded self-adjoint operators on H depending smoothly on t, and h is a small positive
parameter called adiabatic parameter.

We assume that the spectrum of H(t), included in R, is decomposed into two components
σ1(t) and σ2(t) with a positive gap ε :

(0.0.2) SpecH(t) = σ1(t)∪σ2(t), inf
t∈R

dist(σ1(t),σ2(t)) = ε > 0.

Under this hypothesis, there exists a self-adjoint spectral projection P(t) corresponding to
σ1(t), which depends smoothly on t.

For t,s ∈ R, let Uh(t,s) be the propagator associated to (0.0.1) :

ih∂tUh(t,s) = H(t)Uh(t,s), Uh(s,s) = Id.

It is known that for all (t,s),

(0.0.3) ||(Id−P(t))Uh(t,s)P(s)||= O(h)

as h tends to 0. The left hand side is the transition amplitude between the subspaces P(s)H
and (Id−P(t))H and this fact means that the quantum evolution follows the isolated spectral
subspaces of the Hamiltonian up to an error of order h. This is called the Adiabatic Theorem of
Quantum Mechanics. It has first been studied by Born and Fock [BF] in 1928 for matrix valued
Hamiltonians and then generalized to self-adjoint operators by Kato [K], Nenciu [N1] etc.

In the scattering regime, where the initial and final times s and t tend to −∞ and +∞ respec-
tively, we can define, under appropriate assumptions on H(t) at infinity, the transition probabil-
ity P(h) by

(0.0.4) P(h) = lim
t→+∞
s→−∞

||(Id−P(t))Uh(t,s)P(s)||2.
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Assume that there exists µ > 0 such that H(t) is analytic in a strip {t ∈ C ; |Im t| ≤ µ} as
an L (H )-valued function, and that there exist ν > 1, two bounded self-adjoint operators H±
independent of t and a constant c such that sup|s|≤µ ||H(t+is)−H±|| ≤ c(1+t2)−ν/2 as t →±∞.
Under these conditions, Joye and Pfister showed in [JP1] that there exist C > 0 and Γ > 0 such
that for sufficiently small h

(0.0.5) P(h)≤Ce−Γ/h

(see also [N2], [S], [JP2], [M] for similar results).

It is an important and interesting problem to optimize the constants C and Γ or more pre-
cisely to obtain an asymptotic formula of P(h) as h tends to 0.

This problem is not trivial even in a special case where H(t) is a 2×2 real symmetric matrix
(hence H = C2):

(0.0.6) H(t) =
(

V (t) ε(t)
ε(t) −V (t)

)

In this case, however, the WKB method enables us to construct and connect WKB solutions
in complex domains in Ct and to compute the asymptotic formula of the scattering matrix as
well as of the transition probability.

The turning points and the Stokes lines emanating from these points play crucial roles in the
WKB method. Turning points are the zeros of −detH(t) = V (t)2 + ε(t)2 and also the cross-
ing points on the complex t-plane between positive and negative eigenvalues ±

√
−detH(t)

of H(t). Stoke lines are the curves which are level sets of the real part of the phase function
of the WKB solution. WKB solutions are singular at turning points and the so-called Stokes
phenomenon occurs across the Stokes lines emanating from turning points.

Joye, Kunz and Pfister showed the asymptotic formula

(0.0.7) P(h) = Ge−γ/h (1+O(h)) as h → 0

under a geometrical condition on the Stokes lines emanating from the nearest complex conjugate
pair of turning points {x0, x̄0} ([JKP]). The exponential decay rate γ is given by γ = 2|ImA0|,
where A0 = 2

∫ x0
0

√
−detH(t)dt is the action integral, and G is also a positive constant deter-

mined by the local behavior of H(t) near x0.

The simplest example is the Landau-Zener model. In the particular case V (t) = at (a > 0),
ε(t)≡ ε , it is possible to compute explicitly the transition probability P(ε,h) by making use of
the asymptotic formula at infinity of the Weber function, and it is given by

P(ε,h) = exp
[
−πε2

ah

]
,

for all ε > 0, h > 0 ([L], [Z], see also Chapter 5 Appendix). This is called Landau-Zener
formula.
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We can easily check the formula (0.0.7):

γ = 4
∣∣∣∣Im ∫ iε/a

0

√
a2t2 + ε2 dt

∣∣∣∣= 4Im
(

iε2

a

∫ 1

0

√
1− s2 ds

)
=

πε2

a
.

But the Landau-Zener model suggests a more precise study of the asymptotic formula (0.0.7).
In this model, the spectral gap is 2

√
a2t2 + ε2 and the minimum, 2ε , is attained at t = 0, the

zero of V (t) = at. If ε tends to 0, the spectral gap tends to 0 and one expects that the transition
probability increases. In fact, this model implies that the exponential decay of the transition
probability remains true if and only if h tends to 0 faster than ε2.

In this thesis, we mainly study the Hamiltonian (0.0.6) with constant interaction ε(t)≡ ε :

H(t,ε) =
(

V (t) ε
ε −V (t)

)
,

and assume that the real function V (t) vanishes at least at one point. Our problems are the
followings:

1. What is the principal term of the asymptotic expansion of P(ε,h) with respect to h for
sufficiently small ε ?

2. Is the error uniform with respect to small ε ?

3. When V (t) vanishes at more than one real point, which zeros make a major contribution
to the principal term of P(ε,h) ?

As we will see in the next section where we suppose V (t) vanishes at the origin only, if
V ′(0) ̸= 0 as in the Landau-Zener model, the same asymptotic formula as (0.0.7) holds with
G = 1 and the error is uniform with respect to small ε (Theorem 1.2.1). But if V (t) vanishes
to higher order, then two action integrals appear in the principal term and the error is no longer
uniform (Theorem 1.2.2). In fact, if V vanishes to order n, then there exist n pairs of complex
conjugate turning points tending to 0 as ε tends to 0. The global behavior of the solutions on the
real time axis are governed by the Stokes lines emanating from the closest two pairs of turning
points from the real axis. Moreover, the asymptotic behavior of the principal term with respect
to ε and h depends on the higher order derivatives of V than n at t = 0 (Proposition1.2.1).

In the case where V (t) vanishes at more than one real point, we will see that turning points
around the lowest order zero make a major contribution to the asymptotic behavior of P(ε,h)
as ε , as well as h, tends to 0 (Theorem 4.2.2, Theorem 4.2.3). This is a natural result expected
from Joye’s indication in [J1].

The analysis of the problems including such a parameter ε as well as h is very delicate. This
results from great changes of the geometrical structures of Stokes lines when turning points
converge to one point on R as ε tends to 0. The fundamental tool we use is the theory of the
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exact WKB analysis developed by C. Gérard and A. Grigis for Schrödinger equations [GG]

and extended by S. Fujiié, C. Lasser and L. Nedelec to a family of first order 2× 2 systems
[FLN]. This method gives a convergent resummation to a divergent power series solution in h
and enables us to express the Wronskian of two exact WKB solutions as a convergent series
defined inductively by integrations along a path. In particular, thanks to the expression of the
kernel of the inductive integrations, we can see to what extent the asymptotic behavior of that
Wronskian with respect to h is valid when ε tends to 0.

The contents of this thesis is organized as follows: In Chapter 1, we state the assumptions
and our results. To apply the exact WKB method we define the scattering matrix and the transi-
tion probability by Jost solutions (§1.1). We state, as the main results, the asymptotic expansion
of P(ε,h) as h/ε(n+1)/n → 0 for any small ε and the principal term of P(ε,h) with respect to
sufficiently small ε as well as h (§1.2).

In Chapter 2, we explain the exact WKB method for a 2×2 system of first order differential
equation along the following contents. We first construct locally WKB solutions as formal
series solutions (§2.1). For any fixed h we prove their convergence and give the Wronskian
formula between two exact WKB solutions (§2.2). We show that the series of the exact WKB
symbol function themselves are asymptotic expansions as h goes to 0 in some complex domain
(§2.3). We introduce the Stokes line which characterizes such a domain and illustrate some of
its local geometrical properties (§2.4).

Chapter 3 is devoted to the proof of our results by the exact WKB method. We reduce the
connection problem between the Jost solutions to the local problem around the turning points
near the origin (§3.1). We study the local geometrical structures of the Stokes lines (§3.2).
We express the scattering matrix by the product of some transfer matrices around the turning
points and study the asymptotic behavior of them (§3.3). We show how the turning points which
converge at the origin as ε tends to 0 cause the failure of the estimate of Wronskian formula
(§3.4). To study the Stokes geometry and the distance between turning points we calculate the
expansion of the action integral with respect to small ε (§3.5).

In Chapter 4, we consider the case where V (t) vanishes at more than one real point. The
scattering matrix is expressed as the product of transfer matrices between turning points asso-
ciated to these zeros (§4.1). We consider a special case where V (t) vanishes at two points and
study the contribution of the vanishing order to the asymptotic behavior of P(ε,h) (§4.2).

In Chapter 5, we give a proof of Landau-Zener formula, which can be performed by an exact
calculus using the asymptotic formulae at infinity of the Weber function.
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Chapter 1

Results

1.1 Scattering matrix and transition probability

We consider the time-dependent Schrödinger equation:

(1.1.1) ih
d
dt

ψ(t) = H(t,ε)ψ(t), H(t,ε) =
(

V (t) ε
ε −V (t)

)
on R, where ε and h are small positive parameters and V (t) is a real-valued function. ψ(t) is
a vector-valued function with complex components. This 2× 2 real symmetric and trace-free
matrix H(ε,h) has two real eigenvalues E±(t,ε) = ±

√
V (t)2 + ε2. The difference of these

eigenvalues

E+(t,ε)−E−(t,ε) = 2
√

V (t)2 + ε2

is strictly positive for all t ∈ R and has its minimum 2ε at the zeros of V (t).
First we define the scattering matrix and the transition probability. We consider the asymp-

totic solutions at infinity under the following assumptions on V (t):

(A) V (t) is real-valued on R and there exist two real numbers 0 < θ0 < π/2 and µ > 0 such that
V (t) is analytic in the complex domain:

S =
{

t ∈ C ; |Im t|< |Re t| tanθ0
}
∪
{
|Im t|< µ

}
.

(B) There exist two real non-zero constants Er, El and σ > 1 such that

V (t) =

{
Er +O(|t|−σ ) as Re t →+∞ in S ,

El +O(|t|−σ ) as Re t →−∞ in S .

Under the conditions (A) and (B), there exist four solutions ψr
+, ψr

−, ψ l
+, and ψ l

− to (1.1.1)
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uniquely defined by the following asymptotic conditions:

(1.1.2)

ψr
+(t)∼ exp

[
+

i
h

√
E2

r + ε2 t
](

−sinθr

cosθr

)
, as Re t →+∞ in S ,

ψr
−(t)∼ exp

[
− i

h

√
E2

r + ε2 t
](

cosθr

sinθr

)
, as Re t →+∞ in S ,

ψ l
+(t)∼ exp

[
+

i
h

√
E2

l + ε2 t
](

−sinθl

cosθl

)
, as Re t →−∞ in S ,

ψ l
−(t)∼ exp

[
− i

h

√
E2

l + ε2 t
](

cosθl

sinθl

)
, as Re t →−∞ in S ,

where tan2θr = ε/Er and tan2θl = ε/El (0 < θr,θl < π/2). These solutions are called the
Jost solutions to (1.1.1). We notice that the principal term of each Jost solution, for example
exp[+ i

h

√
E2

r + ε2 t] t(−sinθr cosθr), is a solution to the system with constant coefficient:

ih
d
dt

ψ(t) =
(

Er ε
ε −Er

)
ψ(t)

= R(θr)

( √
E2

r + ε2 0
0 −

√
E2

r + ε2

)
R(θr)

−1ψ(t),

where R(θr) is the following matrix.

R(θr) =

(
cosθr −sinθr

sinθr cosθr

)
.

The pairs of Jost solutions (ψr
+,ψr

−) and (ψ l
+,ψ l

−) are orthonormal bases on C2 for any fixed t.

Definition 1.1.1. The scattering matrix S is defined as the change of bases of Jost solutions:(
ψ l
+ ψ l

−

)
=
(

ψr
+ ψr

−

)
S(ε,h), S(ε,h) =

(
s11(ε,h) s12(ε,h)
s21(ε,h) s22(ε,h)

)
.

S is a unitary matrix independent of t. Moreover the Jost solutions have the relations:

(1.1.3) ψr
±(t) =∓

(
0 1
−1 0

)
ψr
∓(t), ψ l

±(t) =∓
(

0 1
−1 0

)
ψ l
∓(t).

Hence we have

|s11(ε,h)|2 + |s21(ε,h)|2 = 1,

s11(ε,h) = s22(ε,h), s12(ε,h) =−s21(ε,h).

Definition 1.1.2. The transition probability P(ε,h) is defined by

P(ε,h) = |s21(ε,h)|2 = |s12(ε,h)|2.

7



Remark 1.1.1. This definition is equivalent to (0.0.4), that is

|s12(ε,h)|2 = lim
t→+∞
s→−∞

||(Id −P(t))Uh(t,s)P(s)||2,

|s21(ε,h)|2 = lim
t→+∞
s→−∞

||P(t)Uh(t,s)(Id −P(s))||2,

where, for any fixed t ∈R, P(t) is the projection corresponding to the eigenvalue
√

V (t)2 + ε2.

1.2 Results

As we have seen in Introduction, the vanishing points of V (t) on real axis are important for our
problems with small spectral gap. Throughout this thesis we assume

(C) V (t) vanishes at least at one point on R.

In particular we suppose in this section and in Chapter 3 that

(C1) V (t) vanishes only at the origin on R.

Then the spectral gap 2
√

V (t)2 + ε2 attains its minimum 2ε at t = 0 (avoided crossing). Instead
the analytic extension of V (t)2+ε2 has complex zeros near t = 0, which we call turning points.

Notice that we do not assume any condition on the order of zero at t = 0. Let n ∈ N =

{1,2, · · ·} be the number such that V (k)(0) = 0 for 0 ≤ k ≤ n−1 and V (n)(0) ̸= 0. We assume
V (n)(0)> 0 without loss of generality. Then there are 2n simple turning points x j(ε) and x j(ε)
( j = 1, . . . ,n) which behave like

(1.2.1) x j(ε)∼
(

n!
V (n)(0)

)1/n

exp
[
(2 j−1)πi

2n

]
ε1/n as ε → 0.

We define the action integral A j(ε) by

A j(ε) = 2
∫ x j(ε)

0

√
V (t)2 + ε2 dt,

where the integration path is the complex segment from 0 to x j(ε) and the branch of the square

root is ε at t = 0. We put V (t) = V (n)(0)
n! tnv(t), where v(t) is holomorphic in a neighborhood of

t = 0 and v(0) = 1. Then we obtain the asymptotic behavior of A j(ε) with respect to the small
parameter ε .

Lemma 1.2.1. A j(ε) is an analytic function of ε1/n at t = 0 and has the following Maclaurin
expansion:

A j(ε) =
∞

∑
k=1

Ck exp
[
(2 j−1)kπi

2n

]
ε

n+k
n ,

8



where Ck =

√
π Γ( k

2n)

(n+ k)Γ(k)Γ(n+k
2n )

(
n!

V (n)(0)

) k
n
[

dk−1

dzk−1

(
v(z)−

k
n

)]
z=0

.

Our main results are the following asymptotic formulae of P(ε,h) when both ε and h are
small. In the case n = 1, we recover the uniform Landau-Zener type formula which has been
shown by Joye [J2, Theorem 2.1].

Theorem 1.2.1. Assume (A), (B), (C1), and n = 1. Then there exists ε0 > 0 such that we have

P(ε,h) = exp
[
−2ImA1(ε)

h

]
(1+O(h)) as h → 0

uniformly for ε ∈ (0,ε0).

In the case where n ≥ 2, we have the following formula which is valid when h/ε
n+1

n → 0:

Theorem 1.2.2. Assume (A), (B), (C1), and n ≥ 2. Then there exists ε0 > 0 such that, for all
ε ∈ (0,ε0), we have

P(ε,h) =
∣∣∣∣exp

[
i
h

A1(ε)
]
+(−1)n+1 exp

[
i
h

An(ε)
]∣∣∣∣2(1+O

(
h

ε
n+1

n

))
as

h

ε
n+1

n
→ 0.

Remark 1.2.1. Note that h/ε(n+1)/n appears in an obvious way in the case V (t) = tn. By a
simple rescaling t = ε1/nτ , (1.1.1) is reduced to

i
h

ε(n+1)/n

d
dτ

ϕ(τ) =
(

τn 1
1 −τn

)
ϕ(τ),

where ψ(ε1/nτ) = ϕ(τ).

Let us try to express the principal term

P0(ε,h) =
∣∣∣∣exp

[
i
h

A1(ε)
]
+(−1)n+1 exp

[
i
h

An(ε)
]∣∣∣∣2

for n ≥ 2 in the form (0.0.7). We rewrite it as

P0(ε ,h) = exp
[
−Im(A1(ε)+An(ε))

h

]
×
(

exp
[

Im(A1(ε)−An(ε))
h

]
+ exp

[
Im(An(ε)−A1(ε))

h

]
+(−1)n+12cos

[
Re(A1(ε)−An(ε))

h

])
.

Then by computing the asymptotic expansions of the action integrals A1(ε) and An(ε) we have
the following proposition:
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Proposition 1.2.1.
1) If V (n+2l−1)(0) = 0 for all l ∈ N, then

ImA1(ε) = ImAn(ε)

and

P0(ε,h) = 4
(

sin2
[

Re(A1(ε)−An(ε))
2h

+
n
2

π
])

exp
[
−2ImA1(ε)

h

]
.

2) If there exists m ∈ N such that V (n+2l−1)(0) = 0 (l = 0, . . . ,m− 1) and V (n+2m−1)(0) ̸= 0,
then for sufficiently small ε

(1.2.2) Im(A1(ε)−An(ε)) = 2C2m

(
sin

m
n

π
)

ε
n+2m

n +O
(

ε
n+2m+2

n

)
,

where

C2m =−
2m

√
π Γ(m

n )V
(n+2m−1)(0)

nΓ(n+2m+1)Γ(n+2m
2n )

(
n!

V (n)(0)

) n+2m
n

,

and the asymptotic behavior of P0(ε,h) as (ε,h)→ (0,0) is given by the following formulae:

(i) When ε(n+2m)/n/h → 0, P0(ε,h) is equal to

4
(

sin2
[

Re(A1(ε)−An(ε))
2h

+
n
2

π
])

exp
[
−Im(A1(ε)+An(ε))

h

](
1+O

(
ε

2(n+2m)
n

h2

))
.

(ii) When h/ε(n+2m)/n → 0, P0(ε,h) is equal to

(1.2.3) exp
[
−2ImA1(ε)

h

](
1+O

(
exp

[(
2C2m

(
sin

m
n

π
)
+δ
) ε

n+2m
n

h

]))

for any positive constant δ if m
n /∈ N and V (n+2m−1)(0)sin m

n π > 0 (i.e. C2m sin m
n π < 0)

and P0(ε,h) is equal to

(1.2.4) exp
[
−2ImAn(ε)

h

](
1+O

(
exp

[
−
(

2C2m

(
sin

m
n

π
)
−δ
) ε

n+2m
n

h

]))

for any positive constant δ if m
n /∈ N and V (n+2m−1)(0)sin m

n π < 0 (i.e. C2m sin m
n π > 0).

Remark 1.2.2. From the viewpoint of the Stokes geometry, a Stokes line emanating from x1 is
connected to one emanating from xn in Case 1), whereas it is not connected in Case 2) (see §3.3
Figure 3.9, 3.10, 3.11.).
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Chapter 2

Exact WKB method

2.1 Formal construction

We use as a basic tool the exact WKB method for 2×2 systems introduced in [FLN], which is a
natural extension of the method in [GG] for Schrödinger equations. We first review it.

Let us consider the following 2×2 system of first order differential equations:

(2.1.1)
h
i

d
dt

ϕ(t) =
(

0 α(t)
−β (t) 0

)
ϕ(t).

The functions α(t) and β (t) are assumed to be holomorphic in a simply connected domain
Ω ⊂ C. Notice that any 2×2 symmetric system:

(2.1.2)
h
i

d
dt

ψ(t) =
(

X(t) Z(t)
Z(t) Y (t)

)
ψ(t)

can be reduced to this anti-diagonal system (2.1.1) by ψ(t) 7→ exp
[

i
h
∫ t X(τ)+Y (τ)

2 dτ
]

φ(t) and

φ(t) 7→ 1
2

(
1 i
i 1

)
ϕ(t). The first transformation reduces (2.1.2) to a trace-free system and the

second to an anti-diagonal system. We also remark that, when α(t) = 1 and β (t) = V (t)−
E, (2.1.1) is equivalent to the Schrödinger equation: −h2ϕ ′′

1 (t)+ (V (t)−E)ϕ1(t) = 0, where
ϕ(t) =t (ϕ1(t),ϕ2(t)).

First of all we make the change of variables t 7→ z

z(t; t0) =
∫ t

t0

√
α(τ)β (τ)dτ,

where t0 is a fixed base point of Ω. If Ω1 is a simply connected open subset of Ω in which
α(t)β (t) does not vanish, the mapping z is bijective from Ω1 to z(Ω1) for a given determination
of (α(t)β (t))1/2. Zeros of α(t) and β (t) are called turning points. If t = x is a simple turning
point, we get

(2.1.3) z(t)− z(x) =
2i
3
(
α(t)β (t)

)′∣∣∣
t=x

(t − x)
3
2
(
1+g(t − x)

)
,

11



where g(t) is holomorphic near t = 0 and g(0) = 0.
We put ϕ(t) = e±z/hφ±(z) and reduce (2.1.1) to the next equation in the variable z:

(2.1.4)
h
i

d
dz

φ±(z) =
(

±i K(z)−2

−K(z)2 ±i

)
φ±(z),

where K(z(t)) =
(
β (t)/α(t)

)1/4. We change unknown functions φ±(z) = M±(z)w±(z) with

M±(z) =
(

K(z)−1 K(z)−1

∓iK(z) ±iK(z)

)
.

Consequently, we obtain the first order differential equation of w±(z):

(2.1.5)
d
dz

w±(z) =

(
0 K′(z)

K(z)
K′(z)
K(z) ∓2

h

)
w±(z),

where K′(z) stands for d
dzK(z). We notice that M±(z(t)) and w±(z(t)) are independent of t0.

We define the sequences of functions {w±,n(z;z1)}∞
n=0 by the following differential recurrent

relations:

(2.1.6)



w±,−1(z) = 0, w±,0(z) = 1,

d
dz

w±,2k(z) =
K′(z)
K(z)

w±,2k−1(z) (k ≥ 0),(
d
dz

± 2
h

)
w±,2k+1(z) =

K′(z)
K(z)

w±,2k(z) (k ≥ 0).

The vector-valued functions w±(z(t)) =
(

we
±(z(t))

wo
±(z(t))

)
with

we
±(z(t)) = ∑

k≥0
w±,2k(z(t)), wo

±(z(t)) = ∑
k≥0

w±,2k−1(z(t)),

satisfy (2.1.5) formally. Thus we get formal solutions to (2.1.1):

(2.1.7) ϕ±(t,h; t0) = e±z(t;t0)M±(z(t)) ∑
k≥0

(
w±,2k(z(t))

w±,2k−1(z(t))

)
.

2.2 Convergence and Wronskian formula

In this section we show the convergence of symbol function w±(z(t)) and define the exact WKB
solution as the exact solution to (2.1.1). Moreover we give the Wronskian formula between two
exact WKB solutions.
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The singularities of w±(z(t)) appear in K′(z)/K(z). Actually K′(z)/K(z) is expressed by, in
terms of t,

(2.2.1)
d
dzK(z(t))
K(z(t))

=
α(t)β ′(t)−α ′(t)β (t)

4(α(t)β (t))3/2 .

From (2.1.3) and (2.2.1), we see that K′(z)/K(z) has a simple pole at z = z(x) if x is a simple
turning point.

We fix a point z1 = z(t1) with t1 ∈ Ω1 and take the initial conditions to w±,n(z1) = 0 for
every n ∈ N. Then the differential recurrent equations (2.1.6) are transformed to the integral
recurrent relations:

(2.2.2)



w±,0(z;z1) = 1,

w±,2k+1(z;z1) =
∫ z

z1

e±
2
h (ζ−z)K′(ζ )

K(ζ )
w±,2k(ζ ;z1)dζ (k ≥ 0),

w±,2k(z;z1) =
∫ z

z1

K′(ζ )
K(ζ )

w±,2k−1(ζ ;z1)dζ (k ≥ 1).

From these integral representations, we obtain the following proposition on the convergence of
these formal series.

Proposition 2.2.1. The elements of the function w±(z;z1):

(2.2.3) we
±(z;z1) = ∑

k≥0
w±,2k(z;z1), wo

±(z;z1) = ∑
k≥0

w±,2k−1(z;z1)

converge absolutely and uniformly in a neighborhood of z = z1.

Proof of Proposition 2.2.1 (2.2.2) can be written as

(2.2.4)


w±,0(z;z1) = 1,

w±,2k+1(z;z1) = I±[w±,2k](z;z1),

w±,2k(z;z1) = J[w±,2k−1](z;z1),

where I± and J are integral operators defined by

I±[ f ](z;z1) =
∫ z

z1

e±
2
h (ζ−z)K′(ζ )

K(ζ )
f (ζ )dζ ,(2.2.5)

J[ f ](z;z1) =
∫ z

z1

K′(ζ )
K(ζ )

f (ζ )dζ .(2.2.6)

The convergence follows from the following lemma.
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Lemma 2.2.1. For all z ∈ z(Ω1) there exists a finite curve Γ(z;z1) on complex z-plane which
has the start point z1 and the end point z. Put

max

{
sup

ζ∈Γ(z;z1)

∣∣∣∣e± 2
h (ζ−z)K′(ζ )

K(ζ )

∣∣∣∣ , sup
ζ∈Γ(z;z1)

∣∣∣∣K′(ζ )
K(ζ )

∣∣∣∣
}

= A < ∞

and let L be the length of Γ(z;z1). Then there exists a positive constant C such that we have for
all n ∈ N

(2.2.7)
∣∣w±,n(z;z1)

∣∣≤ C(AL)n

n!
.

Proof of Lemma 2.2.1 We prove this lemma by induction. In the case where n = 0, the state-
ment is evident because w±,0(z;z1) = 1. We suppose the inequality (2.2.7) for n. In the case
where n is even,∣∣w±,2k+1(z;z1)

∣∣= ∣∣∣∣∫Γ(z;z1)
e±

2
h (ζ−z)K′(ζ )

K(ζ )
w±,2k(ζ ;z1)dζ

∣∣∣∣ .
We introduce an arc length parameter ξ to the integral path ζ .

∣∣w±,2k+1(z;z1)
∣∣= ∣∣∣∣∫ L

0
e±

2
h (ζ (ξ )−z)K′(ζ (ξ ))

K(ζ (ξ ))
w±,2k(ζ (ξ );z1)

dζ (ξ )
dξ

dξ
∣∣∣∣

≤
∫ L

0

∣∣∣∣e± 2
h (ζ (ξ )−z)K′(ζ (ξ ))

K(ζ (ξ ))

∣∣∣∣ ∣∣w±,2k(ζ (ξ ;z1))
∣∣ dξ

≤ A
∫ L

0

∣∣w±,2k(ζ (ξ ;z1))
∣∣ dξ .

With the assumption (2.2.7), we have
∣∣w±,2k(ζ (ξ );z1))

∣∣≤ C(Aξ )2k

(2k)!
in the arc length parameter

ξ .

∣∣W±,2k+1(z;z1)
∣∣≤ A

∫ L

0

C(Aξ )2k

(2k)!
dξ =

C(AL)2k+1

(2k+1)!
.

In the case where n is odd, we get similarly

∣∣W±,2k+2(z;z1)
∣∣≤ C(AL)2k+2

(2k+2)!
.

Therefore we obtain the inequality (2.2.7).

�
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Since the majorant series
∞

∑
k=0

C(AL)2k

(2k)!
and

∞

∑
k=0

C(AL)2k+1

(2k+1)!
are convergent, the formal series

∞

∑
k=0

w±,2k(ζ (ξ );z1)) and
∞

∑
k=0

w±,2k+1(ζ (ξ );z1)) converge absolutely and uniformly in a neigh-

borhood of z = z1.

�

This proposition claims that w±(z;z1) are exact solutions to the equation (2.1.5). Let us
define, for t0 ∈ Ω and t1 ∈ Ω1,

(2.2.8) ϕ±(t,h; t0, t1) = e±z(t;t0)/hM±(z(t))w±(z(t),h;z(t1)),

then these are exact solutions to (2.1.1). We call ϕ±(t,h; t0, t1) exact WKB solutions. The exact
WKB solutions (2.2.8) are holomorphic in a neighborhood of t = t1, and extended analytically
to Ω because (2.2.8) satisfy (2.1.1) with the holomorphic coefficients in Ω. We call t0 the base
point of the phase and t1 the base point of the symbol. We remark that the pair of exact WKB
solutions ϕ+(t,h; t0, t1), ϕ−(t,h; t0, t1) are linearly independent.

The Wronskian between two exact WKB solutions [ϕ(t), ϕ̃(t)] = det
(
ϕ(t) ϕ̃(t)

)
is given by

we
+:

Proposition 2.2.2. Any exact WKB solutions ϕ+(t,h; t0, t1) and ϕ−(t,h; t0, t2) with the same base
point t0 of the phase satisfy the following Wronskian formula:

[ϕ+(t,h; t0, t1),ϕ−(t,h; t0, t2)] = 2iwe
+(z(t2);z(t1)).

Proof of Proposition 2.2.2.

[ϕ+(t; t0, t1),ϕ−(t; t0, t2)] = [e+z/hM+(z(t))w+(z(t);z(t1)),e−z/hM−(z(t))w−(z(t);z(t2))]

= [M+(z(t))w+(z(t);z(t1)),M−(z(t))w−(z(t);z(t2))]

= [M+(z(t))w+(z(t);z(t1)),M+(z(t))(0 1
1 0)w−(z(t);z(t2))]

= detM+(z(t))det
(

we
+(z(t);z(t1)) wo

−(z(t);z(t2))
wo
+(z(t);z(t1)) we

−(z(t);z(t2))

)
= 2i

(
we
+(z(t);z(t1))we

−(z(t);z(t2))−wo
+(z(t);z(t1))wo

−(z(t);z(t2))
)

= 2iwe
+(z(t2);z(t1)).

We notice that the Wronskian is independent of the variable t because the matrix of right side
of (2.1.1) is trace-free.

�
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2.3 Asymptotic property

In this section, we show that the convergent series (2.2.3) of the function w±(z(t),h;z(t1))
constructed in the previous section are also asymptotic expansions on h in the domains:

Ω± =
{

t ∈ Ω1; there exists a curve from t1 to t along which ±Rez(t) increases strictly
}
.

Proposition 2.3.1. There exist a positive integer N and a positive constant h0 such that, for all
h ∈ (0,h0), we have

we
±(z(t),h;z(t1))−

N−1

∑
k=0

w±,2k(z(t),h;z(t1)) = O
(
hN) ,(2.3.1)

wo
±(z(t),h;z(t1))−

N−1

∑
k=0

w±,2k−1(z(t),h;z(t1)) = O
(
hN) ,(2.3.2)

uniformly in Ω±.

Proof of Proposition 2.3.1 To prove the asymptotic expansion (2.3.1), we show the inequality:∣∣w+,2k(z;z1)
∣∣≤Chk,

where C is some positive constant. Let ∥ · ∥ be the norm defined by

∥ f ∥= sup
ζ∈Γ(z;z1)

| f (ζ )| + h sup
ζ∈Γ(z;z1)

| f ′(ζ )|,

where Γ(z;z1) is the same curve on the complex z-plane as Lemma 2.2.1. Similarly we put

max

{
sup

ζ∈Γ(z;z1)

∣∣∣∣K′(ζ )
K(ζ )

∣∣∣∣ , sup
ζ∈Γ(z;z1)

∣∣∣∣ d
dζ

K′(ζ )
K(ζ )

∣∣∣∣
}

= A < ∞.

We estimate ∥ I+[ f ](h) ∥ in terms of ∥ f ∥.

I+[ f ](z,h;z1) =
∫ z

z1

e+
2
h (ζ−z)K′(ζ )

K(ζ )
f (ζ )dζ .

We put g(ζ ) = K′(ζ )
K(ζ ) f (ζ ) and change the variables s = ζ−z

h . Then we have

I+[ f ](z,h;z1) = h
∫ 0

z1−z
h

e2sg(hs+ z)ds.

In developing g(hs+ z) in the neighborhood of s = 0,

I+[ f ](z,h;z1) = h
∫ 0

z1−z
h

e2s
(

g(z)+hs
∫ 1

0
g′(hsy+ z)dy

)
ds

=
hg(z)

2

(
1− e

2
h (z1−z)

)
+h2

∫ 0

z1−z
h

se2s
(∫ 1

0
g′(hsy+ z)dy

)
ds.

16



We estimate the absolute value of each term of the right-hand side.∣∣∣∣hg(z)
2

(
1− e

2
h (z1−z)

)∣∣∣∣≤ h
2

sup
ζ∈Γ(z;z1)

|g(z)|
∣∣∣1− e

2
h (z1−z)

∣∣∣
≤ Ah

2
sup | f |

∣∣∣1− e
2
h (z1−z)

∣∣∣ .
∣∣∣∣h2
∫ 0

z1−z
h

se2s
(∫ 1

0
g′(hsy+ z)dy

)
ds
∣∣∣∣≤ h2

∣∣∣∣∣
∫ 0

z1−z
h

se2s sup
ζ∈Γ(z;z1)

|g′(ζ )|ds

∣∣∣∣∣
≤ h2 sup

∣∣∣∣( d
dζ

K′(ζ )
K(ζ )

)
f (ζ )+

K′(ζ )
K(ζ )

f ′(ζ )
∣∣∣∣ ∣∣∣∣∫ 0

z1−z
h

se2sds
∣∣∣∣

≤ Ah2 (sup | f |+ sup | f ′|
)∣∣∣∣14 +

2(z1 − z)−h
4h

e
2
h (z1−z)

∣∣∣∣ .
Hence we get∣∣∣I+[ f ](z,h;z1)

∣∣∣≤ Ah
2

sup | f |
∣∣∣1− e

2
h (z1−z)

∣∣∣
+

Ah2

4
(
sup | f |+ sup | f ′|

)∣∣∣∣1+(2(z1 − z)
h

−1
)

e
2
h (z1−z)

∣∣∣∣ .
From t ∈ Ω+, we take a curve from t1 to t along which Rez(t) increases strictly as the

integral path, then exp[2
h(z1 − z)] decay exponentially as h goes to 0. We obtain∣∣∣I+[ f ](z,h;z1)

∣∣∣≤Ch ∥ f ∥,

where C is some positive constant.

We estimate I′+[ f ](z,h;z1) in terms of ∥ f ∥.

I′+[ f ](z,h;z1) =
d
dz

(
e−

2
h z
∫ z

z1

e
2
h ζ K′(ζ )

K(ζ )
f (ζ )dζ

)
=−2

h
I+[ f ](z,h;z1)+

K′(z)
K(z)

f (z).

∣∣∣I′+[ f ](z,h;z1)
∣∣∣≤ 2

h

∣∣∣I+[ f ](z,h;z1)
∣∣∣+ ∣∣∣∣K′(z)

K(z)
f (z)

∣∣∣∣
≤ 2C ∥ f ∥+Asup | f |.
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We can calculate ∥ I+[ f ] ∥ as follows.

∥ I+[ f ] ∥= sup |I+[ f ]|+hsup |I′+[ f ]|

≤Ch ∥ f ∥+h ·2C ∥ f ∥+h ·Asup | f |

≤Ch ∥ f ∥ .

One sees that the integral operator I+ is the operator of order h.

We study ∥ J[ f ] ∥. We first estimate |J[ f ](z;z1)| and |J′[ f ](z;z1)|.∣∣∣J[ f ](z;z1)
∣∣∣= ∣∣∣∣∫ z

z1

K′(ζ )
K(ζ )

f (ζ )dζ
∣∣∣∣

≤ Asup | f |
∣∣∣∣∫ z

z1

dζ
∣∣∣∣≤C sup | f |.

∣∣∣J′[ f ](z;z1)
∣∣∣= ∣∣∣∣K′(z)

K(z)
f (z)

∣∣∣∣≤ Asup | f |.

Hence one has

∥ J[ f ] ∥= sup |J[ f ]|+hsup |J′[ f ]|

≤C sup | f |+hAsup | f | ≤C ∥ f ∥ .

One also sees that the integral operator J is the operator of order 1. From the integral recurrent
equations (2.2.4), we have

∥ w+,2k ∥=∥ J[w+,2k−1] ∥=∥ JI+[w+,2(k−1)] ∥=∥ (JI+)k ∥≤Chk.

∣∣∣∣∣∣we
+−

N

∑
n=0

w+,2k

∣∣∣∣∣∣= ∣∣∣∣∣∣ ∞

∑
n=N+1

w+,2n

∣∣∣∣∣∣≤C hN+1 = O
(
hN+1) .

Hence we obtain the asymptotic expansion (2.3.1). About the asymptotic expansion (2.3.2), we
consider for t ∈ Ω− the integral path along which −Rez(t) increases strictly, and then we have
it similarly.

�

2.4 Turning points and Stokes lines

In this section, we introduce the so-called Stokes line, which characterizes the asymptotic be-
havior of the exact WKB solution as h tends to 0. In particular we state some properties of the
Stokes lines passing through turning points.
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Definition 2.4.1 (Stokes line). The Stokes lines passing through t = t0 in Ω are defined as the
set: {

t ∈ Ω ; Re
∫ t

t0

√
α(τ)β (τ)dτ = 0

}
.

A Stokes line is a level set of the real part of the WKB phase function z(t; t0).
If Rez(t) strictly increases along an oriented curve, such a curve is called canonical curve.

In fact a canonical curve is transversal to Stokes lines. We can characterize the asymptotic
behavior of the Wronskian between the linearly independent exact WKB solutions in terms of
canonical curve.

Proposition 2.4.1. If there exists a canonical curve from t1 to t2,

[ϕ+(t,h; t0, t1),ϕ−(t,h; t0, t2)] = 2i (1+O(h)) as h → 0.

Proof of Proposition 2.4.1 From Proposition 2.2.2, we have

[ϕ+(t,h; t0, t1),ϕ−(t,h; t0, t2)] = 2iwe
+(z(t2);z(t1)).

Thanks to the existence of a canonical curve we apply Proposition 2.3.1, and then we obtain

[ϕ+(t,h; t0, t1),ϕ−(t,h; t0, t2)] = 2i (1+O(h)) as h → 0.

�

Let us consider some geometrical local properties of Stokes lines. We state the local prop-
erties of Stokes lines near a fixed point t0 ∈ Ω.

(i) If t0 is not a turning point, then z(t; t0) is conformal near t = t0.

(ii) If t0 is a turning point of order r ∈ N, that is α(t)β (t) = (t − t0)rγ(t − t0) with γ(0) ̸= 0,
then there exist r + 2 Stokes lines emanating from t = t0 and every angle between two
closest Stokes lines is 2π/(r+2) at t = t0.

t0

Figure 2.1: Regular

t0

Figure 2.2: Simple

t0

Figure 2.3: Double
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Chapter 3

Connection of the exact WKB solutions

In this chapter, we calculate the asymptotic behavior of the scattering matrix S(ε,h) and prove
Theorem 1.2.1 and Theorem 1.2.2 making use of the exact WKB method of the previous chap-
ter.

Recall that S(ε,h) is the change of bases between Jost solutions at −∞ and at +∞. Hence
its elements are expressed by Wronskians of Jost solutions. In order to apply the Wronskian
formula Proposition 2.2.2, we first represent Jost solutions as exact WKB solutions (§3.1). Ac-
cording to Proposition 2.2.2, we know the asymptotic behavior of the Wronskian of two exact
WKB solution only when there exists a canonical curve between the symbol base points. To
investigate the existence of such a curve, we should know the global Stokes geometry near the
real axis (§3.2). In general, there is no canonical curve connecting directly −∞ and +∞, and
we should take some intermediate points so that we can find a canonical curve from one point
to another. Then the scattering matrix is written as product of transfer matrices between exact
WKB solutions which have their symbol base point at these intermediate points (§3.3). Looking
carefully at the distance between the canonical curves and turning points, we will see to what
extent the asymptotic formulae with respect to h are valid when ε tends to 0 §3.4. Finally in
§3.5 we show the asymptotic behavior of the action integral (Lemma 1.2.1) to prove Proposition
1.2.1.

3.1 WKB expression of the Jost solutions

We express the Jost solutions as exact WKB solutions to (1.1.1). By the change of the unknown

function ψ(t) = Qϕ(t), Q =
1
2

(
1 i
i 1

)
, (1.1.1) is reduced to an equation of the anti-diagonal

form (2.1.1):

(3.1.1)
h
i

d
dt

ϕ(t) =
(

0 −iV (t)− ε
iV (t)− ε 0

)
ϕ(t).
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The phase function z(t; t0) is

(3.1.2) z(t; t0) = i
∫ t

t0

√
V (τ)2 + ε2 dτ (t0 ∈ S ).

Fix an ε > 0. Then there is no turning point in a neighborhood of the real axis Rt . Hence z(t; t0)
is a single-valued function there. Notice that Rt is itself a Stokes line. Recalling that we take
the branch of

√
V (t)2 + ε2 which is ε at t = 0, we see that Rez(t) increases as Im t decreases,

and Imz(t) increases as Re t increases. Similarly

K(z(t)) = 4

√
−iV (t)+ ε
−iV (t)− ε

has neither zero nor pole there and the branch of K(z(t)) is eπi/4 at t = 0.
We construct the exact WKB solutions which have the same behavior as Jost solutions as

|t| → ∞ as in [Ra]. Let S r
R , S l

R be the unbounded simply connected domains

S r
R = S∩

{
t ∈ C ; Re t > R

}
,

S l
R = S∩

{
t ∈ C ; Re t <−R

}
,

for a positive constant R. For t ∈ S r
R [resp. t ∈ S l

R], we define the phase functions zr(t) [resp.
zl(t)] with base points at infinity by

zr(t) = i
∫ t

∞

(√
V (τ)2 + ε2 −λr

)
dτ + iλrt,[

resp. zl(t) = i
∫ t

−∞

(√
V (τ)2 + ε2 −λl

)
dτ + iλlt,

]

where λr,l =
√

E2
r,l + ε2. Note that these integrals are convergent thanks to the assumption (B).

These are also primitives of i
√

V (t)2 + ε2 and satisfy for any t0 ∈ S r,l
R

(3.1.3) zr,l(t) = zr,l(t0)+ z(t; t0).

Next we construct the symbol functions with base points at infinity. One sees that for all
t ∈ S l

R, there exist infinite paths ending at t, γ l
±(t), which are asymptotic to the line Imτ =

∓δ Reτ (δ > 0) as Reτ →−∞ and meet the Stokes line transversally. (Stokes lines are asymp-
totic to horizontal lines. See §2.4 and Figure 3.1.) For t ∈ S r

R one similarly defines the paths
γr
±(t) which are asymptotic to the lines Imτ =±δ Reτ as Reτ →+∞.

We also denote by Γr
±(z) [resp. Γl

±(z)] the infinite oriented paths zr(γr
±(t)) [resp. zl(γ l

±(t))]
ending at zr(t) [resp. zl(t)]. We remark that Γr

−(z) [resp. Γl
+(z)] is asymptotic to the line

Imζ = 1
δ Reζ as Reζ → +∞ [resp. Reζ → −∞], and similarly that Γr

+(z) [resp. Γl
−(z)] is

asymptotic to the line Imζ =− 1
δ Reζ as Reζ →−∞ [resp. Reζ →+∞].
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Figure 3.1: Global Stokes geometry

Let Γr,l
± (z) be the paths defined above. The system of recurrence equations

(3.1.4)



wr,l
±,0(z) = 1,

wr,l
±,2k+1(z) =

∫
Γr,l
± (z)

e±
2
h (ζ−z)K′(ζ )

K(ζ )
wr,l
±,2k(ζ )dζ (k ≥ 0),

wr,l
±,2k(z) =

∫
Γr,l
± (z)

K′(ζ )
K(ζ )

wr,l
±,2k−1(ζ )dζ (k ≥ 1),

define the sequences of functions {wr,l
±,n(z)}∞

n=0. We define

wr,l
±;even(z) = ∑

k≥0
wr,l
±,2k(z), wr,l

±;odd(z) = ∑
k≥0

wr,l
±,2k−1(z),

wr,l
± (z) =

(
∑k≥0 wr,l

±,2k(z)

∑k≥0 wr,l
±,2k−1(z)

)
.

Let us check the convergence of the integrals in (3.1.4) by induction with respect to k. Suppose
wr
±,2k is bounded and analytic in S r

R . We can take the path as in Figure 3.1 from Cauchy’s
integral theorem, and then we get

wr
+,2k+1(z) =

∫
∆r
+(z)

e+
2
h (ζ−z)(∂ζ logK(ζ )

)
wr
+,2k(ζ )dζ ,

22



where the integration is now performed along the straight line ∆r
+(z) ending at z given by

Im(ζ − z) = 1
δ Re(ζ − z). We obtain

(3.1.5) wr
+,2k+1(z) =

∫ ∞

0
e−

2
h (1+

i
δ )u
[(

∂ζ logK(ζ )
)

wr
+,2k
](

z− (1+ i/δ )u
)(

1+ i/δ
)

du,

where u = −Re(ζ − z). This shows uniform convergence of the integral defining wr
+,2k+1(z)

using the fact that
d
dzK(z(t))
K(z(t))

=− εV ′(t)
2(V (t)2 + ε2)3/2 ,

the behavior of V ′ at infinity in S from (B), and Cauchy’s inequality from (A). This expression
also shows that wr

+,2k+1(z) is a bounded and analytic function in S r
R . Furthermore the conver-

gence of the integral defining wr
+,2k+2(z) is shown from the fact that ∂z logK(z) ∈ L1(Γr

+(z)).

One sees that the convergence of ∑k≥0 wr,l
±,2k(z(t)) and ∑k≥0 wr,l

±,2k−1(z(t)) follows from the
following lemma (see [Gr], Lemma 3.2, [Ra]):

Lemma 3.1.1 (Grigis). Suppose f is a function in L2((0,+∞)) and define, for all n ≥ 1,

I2n =
∫
+∞>s1>s2>···>s2n>0

e−2(1+i/δ )(s1−s2+···−s2n)/h f (s1) f (s2) · · · f (s2n)ds1ds2 · · ·ds2n,

I2n−1 =
∫
+∞>s1>s2>···>s2n−1>0

e−2(1+i/δ )(s1−s2+···+s2n−1)/h f (s1) f (s2) · · · f (s2n−1)ds1ds2 · · ·ds2n−1.

Then we have

|In( f )| ≤
(

h
2

) n+1
2

∥ f ∥n
L2 .

Moreover we see that

lim
t→+∞

wr
±,n(t) = 0 lim

t→−∞
wl
±,n(t) = 0 ∀n ∈ N.(3.1.6)

The corresponding WKB solutions ϕ r
±(t) and ϕ l

±(t) written by

(3.1.7)

ϕ r
±(t) = exp

[
±zr(t)

h

]
M±(z(t))wr

±(z(t)),

ϕ l
±(t) = exp

[
±zl(t)

h

]
M±(z(t))wl

±(z(t)),

have the following relations with the Jost solutions.

Proposition 3.1.1. For any fixed h > 0, the exact WKB solutions ϕ r
±(t) and ϕ l

±(t) have the
asymptotic behaviors as t goes to ±∞:

ϕ r
±(t) = exp

[
± i

h

(
λrt +o(1)

)]( ie−iθr

∓eiθr

)
as t →+∞,

ϕ l
±(t) = exp

[
± i

h

(
λlt +o(1)

)]( ie−iθl

∓eiθl

)
as t →−∞.
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Consequently, we obtain the relations between the Jost solutions and the exact WKB solutions:

ψr
+(t) =−Qϕ r

+(t), ψr
−(t) =−iQϕ r

−(t),

ψ l
+(t) =−Qϕ l

+(t), ψ l
−(t) =−iQϕ l

−(t).

Remark 3.1.1. Let S̃(ε,h) be the change of bases between (ϕ r
+,ϕ r

−) and (ϕ l
+,ϕ l

−):(
ϕ l
+(t) ϕ l

−(t)
)
=
(

ϕ r
+(t) ϕ r

−(t)
)

S̃(ε,h).(3.1.8)

We express S̃(ε,h) with the components of S(ε,h) as

S̃(ε,h) =
(

s11(ε,h) −is12(ε,h)
is21(ε,h) s22(ε,h)

)
.(3.1.9)

Notice that (ϕ r
+,ϕ r

−) and (ϕ l
+,ϕ l

−) are orthonormal bases and S̃(ε,h) is also a unitary matrix.

Proof of Proposition 3.1.1. The asymptotic behavior of the phase function zr(t) [resp. zl(t)]
is evident from the definition. That of the symbol functions is also obvious from (3.1.6) so that
we have

lim
t→+∞

wr
±(t) =

(
1
0

)
, lim

t→−∞
wl
±(t) =

(
1
0

)
.

We consider the asymptotic behaviors of M±(z(t)). When El > 0, we get

lim
t→+∞

(
− iV (t)− ε

)
= λr exp

[
i
(

3
2

π −2θr

)]
, lim

t→+∞

(
− iV (t)+ ε

)
= λr exp

[
i
(
−π

2
+2θr

)]
,

lim
t→−∞

(
− iV (t)− ε

)
= λl exp

[
i
(

3
2

π −2θl

)]
, lim

t→−∞

(
− iV (t)+ ε

)
= λl exp

[
i
(
−π

2
+2θl

)]
.

Notice that in the case El < 0 these asymptotic behaviors as t →−∞ are the same as in the case
El > 0, so we get

lim
t→+∞

K(z(t)) =−ieiθr , lim
t→−∞

K(z(t)) =−ieiθl .

Therefore we obtain

lim
t→+∞

M±(z(t)) =
(

ie−iθr ie−iθr

∓eiθr ±eiθr

)
, lim

t→−∞
M±(z(t)) =

(
ie−iθl ie−iθl

∓eiθl ±eiθl

)
.

Hence we calculate the asymptotic behaviors of ϕ r
±(t) and ϕ l

±(t) from above consideration. In
addition, we return ϕ r

±(t) and ϕ l
±(t) to the solutions to (1.1.1).

Qϕ r
+(t)∼ exp

[
+

i
h

λr t
](

sinθr

−cosθr

)
, Qϕ r

−(t)∼ iexp
[
− i

h
λr t
](

cosθr

sinθr

)
as t →+∞,

Qϕ l
+(t)∼ exp

[
+

i
h

λl t
](

sinθl

−cosθl

)
, Qϕ l

−(t)∼ iexp
[
− i

h
λl t
](

cosθl

sinθl

)
as t →−∞.

�
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3.2 Stokes geometry around the avoided crossing

In this section we investigate the geometrical structures of the Stokes lines near the origin and
define the exact WKB solutions with local base points.

If ε is sufficiently small, there exist 2n simple turning points x j(ε) and x j(ε) ( j = 1, . . . ,n)
near each root of (V (n)(0)/n!)2t2n + ε2 = 0. We illustrate the Stokes lines passing through the
turning points in the case V (t) = tn for ε = 0 and for ε positive and small.

O

Im t

Re t

Figure 3.2: (n = 1, ε = 0)

O

Im t

Re t

Figure 3.3: (n = 1, ε > 0)

It is important to see that, when ε is positive, the Stokes lines passing through the four
turning points ε1/n exp[± π

2n i], ε1/n exp[± (2n−1)π
2n i] bound a domain containing the real axis and

no turning point.
Let us return to our V (t) satisfying (A), (B), (C1). It is possible to take µ = µ(ε) properly

small, so that S includes only four turning points x1, xn, x1, and xn. The Stokes lines emanating
from these turning points are not connected with those from the other 2n− 4 turning points.
Indeed, by Lemma 1.2.1, we see that the principal terms of the action integrals for ε small
enough satisfy:

max{|Rez(x1)|, |Rez(xn)|}< min{|Rez(x2)|, · · · , |Rez(xn−1)|}.

The larger the number n is, the more complicated the Stokes geometry becomes. However,
if we restrict ourselves to a properly restricted domain S , the geometrical structures of the
Stokes lines emanating from four turning points x1, xn, x̄1 and x̄n can be classified into three
cases. One sees that, when Rez(x1) =Rez(xn), the Stokes lines passing through the four turning
points bound a domain containing the real axis and no turning point (see Figure 3.9). When
Rez(x1) > Rez(xn), the Stokes lines emanating from the two turning points x1, x̄1 bound a
domain containing the real axis and no turning point (see Figure 3.10) and when Rez(x1) <

Rez(xn), those emanating from the two turning points xn, x̄n also do such a domain (see Figure
3.11).
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Figure 3.4: (n = 2, ε = 0)
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Figure 3.5: (n = 2, ε > 0)
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Figure 3.6: (n = 3, ε = 0)

O
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Figure 3.7: (n = 3, ε > 0)
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We will separately discuss the cases where V (t) has a simple zero or a zero of higher order.
In the case n = 1, let r, r̄, l, and l̄ be four base points of the symbol around the origin and
we make the branch cuts dashed lines as in Figure 3.8. We define the exact WKB solutions
ϕ+(t;x1,r), ϕ−(t; x̄1, r̄), ϕ+(t;x1, l), ϕ−(t; x̄1, l̄) as

ϕ+(t;x1,r) = e+z(t;x1)/hM+(z(t))w+(z(t);z(r)),

ϕ−(t; x̄1, r̄) = e−z(t;x̄1)/hM−(z(t))w−(z(t);z(r̄)),

ϕ+(t;x1, l) = e+z(t;x1)/hM+(z(t))w+(z(t);z(l)),

ϕ−(t; x̄1, l̄) = e−z(t;x̄1)/hM−(z(t))w−(z(t);z(l̄)).

Notice that each exact WKB solution has a valid asymptotic expansion on h in the direction
toward its phase base point from its symbol base point.

In the case n ≥ 2, we also put the symbol base points r, l and their complex conjugates and
make the branch cuts dashed lines as in Figure 3.9. We can similarly define the exact WKB
solutions ϕ+(t;x1,r), ϕ−(t; x̄1, r̄), ϕ+(t;xn, l), ϕ−(t; x̄n, l̄):

ϕ+(t;x1,r) = e+z(t;x1)/hM+(z(t))w+(z(t);z(r)),

ϕ−(t; x̄1, r̄) = e−z(t;x̄1)/hM−(z(t))w−(z(t);z(r̄)),

ϕ+(t;xn, l) = e+z(t;xn)/hM+(z(t))w+(z(t);z(l)),

ϕ−(t; x̄n, l̄) = e−z(t;x̄n)/hM−(z(t))w−(z(t);z(l̄)),

which have valid asymptotic expansions on h in the direction toward those phase base points
from those symbol base points. Let δ and δ̄ be the intermediate symbol base points on the
imaginary axis such that

max{|Rez(x1)|, |Rez(xn)|}< |Rez(δ )|< min{|Rez(x2)|, |Rez(xn−1)|}

as in Figure 3.9, Figure 3.10, Figure 3.11. We consider the intermediate exact WKB solutions
ϕ+(t;x1,δ ), ϕ+(t;xn,δ ), ϕ−(t; x̄1, δ̄ ) and ϕ−(t; x̄n, δ̄ ):

ϕ+(t;x1,δ ) = e+z(t;x1)/hM+(z(t))w+(z(t);z(δ )),

ϕ−(t; x̄1, δ̄ ) = e−z(t;x̄1)/hM−(z(t))w−(z(t);z(δ̄ )),

ϕ+(t;xn,δ ) = e+z(t;xn)/hM+(z(t))w+(z(t);z(δ )),

ϕ−(t; x̄n, δ̄ ) = e−z(t;x̄n)/hM−(z(t))w−(z(t);z(δ̄ )),

whose asymptotic expansions on h are valid in the direction toward four turning points from the
symbol base points δ , δ̄ .

We will connect these exact WKB solutions around the origin in next section.
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Figure 3.9: Stokes geometry n ≥ 2
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Figure 3.10: Rez(x1)> Rez(xn)
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Figure 3.11: Rez(x1)< Rez(xn)
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3.3 Transfer matrices

In this section we introduce transfer matrices, in terms of which we express the scattering ma-
trix. We reduce the connection problem between the Jost solutions ϕ r

±(t) and ϕ l
±(t) to the local

connection problem near the avoided crossing between the exact WKB solutions.

Lemma 3.3.1. We have the following relations between the local exact WKB solutions and
ϕ r,l
± (t):

ϕ r
+(t) =C1(ε,h)exp

[
+

zr(x1)

h

]
ϕ+(t;x1,r),

ϕ r
−(t) =C2(ε,h)exp

[
−zr(x̄1)

h

]
ϕ−(t; x̄1, r̄),

ϕ l
+(t) =C3(ε,h)exp

[
+

zl(xn)

h

]
ϕ+(t;xn, l),

ϕ l
−(t) =C4(ε,h)exp

[
−zl(x̄n)

h

]
ϕ−(t; x̄n, l̄),

where Ck(ε,h) (k = 1, . . . ,4) are some constants depending only on ε and h, and Ck(ε,h) =
1+O(h) as h tends to 0 uniformly with respect to small ε .

Notice that this lemma is true in both cases n = 1 and n ≥ 2.

Proof of Lemma 3.3.1 We put ϕ̃ r
+(t;x1) = e+z(t;x1)/hM+(z(t))wr

+(z(t)), which is obtained by
shifting the phase base point of ϕ r

+(t) from the infinity in S r
R to x1 with (3.1.3). Actually we

write ϕ̃ r
+(t;x1) with the linear combination of ϕ+(t;x1,r) and ϕ−(t;x1,r) as

ϕ̃ r
+(t;x1) =C1(ε,h)ϕ+(t;x1,r)+C̃1(ε,h)ϕ−(t;x1,r).

When |t| → +∞ in the direction to the start point of γr
+, ϕ̃ r

+(t;x1) and ϕ+(t;x1,r) decay expo-
nentially and ϕ−(t;x1,r) grows exponentially. Hence C̃1(ε,h) is equal to 0. By the Wronskian
formula (Proposition 2.2.2) and Proposition 2.4.1, we have

C1(ε ,h) =
[ϕ̃ r

+(t;x1),ϕ−(t;x1,r)]
[ϕ+(t;x1,r),ϕ−(t;x1,r)]

= wr
+;even(z(r)) = 1+O(h) as h → 0.

One sees that this asymptotic expansion is uniform for small ε because there exists no turning
point in S r

R .

�

We define the transfer matrices Tr(ε,h) and Tl(ε,h) between the Jost solutions and the local
exact WKB solutions by(

ϕ r
+(t) ϕ r

−(t)
)
=
(

ϕ+(t;x1,r) ϕ−(t; x̄1, r̄)
)

Tr(ε,h),(3.3.1) (
ϕ l
+(t) ϕ l

−(t)
)
=
(

ϕ+(t;xn, l) ϕ−(t; x̄n, l̄)
)

Tl(ε,h).(3.3.2)
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From Lemma 3.3.1, we get

Tr(ε,h) =
(

C1(ε,h)e+zr(x1)/h 0
0 C2(ε,h)e−zr(x̄1)/h

)
,(3.3.3)

Tl(ε,h) =

(
C3(ε,h)e+zl(xn)/h 0

0 C4(ε,h)e−zl(x̄n)/h

)
.(3.3.4)

Moreover we define the transfer matrices T (ε,h) around the zero of V (t), that is t = 0, by(
ϕ+(t;xn, l) ϕ−(t; x̄n, l̄)

)
=
(

ϕ+(t;x1,r) ϕ−(t; x̄1, r̄)
)

T (ε,h).(3.3.5)

Then the scattering matrix S̃(ε,h) is the product of these transfer matrices:

(3.3.6) S̃(ε,h) = T−1
r (ε,h)T (ε,h)Tl(ε,h).

Thus scattering problem is reduced to the calculations of the transfer matrix T (ε,h). A lot
of Wronskians of exact WKB solutions appear in connection coefficients of this calculations.
We express them with exact WKB symbols from Proposition 2.2.2. We denote we

+(z(t1);z(t2))
by W (t1; t2) for short.

Let t jk(ε,h) be the components of T (ε,h):

T (ε,h) =

(
t11(ε,h) t12(ε,h)

t21(ε,h) t22(ε,h)

)
.

Proposition 3.3.1. In the case n = 1, T (ε,h) is given by

(3.3.7) T (ε,h) =


W (r̄; l)
W (r̄;r)

i
W (r̄; ˆ̄l)
W (r̄;r)

ez(x1;x̄1)/h

i
W (l̂;r)
W (r̄;r)

ez(x1;x̄1)/h W (l̄;r)
W (r̄;r)

 ,

where l̂ is the same point as l but continued from r passing through the branch cut from x1 and
ˆ̄l also the same as l̄ but continued from r̄ passing through the branch cut from x̄1.
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Proposition 3.3.2. In the case n ≥ 2, the components of T (ε ,h) are given by

t11(ε,h) =
W (δ̄ ;δ )
W (r̄;r)

(
W (r̄;δ )
W (δ̄ ;δ )

W (δ̄ ; l)
W (δ̄ ;δ )

ez(x1;xn)/h

+(−1)n W (δ̄ ; ˆ̄r)
W (δ̄ ;δ )

W (l̂;δ )
W (δ̄ ;δ )

e{z(x1;x̄1)−z(x̄1;xn)}/h

)
,

t12(ε,h) = i
W (δ̄ ;δ )
W (r̄;r)

(
(−1)n+1 W (δ̄ ; ˆ̄l)

W (δ̄ ;δ )
W (r̄;δ )
W (δ̄ ;δ )

ez(x1;x̄n)/h

+
W (l̄;δ )
W (δ̄ ;δ )

W (δ̄ ; ˆ̄r)
W (δ̄ ;δ )

e{z(x1;x̄1)−z(x̄1;x̄n)}/h

)
,

t21(ε,h) = i
W (δ̄ ;δ )
W (r̄;r)

(
(−1)n+1 W (δ̄ ;r)

W (δ̄ ;δ )
W (l̂;δ )
W (δ̄ ;δ )

ez(xn;x̄1)/h

+
W (r̂;δ )
W (δ̄ ;δ )

W (δ̄ ; l)
W (δ̄ ;δ )

e{z(x1;x̄1)+z(x1;xn)}/h

)
,

t22(ε,h) =
W (δ̄ ;δ )
W (r̄;r)

(
W (δ̄ ;r)
W (δ̄ ;δ )

W (l̄;δ )
W (δ̄ ;δ )

ez(x̄n;x̄1)/h

+(−1)n W (r̂;δ )
W (δ̄ ;δ )

W (δ̄ ; ˆ̄l)
W (δ̄ ;δ )

e{z(x1;x̄1)+z(x1;x̄n)}/h

)
,

where r̂ [resp. l̂ ] is the same point as r [resp. l ] but continued from δ passing through the branch
cut from x1 [resp. xn ] and ˆ̄r [resp. ˆ̄l ] the same point as r̄ [resp. l̄ ] but continued from δ̄ passing
through the branch cut from x̄1 [resp. x̄n ].

Proof of Proposition 3.3.1. The Stokes lines passing through the turning points x1, x̄1 are
drawn in Figure 3.8. We write ϕ+(t;x1, l) and ϕ−(t; x̄1, l̄) by linear combinations of the linearly
independent exact WKB solutions (ϕ+(t;x1,r),ϕ−(t;x1, r̄)):

(3.3.8)
ϕ+(t;x1, l) = F1ϕ+(t;x1,r)+F2ϕ−(t;x1, r̄),

ϕ−(t; x̄1, l̄) = F3ϕ+(t; x̄1,r)+F4ϕ−(t; x̄1, r̄),

The coefficients are expressed by the Wronskians of exact WKB solutions:

F1 =
[ϕ+(t;x1, l), ϕ−(t;x1, r̄)]
[ϕ+(t;x1,r), ϕ−(t;x1, r̄)]

, F2 =
[ϕ+(t;x1,r), ϕ+(t;x1, l)]
[ϕ+(t;x1,r), ϕ−(t;x1, r̄)]

,

F3 =
[ϕ−(t; x̄1, l̄), ϕ−(t; x̄1, r̄)]
[ϕ+(t; x̄1,r), ϕ−(t; x̄1, r̄)]

, F4 =
[ϕ+(t; x̄1,r), ϕ−(t; x̄1, l̄)]
[ϕ+(t; x̄1,r), ϕ−(t; x̄1, r̄)]

.
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In order to calculate the Wronskians [ϕ+(t;x1,r), ϕ+(t;x1, l)] and [ϕ−(t; x̄1, l̄), ϕ−(t; x̄1, r̄)]
along a canonical path, we need to go across a branch cut and to redefine one of the solutions
on the other Riemann surface.

Since l is obtained from l̂ after turning clockwise around x1 and l̄ is obtained from ˆ̄l after
turning anti-clockwise around x̄1 from the definitions of l̂ and ˆ̄l, one sees

l = x1 +
(
l̂ − x1

)
e−2πi, l̄ = x̄1 +

(
ˆ̄l − x̄1

)
e+2πi,(3.3.9)

if l is sufficiently close to x1. Notice that x1 is a zero of V (t)− iε and x̄1 is a zero of V (t)+ iε .

Lemma 3.3.2. The following identities hold:

ϕ+(t;x1, l) = iϕ−(t;x1, l̂), ϕ−(t; x̄1, l̄) = iϕ+(t; x̄1,
ˆ̄l).

Proof of Lemma 3.3.2 We show the first equality. The phase function z(t;x1) corresponds to
−z(t;x1) on the other Riemann sheet because the multiplicity of z(t;x1) is two. Hence the sign
of the phase function changes.

We consider K(z(t)), which determine M±(z(t)) and w±(z(t);z(l)). In this case we must
be careful whether tunning point x1 is a zero of V (t)− iε or V (t)+ iε . Now x1 is a zero of
V (t)− iε , so that K(z(t)) corresponds to

4

√
V (t)+ iε

e2πi(V (t)− iε)
=−i 4

√
V (t)+ iε
V (t)− iε

=−iK(z(t))

on the Riemann sheet continued from r passing through the branch cut from x1. Hence M+(z(t))
corresponds to (

iK(z)−1 iK(z)−1

−K(z) +K(z)

)
= i
(

K(z)−1 K(z)−1

+iK(z) −iK(z)

)
= iM−(z(t)).

The symbol function on that Riemann sheet which corresponds to w+(z(t);z(l)) satisfies

− d
dz

f (z) =

(
0 −K′(z)

K(z)

−K′(z)
K(z) +2

h

)
f (z).

d
dz

f (z) =

(
0 +K′(z)

K(z)

+K′(z)
K(z) −2

h

)
f (z).

This implies that w+(z(t);z(l)) corresponds to w−(z(t);z(l̂)) on another Riemann sheet from
the uniqueness of these differential equations. Hence we obtain ϕ+(t;x1, l) = iϕ−(t;x1, l̂). In
the second equality case we pay attention to the fact that x̄1 is a zero of V (t)+ iε , so that K(z(t))
corresponds to

4

√
e−2πi(V (t)+ iε)

V (t)− iε
=−i 4

√
V (t)+ iε
V (t)− iε

=−iK(z(t))

on the Riemann sheet continued from r̄ passing through the branch cut from x1. Similarly we
have ϕ−(t; x̄1, l̄) = iϕ+(t; x̄1,

ˆ̄l).

�
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We apply Lemma 3.3.2 to the Wronskian calculations of F2 and F3, then we have

F1 =
W (r̄; l)
W (r̄;r)

, F2 = i
W (l̂;r)
W (r̄;r)

,

F3 = i
W (r̄; ˆ̄l)
W (r̄;r)

, F4 =
W (l̄;r)
W (r̄;r)

.

We notice that each Wronskian has a canonical curve as in Proposition 2.4.1. Since

ϕ+(t; x̄1,r) = ez(x1;x̄1)/hϕ+(t;x1,r),

ϕ−(t;x1, r̄) = e−z(x̄1;x1)/hϕ−(t; x̄1, r̄),

we have

t11(ε,h) = F1 =
W (r̄; l)
W (r̄;r)

,

t12(ε,h) = F3 ez(x1;x̄1)/h = i
W (r̄; ˆ̄l)
W (r̄;r)

ez(x1;x̄1)/h,

t21(ε,h) = F2 e−z(x̄1;x1)/h = i
W (l̂;r)
W (r̄;r)

ez(x1;x̄1)/h,

t22(ε,h) = F4 =
W (l̄;r)
W (r̄;r)

.

�

Proof of Proposition 3.3.2. We introduce the intermediate symbol base points δ and δ̄ on
the imaginary axis as in Figure 3.9, 3.10, 3.11. We consider the pairs of linearly indepen-
dent intermediate exact WKB solutions (ϕ+(t;x1,δ ),ϕ−(t;x1, δ̄ )), (ϕ+(t; x̄1,δ ),ϕ−(t; x̄1, δ̄ )),
(ϕ+(t;xn,δ ),ϕ−(t;xn, δ̄ )), and (ϕ+(t; x̄n,δ ),ϕ−(t; x̄n, δ̄ )). ϕ+(t;x1,r), ϕ−(t; x̄1, r̄), ϕ+(t;xn, l)
and ϕ−(t; x̄n, l̄) are written as linear combinations of them:

ϕ+(t;x1,r) = G1ϕ+(t;x1,δ )+G2ϕ−(t;x1, δ̄ ),

ϕ−(t; x̄1, r̄) = G3ϕ+(t; x̄1,δ )+G4ϕ−(t; x̄1, δ̄ ),

ϕ+(t;xn, l) = G5ϕ+(t;xn,δ )+G6ϕ−(t;xn, δ̄ ),

ϕ−(t; x̄n, l̄) = G7ϕ+(t; x̄n,δ )+G8ϕ−(t; x̄n, δ̄ ).

Similarly we can express the coefficients with the Wronskians of them.

G1 =
[ϕ+(t;x1,r), ϕ−(t;x1, δ̄ )]
[ϕ+(t;x1,δ ), ϕ−(t;x1, δ̄ )]

, G2 =
[ϕ+(t;x1,δ ), ϕ+(t;x1,r)]
[ϕ+(t;x1,δ ), ϕ−(t;x1, δ̄ )]

,

G3 =
[ϕ−(t; x̄1, r̄), ϕ−(t; x̄1, δ̄ )]
[ϕ+(t; x̄1,δ ), ϕ−(t; x̄1, δ̄ )]

, G4 =
[ϕ+(t; x̄1,δ ), ϕ−(t; x̄1, r̄)]
[ϕ+(t; x̄1,δ ), ϕ−(t; x̄1, δ̄ )]

.
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Because r̂ is obtained from r after turning clockwise around x1 and ˆ̄r is obtained from r̄ after
turning anti-clockwise around x̄1, one sees

r = x1 +(r̂− x1)e+2πi, r̄ = x̄1 +
(

ˆ̄r− x̄1
)

e−2πi,(3.3.10)

if r is sufficiently close to x1. Taking into account the fact that x1 is a simple zero of V (t)− iε
and x̄1 is a simple zero of V (t)+ iε , we have from (3.3.10) in the same way as Lemma 3.3.2

(3.3.11) ϕ+(t;x1,r) =−iϕ−(t;x1, r̂) ϕ−(t; x̄1, ˆ̄r) =−iϕ+(t; x̄1, ˆ̄r)

We apply (3.3.11) to the Wronskian calculations of G2 and G3.

G1 =
W (δ̄ ;r)
W (δ̄ ;δ )

, G2 =−i
W (r̂;δ )
W (δ̄ ;δ )

,

G3 =−i
W (δ̄ ; ˆ̄r)
W (δ̄ ;δ )

, G4 =
W (r̄;δ )
W (δ̄ ;δ )

.

We can similarly express the coefficients of ϕ+(t,xn, l) and ϕ−(t, x̄n, l̄) with the Wronskians
of the intermediate exact WKB solutions.

G5 =
[ϕ+(t;xn, l), ϕ−(t;xn, δ̄ )]
[ϕ+(t;xn,δ ), ϕ−(t;xn, δ̄ )]

, G6 =
[ϕ+(t;xn,δ ), ϕ+(t;xn, l)]
[ϕ+(t;xn,δ ), ϕ−(t;xn, δ̄ )]

,

G7 =
[ϕ−(t; x̄n, l̄), ϕ−(t; x̄n, δ̄ )]
[ϕ+(t; x̄n,δ ), ϕ−(t; x̄n, δ̄ )]

, G8 =
[ϕ+(t; x̄n,δ ), ϕ−(t; x̄n, l̄)]
[ϕ+(t; x̄n,δ ), ϕ−(t; x̄n, δ̄ )]

.

Since l̂ is obtained from l after turning anti-clockwise around xn and ˆ̄l is obtained from l̄ after
turning clockwise around x̄n, one sees

l = xn +
(
l̂ − xn

)
e−2πi, l̄ = x̄n +

(
ˆ̄l − x̄n

)
e+2πi,

if l is sufficiently close to xn. Remarking that xn is a simple zero of V (t)− iε if n is odd and
V (t)+ iε if n is even, we get in the same way as Lemma 3.3.2

(3.3.12) ϕ+(t;xn, l) = (−1)n+1iϕ−(t;xn, l̂) ϕ−(t; x̄n, l̄) = (−1)n+1iϕ+(t; x̄n,
ˆ̄l)

Therefore we have from (3.3.12)

G5 =
W (δ̄ ; l)
W (δ̄ ;δ )

, G6 = (−1)n+1i
W (l̂;δ )
W (δ̄ ;δ )

,

G7 = (−1)n+1i
W (δ̄ ; ˆ̄l)
W (δ̄ ;δ )

, G8 =
W (l̄;δ )
W (δ̄ ;δ )

.
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From (3.3.5), the components of T (ε,h) are also expressed by the Wronskian of the exact
WKB solutions.

t11(ε,h) =
[ϕ+(t;xn, l), ϕ−(t; x̄1, r̄)]
[ϕ+(t;x1,r), ϕ−(t; x̄1, r̄)]

, t12(ε,h) =
[ϕ−(t; x̄n, l̄), ϕ−(t; x̄1, r̄)]
[ϕ+(t;x1,r), ϕ−(t; x̄1, r̄)]

,

t21(ε,h) =
[ϕ+(t;x1,r), ϕ+(t;xn, l)]
[ϕ+(t;x1,r), ϕ−(t; x̄1, r̄)]

, t22(ε,h) =
[ϕ+(t;x1,r), ϕ−(t; x̄n, l̄)]
[ϕ+(t;x1,r), ϕ−(t; x̄1, r̄)]

.

Each denominator is calculated as

[ϕ+(t;x1,r), ϕ−(t; x̄1, r̄)] = [ϕ+(t;x1,r), e−z(x1;x̄1)/hϕ−(t;x1, r̄)]

= e−z(x1;x̄1)/h W (r̄;r).

We remark that there exists a canonical curve from r to r̄.
Next let us study these numerators.

[ϕ+(t;xn, l), ϕ−(t; x̄1, r̄)]

=[G5ϕ+(t;xn,δ )+G6ϕ−(t;xn, δ̄ ), G3ϕ+(t; x̄1,δ )+G4ϕ−(t; x̄1, δ̄ )]

=[G5 ez(x̄1;xn)/hϕ+(t; x̄1,δ )+G6 e−z(x̄1;xn)/hϕ−(t; x̄1, δ̄ ),G3ϕ+(t; x̄1,δ )+G4ϕ−(t; x̄1, δ̄ )]

=G5G4 ez(x̄1;xn)/h [ϕ+(t; x̄1,δ ), ϕ−(t; x̄1, δ̄ )]+G6G3 e−z(x̄1;xn)/h [ϕ−(t; x̄1, δ̄ ), ϕ+(t; x̄1,δ )]

=W (δ̄ ;δ )
(

G5G4 ez(x̄1;xn)/h −G6G3 e−z(x̄1;xn)/h
)
.

Therefore we have

t11(ε,h) = ez(x1;x̄1)/h W (δ̄ ;δ )
W (r̄;r)

(
G5G4 ez(x̄1;xn)/h −G6G3 e−z(x̄1;xn)/h

)
=

W (δ̄ ;δ )
W (r̄;r)

(
W (r̄;δ )
W (δ̄ ;δ )

W (δ̄ ; l)
W (δ̄ ;δ )

ez(x1;xn)/h

+(−1)n W (δ̄ ; ˆ̄r)
W (δ̄ ;δ )

W (l̂;δ )
W (δ̄ ;δ )

e{z(x1;x̄1)−z(x̄1;xn)}/h

)
.

We can similarly calculate t12(ε,h), t21(ε,h) and t22(ε,h). Let us calculate t12(ε,h).

[ϕ−(t; x̄n, l), ϕ−(t; x̄1, r̄)]

=[G7ϕ+(t; x̄n,δ )+G8ϕ−(t; x̄n, δ̄ ), G3ϕ+(t; x̄1,δ )+G4ϕ−(t; x̄1, δ̄ )]

=[G7 ez(x̄1;x̄n)/hϕ+(t; x̄1,δ )+G8 e−z(x̄1;x̄n)/hϕ−(t; x̄1, δ̄ ), G3ϕ+(t; x̄1,δ )+G4ϕ−(t; x̄1, δ̄ )]

=G7G4 ez(x̄1;x̄n)/h[ϕ+(t; x̄1,δ ), ϕ−(t; x̄1, δ̄ )]+G8G3 e−z(x̄1;x̄n)/h[ϕ−(t; x̄1, δ̄ ), ϕ+(t; x̄1,δ )]

=W (δ̄ ;δ )
(

G7G4 ez(x̄1;x̄n)/h −G8G3 e−z(x̄1;x̄n)/h
)
.
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Hence we have

t12(ε,h) = ez(x1;x̄1)/h W (δ̄ ;δ )
W (r̄;r)

(
G7G4 ez(x̄1;x̄n)/h −G8G3 e−z(x̄1;x̄n)/h

)
= i

W (δ̄ ;δ )
W (r̄;r)

(
(−1)n+1 W (δ̄ ; ˆ̄l)

W (δ̄ ;δ )
W (r̄;δ )
W (δ̄ ;δ )

ez(x1;x̄n)/h

+
W (l̂;δ )
W (δ̄ ;δ )

W (δ̄ ; ˆ̄r)
W (δ̄ ;δ )

e{z(x1;x̄1)−z(x̄1;x̄n)}/h

)
.

We shall study the other component t21(ε,h).

[ϕ+(t;x1,r), ϕ+(t;xn, l)]

=[G1ϕ+(t;x1,δ )+G2ϕ−(t;x1, δ̄ ), G3ϕ+(t;xn,δ )+G4ϕ−(t;xn, δ̄ )]

=[G1ϕ+(t;x1,δ )+G2ϕ−(t;x1, δ̄ ), G3 ez(x1;xn)/hϕ+(t;x1,δ )+G4 e−z(x1;xn)/hϕ−(t;x1, δ̄ )]

=G1G4 e−z(x1;bn)/h[ϕ+(t;x1,δ ), ϕ−(t;x1, δ̄ )]+G2G3 ez(x1;xn)/h[ϕ−(t;x1, δ̄ ), ϕ+(t;x1,δ )]

=W (δ̄ ;δ )
(

G1G4 e−z(x1;bn)/h −G2G3 ez(x1;xn)/h
)
.

Therefore we have

t21(ε,h) = ez(x1;x̄1)/h W (δ̄ ;δ )
W (r̄;r)

(
G1G4 e−z(x1;xn)/h −G2G3 ez(x1;xn)/h

)
= i

W (δ̄ ;δ )
W (r̄;r)

(
(−1)n+1 W (δ̄ ;r)

W (δ̄ ;δ )
W (l̂;δ )
W (δ̄ ;δ )

ez(xn;x̄1)/h

+
W (r̂;δ )
W (δ̄ ;δ )

W (δ̄ ; l)
W (δ̄ ;δ )

e{z(x1;x̄1)+z(x1;xn)}/h

)
.

Finally we calculate t22(ε,h).

[ϕ+(t;x1,r), ϕ−(t; x̄n, l̄)]

=[G1ϕ+(t;x1,δ )+G2ϕ−(t;x1, δ̄ ), G7ϕ+(t; x̄n,δ )+G8ϕ−(t; x̄n, δ̄ )]

=[G1ϕ+(t;x1,δ )+G2ϕ−(t;x1, δ̄ ), G7 ez(x̄1;x̄n)/hϕ+(t;x1,δ )+G8 e−z(x̄1;x̄n)/hϕ−(t;x1, δ̄ )]

=G1G8 e−z(x1;x̄n)/h[ϕ+(t;x1,δ ), ϕ−(t;x1, δ̄ )]+G2G7 ez(x1;x̄n)/h[ϕ−(t;x1, δ̄ ), ϕ+(t;x1,δ )]

=W (δ̄ ;δ )
(

G1G8 ez(x̄n;x1)/h −G2G7 ez(x1;x̄n)/h
)
.
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Hence we have

t22(ε,h) = ez(x1;x̄1)/h W (δ̄ ;δ )
W (r̄;r)

(
G1G8 e−z(x1;x̄n)/h −G2G7 ez(x1;x̄n)/h

)
=

W (δ̄ ;δ )
W (r̄;r)

(
W (δ̄ ;r)
W (δ̄ ;δ )

W (l̄;δ )
W (δ̄ ;δ )

ez(x̄n;x̄1)/h

+(−1)n W (r̂;δ )
W (δ̄ ;δ )

W (δ̄ ; ˆ̄l)
W (δ̄ ;δ )

e{z(x1;x̄1)+z(x1;x̄n)}/h

)
.

�

The components of the matrix S̃(ε,h) are expressed from (3.3.3), (3.3.4) and (3.3.6) as

S̃(ε,h) =

 C−1
1 C3 t11(ε,h)exp

[
−zr(x1)+zl(xn)

h

]
C−1

1 C4 t12(ε,h)exp
[
−zr(x1)−zl(x̄n)

h

]
C−1

2 C3 t21(ε,h)exp
[
+zr(x̄1)+zl(xn)

h

]
C−1

2 C4 t22(ε,h)exp
[
+zr(x̄1)−zl(x̄n)

h

]
 .

Recall that Ck = Ck(ε,h) = 1+O(h) as h → 0 uniformly with respect to ε . In the remaining
part of this section, we denote such constants simply by 1+O(h).

We study each exponential part of the components of S̃(ε,h).

(3.3.13)

−zr(x1)+ zl(xn) =
i
2

(
−A1(ε)+An(ε)

)
+

i
2

(
A∞(ε)−A−∞(ε)

)
,

−zr(x1)− zl(x̄n) =
i
2

(
−A1(ε)−An(ε)

)
+

i
2

(
A∞(ε)+A−∞(ε)

)
,

zr(x̄1)+ zl(xn) =
i
2

(
A1(ε)+An(ε)

)
+

i
2

(
−A∞(ε)−A−∞(ε)

)
,

zr(x̄1)− zl(x̄n) =
i
2

(
A1(ε)−An(ε)

)
+

i
2

(
−A∞(ε)+A−∞(ε)

)
.

where the action integrals A∞(ε) and A−∞(ε) are defined by

A∞(ε) = 2
∫ ∞

0

(√
V (t)2 + ε2 −λr

)
dt,

A−∞(ε) = 2
∫ −∞

0

(√
V (t)2 + ε2 −λl

)
dt.

We remark that each second term of (3.3.13) is pure imaginary.
When n = 1, we calculate by Proposition 3.3.1 the component s̃21(ε,h), which gives the

transition probability.

s̃21(ε,h) = i
W (l̂;r)
W (r̄;r)

ez(x1;x̄1)/he{zr(x̄1)+zl(x1)}/h
(

1+O(h)
)

= iexp
[

i
h

A1(ε)−
i

2h

(
A∞(ε)+A−∞(ε)

)] W (l̂;r)
W (r̄;r)

(
1+O(h)

)
.(3.3.14)
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One sees that there exist canonical curves from r to r̄ and to l̂. Similarly the others are calculated.

s̃11(ε,h) = exp
[

i
2h

(
A∞(ε)−A−∞(ε)

)] W (r̄; l)
W (r̄;r)

(
1+O(h)

)
,

s̃12(ε,h) = iexp
[
− i

h
A1(ε)+

i
2h

(
A∞(ε)+A−∞(ε)

)] W (r̄; ˆ̄l)
W (r̄;r)

(
1+O(h)

)
,

s̃22(ε,h) = exp
[

i
2h

(
−A∞(ε)+A−∞(ε)

)] W (l̄;r)
W (r̄;r)

(
1+O(h)

)
.(3.3.15)

When n ≥ 2, we also study the component s̃21(ε,h).

s̃21(ε,h) = iexp
[

i
2h

(
A1(ε)+An(ε)

)
− i

2h

(
A∞(ε)+A−∞(ε)

)]W (δ̄ ;δ )
W (r̄;r)

(
1+O(h)

)
×

(
(−1)n+1 W (δ̄ ;r)

W (δ̄ ;δ )
W (l̂;δ )
W (δ̄ ;δ )

exp
[

i
2h

(
An(ε)−A1(ε)

)]

+
W (r̂;δ )
W (δ̄ ;δ )

W (δ̄ ; l)
W (δ̄ ;δ )

exp
[

i
2h

(
2A1(ε)−A1(ε)−An(ε)

)])
,

= iexp
[
− i

2h

(
A∞(ε)+A−∞(ε)

)]W (δ̄ ;δ )
W (r̄;r)

(
1+O(h)

)

×

(
(−1)n+1 W (δ̄ ;r)

W (δ̄ ;δ )
W (l̂;δ )
W (δ̄ ;δ )

exp
[

i
h

An(ε)
]
+

W (r̂;δ )
W (δ̄ ;δ )

W (δ̄ ; l)
W (δ̄ ;δ )

exp
[

i
h

A1(ε)
])

.

(3.3.16)

One sees that there exists a canonical curve for each Wronskian calculation. The other compo-
nents are also calculated in the same way. However when h goes to 0 we must be careful in the
dependence on sufficiently small ε of the asymptotic expansions of the Wronskians. We will
discuss it in the next section.

3.4 Asymptotics of the Wronskians as h → 0

In this section we study how the asymptotic expansions of the Wronskians in S̃(ε,h) (see
(3.3.14), (3.3.15), and (3.3.16)) as h → 0 depend on small ε . We must pay attention to the
distance between the canonical curve and the turning points on the complex z-plane because the
turning points z= z(x j) are simple poles of the kernel K′(z)/K(z) of inductive integral operators
(see (2.2.1)).
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First let us consider the case n = 1, in particular s̃22(ε,h) and s̃21(ε,h). Because Rez(t)
increases in the direction from the upper half-plane to the lower one near the real axis (see
(3.1.2)), the denominator W (r̄;r) = we

+(z(r̄);z(r)) has a canonical curve from r to r̄ whose
distance from the turning points is positive uniformly with respect to ε as in Figure 3.12. Hence

we
+(z(r̄);z(r)) = 1+O(h) as h → 0,

uniformly for sufficiently small ε . The numerator W (l̂;r) = we
+(z(l̂);z(r)) of s̃21(ε,h), which

give the transition probability, has a canonical curve from r to l̂ through the branch cut as in
Figure 3.12. This curve can also be taken so that the distance from turning points is bounded
below by a positive constant independent of ε . We have

we
+(z(l̂);z(r)) = 1+O(h) as h → 0,

uniformly with respect to ε . Hence we have

s̃21(ε,h) = iexp
[

i
h

A1(ε)−
i

2h

(
A∞(ε)+A−∞(ε)

)](
1+O(h)

)
,

as h tends to 0 uniformly for sufficiently small ε .

O

Im t

Re t

x1

x̄1

r

r̄

l

l̄

Figure 3.12: Canonical curves (n = 1)

W (l̄;r) = we
+(z(l̄);z(r)), that is the numerator of s̃22(ε,h), has a canonical curve from r to

l̄, which passes between x1 and x̄1 as in Figure 3.12. In this case, however, the distance from
this curve to the turning points x1, x̄1 tends to 0 as ε → 0 and we get

we
+(z(l̄);z(r)) = 1+O

(
h

Rez(x̄1)−Rez(x1)

)
as h → 0.
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By Lemma 1.2.1, we can take a canonical curve so that as ε → 0,

1
Rez(x̄1)−Rez(x1)

= O
(
ε−2) .

Hence we obtain

s̃22(ε,h) = exp
[

i
2h

(
−A∞(ε)+A−∞(ε)

)](
1+O

(
h
ε2

))
,

as both ε and h/ε2 tend to 0.

In the case n ≥ 2, there exit a lot of Wronskians in the components of T (ε,h). In fact, these
Wronskians are classified into three types: for example W (δ̄ ;δ ) = we

+(z(δ̄ );z(δ )), W (δ̄ ;r) =
we
+(z(δ̄ );z(r)) and W (r̂;δ ) =we

+(z(r̂);z(δ )). We draw these canonical curves under Rez(xn) =

Rez(x1) as in Figure 3.13. The canonical curve from δ to δ̄ passes between x1 and xn, that from
r to δ̄ passes between x1 and x̄1 and that from δ to r̂ through the branch cut passes between x1

and x2 as in Figure 3.13. The distances from these canonical curves to those turning points goes
to 0 as ε → 0. We get

we
+(z(δ̄ );z(δ )) = 1+O

(
h

Imz(x1)− Imz(xn)

)
as h → 0,

we
+(z(δ̄ );z(r)) = 1+O

(
h

Rez(x̄1)−Rez(x1)

)
as h → 0,

we
+(z(r̂);z(δ )) = 1+O

(
h

Rez(x1)−Rez(x2)

)
as h → 0.

On the other hand, by Lemma 1.2.1, we have as ε → 0

1
Imz(x1)− Imz(xn)

= O
(

ε−
n+1

n

)
,

1
Rez(x̄1)−Rez(x1)

= O
(

ε−
n+1

n

)
,

1
Rez(x1)−Rez(x2)

= O
(

ε−
n+1

n

)
.

We calculate the asymptotic expansions we
+(z(δ̄ );z(l)) and we

+(z(l̂);z(δ )) in the same way
as we

+(z(δ̄ );z(r)) and we
+(z(r̂);z(δ )) respectively. Hence we obtain

s̃21(ε,h) = iexp
[
− i

2h

(
A∞(ε)+A−∞(ε)

)]

×

(
(−1)n+1 exp

[
i
h

An(ε)
]
+ exp

[
i
h

A1(ε)
])(

1+O
(

h

ε
n+1

n

))
,
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Figure 3.13: Canonical curves (n ≥ 2)

as both ε and h/εn+1/n tend to 0.

We remark that there exists a canonical curve from l to r̂ in the case Rez(xn)< Rez(x1) as
in Figure 3.14.

The Wronskian can be calculated without intermediate exact WKB solutions as

[ϕ+(t;x1,r),ϕ+(t;xn, l)] = exp
[

i
2h

(A1(ε)−An(ε))
]
[ϕ+(t;x1,r),ϕ+(t;x1, l)]

=−iexp
[

i
2h

(A1(ε)−An(ε))
]

we
+(z(r̂+);z(l+)).

we
+(z(r̂);z(l)) = 1+O

(
h

Rez(x1)−Rez(xn)

)
as h → 0.

By Lemma 1.2.1 and Proposition 1.2.1, we have

1
Rez(x1)−Rez(xn)

= O
(

ε−
n+2m

n

)
as ε → 0,

where m is positive integer in Proposition 1.2.1. The asymptotic expansions (1.2.3), (1.2.4) in
Proposition 1.2.1 imply that P(ε,h) in the case n ≥ 2 can be calculated as in the case n = 1
when h goes to 0 faster than ε(n+2m)/n tends to 0 (see Figure 3.12).

Therefore, as the conclusion up to this section, we obtain the asymptotic expansion of the
scattering matrix S(ε ,h):
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Figure 3.14: Canonical curve (n ≥ 2 and Rez(xn)< Rez(x1))

Proposition 3.4.1.

1. In the case n = 1, We have

s12(ε,h) =−exp
[
− i

h
A1(ε)+

i
2h

(
A∞(ε)+A−∞(ε)

)](
1+O(h)

)
, as h → 0

s21(ε,h) = exp
[

i
h

A1(ε)−
i

2h

(
A∞(ε)+A−∞(ε)

)](
1+O(h)

)
as h → 0,

uniformly for sufficiently ε and

s11(ε,h) = exp
[

i
2h

(
A∞(ε)−A−∞(ε)

)](
1+O

(
h
ε2

))
as

h
ε2 → 0,

s22(ε,h) = exp
[

i
2h

(
−A∞(ε)+A−∞(ε)

)](
1+O

(
h
ε2

))
as

h
ε2 → 0,

for sufficiently small ε .
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2. In the case n ≥ 2, we have

s11(ε,h) = exp
[

i
2h

(
A∞(ε)−A−∞(ε)

)]

×

(
1+(−1)n exp

[
i
h

(
−A1(ε)+An(ε)

)])(
1+O

(
h

ε
n+1

n

))
,

s12(ε,h) =−exp
[

i
2h

(
A∞(ε)+A−∞(ε)

)]

×

(
exp
[
− i

h
A1(ε)

]
+(−1)n+1 exp

[
− i

h
An(ε)

])(
1+O

(
h

ε
n+1

n

))
,

s21(ε,h) = exp
[
− i

2h

(
A∞(ε)+A−∞(ε)

)]

×

(
exp
[

i
h

A1(ε)
]
+(−1)n+1 exp

[
i
h

An(ε)
])(

1+O
(

h

ε
n+1

n

))
,

s22(ε,h) = iexp
[

i
2h

(
−A∞(ε)+A−∞(ε)

)]

×

(
1+(−1)n exp

[
i
h

(
A1(ε)−An(ε)

)])(
1+O

(
h

ε
n+1

n

))
,

as h/εn+1/n tends to 0 for any small ε .

3.5 Asymptotics of the action integral

We prove Lemma 1.2.1 which is important to study the decay rate of P(ε,h) and the geometrical
structures of the Stokes lines. Moreover we prove Proposition 1.2.1 by studying the relation
between the asymptotic behavior of the action integral and the derivative of V (t) at t = 0.

Proof of Lemma 1.2.1

A j(ε) = 2
∫ x j(ε)

0

√(
V (n)(0)

n!
tnv(t)

)2

+ ε2 dt.

By the change of variables εsn = V (n)(0)
n! tnv(t), we get for small ε

A j(ε) = 2ε
∫ exp[ 2 j−1

2n πi]

0

√
s2n + ε2

(
dt
ds

)
ds.
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By the Lagrange’s formula, the Maclaurin expansion of t with respect to s is given by

t =
∞

∑
k=1

ε
k
n

k!

(
n!

V (n)(0)

) k
n
[

dk−1

dzk−1

(
v(z)−

k
n

)]
z=0

sk,

and hence

dt
ds

=
∞

∑
k=1

ε
k
n

(k−1)!

(
n!

V (n)(0)

) k
n
[

dk−1

dzk−1

(
v(z)−

k
n

)]
z=0

sk−1.

Then the formula is obtained by term by term integrations and the identity∫ exp[ 2 j−1
2n πi]

0
sk−1

√
s2n +1ds =

√
π Γ( k

2n)

2(n+ k) Γ(n+k
2n )

exp
[
(2 j−1)kπi

2n

]
.

�

Proof of Proposition 1.2.1 To prove Proposition 1.2.1, Let us calculate the principal term of
Im(A1(ε)−An(ε)). From Lemma 1.2.1 we have

A1(ε) =
∞

∑
k=1

Ck exp
[

kπ
2n

i
]

ε
n+k

n , An(ε) =
∞

∑
k=1

(−1)kCk exp
[
−kπ

2n
i
]

ε
n+k

n ,

hence we get

Im(A1(ε)−An(ε)) = 2
∞

∑
k=1

C2k

(
sin

k
n

π
)

ε
n+2k

n .

The problem is reduced to studying whether C2k vanishes or not. We make use of the following
lemma:

Lemma 3.5.1. Assume v(2 j−1)(0) = 0 ( j = 1, . . . ,m) for any fixed m ∈N. Then we have for any
positive rational number σ

(3.5.1)
[

d2 j−1

dz2 j−1

(
v(z)−σ)]

z=0
= 0 ( j = 1, . . . ,m).

Proof of Lemma 3.5.1 We prove this lemma by induction on m. In the case where m = 1,
the statement (3.5.1) is evident. Assume that there exists k ∈ N such that (3.5.1) is true for all
m < k+1.

By the Leibniz formula, we have[
d2k+1

dz2k+1

(
v(z)−σ)]

z=0
=−σ

[
2k

∑
p=0

(
2k
p

)
v(2k+1−p)(z)

dp

dzp

(
v(z)−σ−1)]

z=0

=−σv(2k+1)(0)−σ
k

∑
q=1

(
2k

2q−1

)
v(2k−2q+2)(0)

[
d2q−1

dz2q−1

(
v(z)−σ−1)]

z=0
.
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The second term vanishes from the assumption. If v(2k+1)(0) = 0, the statement (3.5.1) with
m = k+1 is also true.

�

From this proof, if there exists m ∈ N such that v(2 j−1)(0) = 0 ( j = 1, . . . ,m − 1) and
v(2m−1)(0) ̸= 0, we obtain [

d2m−1

dz2m−1

(
v(z)−σ)]

z=0
=−σv(2m−1)(0).

If there exists m ∈ N such that V (n+2l−1)(0) = 0 (l = 0, . . . ,m− 1) and V (n+2m−1)(0) ̸= 0,
we get the following relation between derivatives of V (t) and v(t):

v(2m−1)(0) =
n!

V (n)(0)
(2m−1)!V (n+2m−1)(0)

(n+2m−1)!

and moreover in the case where m ≥ 2

v′(0) = v(3)(0) = · · ·= v(2m−3)(0) = 0.

Therefore, in this case, we obtain for sufficiently small ε

Im(A1(ε)−An(ε)) = 2C2m

(
sin

m
n

π
)

ε
n+2m

n +O
(

ε
n+2m+2

n

)
,

where

C2m =−
2m

√
π Γ(m

n )V
(n+2m−1)(0)

nΓ(n+2m+1)Γ(n+2m
2n )

(
n!

V (n)(0)

) n+2m
n

.

�
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Chapter 4

Avoided crossings at several points

4.1 Scattering matrix in several avoided crossings

In this section we remove the assumption (C1) and give a formula of the scattering matrix as
the product of transfer matrices.

Let t1 > t2 > · · ·> tN be the zeros of V (t) and suppose V (tk) =V ′(tk) = · · ·=V (nk−1)(tk) = 0
and V (nk)(tk) ̸= 0. We can assume V (n1)(t1)> 0 without loss of generality. The case N = 1 has
been discussed in Chapter 3, hence in this section we consider the case N ≥ 2.

There are 2nk simple turning points around each t = tk, which are denoted by xk
j(ε) and

xk
j(ε) ( j = 1, . . . ,nk), and they behave like

xk
j(ε)∼ tk +

(
nk!∣∣V (nk)(tk)

∣∣
)1/nk

exp
[
(2 j−1)πi

2nk

]
ε1/nk as ε → 0.

We also define the action integrals Ak
j(ε) by

Ak
j(ε) = 2

∫ xk
j(ε)

tk

√
V (t)2 + ε2 dt,

where each integration path is the complex segment from tk to xk
j(ε) and the branch of the square

root is ε at t = t1. We can express V (t) = V (nk)(tk)
nk! (t−tk)nkvk(t−tk), where vk(t) are holomorphic

near t = 0 and vk(0) = 1. Just like Lemma 1.2.1 we get

Ak
j(ε) =

∞

∑
q=1

Ck
q exp

[
(2 j−1)qπi

2nk

]
ε

nk+q
nk ( j = 1, . . . ,nk),(4.1.1)

where Ck
q =

√
π Γ( q

2nk
)

(nk +q) Γ(q) Γ(nk+q
2nk

)

(
nk!∣∣V (nk)(tk)

∣∣
) q

nk
[

dq−1

dzq−1

(
vk(z)

− q
nk

)]
z=0

.

Similarly we define other action integrals by

A1
∞(ε) = 2

∫ ∞

t1

(√
V (t)2 + ε2 −λr

)
dt, AN

−∞(ε) = 2
∫ −∞

tN

(√
V (t)2 + ε2 −λl

)
dt,
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Ak,k+1(ε) = 2
∫ tk

tk+1

√
V (t)2 + ε2 dt (k = 1, . . . ,N −1).

We introduce the intermediate symbol base points δk,k+1 (k = 1, . . . ,N) and their complex
conjugates as in Figure 4.1, Figure 4.2. In particular we put r = δ0,1, l = δN,N+1. Then we
consider exact WKB solutions:

(4.1.2)

ϕ+(t;xk
1,δk−1,k) = exp

[
+

z(t;xk
1)

h

]
M+(z(t))w+(z(t);z(δk−1,k)),

ϕ−(t;xk
1,δk−1,k) = exp

[
−

z(t;xk
1)

h

]
M−(z(t))w−(z(t);z(δk−1,k)),

ϕ+(t;xk
nk
,δk,k+1) = exp

[
+

z(t;xk
nk
)

h

]
M+(z(t))w+(z(t);z(δk,k+1)),

ϕ−(t;xk
nk
,δk,k+1) = exp

[
−

z(t;xk
nk
)

h

]
M−(z(t))w−(z(t);z(δk,k+1)).

Notice that each exact WKB solution has a valid asymptotic expansion on h in the direction
toward its phase base point from its symbol base point.

We define the transfer matrices Tr(ε,h) and Tl(ε,h) by(
ϕ r
+(t) ϕ r

−(t)
)
=
(

ϕ+(t;x1
1,r) ϕ−(t;x1

1, r̄)
)

Tr(ε,h),(4.1.3) (
ϕ l
+(t) ϕ l

−(t)
)
=
(

ϕ+(t;xN
nN
, l) ϕ−(t;xN

nN
, l̄)
)

Tl(ε,h),(4.1.4)

where ϕ r
±(t) and ϕ l

±(t) are the Jost solutions expressed by (3.1.7), and the transfer matrices
Tk(ε,h) around t = tk:(

ϕ+(t;xk
nk
,δk,k+1) ϕ−(t;xk

nk
,δk,k+1)

)
=
(

ϕ+(t;xk
1,δk−1,k) ϕ−(t;xk

1,δk−1,k)
)

Tk(ε,h).(4.1.5)

We also need the transfer matrices Tk,k+1(ε,h) between tk and tk+1 as

(
ϕ+(t;xk+1

1 ,δk,k+1) ϕ−(t;xk+1
1 ,δk,k+1)

)
=
(

ϕ+(t;xk
nk
,δk,k+1) ϕ−(t;xk

nk
,δk,k+1)

)
Tk,k+1(ε ,h).

(4.1.6)

The transfer matrices Tr(ε,h), Tl(ε,h), and Tk,k+1(ε,h) are diagonal matrices given by

Tr(ε,h) =

 exp
[

i
2h

(
A1

1 −A1
∞ +2λrt1

)]
0

0 exp
[

i
2h

(
A1

∞ −A1
1 −2λrt1

)]

(

1+O(h)

)
,

(4.1.7)
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Tl(ε,h) =

 exp
[

i
2h

(
AN

nN
−AN

−∞ +2λltN
)]

0

0 exp
[

i
2h

(
AN
−∞ −AN

nN
−2λltN

)]

(

1+O(h)

)
,

(4.1.8)

where O(h) is uniform with respect to small ε , and

Tk,k+1(ε,h) =

 exp
[

i
2h

(
Ak

nk
−Ak+1

1 +Ak,k+1

)]
0

0 exp
[
− i

2h

(
Ak

nk
−Ak+1

1 +Ak,k+1

)]
 .

(4.1.9)

Note that (4.1.7), (4.1.8) are obtained from the next relations:

ϕ r
+(t) = e+zr(x1

1)/hϕ+(t;x1
1,r)(1+O(h)) , ϕ r

−(t) = e−zr(x1
1)/hϕ−(t;x1

1, r̄)(1+O(h)) ,

ϕ l
+(t) = e+zl(xN

nN
)/hϕ+(t;xN

nN
, l)(1+O(h)) , ϕ l

−(t) = e−zl(xN
nN

)/hϕ−(t;xN
nN
, l̄)(1+O(h)) ,

where each O(h) is a constant (independent of t) depending on h and ε , which is of O(h) as
h → 0 uniformly with respect to small ε .

We also denote the change of bases between (ϕ r
+,ϕ r

−) and (ϕ l
+,ϕ l

−) by S̃(ε,h), whose com-
ponents are expressed with the components of the scattering matrix S(ε,h) as (3.1.9) and put

Tk(ε,h) =

(
τk

11(ε,h) τk
12(ε,h)

τk
21(ε,h) τk

22(ε,h)

)
, Nk =

k

∑
j=1

n j.

Then the asymptotic formula of S̃(ε,h) as h tends to 0 is given by

Theorem 4.1.1. The scattering matrix S̃(ε,h) is the product of the 2 × 2 matrices Tr(ε,h),
Tl(ε,h), Tk,k+1(ε,h), and Tk(ε,h):

(4.1.10) S̃(ε,h) = T−1
r (ε,h)T1(ε,h)T1,2(ε,h)T2(ε,h) · · ·TN−1,N(ε,h)TN(ε,h)Tl(ε ,h).

Moreover Tk(ε,h) has the following asymptotic formulae:
In the case nk = 1, one has

τk
11(ε,h) = 1+O

(
h
ε2

)
as

h
ε2 → 0,(4.1.11)

τk
12(ε,h) = (−1)Nk−1i exp

[
−1

h
ImAk

1

](
1+O(h)

)
as h → 0,(4.1.12)

τk
21(ε,h) = (−1)Nk−1i exp

[
−1

h
ImAk

1

](
1+O(h)

)
as h → 0,(4.1.13)

τk
22(ε,h) = 1+O

(
h
ε2

)
as

h
ε2 → 0.(4.1.14)
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In the case nk ≥ 2, one has

τk
11(ε,h) =

(
exp
[

i
2h

(
Ak

1 −Ak
nk

)]
+(−1)nk exp

[
i

2h

(
Ak

1 −2Ak
1 +Ak

nk

)])

×

(
1+O

(
h

ε
nk+1

nk

))
as

h

ε
nk+1

nk

→ 0,(4.1.15)

τk
12(ε,h) = (−1)Nk−1i

(
(−1)nk+1 exp

[
i

2h

(
Ak

1 −Ak
nk

)]
+ exp

[
i

2h

(
Ak

1 −2Ak
1 +Ak

nk

)])

×

(
1+O

(
h

ε
nk+1

nk

))
as

h

ε
nk+1

nk

→ 0,(4.1.16)

τk
21(ε,h) = (−1)Nk−1i

(
(−1)nk+1 exp

[
i

2h

(
Ak

nk
−Ak

1

)]
+ exp

[
i

2h

(
2Ak

1 −Ak
1 −Ak

nk

)])

×

(
1+O

(
h

ε
nk+1

nk

))
as

h

ε
nk+1

nk

→ 0,(4.1.17)

τk
22(ε,h) =

(
exp
[

i
2h

(
Ak

nk
−Ak

1

)]
+(−1)nk exp

[
i

2h

(
2Ak

1 −Ak
1 −Ak

nk

)])

×

(
1+O

(
h

ε
nk+1

nk

))
as

h

ε
nk+1

nk

→ 0.(4.1.18)

Notice that the turning points closest to the real axis are important in the calculation of the
transfer matrix as in Chapter 3. The geometrical structures of Stokes lines are locally the same
as in the case (C1) (see Figure 4.1, Figure 4.2). Hence the idea of this proof is also similar to
Proposition 3.3.1 and Proposition 3.3.2; however we must be careful whether the turning points
xk

1 and xk
nk

are zeros of V (t)+ ε or V (t)− ε . The sign of V (nk)(tk) is determined by the parity
of Nk−1. One sees from V (n1)(t1) > 0 that if Nk−1 = ∑k−1

j=1 n j is even, then V (nk)(tk) > 0 and if
Nk−1 is odd, then V (nk)(tk)< 0. From this fact we can find a canonical curve through the branch
cut like Lemma 3.3.2, hence we obtain the asymptotic behavior of Tk(ε,h) as h tend to 0 from
Proposition 2.4.1.

4.2 Avoided crossing at two points

In this section we study a special case where V (t) vanishes at two points on R. Joye indicated
in [J1] that the asymptotic behavior of the transition probability as h → 0 is determined by the
geometrical structures generated by the Stokes lines closest to the real axis among those passing
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through some turning points. In our problem, when the spectral gap ε tends to 0, such turning
points are determined by the asymptotic behavior of the imaginary part of the corresponding
action integral (see (4.1.1)). More precisely, they are either xk

1 or xk
nk

if the vanishing order nk of
V (t) at tk is the minimum of {nl}N

l=1.
Here we restrict ourselves to the case N = 2, that is,

(C2) V (t) vanishes at two points t = t1, t2 (t1 > t2) on R

and investigate which of the two makes the major contribution to the asymptotic behavior of the
transition probability P(ε,h) as ε and h tend to 0 according to each vanishing order.

For simplicity, we denote turning points x1
j(ε) ( j = 1, . . . ,n1) and x2

j(ε) ( j = 1, . . . ,n2) by
x j(ε) ( j = 1, . . . ,n) and y j(ε) ( j = 1, . . . ,m) respectively, and the action integral A1,2(ε) by
B(ε). The Stokes lines passing through those turning points are drawn in Figure 4.1, Figure
4.2. We remark that Figure 4.1 is drawn under the condition ImA1

1(ε) < ImA2
1(ε) and Figure

4.2 is done under the condition ImA1
n(ε)< ImA1

1(ε) and ImA1
n(ε)< ImA2

m(ε)< ImA2
1(ε). The

dashed wave lines are always branch cuts.

In the case n = m = 1, we obtain an analogous result to Theorem 1.2.2:

Theorem 4.2.1. Assume (A), (B), (C2), and n = m = 1. Then there exists ε0 > 0 such that we
have for any ε ∈ (0,ε0)

P(ε,h) =
∣∣∣∣exp

[
i
h

(
A1

1(ε)+B(ε)
)]

− exp
[

i
h

A2
1(ε)

]∣∣∣∣2(1+O
(

h
ε2

))
as

h
ε2 → 0.

Remark 4.2.1. Although the order of each zero of V (t) is one as in the case (C1), the error
term is no longer uniform with respect to ε .

Let P1(ε,h) be the principal term of this asymptotic expansion. Then we have

P1(ε,h) =
∣∣∣∣exp

[
i
h

(
A1

1(ε)+B(ε)
)]

− exp
[

i
h

A2
1(ε)

]∣∣∣∣2
= exp

[
−

Im(A1
1(ε)+A2

1(ε))
h

]
(

exp
[

Im(A1
1(ε)−A2

1(ε))
h

]
+ exp

[
Im(A2

1(ε)−A1
1(ε))

h

]

−2cos
[

Re(A1
1(ε)−A2

1(ε))+B(ε)
h

])
.

For each positive integer l, we consider the following condition on the derivative of V (t) at
t1 and t2:

(Dl) : V (2l−1)(t1) =−V (2l−1)(t2), V (2l)(t1) =V (2l)(t2).
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Figure 4.1: Stokes geometry n = m = 1
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Figure 4.2: Stokes geometry n ≥ 2, m ≥ 2
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Proposition 4.2.1.
1) If (Dl) holds for all l ∈ N, then one has

ImA1
1(ε) = ImA2

1(ε)

and

P1(ε,h) = 4sin2
[

Re(A1
1(ε)−A2

1(ε))+B(ε)
2h

]
exp
[
−

2ImA1
1(ε)

h

]
.

2) If there exists a positive integer κ such that (Dl) holds for l (l = 0, . . . ,κ −1) and (Dκ ) does
not hold, then

(4.2.1) Im
(
A1

1(ε)−A2
1(ε)

)
= Rκ(t1, t2)ε2κ +O

(
ε2κ+2)

as ε → 0, where

R1(t1, t2) =
π (|V ′(t2)|−V ′(t1))

2V ′(t1)|V ′(t2)|
,

Rκ(t1, t2) = (−1)κ−1
√

π Γ(2κ−1
2 )

4κ Γ(2κ −1)Γ(κ +1)
(V ′(t1))−2κ−1

×

{
(κ +1)(4κ2 −1)V (2)(t1)

(
V (2κ)(t1)−V (2κ)(t2)

)

−2κV ′(t1)
(

V (2κ+1)(t1)+V (2κ+1)(t2)
)}

(κ ≥ 2).

The asymptotic behavior of P1(ε,h) as (ε,h)→ (0,0) is given by the following formulae:

(i) When ε2κ+2/h → 0, P1(ε,h) is equal to

4sin2
[

Re(A1
1(ε)−A2

1(ε))+B(ε)
2h

]
exp
[
−

Im(A1
1(ε)+A2

1(ε))
h

](
1+O

(
ε2(2κ+2)

h2

))
.

(ii) If Rκ(t1, t2) does not vanish, when ε2κ+2/h → ∞, P1(ε,h) is equal to

exp
[
−2

h
min
{

ImA1
1(ε), ImA2

1(ε)
}](

1+O
(

exp
[
−
(∣∣Rκ(t1, t2)

∣∣−δ
)ε2κ+2

h

]))
for any positive constant δ .

Theorem 4.2.2. Assume (A), (B), (C2), and n = 1, m ≥ 2. Then there exists ε0 > 0 such that
we obtain for any ε ∈ (0,ε0)

P(ε,h) = exp
[
−2

h
ImA1

1(ε)
](

1+O
(

h

ε
m+1

m

))
as

h

ε
m+1

m
→ 0.
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Remark 4.2.2. This theorem implies that the contribution from t2 is exponentially small with
respect to that from t1 and the principal term of P(ε,h) is determined by the turning points
around t = t1. On the other hand, the estimate of the error term is determined by those around
t = t2.

Theorem 4.2.3. Assume (A), (B), (C2), and m ≥ n ≥ 2. Then there exists ε0 > 0 such that we
obtain for any ε ∈ (0,ε0)

P(ε,h) =

∣∣∣∣∣exp
[

i
h

(
A1

1(ε)+B(ε)
)]

+(−1)n+1 exp
[

i
h

(
A1

n(ε)+B(ε)
)]

+(−1)n exp
[

i
h

A2
1(ε)

]
+(−1)n+m+1 exp

[
i
h

A2
m(ε)

]∣∣∣∣∣
2(

1+O
(

h

ε
n+1

n

))

as h/ε
n+1

n → 0. In particular, when m > n we have

P(ε ,h) =

∣∣∣∣∣exp
[

i
h

A1
1(ε)

]
+(−1)n+1 exp

[
i
h

A1
n(ε)

]∣∣∣∣∣
2(

1+O
(

h

ε
n+1

n

))
(4.2.2)

as h/ε
n+1

n → 0.

Remark 4.2.3. The asymptotic expansion (4.2.2) is the same as that in Theorem 1.2.2. Even
if V (t) vanishes at two points t = t1, t2, we can presume such a case to be the case where it
vanishes at one point t = t1.

We will prove the results of this section by using Theorem 4.1.1. From (4.1.10) the compo-
nents of S̃(ε ,h) is expressed as follows:

s̃11 =

{
τ1

11τ2
11 exp

[
i

2h

(
A1

n −A2
1 +B

)]
+ τ1

12τ2
21 exp

[
i

2h

(
A2

1 −A1
n −B

)]}
(4.2.3)

exp
[

i
2h

(
−A1

1 +A2
m +A1

∞ −A2
−∞ −2λrt1 +2λlt2

)](
1+O(h)

)
,

s̃12 =

{
τ1

11τ2
12 exp

[
i

2h

(
A1

n −A2
1 +B

)]
+ τ1

12τ2
22 exp

[
i

2h

(
A2

1 −A1
n −B

)]}
(4.2.4)

exp
[

i
2h

(
−A1

1 −A2
m +A1

∞ +A2
−∞ −2λrt1 −2λlt2

)](
1+O(h)

)
,
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s̃21 =

{
τ1

21τ2
11 exp

[
i

2h

(
A1

n −A2
1 +B

)]
+ τ1

22τ2
21 exp

[
i

2h

(
A2

1 −A1
n −B

)]}
(4.2.5)

exp
[

i
2h

(
A1

1 +A2
m −A1

∞ −A2
−∞ +2λrt1 +2λlt2

)](
1+O(h)

)
,

s̃22 =

{
τ1

21τ2
12 exp

[
i

2h

(
A1

n −A2
1 +B

)]
+ τ1

22τ2
22 exp

[
i

2h

(
A2

1 −A1
n −B

)]}
(4.2.6)

exp
[

i
2h

(
A1

1 −A2
m −A1

∞ +A2
−∞ +2λrt1 −2λlt2

)](
1+O(h)

)
.

Proof of Theorem 4.2.1. When n = m = 1, the component corresponding to the transition
probability (4.2.5) is given by

s̃21 =

{
τ1

21τ2
11 exp

[
i

2h

(
A1

1 −A2
1 +B

)]
+ τ1

22τ2
21 exp

[
i

2h

(
A2

1 −A1
1 −B

)]}
exp
[

i
2h

(
A1

1 +A2
1 −A1

∞ −A2
−∞ +2λrt1 +2λlt2

)](
1+O(h)

)
.

We put B∞(ε) =−A1
∞(ε)−A2

−∞(ε)+2λrt1+2λlt2, where B∞ is real-valued. We have, from the
components of the transfer matrices (4.1.13) and (4.1.14) in the case n = 1, m = 1,

s̃21(ε ,h) = iexp
[

i
2h

(
A1

1(ε)+A2
1(ε)+B∞(ε)

)](
1+O(h)

)
×

{
exp
[

i
2h

(
2A1

1(ε)−A1
1(ε)−A2

1(ε)+B(ε)
)](

1+O
(

h
ε2

))

− exp
[

i
2h

(
A2

1(ε)−A1
1(ε)−B(ε)

)](
1+O

(
h
ε2

))}
,

= iexp
[

i
2h

(
B∞(ε)−B(ε)

)](
1+O

(
h
ε2

))

×

(
exp
[

i
h

(
A1

1(ε)+B(ε)
)]

− exp
[

i
h

(
A2

1(ε)
)])

as h/ε2 tends to 0 for any small ε . Notice that B(ε) as well as B∞(ε) are real-valued. Hence we
obtain

|s̃21(ε ,h)|2 =

∣∣∣∣∣exp
[

i
h

(
A1

1(ε)+B(ε)
)]

− exp
[

i
h

(
A2

1(ε)
)]∣∣∣∣∣

2(
1+O

(
h
ε2

))
,

as h/ε2 tends to 0 for any small ε . �
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Proof of Proposition 4.2.1. The proof of this proposition is similar to that of Proposition 1.2.1
and we study the asymptotic behavior of Im(A1

1(ε)−A2
1(ε)).

From (4.1.1), we have under n = m = 1

Im
(

A1
1(ε)−A2

1(ε)
)
=

∞

∑
q=0

(−1)q
(

C1
2q+1 −C2

2q+1

)
ε2q+2.

When V ′(t1) ̸= |V ′(t2)|, we get

C1
2q+1 −C2

2q+1 =
π
2

(
1

V ′(t1)
− 1

|V ′(t2)|

)
.

If V ′(t1) =−V ′(t2), then C1
2q+1 −C2

2q+1 is equal to

(4.2.7)
√

π Γ(2q+1
2 )

2Γ(2q+1)Γ(q+2)
(
V ′(t1)

)−(2q+1)
[

d2q

dz2q

(
(v1(z))−(2q+1)− (v2(z))−(2q+1)

)]
z=0

.

Hence we study whether the last factor vanishes or not. Here we give a lemma analogous to
Lemma 3.5.1.

Lemma 4.2.1. Assume for any fixed κ ∈ N the derivative condition

(4.2.8) (dl) : v(2l−1)
1 (0) =−v(2l−1)

2 (0), v(2l)
1 (0) = v(2l)

2 (0)

holds for l (l = 1, . . . ,κ). Then we have for any positive integer σ[
d2l−1

dz2l−1

(
v1(z)−σ + v2(z)−σ)]

z=0
= 0 (l = 1, . . . ,κ),(4.2.9)

[
d2l

dz2l

(
v1(z)−σ − v2(z)−σ)]

z=0
= 0 (l = 1, . . . ,κ).(4.2.10)

Proof of Lemma 4.2.1 We prove this lemma by induction on κ . For κ = 1, (4.2.9) and (4.2.10)
are calculated as[

d
dz

(
v1(z)−σ + v2(z)−σ)]

z=0
=−σ

[
v1(z)−(σ+1)v′1(z)+ v1(z)−(σ+1)v′2(z)

]
z=0

=−σ(v′1(0)+ v′2(0)) = 0,[
d2

dz2

(
v1(z)−σ − v2(z)−σ)]

z=0
=−σ

d
dz

[
v1(z)−(σ+1)v′1(z)− v1(z)−(σ+1)v′2(z)

]
z=0

= σ
[
(σ +1)

(
v1(z)−(σ+2)(v′1(z))

2 − v1(z)−(σ+2)(v′2(z))
2
)

−
(

v1(z)−(σ+1)v′′1(z)− v1(z)−(σ+1)v′′2(z)
)]

z=0

= σ
{
(σ +1)

(
(v′1(0))

2 − (v′2(0))
2)− (v′′1(0)− v′′2(0))

}
= 0.
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Notice that v1(0) = v2(0) = 1. Hence the statement is true for κ = 1.
Assume that there exists κ ∈ N such that (4.2.9) and (4.2.10) is true for all l < κ +1.[
d2κ+1

dz2κ+1

(
v1(z)−σ + v2(z)−σ)]

z=0
=−σ

d2κ

dz2κ

[
v1(z)−(σ+1)v′1(z)+ v1(z)−(σ+1)v′2(z)

]
z=0

.

By the Leibniz formula,

−σ

[
2κ

∑
p=0

(
2k
p

)(
v(2κ+1−p)

1 (z)
dp

dzp v1(z)−(σ+1)+ v(2κ+1−p)
2 (z)

dp

dzp v2(z)−(σ+1)
)]

z=0

=−σ
(

v(2κ+1)
1 (0)+ v(2κ+1)

2 (0)
)

−σ
κ

∑
q=1

(
2k
2q

)
v(2κ−2q+1)

1 (0)

[
d2q

dz2q

(
v1(z)−(σ+1)− v2(z)−(σ+1)

)]
z=0

−σ
κ−1

∑
q=0

(
2k−1
2q+1

)
v(2κ−2q)

1 (0)

[
d2q−1

dz2q−1

(
v1(z)−(σ+1)+ v2(z)−(σ+1)

)]
z=0

.

From the assumption the second and third term are equal to 0.[
d2κ+1

dz2κ+1

(
v1(z)−σ + v2(z)−σ)]

z=0
=−σ

(
v(2κ+1)

1 (0)+ v(2κ+1)
2 (0)

)
.(4.2.11)

On the other hand, we can calculate (4.2.10) in the same way and obtain[
d2κ+2

dz2κ+2

(
v1(z)−σ − v2(z)−σ)]

z=0
=−σ

d2κ+1

dz2κ+1

[
v1(z)−(σ+1)v′1(z)− v1(z)−(σ+1)v′2(z)

]
z=0

.

By the Leibniz formula,

−σ

[
2κ+1

∑
p=0

(
2k+1

p

)(
v(2κ+2−p)

1 (z)
dp

dzp v1(z)−(σ+1)− v(2κ+2−p)
2 (z)

dp

dzp v2(z)−(σ+1)
)]

z=0

=−σ
(

v(2κ+2)
1 (0)− v(2κ+2)

2 (0)
)
+σ(σ +1)(2κ +1)

(
v(2κ+1)

1 (0)v′1(0)− v(2κ+1)
2 (0)v′2(0)

)
−σ

κ

∑
q=1

(
2k
2q

)
v(2κ−2q+2)

1 (0)

[
d2q

dz2q

(
v1(z)−(σ+1)− v2(z)−(σ+1)

)]
z=0

−σ
κ

∑
q=1

(
2k+1
2q+1

)
v(2κ−2q+1)

1 (0)

[
d2q+1

dz2q+1

(
v1(z)−(σ+1)+ v2(z)−(σ+1)

)]
z=0

.

By the assumption the summation terms are equal to 0.

[
d2κ+2

dz2κ+2

(
v1(z)−σ + v2(z)−σ)]

z=0

(4.2.12)

=−σ
(

v(2κ+2)
1 (0)− v(2κ+2)

2 (0)
)
+σ(σ +1)(2κ +1)v′1(0)

(
v(2κ+1)

1 (0)+ v(2κ+1)
2 (0)

)
.
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If the derivative condition (dl) holds also for the case l = κ +1, then both (4.2.11) and (4.2.12)
are equal to 0, so that (4.2.9) and (4.2.10) are also true for l = κ + 1. Therefore we complete
the proof of the lemma.

�

From this proof, if there exists κ ∈ N such that (dl) holds for l (l = 1, . . . ,κ − 1) and (dκ )
does not hold, we obtain[

d2κ

dz2κ

(
v1(z)−(2κ+1)+ v2(z)−(2κ+1)

)]
z=0

=(2κ +1)

{
(2κ −1)(2κ +2)v′1(0)

(
v(2κ−1)

1 (0)+ v(2κ−1)
2 (0)

)
−
(

v(2κ)
1 (0)− v(2κ)

2 (0)
)}

.

Observing, under V ′(t1) =−V ′(t2), the relations

v(n)1 (0) =
V (n+1)(t1)

(n+1)V ′(t1)
, v(n)2 (0) =− V (n+1)(t2)

(n+1)V ′(t1)
,

we have [
d2κ

dz2κ

(
v1(z)−(2κ+1)+ v2(z)−(2κ+1)

)]
z=0

=
1

2κ(V ′(t1))2

{
(κ +1)(2κ −1)(2κ +1)V (2)(t1)

(
V (2κ)(t1)−V (2κ)(t2)

)

−2κV ′(t1)
(

V (2κ+1)(t1)+V (2κ+1)(t2)
)}

.

�

Proof of Theorem 4.2.2 In the case n = 1, m ≥ 2, we have, from the components of the transfer
matrices (4.1.13), (4.1.14), (4.1.15), and (4.1.17),

s̃12 =iexp
[

i
2h

(B∞ +B)
]

exp
[

i
h

A1
1

]
{(

1+(−1)m exp
[

i
h

(
A2

m −A2
1

)])(
1+O

(
h

ε
m+1

m

))

+

(
(−1)m exp

[
i
h

(
A2

m −A1
1 −B

)]
− exp

[
i
h

(
A2

1 −A1
1 −B

)])(
1+O

(
h
ε2

))}
,

58



=iexp
[

i
2h

(B∞ +B)
]

exp
[

i
h

A1
1

]
{

1+(−1)m exp
[

i
h

(
A2

m −A2
1

)]
+(−1)m exp

[
i
h

(
A2

m −A1
1 −B

)]
− exp

[
i
h

(
A2

1 −A1
1 −B

)]
+O

(
h

ε
m+1

m

)
+O

(
h

ε
m+1

m
exp
[
−1

h
Im
(

A2
m −A2

1

)])
+O

(
h
ε2 exp

[
−1

h
Im
(
A2

m −A1
1
)])

+O
(

h
ε2 exp

[
−1

h
Im
(
A2

1 −A1
1
)])}

as h/ε2 → 0 for any ε ∈ (0,ε0). Since Im(A2
m −A2

1), Im
(
A2

m −A1
1
)
, and Im

(
A2

1 −A1
1
)

are all
positive for small ε by virtue of (4.1.1), every error term including the exponential factor is
exponentially small. Hence

(4.2.13)

s̃12 =iexp
[

i
2h

(B∞ +B)
]

exp
[

i
h

A1
1

]
{

1+(−1)m exp
[

i
h

(
A2

m −A2
1

)]
+(−1)m exp

[
i
h

(
A2

m −A1
1 −B

)]

− exp
[

i
h

(
A2

1 −A1
1 −B

)]
+O

(
h

ε
m+1

m

)}

as h/ε
m+1

m → 0 for any ε ∈ (0,ε0). To calculate |s̃12(ε,h)|2, we notice that the following identity
holds: Let M be a positive integer and z j ∈ C be a sequence. Then we have

(4.2.14)

∣∣∣∣∣ M

∑
k=1

exp
[
i zk
]∣∣∣∣∣

2

=
M

∑
k=1

exp
[
−2Imzk

]
+2

M

∑
k<l

exp
[
−Im(zk + zl)

]
cos
[
Re(zk − zl)

]

By (4.2.14), we see that every exponential term in (4.2.13) is exponentially small. Hence
we obtain for any small ε

|s̃12(ε ,h)|2 =exp
[
−2

h
ImA1

1

](
1+O

(
h

ε
m+1

m

))
as

h

ε
m+1

m
→ 0.

�
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Proof of Theorem 4.2.3 In the case m ≥ n ≥ 2, we have, from the components of the transfer
matrices (4.1.17), (4.1.18) and (4.1.15),

s̃21 =i
(
(−1)n+1 exp

[
i

2h

(
A1

n −A1
1

)]
+ exp

[
i

2h

(
2A1

1 −A1
1 −A1

n

)])(
1+O

(
h

ε
n+1

n

))
×
(

exp
[

i
2h

(
A2

1 −A2
m
)]

+(−1)m exp
[

i
2h

(
A2

1 −2A2
1 +A2

m

)])(
1+O

(
h

ε
m+1

m

))
× exp

[
i

2h

(
A1

n −A2
1 +A1

1 +A2
m +B∞ +B

)]

+ i
(
(−1)n exp

[
i

2h

(
A1

n −A1
1

)]
+ exp

[
i

2h

(
2A1

1 −A1
1 −A1

n

)])(
1+O

(
h

ε
n+1

n

))
×
(
(−1)m+1 exp

[
i

2h

(
A2

m −A2
1

)]
+ exp

[
i

2h

(
2A2

1 −A2
1 −A2

m

)])(
1+O

(
h

ε
m+1

m

))
× exp

[
i

2h

(
A2

1 −A1
n +A1

1 +A2
m +B∞ −B

)]
,

=iexp
[

i
2h

B∞

](
1+O

(
h

ε
n+1

n

))
[(

(−1)n+1 exp
[

i
2h

(
2A1

n −A2
1 +A2

m +B
)]

+ exp
[

i
2h

(
2A1

1 −A2
1 +A2

m +B
)])

×
(

exp
[

i
2h

(
A2

1 −A2
m
)]

+(−1)m exp
[

i
2h

(
A2

1 −2A2
1 +A2

m

)])

+

(
(−1)n exp

[
i

2h

(
A1

n −A1
1

)]
+ exp

[
i

2h

(
2A1

1 −A1
1 −A1

n

)])
×
(
(−1)m+1 exp

[
i

2h

(
A1

1 −A1
n +2A2

m −B
)]

+ exp
[

i
2h

(
A1

1 −A1
n +2A2

1 −B
)])]

=iexp
[

i
2h

B∞

](
1+O

(
h

ε
n+1

n

))
[

exp
[

i
2h

(
−A2

1 +A2
m +B

)](
exp
[

i
h

A1
1

]
+(−1)n+1 exp

[
i
h

A1
n

])
× exp

[
i

2h

(
A2

1 −A2
m
)](

1+(−1)m exp
[

i
h

(
−A2

1 +A2
m

)])

+ exp
[

i
2h

(
A1

1 −A1
n −B

)](
exp
[

i
h

A2
1

]
+(−1)m+1 exp

[
i
h

A2
m

])
× (−1)n exp

[
i

2h

(
A1

n −A1
1

)](
1+(−1)n exp

[
i
h

(
A1

1 −A1
n

)])]
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as h/ε
n+1

n → 0 for any ε ∈ (0,ε0). The component s̃21 is equal to

iexp
[

i
2h

(B∞ −B)
](

1+O
(

h

ε
n+1

n

))
×

[(
exp
[

i
h

(
A1

1 +B
)]

+(−1)n+1 exp
[

i
h

(
A1

n +B
)])(

1+(−1)m exp
[

i
h

(
A2

m −A2
1

)])

+(−1)n
(

exp
[

i
h

A2
1

]
+(−1)m+1 exp

[
i
h

A2
m

])(
1+(−1)n exp

[
i
h

(
A1

1 −A1
n

)])]

as h/ε
n+1

n → 0 for any ε ∈ (0,ε0). Observing that Im
(
A2

m −A2
1
)
> 0 and Im

(
A1

1 −A1
n
)
> 0, we

have

(4.2.15)

s̃21 =iexp
[

i
2h

(B∞ −B)
](

1+O
(

h

ε
n+1

n

))
(

exp
[

i
h

(
A1

1 +B
)]

+(−1)n+1 exp
[

i
h

(
A1

n +B
)]

+(−1)n
(

exp
[

i
h

A2
1

]
+(−1)m+1 exp

[
i
h

A2
m

]))

as h/ε
n+1

n → 0 for any ε ∈ (0,ε0). Hence we obtain

|s̃21(ε,h)|2 =

∣∣∣∣∣exp
[

i
h

(
A1

1 +B
)]

+(−1)n+1 exp
[

i
h

(
A1

n +B
)]

+(−1)n exp
[

i
h

A2
1

]
+(−1)n+m+1 exp

[
i
h

A2
m

]∣∣∣∣∣
2(

1+O
(

h

ε
l+1

l

))
as h/ε

n+1
n → 0 for any ε ∈ (0,ε0).

In particular, when m > n, we can estimate (4.2.15) more precisely:

s̃21 =iexp
[

i
2h

(B∞ +B)
](

exp
[

i
h

A1
1

]
+(−1)n+1 exp

[
i
h

A1
n

])(
1+O

(
h

ε
n+1

n

))
{

1+(−1)n
(

exp
[

i
h

(
A1

1 +B
)]

+(−1)n+1 exp
[

i
h

(
A1

n +B
)])−1

×
(

exp
[

i
h

A2
1

]
+(−1)m+1 exp

[
i
h

A2
m

])}
.

Let us estimate the last term. We put for small ε ∈ (0,ε0)

λ (ε) = max
{

ImA1
1(ε), ImA1

n(ε)
}
, µ(ε) = min

{
ImA2

1(ε), ImA2
m(ε)

}
.
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One sees that the exponential factors in the last term are estimated as follows:(
exp
[

i
h

(
A1

1 +B
)]

+(−1)n+1 exp
[

i
h

(
A1

n +B
)])−1

= O
(

exp
[

1
h

λ (ε)
])

,

exp
[

i
h

A2
1

]
+(−1)m+1 exp

[
i
h

A2
m

]
= O

(
exp
[
−1

h
µ(ε)

])
as h/ε

n+1
n → 0 for any ε ∈ (0,ε0). Hence we get

s̃21 =iexp
[

i
2h

(B∞ +B)
](

exp
[

i
h

A1
1

]
+(−1)n+1 exp

[
i
h

A1
n

])

×
(

1+O
(

h

ε
n+1

n

))(
1+O

(
exp
[
−1

h

(
µ(ε)−λ (ε)

)]))

as h/ε
n+1

n → 0 for any ε ∈ (0,ε0). The error term including the exponential factor is exponen-
tially small as h tends to 0, so that s̃21 has the following asymptotic expansion:

s̃21 =iexp
[

i
2h

(B∞ +B)
](

exp
[

i
h

A1
1

]
+(−1)n+1 exp

[
i
h

A1
n

])(
1+O

(
h

ε
n+1

n

))

as h/ε
n+1

n → 0 for any ε ∈ (0,ε0). Therefore we obtain Theorem 4.2.3.
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Chapter 5

Appendix

5.1 Landau-Zener formula

In this section we give a proof of the Landau-Zener formula. The Landau-Zener model is the
following system:

(5.1.1) ih
d
dt

ψ(t) =
(

at ε
ε −at

)
ψ(t) on t ∈ R,

where ε , h are positive parameters. Although the diagonal components at and −at do not satisfy
the assumption (B) in this case, the modified Jost solutions Ψr

+CΨr
−CΨl

+CΨl
− can be given by

the asymptotic conditions:

(5.1.2)

Ψr
+(t)∼ exp

[
+

i
h

(
a
2

t2 +
ε2

2a
log t

)](
0
1

)
as t →+∞,

Ψr
−(t)∼ exp

[
− i

h

(
a
2

t2 +
ε2

2a
log t

)](
1
0

)
as t →+∞,

Ψl
+(t)∼ exp

[
− i

h

(
a
2

t2 +
ε2

2a
log |t|

)](
1
0

)
as t →−∞,

Ψl
−(t)∼ exp

[
+

i
h

(
a
2

t2 +
ε2

2a
log |t|

)](
0
1

)
as t →−∞.

We can similarly define the scattering matrix S(ε,h) by

(5.1.3)
(

Ψl
+Ψl

−

)
=
(

ψr
+ψr

−

)
S(ε,h).

We denote its components by S(ε,h)=
(
skl(ε,h)

)
1≤k,l≤2. Then the transition probability P(ε,h)

is defined by

(5.1.4) P(ε,h) =
∣∣s21(ε,h)

∣∣2 = ∣∣s12(ε,h)
∣∣2
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Theorem 5.1.1 (Landau, Zener). The transition probability is given by, for all ε and h,

(5.1.5) P(ε,h) = e−πε2/h.

This formula were obtained in 1932 by L. D. Landau and C. Zener independently. We
present a proof of the Landau-Zener formula along Zener’s idea.

Proof of Theorem 5.1.1 The first order differential system (5.1.1) is essentially equal to the
second order differential equation, in particular to Weber’s differential equation [Z].

By the change of variables t = h1/2xCε = h1/2vC the system (5.1.1) can be reduced to the
following system including only one parameter v.

i
d
dx

ϕ(x) =
(

ax v
v −ax

)
ϕ(x),

where ϕ(x) = ψ(h1/2x). Put ϕ(x) =t (ϕ1(x),ϕ2(x)). This system can be reduced to the single
equation:

(5.1.6)
d2ϕ1(x)

dx2 +
(

ia+ v2 +a2x2
)

ϕ1(x) = 0,

and ϕ2(x) is given by Lϕ1(x), where L = i d
dx − ax. (5.1.6) is Weber’s differential equation.

Putting x = (2a)−
1
2 e−

πi
4 z, v2 = 2aiλ and w(z) = ϕ1

(
(2a)−

1
2 e−

πi
4 z
)

, one has

(5.1.7)
d2w(z)

dz2 +

(
λ +

1
2
− z2

4

)
w(z) = 0.

We make use of the Weber functions Dλ (z), Dλ (−z), D−λ−1(iz), D−λ−1(−iz), which are solu-
tions to (5.1.7). The Weber function Dλ (z) is defined by the integral expression:

(5.1.8) Dλ (z) =
e−z2/4

Γ(−λ )

∫ ∞

0
e−zt−(t2/2) t−λ−1 dt for Reλ < 0.

Dλ (z) can be extended analytically in λ ∈ C \ {0,1,2, · · ·} by the recursion formula λDλ =

−zDλ+1 −Dλ+2. The asymptotic expansion as |z| goes to infinity is calculated from (5.1.8):

Dλ (z) = e−z2/4zλ
(

1+O(z−2)
)

as |z| → ∞ in |argz|< 3
4

π,(5.1.9)

Dλ (z) = e−z2/4zλ
(

1+O(z−2)
)
−

√
2π eλπi

Γ(−λ )
ez2/4z−λ−1

(
1+O(z−2)

)
(5.1.10)

as |z| → ∞ in
π
4
< argz <

5
4

π.

The difference of the asymptotic expansions between (5.1.9) and (5.1.10) the results from the
irregular singularity z = ∞ of Weber’s differential equation. This fact is called Stokes phe-
nomenon.
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In the case where the Stokes phenomenon happens, we need to study the connection coeffi-
cients between such sectorial domains. We can see, from the asymptotic expansions (5.1.9) and
(5.1.10), the connection formula of the Weber functions:

(5.1.11)
(

Dλ (−z)
D−λ−1(iz)

)
=

 e−λπi −i

√
2π

Γ(−λ )
e−

λπi
2

√
2π

Γ(λ +1)
e−

λπi
2 −e−λπi

( Dλ (z)
D−λ−1(−iz)

)
.

We study the relations between the Jost solutions and the Weber functions. We see from (5.1.9)(
Dλ (z)

LDλ (z)

)
= e−z2/4zλ

((
1
0

)
+O

(
z−1)) ,(5.1.12)

(
Dλ (−z)

LDλ (−z)

)
= e−z2/4(−z)λ

((
1
0

)
+O

(
z−1)) ,(5.1.13)

as |z| → ∞ with argz = πi
4 , and(

D−λ−1(−iz)
LD−λ−1(−iz)

)
= icez2/4(−iz)−λ

((
0
1

)
+O

(
z−1)) ,(5.1.14)

(
D−λ−1(iz)

LD−λ−1(iz)

)
=−icez2/4(iz)−λ

((
0
1

)
+O

(
z−1)) ,(5.1.15)

as |z| → ∞ with argz = −πi
4 . Here c =

√
2a
v e3πi/4 and L = c( d

dz +
z
2). In fact the asymptotic

conditions in (5.1.12), (5.1.14) correspond to x →+∞ and those in (5.1.13), (5.1.15) correspond
to x →−∞. Consequently we obtain

Ψr
+ =

(
2a
h

) λ
2

e−
λπi

4 e
3πi
4

v√
2a

(
D−λ−1(−iz)

LD−λ−1(−iz)

)
, Ψr

− =

(
h

2a

) λ
2

e−
λπi

4

(
Dλ (z)

LDλ (z)

)
,

Ψl
− =

(
2a
h

) λ
2

e−
λπi

4 e−
πi
4

v√
2a

(
D−λ−1(iz)

LD−λ−1(iz)

)
, Ψl

+ =

(
h

2a

) λ
2

e−
λπi

4

(
Dλ (−z)

LDλ (−z)

)
.

Hence we have, from (5.1.3), (5.1.11) and the above relations, the scattering matrix:

S(ε,h) =


i

λ
1
2

(
h

2a

)λ √
2π

Γ(−λ )
e−

λπi
2 e−λπi

e−λπi 1

λ
1
2

(
2a
h

)λ √
2π

Γ(λ )
e−

λπi
2

 .

From v2 = 2aiλ and ε = h1/2v, we obtain

P(ε,h) = e−πε2/ah.
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