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Abstract

Harder proved that the Hasse principle for the Brauer group of a purely transcendental
extension field in one variable over an arbitrary field. In this thesis we prove this result by
an alternative method. At first we characterize the edge map of the Grothendieck spectral
sequence and then prove that a certain sequence is exact. Harder’s result is proved by
using this exact sequence. As another application of the exact sequence, we prove the
Hasse principle for the Brauer group of any algebraic function field in one variable over a
separably closed field.
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1 Introduction

For a field k, let ks be the separable closure of k and k̄ the algebraic closure of k.
Let K be a global field (i.e., an algebraic number field or an algebraic function field of

transcendental degree one over a finite field), S the set of all primes of K and K̂p the
completion of K at p ∈ S. For a ring A, let Br(A) be the Brauer group of A (see [Me,
p.141, IV, §2]). The Brauer groups play an important role to define the reciprocity map
of the class field theory.

It is known that the local-global map

Br(K)→
∏

p∈S

Br(K̂p)

is injective (see [K-K-S, Theorem 8.42 (2)]). We call a statement of this form the Hasse
principle. In terms of central simple algebras, the Hasse principle is expressed as follows.

Let A be a central simple algebra over K. Then

A ≃Mn(K)

if and only if
A⊗K K̂p ≃Mn(K̂p)

for all p ∈ S. Moreover, suppose that K = Q and A is a quaternion algebra. Then the
above equivalence means that for a, b ∈ K∗, there exist x, y ∈ K such that

ax2 + by2 = 1

if and only if there exist xp, yp ∈ K̂p such that

(1.1) ax2
p + by2

p = 1

for all p ∈ S. Moreover, let ( , )p : Qp × Qp → {±1} be the Hilbert symbol. Then (1.1)
is equivalent to

(a, b)p = 1.

For a group G, let X(G) be the group of characters of G. Then the local-global map
for the group of characters of G(Ks/K)

X(G(Ks/K))→
∏

p∈S

X(G((K̂p)s/K̂p))

is also injective. On the other hand, suppose that m is a positive integer which is prime
to the characteristic of k. Then

X(G(ks/k))m = H1(k,Z/mZ), Br(k)m = H2(k, µm)

where µm is the group of m-th roots of unity. So we consider the following conjecture.
Conjecture 5.4. Let k be a finitely generated field over a prime field, m an odd prime
with (m, ch(k)) = 1, p any positive integer and X a normal complete curve over k. Let
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R(X) be the function field of X, OX,p the local ring at p of X, ÕX,p the Henselization of

OX,p and R̃(X)
p

its quotient field. Then the local-global map

Hp(R(X), µm)→
∏

p∈X
dim(p̄)=0

Hp(R̃(X)
p
, µm)

is injective.

We claim that this conjecture is true if k is an algebraic number field and p = 1 (in
preparation). On the other hand, Harder proved that the local-global map of the Brauer
group is injective in the case where k is arbitrary field and X = P1

k as follows.

Theorem 7.27.[Ha] For an arbitrary field k, let k(t) be the purely transcendental ex-
tension field in one variable t over k. Then, the local-global map

Br(k(t))→
∏

p∈P1
k

ht(p)=1

Br(k̂(t)
p
)

is injective.
In this thesis, we prove Theorem 7.27 by an alternative method. In Section 6, we

characterize the edge maps of the Grothendieck spectral sequence.
Suppose that A,B, C are abelian categories which have enough injective objects. Let

G : C → B, F : B → A be left exact functors such that G takes injective objects of C to
F -acyclic objects. Then the Grothendieck spectral sequence is

(RpG)(RqF )(A)⇒ Rn(GF )(A)

and we show that the edge maps rpF,G and lpF,G of the Grothendieck spectral sequence
satisfy the following properties.

Property 6.2. The functor rpF,G(A): RpF (G(A)) → RpFG(A) is characterized by the
following properties.

(1) If p = 0, r 0
F,G(A) = idFG(A).

(2) Suppose that p > 0 and assume that r iF,G is defined for i ≦ p − 1. Let 0 → A →
I → M → 0 be an exact sequence and I an injective object. Then the following
diagram

Rp−1F (G(I)/G(A)) //
δp−1
1 �� Rp−1F (G(M))

r
p−1
F,G

(M)// Rp−1(FG)(M)

δp−1
2��

RpF (G(A))
r

p
F,G

(A)
// Rp(FG)(A)

is commutative where δp−1
1 , δp−1

2 are the connecting homomorphisms.
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Property 6.23. The functor lpF,G(A): Rp(FG)(A) → F (RpG(A)) is characterized by
the following properties.

(1) l0F,G(A) = idFG(A).

(2) If 0 → A → B → C → 0 is an exact sequence, then lpF,G satisfies the following
commutative diagram

Rp(FG)(C)
δ //

l
p
F,G

(C) �� Rp+1(FG)(A)

l
p+1
F,G

(A)��
F (RpG(C))

F (δ)
// F (Rp+1(G)(A))

.

where δ is the connecting homomorphism.

Moreover, we can determine the form of the edge map of the Grothendieck spectral
sequence by the above properties.

In Section 7 we prove several results by using the results which we prove in Section 6.
For example, by the above properties, we shall show the following lemma.

Lemma 7.4 Let X be a regular quasi-compact scheme, K = R(X) and g : SpecK → X
the generic point of X. Then

H2(X, g∗(Gm,K)) = Ker


Br(K)

Res
→

∏

x∈X(0)

Br(Kx̄)


 .

Moreover, for a ring A and x ∈ Spec (A), let x̄ be the geometric point which corre-
sponds to x, Ax̄ the strict Henselization at x̄ (see [Me, p.38, I, §4]) and Kx̄ the quotient
field of Ax̄. Then we prove the following proposition.

Proposition 7.14. Let A be a ring such that Spec (A) is smooth over a field k (see [Me,
pp.30-31, I, §3] for the definition) and K the quotient field of A. Then, the following
sequence

0→ Br(A)
(∗)
→ Ker


Br(K)

Res
→

∏

x∈Spec (A)
ht(x)=1

Br(Kx̄)




(∗∗)
→

∏

x∈Spec (A)
ht(x)=1

X(G(κ(x)s/κ(x)))

where κ(x)s is the separable closure of κ(x), Res is the restriction map and homomor-
phisms (∗), (∗∗) are the natural maps, is exact.

More generally, if X is regular quasi-compact scheme, we have the exact sequence as
follows.

0→ Br(X)
(∗)
→ Ker


Br(R(X))

Res
→

∏

x∈X
dim ¯{x}=0

Br(R(OX,x̄))




(∗∗)
→

⊕

x∈X
dim(OX,x)=1

X(Gκ(x)).
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(see Remark 7.18). We use results in Section 6 to prove that homomorphisms (∗), (∗∗)
are the natural maps. By using Proposition 7.14, we can prove Theorem 7.27 and the
Hasse principle for the Brauer group of any algebraic function fields in one variable over a
separably closed field (Corollary 7.23). Moreover we can prove Corollary 4.30 by Remark
7.18.

2 Notation

In this section, we define basic notations used throughout this thesis. More specialized
notations will be introduced in each section.

For a field k and a Galois extension field k′ of k, G(k′/k) denotes the Galois group of
k′/k. We denote G(ks/k) by Gk and the category of discrete modules on which Gk acts
continuously byGk-mod. We call such modules simply discrete Gk-modules. For a discrete
G(k′/k)-module A and a positive integer q, Hq(k′/k, A) denotes the q-th cohomology group
of G(k′/k) with coefficients in A (see [S1, p.10, I, §2]). We put Hq(k, A) = Hq(ks/k, A).
Res : Hp(k, A)→ Hp(k′, A) denotes the restriction homomorphism. For an abelian group
G, we put Gq = {g ∈ G | gq = 1}.

For a scheme X, X(i) is the set of points of codimension i and X(i) is the set of points
of dimension i. We denote the étale site on X by Xet and the category of sheaves over
Xet by SXet

. For F ∈ SXet
, we denote the q-th cohomology group of Xet with values in F

by Hq(X,F). For an integral scheme X and p ∈ X(1), let R(X) be the function field of

X, OX,p the local ring at p of X, ÔX,p the completion of OX,p, R̂(X)
p

its quotient field ,

ÕX,p the Henselization of OX,p , R̃(X)
p

its quotient field , OX,p̄ the strictly Henselization
of OX,p and R(X)p̄ its quotient field. When we consider schemes over a field k, we also

use the notation such as k(X), k̂(X)
p
, etc. We denote the category of abelian groups by

Ab.

3 Galois cohomology

3.1 The definition of Galois cohomology

Let A be an abelian category. An object I of A is injective if the functor

M 7→ HomA(M, I) : A→ Ab

is exact. A has enough injective objects if, for every M in A, there is a monomorphism
from M into an injective object. If A is an abelian category which has enough injective
objects and f : A → B is a left exact functor from A into another abelian category B,
then there is an essentially unique sequence of functors Rif : A → B, i ≧ 0, called the
right derived functors of f with the following properties.

(a) R0f = f .

(b) Rif(I) = 0 if I is injective and i > 0.
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(c) For any exact sequence
0→M

′

→M →M
′′

→ 0

in A, there are morphisms

∂i : Rif(M
′′

)→ Ri+1f(M
′

), i ≧ 0,

such that the sequence

· · · → Rif(M)→ Rif(M
′′

)
∂i

→ Ri+1f(M
′

)→ Ri+1f(M)→ · · ·

is exact.

(d) The association in (c) of the long exact sequence to the short exact sequence is
functorial.

3.1.1 Cohomology of finite groups

Here we review the standard complex which is used to compute cohomology of finite
groups.

Let G be a finite group and A a G-module. Then the functor A → AG is left exact.
The q-th right derived functor of the functor AG is denoted by Hq(G,A), q ≧ 0. We also
denote the q-th right derived functor of the functor HomG by ExtqG. First note that AG

can be identified with HomG(Z, A), the group Z being considered as a G-module with
trivial action (s · n = n for all s ∈ G). Hence

Hq(G,A) = ExtqG(Z, A),

since ExtqG is the derived functor of the functor HomG for all q. To compute HomG(Z, A),
there is a well-known complex called the standard complex, which can be described as
follows.

Choose a resolution of theG-module Z by projective G-modules, i.e., an exact sequence

· · · → Pi → Pi−1 → · · · → P0 → Z→ 0

where Pi is projective for all i. Putting Ki = HomG(Pi, A), we see that the Ki form a
cochain complex K, and

Hq(G,A) = Hq(K)

which gives a method of computing these groups;
A free resolution of Z can be obtained by taking Pi to be the free Z-module Li having

basis which consists of the systems (g0, · · · , gi) of i + 1 elements of G, and making G
operate on Li by translations:

s · (g0, · · · , gi) = (sg0, · · · , sgi).

We define a homomorphism d : Li → Li−1 by the formula

d(g0, · · · , gi) =

j=i∑

j=1

(−1)j(g0, · · · , ĝj, · · · , gi)

11



where the symbol ĝi means that gi does not appear.
An element of Ki = Hom(Li, A) can then be identified with a function f(g0, · · · , gi)

having values in A, and satisfying the covariance condition:

f(s · g0, · · · , s · gi) = s · f(g0, · · · , gi).

A covariant cochain f is uniquely determined by its restriction to systems of the form
(1, g1, g1g2, · · · , g1 · · · gi). This leads us to interpret elements of Ki as inhomogeneous
cochains, i.e., as functions f(g0, · · · , gi) of i arguments, with values in A, whose cobound-
ary is given by:

(d f)(g1, · · · , gi+1) =g1 · f(g2, · · · , gi+1)

=

j=i∑

j=1

(−1)jf(g1, · · · , gjgj+1, · · · , gi+1)

+(−1)i+1f(g1, · · · , gi).

(3.1)

Especially, if G = {1}, Hp(G,A) = 0 for p > 0.

3.1.2 Cohomology of profinite groups

Here we define the cohomology of profinite groups. For example, Galois groups for infinite
extensions are profinite groups. The definition of a profinite group is the following.

Definition 3.2. A topological group which is the projective limit of finite groups, each
given the discrete topology, is called a profinite group. If G = lim

←−
H is a profinite group,

the quotient of G obtained by taking the inverse limit of the finite groups H which are
p-groups is called the pro-p-part of G and is denoted by G(p).

Let G be a profinite group. The discrete abelian groups on which G acts continuously
form an abelian category CG, which is a full subcategory of the category of all G-modules.
To say that a G-module A belongs to CG means that the stabilizer of each element of A
is open in G, or, that one has

A =
⋃

AU = lim
−→

AU

where U runs through all open subgroups of G (as usual, AU denotes the largest subgroup
of A fixed by U). An element A of CG is called a discrete G-module.

If A ∈ CG, define Hq(G,A) by the formula

Hq(G,A) = lim
−→

Hq(G/H,AH)

where H runs through open normal subgroups of G.
We denote by Cn(G,A) the set of all continuous maps from Gn to A. One defines the

coboundary
dn+1 : Cn(G,A)→ Cn+1(G,A)

12



by (3.1). We now set

Zn(G,A) = Ker(Cn(G,A)
dn+1

→ Cn+1(G,A)),

Bn(G,A) = Im(Cn−1(G,A)
dn

→ Cn(G,A))

and B0(G,A) = 0. The elements of Zn(G,A) and Bn(G,A) are called the n-cocycles and
n-coboundaries respectively.

Then one obtains a complex C∗(G,A) whose cohomology groups Zq(G,A)/Bq(G,A)
are Hq(G,A). It is easy to see that H0(G,A) = AG and H1(G,A) is the group of classes
of continuous crossed homomorphisms of G into A.

3.2 Functoriality

In this subsection we describe functors such as the restriction and the inflation regarding
the group cohomology.

Let G and G′ be two profinite groups, and let f : G → G′ be a homomorphism.
Assume A ∈ CG and A′ ∈ CG′. Let h : A′ → A be a homomorphism which is compatible

with f (this is a G-homomorphism, if one regards A′ as a G-module via f). Such a pair
(f, h) defines, by passing to cohomology, the homomorphisms

Hq(G′, A′)→ Hq(G,A), q ≧ 0.

If we apply this consideration where H is a closed subgroup of G, and A = A′ is a discrete
G-module, we obtains the restriction homomorphisms

Res : Hq(G,A)→ Hq(H,A), q ≧ 0.

When H is a normal subgroup of G and A is a discrete G-module, the group AH is a
G/H-module and one obtains the inflation homomorphisms

Inf : Hq(G/H,AH)→ Hq(G,A) q ≧ 0.

When H is open in G, with index n, it is possible to define the Corestriction homomor-
phisms

Cor : Hq(H,A)→ Hq(G,A), q ≧ 0.

Then Cor ◦Res = n.

Proposition 3.3. The groups Hp(G,A) are torsion.

Let H be a closed subgroup of a profinite group G, and let A ∈ CH . The induced
module A∗ = MH

G (A) is defined as the group of continuous maps a∗ from G to A such
that a a∗(hx) = h · a∗(x) for h ∈ H , x ∈ G. The group G acts on A∗ by

(ga∗)(x) = a∗(xg).

If to each a∗ ∈ MH
G (A) one associates its value at the point 1, one obtains a homo-

morphism MH
G (A) → A which is compatible with the injection of H into G, hence the

homomorphisms
Hq(G,MH

G (A))→ Hq(H,A).

13



Proposition 3.4. [W, p.171, Shapiro’s Lemma 6.3.2] The homomorphisms

Hq(G,MH
G (A))→ Hq(H,A)

defined above are isomorphisms.

3.3 The cohomological dimension

Let p be a prime number, and G a profinite group. One calls the p-cohomological di-

mension of G, and uses the notation cdp(G) for the lower bound of the integers n which
satisfy the following condition:

(*) for every discrete torsion G-module A, and for every q > n, the p-
primary component of Hq(G,A) is null.

Proposition 3.5. [S1, p.83, II, §4, Proposition 11] Let k
′

be an extension of k, of tran-
scendence degree N . If p is a prime, we have

cdp(Gk′ ) ≦ N + cdp(Gk).

This is an equality when k
′

is finitely generated over k, cdp(Gk) < ∞, and p is distinct
from the characteristic of k.

Proposition 3.6. [S1, p.85, II, §4, Proposition 12] Let K be a complete field with respect
to a discrete valuation with residue field k. For any prime p, we have:

cdp(GK) ≦ 1 + cdp(Gk).

This is an equality when cdp(Gk) <∞ and p is different from the characteristic of K.

Proposition 3.7. [S1, p.79, II, §3, Proposition 7] If k is a field of characteristic p > 0,
we have cdp(Gk) ≦ 1 and cd(Gk(p)) ≦ 1.

3.4 The Brauer group of a field

In this subsection we define and discuss properties of the Brauer group.
For a field k, the group H2(G(ks/k), k

∗
s) is called the Brauer group of the field k and

is denoted by Br(k). By Proposition 3.3, this is a torsion group. At first, we consider the
Brauer group of a Henselian field. The definition of a Henselian ring is the following.

Definition 3.8. Let A be a local ring with maximal ideal m and residue field k. Let the
homomorphism A[T ] → k[T ] be written as (f 7→ f̄). Then a ring A which satisfies the
following condition (∗) is called a Henselian ring.

(*) If f is a monic polynomial with coefficients in A such that f̄ factors as
f̄ = g0h0 with g0 and h0 monic and coprime, then f itself factors as f = gh
with g and h monic and such that ḡ = g0, h̄ = h0.

14



Proposition 3.9. Let A be a Henselian discrete valuation ring, K its quotient field and K̂
its completion. Moreover, let A be an excellent, i.e., K be a Henselian discrete valuation
field such that the completion K̂ is separable over K. Then

Br(K) = Br(K̂).

Proof. Let k be the residue field of A. If (ch(k), l) = 1, then we have the Kummer
sequence

0→ µl → K∗s
l
→ K∗s → 0.

So
Br(K)l = H2(K,µl)

and
Br(K)l = Br(K̂)l

because G(Ks/K) ≃ G(K̂s/K̂). By the exact sequence

0→ K∗s
p
→ K∗s → K∗s/(K

∗
s )
p → 0,

we have the exact sequence

{0} = H1(K,K∗s )→ H1(K,K∗s/(K
∗
s )
p)→ H2(K,K∗s )

p
→ H2(K,K∗s ).

So
Br(K)p = H1(K,K∗s/(K

∗
s )
p).

Therefore it is sufficient to show that K∗s/(K
∗
s )
p ≃ K̂∗s/(K̂

∗
s )
p. Let m be the maximal

ideal of A and Un
K = 1 + mn. Then K∗/U l

K = K̂∗/U l
bK

and there exists N such that

U bKn ⊂ (K̂∗)p for any N ≦ n. Therefore K∗s/(K
∗
s )
p → K̂∗s/(K̂

∗
s )
p is surjective. Moreover

Henselian discrete valuation ring K is algebraically separably closed in K̂. Therefore
K∗s/(K

∗
s )
p → K̂∗s/(K̂

∗
s )
p is injective. So the statement is holds.

Definition 3.10. Assume p = ch(k) > 0. Let Ωi
k be the i-th exterior product over k of the

absolute differential module Ω1
k/Z

, and let Hi+1
p (k) be the cokernel of the homomorphism

p : Ωi
k → Ωi

k/ d(Ωi−1
k )

p(x
d y1

y1
∧ · · · ∧

d yi
yi

) = (xp − x)
d y1

y1
∧ · · · ∧

d yi
yi

mod d(Ωi−1
k )

(x ∈ k, y1, · · · yi ∈ k
∗)

Proposition 3.11. [K-K, proof of Theorem 1] Let A be an excellent Henselian discrete

valuation ring, K the quotient field and K̂ its completion. Then the natural homomor-
phism

Hq
p(K)→ Hq

p(K̂)

is isomorphism.
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Definition 3.12. Let k be a field with ch(k) = p > 0. Let q ≧ 0 and n ≧ 0. We define
the group P q

n(k) by

P q
n(k) = (Wn(k))⊗

q times︷ ︸︸ ︷
k∗ ⊗ · · · ⊗ k∗ /J,

where Wn(k) denotes the group of all p-Witt vectors of length n over k and J denotes the
subgroup of (Wn(k))⊗ k

∗ ⊗ · · · ⊗ k∗ generated by all elements of the following forms (i)
(ii) (iii).

(i) (

i times︷ ︸︸ ︷
0, · · · , 0, a, 0, · · · , 0)⊗ b1 ⊗ · · · ⊗ bq−1 (0 ≦ i < n, a, b1, · · · , bq−1 ∈ k

∗).

(ii) (F(ω)− ω)⊗ b1 ⊗ · · · ⊗ bq (ω ∈Wn(k), b1, · · · , bq ∈ k
∗),

where F denotes the homomorphism Wn(k)→ Wn(k);

(a0, · · · , an−1)→ (ap0, · · · , a
p
n−1).

(iii) ω ⊗ b1 ⊗ · · · ⊗ bq such that bi = bj for some i 6= j.

Then we have the following fact.

Proposition 3.13. [K, p.674, §3.4, Lemma 16] Let k be a field with ch(k) = p, and let
n ≧ 0. Then there is a canonical isomorphism

P 1
n(k) ≃ Br(k)pn; {χ, a} 7→ (χ, a) (χ ∈ P 0

n(k), a ∈ k∗),

where we identify P 0
n(k) with (Xk)pn via Witt theory.

An alternative proof of Proposition 3.9. For the proof of Proposition 3.9, it is sufficient
to show that Br(k)p ≃ Br(k̂)p. Let F be a field. Then we have an isomorphism P q

1 (F ) ≃
Ωq
F/(1−γ)Ω

q
F where γ denotes the Cartier operator by [K, Corollary to Lemma 5 in §1.3].

On the other hand, Ω1
F/(1 − γ)Ω

1
F = H1

p(F ) by the definition and P 1
1 (F ) ≃ Br(F )p by

Proposition 3.13. So the statement follows from Proposition 3.11.

4 Étale cohomology

We shall be concerned with classes E of morphisms of schemes satisfying the following
conditions.

Condition 4.1. 1. all isomorphism are in E,

2. the composite of two morphisms in E is in E,

3. any base change of a morphism in E is in E.
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A morphism in such a class E will be referred to as an E-morphism. Now fix a base
scheme X, a class E as above, and a full subcategory C/X of Sch/X which is closed
under fiber products and for any Y → X in C/X and any E-morphism U → Y , the
composite U → X is in C/X.

An E-covering of an object Y of C/X is a family (Ui)i∈I of E-morphisms such that
Y =

⋃
gi(Yi). The class of all such coverings of all such objects is the E-site over X, and

will be written (C/X)E.

Definition 4.2. A presheaf P of abelian groups on a site (C/X)E is a contravariant
functor (C/X)◦ → Ab.

Thus P associates with each U in C/X an abelian group P (U), which we shall some-
times write as Γ(U, P ).

Definition 4.3. P is a sheaf if the sequences

P (U)→
∏

i

P (Ui)
→
→

∏

i,j

P (Ui ×U Uj)

is exact for all coverings (Ui → U).

Let P be a presheaf on Xet. The stalk Px̄ of P at x̄ is the abelian group (upxP )(x̄).
More explicitly,

Px̄ = lim
−→

P (U)

where the limit runs through all commutative triangles

x̄ //
ux ��???????? U��

X

with U étale over X.

Proposition 4.4. [Me, p.60, II, §2] Let F be a sheaf on Xet. If s ∈ F (U) is nonzero,
then there is an x ∈ X and an x̄-point of U such that sx̄ is nonzero.

4.1 Étale morphisms

Definition 4.5. A morphism f : Y → X that is locally of finite-type is said to be
unramified at y ∈ Y if OY,y/mxOY,y is a field and is a finite separable extension of κ(x),
where x = f(y).

Definition 4.6. A morphism of schemes is defined to be étale if it is flat and unramified.

Theorem 4.7. [Me, p.29, I, Theorem 3.21] Let X be a connected normal scheme, and
let K = R(X). Let X ′ be the normalization of X in L, and U any open subscheme of
X ′ that is disjoint from the support of Ω1

X′/X . Then U → X is étale, and conversely any
separated étale morphism Y → X of finite-type can be written

Y =
∐

Ui → X

where each Ui → X is of this form.
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Consider sites (C′/X ′)E′ and (C/X)E. A morphism π : X ′ → X of schemes defines a
morphism of sites (C′/X ′)E′ → (C/X)E if :

1. for any Y in C/X, Y(X′) is in C′/X ′;

2. for any E-morphism U → Y in C/X, U(X′) → Y(X′) is an E ′-morphism.

Since the base change of a surjective family of morphisms is again surjective, π defines a
functor

π· = (Y 7→ YX′) : C/X → C′/X ′

which takes coverings to coverings. Suppose that π : X ′E′ → XE is continuous. If P ′ is a
presheaf on X ′E′ πp(P

′) = P ′ ◦ π· is a presheaf on XE . Explicitly, πp(P
′) is the presheaf

on XE such that Γ(U, πp(P
′)) = Γ(U(X ′), P ′). The presheaf πp(P

′) is called the direct

image of P ′. Then πp defines a functor P(X ′E′)→ P(XE), and we define the inverse image

functor πp : P(XE)→ P(X ′E′) to be the left adjoint of πp, that is, πp is such that

HomP(X′)(π
pP, P ′) = HomP(X)(P, πpP

′)

by the following proposition.

Proposition 4.8. [Me, p.56, II, Proposition 2.2] Let C and C′ be small categories ( i.e.,
its class of objects is a set), and p a functor C→ C′. Let A be a category equipped with
direct limits, and write Fun(C,A) and Fun(C′,A) for the categories of functors C → A
and C′ → A. Then the functor

(f 7→ f ◦ p) : Fun(C′,A)→ Fun(C,A)

has a left adjoint.

The inverse image presheaf πpP can be expressed explicitly by the proof of Proposition
4.8. We put

(πpP )(U ′) = lim
−→

P (U)

where the limit runs through all commutative squares

(g, U) = U ′
g //�� U��

X ′ // X
with U → X in C/X.

4.2 Henselian rings

We defined the notion of Henselian rings in Section 3.4. There exist equivalent relations
as follows.

Theorem 4.9. [Me, p.32, I, §4] Let x be the closed point of X = SpecA. The following
are equivalent.
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1. A is Henselian.

2. Any finite A-algebra B is a direct product of local rings B =
∏
Bi (Bi is then

isomorphic to the ring Bmi
, where mi is the maximal ideal of B).

3. If f : Y → X is étale and there is a point y ∈ Y such that f(y) = x and κ(y) = κ(x),
then f has a section s: X → Y .

Corollary 4.10. [Me, p.34, I, §4] If A is Henselian, then so is any finite local A-algebra
B.

By definition, A being Henselian means that it has no finite étale extensions with
trivial residue field extension, except those of the form A→ Ar. Thus if the residue field
of A is separably algebracally closed, then A has no finite étale extensions at all. Such a
Henselian ring is called strictly Henselian or strictly local.

Let i: A→ Ah be a local homomorphism of local rings. Then Ah is the Henselization

of A if it is a Henselian local ring and if any other local homomorphism from A into a
Henselian local ring factors uniquely through i.

The strict Henselization (Ash, h) of A is defined as the definition of the Henselization
of A.

Let X be a scheme and let x ∈ X. An étale neighborhood of x is a pair (Y, y) where
Y is an étale X-scheme and y is a point of Y which maps to x and κ(x) = κ(y). The
connected étale neighborhoods of x form a filtered system and the limit

lim
→

Γ(Y,O) = OhX,x.

Let X be a scheme and x̄→ X a geometric point of X. An étale neighborhood of x̄ is
a commutative diagram:

x̄ // ��???????? U��
X

with U → X étale. Then
OshX,x = lim Γ(U,OU)

where the limit is taken over all étale neighborhoods of x̄. We write OshX,x, or simply OX,x
for this limit.

4.3 Cohomology

We consider right derived functors of left exact functors in the following cases.

1. The functor Γ(X,−) : S(XE)→ Ab with

Γ(X,F ) = Hi(X,−) = Hi(XE,−),

is left exact and its right derived functors are written as

RiΓ(X,−) = Hi(X,−) = Hi(XE,−).

The group Hi(XE , F ) is called the i-cohomology group of XE with values in F .
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2. For any continuous morphism π : X ′E′ → XE, the right derived functors Riπ∗ of the
functor π∗ : S(X ′E′)→ S(XE) are defined. The sheaves Riπ∗F are called the higher

direct images of F .

Proposition 4.11. [Me, p.116, III, Remark 3.11 (a)] For any smooth quasi-projective
group scheme G over a Henselian ring A,

Hi(X,G) ≃ Hi(X0, G0)

for i ≥ 1, where X = SpecA, X0 is the closed point of X, and G0 = G×XX0 is the closed
fiber of G/X.

Proposition 4.12. [Me, p.111, III, Proposition 3.3] Let E1 ⊃ E2 be classes of morphisms
satisfying Condition 4.1, let C2/X be a subcategory of C1, and let f : (C1/X)E1 →
(C2/X)E2 be the morphism induced by the identity map on X. Assume that for every
U in C2/X and every covering of U in the E1-topology, there is a covering of U in the
E2-topology that refines it. Then f∗ : S(XE1)→ S(XE2) is exact and hence

Hi(XE2 , f∗(F )) ≃ Hi(XE1 , F )

for any sheaf F on XE1 .

4.4 The definition of Čech cohomology

Let X be a scheme. Then we define Čech cohomology groups over X in this subsection.

Let U = (Ui
φi→ X)i∈I be a covering of X in the E-topology on X. For any (p− 1)-tuple

(i0, · · · , ip) with ij in I we write Ui0 ×X · · · ×X Uip = Ui0···ip. Let P be a presheaf on XE .
The canonical projection

Ui0···ip → Ui0···̂ij ···ip = Ui0 × · · · × Uij−1
× Uij × · · · × Uip

induces a restriction morphism

P (Ui0···̂ij ···ip)→ P (Ui0···ip)

which we write ambiguously as resj. We put

C ·(U , P ) = (Cp(U , P ), dp)p,

Cp(U , P ) =
∏

Ip+1

P (Ui0···ip).

We define a homomorphism

dp : Cp(U , P )→ Cp+1(U , P )

so that if s = (si0···ip) ∈ C
p(U , P ), then

(dp s)i0···ip =

p+1∑

j=0

(−1)j resj(si0···̌ij ···ip+1
).
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The usual argument shows that dp+1 dp = 0. The cohomology groups of (Cp(U , P ), dp)
are called the Čech cohomology groups with respect to the covering U of X and is denoted

by Ȟ
p
(U , P ). A covering V = (Vj

ψj

→ X)j∈J is called a refinement of U if there is a map
τ : J → I such that for each j, ψj factors through φτj, that is, ψj = φτjηj for some
ηj : Vj → Uτj .

The map τ , together with the family ηj , induces maps τp : Cp(U , P ) → Cp(V, P ) as
follows. If s = (si0 · · · sip) ∈ C

p(U , P ), then

(τps)j0···jp = resηj0
×ηj1

×···×ηjp
(sτj0 ···τjp

).

These maps τp commute with d and hence induce maps on the cohomology,

ρ(V,U , τ) : Ȟ
p
(U , P )→ Ȟ

p
(V, P )

The map ρ(V,U , τ) does not depend on τ or ηj . Hence, if V is a refinement of U , we get
a homomorphism

ρ(V,U) : Ȟ
p
(U , P )→ Ȟ

p
(V, P )

depending only on V and U . It follows that if U ,V,W are three coverings of X such that
W is a refinement of V and V is a refinement of U , then

ρ(W,U) = ρ(W,V)ρ(V,U).

Thus we may define the Čech cohomology groups of P over X to be

Ȟ
p
(XE , P ) = lim

−→
Ȟ
p
(U , P ),

where the limit is taken over all coverings U of X.

Theorem 4.13. [Me, p.104, III, Theorem 2.17] Let X be a quasi-compact scheme such
that every finite subset of X is contained in an affine open set (for example, X quasi-
projective over an affine scheme), and let F be a sheaf on Xet. Then there are canonical
isomorphisms

Ȟ
p
(Xet, F ) ≃ Hp(Xet, F )

for all p.

4.5 The relation between Galois cohomology and étale cohomol-

ogy

Let K be a field, G = G(Ks/K) and X = Spec (K). In this subsection we consider the
relation between a sheaf on Xet and a discrete G-module.

Let P be a presheaf on Xet. If K
′

is a finite separable field extension of K, then we
write P (K

′

) = P (SpecK
′

). Define MP = lim
−→

P (K
′

) where the limit is taken over all

subfields K
′

of Ks which are finite over K. Then G acts on P (K
′

) on the left through
its action on K

′

whenever K
′

/K is Galois, and it follows that G acts on the limit MP .
Clearly MP =

⋃
MH

P , where H runs through the open subgroups of G, and so MP is a
discrete G-module.

Conversely, given a discrete G-module M , we can define a presheaf FM so that
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1. FM(K
′

) = MH , if H = Gal(Ks/K),

2. FM(
∏
Ki) =

∐
FM(Ki).

Theorem 4.14. [Me, p.53, II, Theorem 1.9] The correspondences F ↔ MF , M ↔ FM
induce an equivalence between the category S(Xet) and the category G-mod of discrete
G-modules.

4.6 Cohomology with support

We define cohomology groups which is different from in Section 4.3.
Let i: Z → X be a closed immersion and j: U → X an open immersion such that

X is the disjoint union of i(Z) and j(U). For any sheaf F on Xet, i∗i
!F is the largest

subsheaf of F that is zero outside Z. The functor F 7→ Γ(Z, i!F ) is left exact, and its
right derived functors, Hp

Z(X,F ), are called the cohomology groups of F with support on

Z. The functor Hp
Z(X,F ), are contravariant in (X,U).

Proposition 4.15. [Me, p.92, III, Proposition 1.25] For any sheaf F on Xet there is a
long exact sequence

0→ (i!F )(Z)→ F (X)→ F (U)→ · · · → Hp(X,F )

→ Hp+1
Z (X,F )→ Hp+1(X,F )→ · · · .

Proposition 4.16. [Me, p.92, III, proposition 1.27] Let Z ⊂ X and Z ′ ⊂ X ′ be closed
subschemes, and π : X ′ → X an étale morphism such that the restriction of π to Z ′ is an
isomorphism π|Z ′: Z ′ ≃ Z and π(X ′ − Z ′) ⊂ X − Z. Then

Hp
Z(X,F )→ Hp

Z′(X
′, π∗F )

is an isomorphism for all p ≧ 0 and all shaeves F on Xet.

Lemma 4.17. [Me, p.88, III, Lemma 1.16] Let I be a filtered category and (i 7→ Xi) a
contravariant functor from I to schemes over X. Assume that all schemes Xi are quasi-
compact and that the maps Xi are affine. Let X∞ = lim

←−
Xi , and, for a sheaf F on Xet,

let Fi and F∞ be their inverse images on Xi and X∞ respectively. Then

lim
−→

Hp((Xi)et, Fi) ≃ Hp((X∞)et, F∞).

Corollary 4.18. [Me, p.93, III, Corollary 1.28] Let z be a closed point of X. Then

Hp
z(X,F ) ≃ Hp

z(SpecOhX,z, F ).

Proof. By Proposition 4.16,
Hp
z(X,F) = Hp

y(Y,F)

for any étale neighborhood (Y, y) of z such that only y maps to z. Moreover,

(4.19) lim
−→

Hp
y(Y,F) = Hp

z(SpecOhX,z,F)

by Propositions 4.15 and 4.17. So the statement follows.
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Theorem 4.20. [Me, p.88, III, Theorem 1.15] Let π : Y → X be a quasi-compact
morphism and F a sheaf on Yet. Let x̄ be a geometric point of X such that κ(x̄) is the

separable closure of κ(x). Let X̃ = SpecOX,x̄, Ỹ = Y ×X X̃, and let F̃ be the inverse

image of F on Ỹ :

Y�� Ỹoo ��
X X̃oo .

Then Rpπ∗(F )x̄ ≃ Hp(Ỹ , F̃ ).

4.7 Spectral sequences of étale cohomology

Here we list a few spectral sequences which will be needed later. We discuss the details
in Section 6

Theorem 4.21. [W, p.150, The Grothendieck spectral sequence] Let A,B, and C be
abelian categories. Assume that A and B have enough injective objects, and let f : A→ B
and g : B → C be left exact functors. If f takes injective objects to g-acyclic objects
(i.e, (Rig)(f(I)) = 0 for all i > 0 if I is an injective object of A), then there is a spectral
sequence

Ep,q
2 = (Rpg)(Rqf)(A)⇒ Rn(gf)(A)

for any object A of A.

The following theorems follow from Theorem 4.21.

Theorem 4.22. [Leray spectral sequence] [Me, p.89, III, Theorem 1.18 (a)] Let (C/X)E,
(C

′

/X
′

)E′ be sites. Then for any morphism of sites π : (C
′

/X
′

)E′ → (C/X)E , there is a
spectral sequence

Ep,q
2 = Hp(XE, R

pπ∗F )⇒ Hp+q(X
′

E′ , F )

where F is a sheaf on X
′

E′ .

Theorem 4.23. [Hochschild-Serre spectral sequence] [Me, p.105, III, Theorem 2.20] Let
π : X

′

→ X be a finite Galois covering with Galois group G, and let F be a sheaf for the
étale topology on X. Then there is a spectral sequence

Ep,q
2 = Hp(G,Hq(X

′

et, F ))⇒ Hp+q(Xet, F ).

4.8 The definition of Azumaya algebra

In this subsection we define Azumaya algebras over a scheme. By definition, we see that
Azumaya algebras over a field correspond with central simple algebras over a field.

Let R be a local ring. For an R-algebra A, we denote the opposite algebra of A
by A◦. This is the algebra with the order of the multiplication reversed. A is called
an Azumaya algebra over R if it is free of finite rank as an R-module and if the map
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A ⊗R A
◦ → EndR-mod(A) which sends a ⊗ a

′

to the endomorphism (x 7→ axa
′

) is an
isomorphism.

Let X be a scheme. An OX -algebra A is called an Azumaya algebra over X if it is
coherent as an OX-module and if, for all closed points x of X, Ax is an Azumaya algebra
over the local ring OX,x. For a finitely generated A-module, the following is known.

Theorem 4.24. [Me, p.11, I, Theorem 2.9] Let M be a finitely generated A-module. The
followings are equivalent.

1. M is flat.

2. Mm is a free Am-module for all maximal ideals m of A.

3. M̃ is a locally free sheaf on SpecA.

4. M is a projective A-module.

Remark 4.25. Let X = SpecR be affine. An Azumaya algebra over X corresponds to an
R-algebra A. Moreover A is projective and finitely generated as an R-module and that
the canonical map A⊗R A

◦ → EndR-mdl(A) is an isomorphism by Theorem 4.24.

Two Azumaya algebras A and A′ over X are said to be similar if there exist locally
free OX -modules E and E ′ of finite rank over OX , such that

A⊗OX
EndOX

(E) ≃ A′ ⊗OX
EndOX

(E ′).

The set of similarity classes of Azumaya algebras on X becomes a group under the opera-
tion [A][A′] = [A⊗A′]: the identity element is [OX ] and [A]−1 = [A◦]. This is the Brauer

group Br(X) of X. Br is a functor from schemes to abelian group.

Theorem 4.26. [Me, p.142, IV, Theorem 2.5] There is a canonical injective homomor-
phism

i : Br(X)→ H2(Xet,Gm).

We write Br′(X) for H2(X,Gm) and call it the cohomological Brauer group.

Proposition 4.27. [Me, IV, §2, Proposition 2.11] Let X = SpecR, where R is a local
ring, and let r ∈ Br′(X). Then the followings are equivalent.

1. r ∈ Br(X).

2. There is a finite étale surjective map Y → X such that r maps to zero in Br′(Y ).

Theorem 4.28. [H, Theorem] Let X = Spec (A) be a regular scheme. If c ∈ Br′(X) and
cy = i([Λy]) in Br′(Amy

) for all closed points y ∈ X, then c = i([Λ]).

Proposition 4.29. Let A be a regular local ring, X = Spec (A), K = R(A) and g:
Spec (K)→ X the generic point. Put

Kun = lim
−→
X′

R(X ′)

where X ′ runs through finite étale morphism over X. Then

H2(X, g∗(Gm)) = Ker (Br(K)→ Br(Kun))
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Proof. Let x be the closed point of X. Then

H2(X, g∗(Gm)) = Ker (Br(K)→ Br(Kx̄))

by Lemma 7.4. So it is sufficient to prove that Kx̄ = Kun. If X ′ → X is an étale
neighborhood of x, then there exists an étale neighborhood of x X ′′ → X such that
R(X ′′)/R(X) is a Galois extension and R(X ′) ⊂ R(X ′′).

The following fact is proved by Gabber (c.f, [Go]).

Corollary 4.30. Let A be a regular integral ring. Then

Br(A) = Br′(A).

Proof. If A is a local ring, there exists a finite étale morphism Y → X for any r ∈ Br′(X)
such that

r ∈ Ker (Br(K)→ Br(R(Y ))) .

So
r ∈ Ker (Br′(X)→ Br(Y ))

because Br′(Y ) ⊂ Br(R(Y )) and

Br(X) //�� Br(R(X))��
Br(Y ) // Br(R(Y ))

is commutative. Therefore r ∈ Br(Y ) by Proposition 4.27. So the statement follows from
Theorem 4.28.

Definition 4.31. If S is a Galois extension of R relative to G, and f is a 2-cocycle of
G in U(S), i.e., f ∈ Z2(G,U(S)), we can define a crossed-product algebra ∆(f ;S;G) as
follows. ∆(f ;S;G) is a free (left) S-module with free generators {uδ} indexed by elements
of G, with multiplication defined by

(auρ)(buδ) = aρ(b)f(ρ, δ)uρδ.

Theorem 4.32. [A-G, p.406, Theorem A.12] Let S be a Galois extension of R relative
to G. If f ∈ Z2(G,U(S)), then ∆(f ;S;G) is a central separable algebra over R which
contains S as a maximal commutative subring and is split by S. Moreover the map

f → ∆(f ;S;G)

induces a homomorphism

(4.33) H2(G,U(S))→ Br(R).
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Theorem 4.34. [A-G, p.408, Theorem A.15] Let S be a Galois extension of R relative
to G, U(S) the group of units of the commutative ring S and suppose that S has the
property that every finitely generated projective S-module of rank one is free. Then the
sequence

0→ H2(G,U(S))→ Br(R)→ Br(S)

is exact.

Let G be a cyclic group of order n, and choose a generator s of G. The choice of s
defines a character χs: G→ Q/Z such that χs(s) = 1/n, and the coboundary of the exact
sequence

0→ Z→ Q→ Q/Z→ 0

transforms χs into an element θs = δχs of H2(G,Z).

Theorem 4.35. [S2, VIII, §4] Let G be a cyclic group of order n, and choose a generator

s of G. Let N =
∑

t∈G

t. Then the homomorphism

(4.36) AG/NA→ H2(G,A)

which is given by the cup product with θs is an isomorphism. This isomorphism depends
on the choice of s.

Remark 4.37. Let G be a cyclic group of order n and S a Galois extension of R relative
to G. Let

ΩG,s : U(S)G/NU(S)→ Br(R)

be the composition of the maps (4.36) and (4.33). Then, for b ∈ U(S), ΩG,s(b̄) corresponds
to ∆b which is generated over S by element f with the relation:

fn = b, f · y = s(y) · f.

Theorem 4.38. [A-G, p.389, Theorem 7.5] Br(k) = Br(k[x]) if and only if k is perfect.

Proof. It is sufficient to show that Br(k) 6= Br(k[x]) if k is not perfect. We shall show
that Br(k[x])→ Br(k) is not injective. Let p = ch(k) > 0, y a root of yp− y− x = 0, and
Ω = k(x)(y). Then Ω is a cyclic extension of k(x) of degree p and k[x][y] = k[y] is the
integral closure of k[x] in Ω. Moreover, k[x][y] is a ring Galois extension of k[x] relative
to G(Ω/k(x)). Let c ∈ k with c /∈ k. Then c as an element of k(x) is not a norm from
Ω. Thus, c determines a non-trivial crossed-product ΩG(Ω/k(x)),s(c) where s ∈ G(Ω/k(x))
with s(y) = y + 1. Let

Λ = ΩG(k[y]/k[x]),s(c).

Then Λ ⊗ k(x) = ΩG(Ω/k(x)),s and ΩG(Ω/k(x)),s is not the trivial algebra. So Λ is not the
trivial algebra over k[x].

We see that Λ is the kernel of the map Br(k[x]) → Br(k). Now Λ is generated over
k[x] by elements α and β with the relations:

αp − α = x, βp = c, βα = (α + 1)β.
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The image Λ̄ of Λ under the map k[x]→ k is generated over k by elements ᾱ and β̄ with
the relations:

ᾱp − ᾱ = 0, β̄p = c, β̄ᾱ = (ᾱ + 1)β̄.

Let L = k(t) with tp = c and let elements α′, β ′ of the endomorphism ring of k-module L
Homk(L,L) be defined as follows: α′ is the derivation of L over k given by α′(tn) = −ntn

and β ′ is the multiplication by t. Then α′ and β ′ satisfy the same relations over k as do
ᾱ and β̄, i.e,

(α′)p − α′ = 0, (β ′)p = c, β ′α′ = (α′ + 1)β ′.

So there is a homomorphism from Λ̄ to Homk(L,L) which maps ᾱ, β̄ to α′, β ′ respectively.
Since Λ̄ is a central simple algebra over k of dimension p2 and Homk(L,L) also has
dimension p2 over k, it follows that Λ̄ ≃ Homk(L,L). So the proof is complete.

Proposition 4.39. Let k be the separable closure of an imperfect field, K an algebraic
function field of k in one variable. Then

Br(K) 6= 0.

For the proof of Proposition 4.39, we prove the following lemmas.

Lemma 4.40. Suppose that K is a field with ch(K) = p > 0 and Br(K)p 6= 0. Then

Br(K)pi+1\Br(K)pi 6= ∅.

Proof. Let Ks be the separable closure of K. Then, we have the exact sequence

0→ K∗s/K
∗pi

s

p
→ K∗s/K

∗pi+1

s → K∗s/K
∗p
s → 0.

Therefore, we have the exact sequence

(4.41) H1(K,K∗s/K
∗pi

s )
p
→ H1(K∗s/K

∗pi+1

s )→ H1(K∗s/K
∗p
s )→ H2(K,K∗s/K

∗pi

s ).

Then the diagram

(4.42) H1(K,K∗s/K
∗pi

s )
p //�� H1(K∗s/K

∗pi+1

s )��
Br(K)pi // Br(K)pi+1

is commutative and the top right arrow of (4.42) is injective because the bottom right
arrow of (4.42) is the natural inclusion map.

Moreover, H2(K,K∗s/K
∗pi

s ) = 0 by Proposition 3.7. Therefore the sequence

0→ Br(K)pi → Br(K)pi+1 → Br(K)p → 0

is exact by (4.41) and H1(K,K∗s/K
∗pi

s ) ≃ Br(K)pi. So the statement follows by the induc-
tion.
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Lemma 4.43. Suppose that K satisfies the assumption of Lemma 4.40 and L is a finite
extension field of K. Then Br(L) 6= 0.

Proof. It is sufficient to prove the statement in the case where [L : K] is a prime number.
Suppose that ([L : K], p) = 1). Then the homomorphism Res : Br(K)→ Br(L) is injective
when restricted to Br(K)p ([S1, I, §2, p.12, Corollary of Proposition 9]). So Br(L) 6= 0.
Suppose that [L : K] = p. Then, by Lemma 4.40, we have x ∈ Brp2(K)\Brp(K). On the
other hand, Cor ◦Res = p. Therefore, Res(x) 6= 0. So the statement follows.

Proof of Proposition 4.39. Br(k(x))p 6= 0 by Proposition 4.38. Therefore the statement
follows from Lemma 4.43.

5 Hasse principle

In this section we discuss a known result on the Hasse principle in Subsection 5.1 and give
a certain counter-example to the Hasse principle in the case of function fields of curves in
Subsection 5.2.

5.1 Classical results and Conjectures

Theorem 5.1. [K-K-S, Theorem 8.40 and Theorem 8.42] Let k be a global field. Then
the following 1, 2 holds.

1. The local-global map

X(Gk)→
∏

p

X(Gkp
)

where p runs through almost all primes of k is injective.

2. The local-global map

Br(k)→
∏

p

Br(kp)

where p runs through all primes of k is injective.

Moreover, let m be a positive integer which is prime to ch(k). Then

X(G(ks/k))m = H1(k,Z/mZ), Br(k)m = H2(k, µm).

On the other hand, for the cohomology groups of higher dimension, the following fact is
known.

Proposition 5.2. [S1, p.87, II, §4, Proposition 13] Let k be an algebraic number field.
If p 6= 2, or if k is totally imaginary, we have cdp(Gk) ≦ 2.

Let m be a positive integer which is prime to ch(k). Then

k∗/k∗m ≃ H1(k, µm)

by Hilbert theorem 90. The following fact on cohomology groups is known.
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Theorem 5.3. [N-S-W, p.530, IX, (9.1.11) Theorem] Let k be a global field, m a natural
number prime to ch(k) and T a set of primes of k of density

δ(T ) = lim
s→1

∑

p∈T

Np−s

∑

all p

Np−s
= 1.

Then the localization homomorphism

k∗/k∗m →
∏

p∈T

k∗p/k
∗m
p

is injective except in the case: (∗) k is a number field, m = 2rm′, m′ odd, r ≧ 3, k(µ2r)/k
is not cyclic, and all primes p dividing 2 in T decompose in k(µ2r)/k, where the kernel is
cyclic of order 2.

Because of the above results and results in Section 3.3, we consider the following
conjecture.

Conjecture 5.4. Let k be a finitely generated field over a prime field, m an odd prime
with (m, ch(k)) = 1, p any positive integer and X a normal complete curve over k. Then
the local-global map

Hp(R(X), µm)→
∏

p∈X

Hp(R̃(X)
p
, µm)

is injective.

We claim that Conjecture 5.4 is true if k is an algebraic number field and p = 1 (in
preparation). On the other hand, it is proved that the local-global map of the Brauer
group is injective in the case where k is an arbitrary field and X = P1

k by Harder ([Ha]).
In this thesis, we prove this result by an alternative method in Section 7.

5.2 A counterexample for the Hasse principle

In this section, we show that Conjecture 5.4 does not hold in the case where X is a normal
complete curve over an algebraically closed field. We start with the following lemma.

Lemma 5.5. Suppose that X is a regular scheme. Then

H1(X,Q/Z) =
⋂

p∈X(1)

H1(Spec (OX,p),Q/Z).

For the proof of Lemma 5.5, we use the following fact.

Theorem 5.6. [Zariski-Nagata purity theorem] Let φ: X → S be a finite surjective
morphism of integral schemes with X normal and S regular. Assume that the fiber Xp of
φ above each codimension 1 point p of S is étale over κ(p). Then φ is a finite étale cover.
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Proof of Lemma 5.5. Let K be a field, G = G(Ks/K) and Gλ (λ ∈ Λ) a normal closed
subgroup of G. Suppose that Mλ is the Galois extension field over K which corresponds
to Gλ. Then, according to the infinite Galois theory,

⋂
λ∈ΛMλ corresponds to the closure

of the group which is generated by Gλ (λ ∈ Λ). So the statement follows from Theorem
5.6.

Lemma 5.7. Let X be a regular scheme. Then

Ker


H1(R(X),Q/Z)→

∏

p∈X(1)

H1(R̃(X)
p
,Q/Z)




= Ker


H1(X,Q/Z)→

∏

p∈X(1)

H1(κ(p),Q/Z)


 .

Proof. Let O be a discrete valuation ring and m its maximal ideal. Then the sequence

(5.8) 0→ H1(Spec (O),Q/Z)→ H1(R(Spec (O)),Q/Z)→ H1(R(Spec (Om̄)),Q/Z)

is exact. So, the sequence

0→ H1(X,Q/Z)→ H1(R(X),Q/Z)→
∏

p∈X(1)

H1(R(Spec (OX,p̄)),Q/Z)

is exact by Lemma 5.5 and (5.8).
On the other hand, the sequence

0→
∏

p∈X(1)

H1(Spec (ÕX,p),Q/Z)→
∏

p∈X(1)

H1(R̃(X)
p
,Q/Z)

→
∏

p∈X(1)

H1(R(Spec (OX,p̄)),Q/Z)

is also exact by (5.8).
Let

M =
∏

p∈X(1)

H1(Spec (ÕX,p),Q/Z), M
′

=
∏

p∈X(1)

H1(R̃(X)
p
,Q/Z).

Then the diagram

0 // H1(X,Q/Z) //�� H1(R(X),Q/Z) //�� ∏
p∈X(1) H1(R(Spec (OX,p̄)),Q/Z)��

0 // M // M ′ // ∏
p∈X(1) H1(R(Spec (OX,p̄)),Q/Z)

is commutative. By applying the snake lemma to the above diagram, we see that

Ker


H1(R(X),Q/Z)→

∏

p∈X(1)

H1(R̃(X)
p
,Q/Z)




= Ker


H1(X,Q/Z)→

∏

p∈X(1)

H1(Spec (ÕX,p),Q/Z)
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because OX,p̄ = ÕX,p̄. Moreover,

Ker


H1(X,Q/Z)→

∏

p∈X(1)

H1(Spec (ÕX,p),Q/Z)




= Ker


H1(X,Q/Z)→

∏

p∈X(1)

H1(κ(p),Q/Z)




by Proposition 4.11. So the statement follows.

If X is an algebraic curve of genus g over an algebraically closed field,

H1(X,Q/Z) = Ker


H1(R(X),Q/Z)→

∏

p∈X(0)

H1(R̃(X)
p
,Q/Z)




because of the fact that κ(p) is an algebraically closed field and Lemma 5.7.
Moreover,

H1(X,Q/Z)m = H1(X,Z/mZ)

= (Z/mZ)2g.

So if g 6= 0, the Hasse principle for function fields of curves of genus g and the group of
characters does not hold.

6 The edge maps of the Grothendieck spectral se-

quence

In this section, we characterize the edge maps of the Grothendieck spectral sequence. We
often consider the following assumption in this section.

Assumption 6.1. A,B, C are abelian categories which have enough injective objects.
G : C → B, F : B → A are left exact functors such that G takes injective objects of C to
F -acyclic objects.

We assume that Assumption 6.1 is satisfied. We define a homomorphism of functors
r
p
F,G(A) : RpF (G(A))→ Rp(FG)(A) (for any object A of C) by induction on p so that it

satisfies the following properties.

Property 6.2. (1) If p = 0, r 0
F,G(A) = idFG(A).

(2) Suppose that p > 0 and assume that r iF,G is defined for i ≦ p − 1. Let 0 → A →
I → M → 0 be an exact sequence and I an injective object. Then the following
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commutative diagram

(6.3) Rp−1F (G(I))
r

p−1
F,G

(I) //�� ))SSSSSSSSSSSSSSS Rp−1(FG)(I)��
Rp−1F (G(I)/G(A)) //

δp−1
1 �� Rp−1F (G(M))

r
p−1
F,G

(M)// Rp−1(FG)(M)

δp−1
2��

RpF (G(A))
r

p
F,G

(A)
// Rp(FG)(A)

is commutative where δp−1
1 , δp−1

2 are the connecting homomorphisms.

Note that the vertical sequences are exact. Since G(I) is acyclic, RpF (G(I)) = 0 by
assumption. So the connecting homomorphism δp−1

1 is surjective if p > 0. Therefore,
rpF,G(A) is well-defined.

Proposition 6.4. If sp(A) : RpF (G(A)) → Rp(FG)(A) (p ≥ 0) is a homomorphism of
functors satisfying Property 6.2 (1), (2) above (replacing rpF,G by sp), then sp coincides
with rpF,G for all p ≥ 0.

Proof. Suppose that A is an object of C. If p = 0 then s0(A) = idFG(A) = r0
F,G(A).

We assume that p > 0 and sq = rqF,G for all q < p. Take an exact sequence

0→ A→ I → M → 0

with I injective. Then we have the commutative diagram of the above (1) (replacing
rp−1
F,G , r

p
F,G by sp−1, sp). As we pointed out above, δp−1

1 is surjective. The homomorphism
Rp−1F (G(I)/G(A))→ Rp−1F (G(M)) and the connecting homomorphisms

δp−1
1 : Rp−1F (G(I)/G(A))→ RpF (G(A)), δp−1

2 : Rp−1(FG)(M)→ Rp(FG)(A)

are independent of sp−1, sp. By assumption sp−1(M) = rp−1
F,G(M). Therefore, sp(A) =

rpF,G(A). This proves the proposition.

Moreover if p > 1, δl is an isomorphism. Since the image of the map from Rp−1F (G(I))
to Rp(FG)(A) in the above diagram is 0, r

p
F,G(A) is well-defined. This definition is in-

dependent of the choice of the exact sequence 0 → A → I → M → 0 (I is an injective
object).

Lemma 6.5. (a) Even if I is not an injective object, the diagram (6.3) is commutative.

(b) Suppose that D is an abelian category, H : D → C is a left exact functor which
takes injective objects to FG-acyclic objects, and that GH takes injective objects
to F -acyclic objects. Then the following diagram

RpF (GH(A))

r
p
F,G

(H(A)) �� r
p
F,GH

(A) **UUUUUUUUUUUUUUUUU
Rp(FG)(H(A))

r
p
F G,H

(A)
// Rp(FGH)(A)

is commutative.
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Proof. (a) For an exact sequence 0 → A → I → M → 0 ( I is not always an injective
object), there exists an exact sequence 0 → A→ J → M ′ → 0 (J is an injective object)
such that a diagram

0 // A //
id �� I //�� M //�� 0

0 // A // J // M ′ // 0
is commutative. As RpF,Rp(FG) are δ-functors,

Rp−1F (G(I)/G(A))
δ //�� RpF (G(A)) Rp−1(FG)(M)

δ //�� Rp(FG)(A)

Rp−1F (G(J)/G(A))
δ

// RpF (G(A)) Rp−1(FG)(M ′)
δ

// Rp(FG)(A)

are commutative diagrams. Moreover, the following diagram is commutative:

Rp−1F (G(I)/G(A)) //�� Rp−1F (G(M))
r

p−1
F,G

(M)//�� Rp−1(FG)(M)��
Rp−1F (G(J)/G(A)) //

δ �� Rp−1F (G(M ′))
r

p−1
F,G

(M ′)

// Rp−1(FG)(M ′)

δ��
RpF (G(A))

r
p
F,G

(A)
// Rp(FG)(A).

The statement (a) follows from the above consideration.
(b) Let 0→ A→ I →M → 0 be an exact sequence with I injective. Then

0→ H(A)→ H(I)→ H(I)/H(A)→ 0

is exact. We put N = H(I)/H(A). By the statement (a), the diagram

Rp−1F (GH(I)/GH(A))�� // Rp−1F (G(H(I)/H(A)))
rp−1
F,G

(N)// Rp−1FG(H(I)/H(A))��
RpF (GH(A))

rp
F,GH

(A)
// Rp(FG)(H(A))

is commutative. By the definition of rp−1
FG,H , the diagram

Rp−1(FG)(H(I)/H(A))�� // Rp−1(FG)(H(M))
rp−1
F G,H(M)// Rp−1(FGH)(M)��

Rp(FG)(H(A))
rp
F G,H

(A)
// Rp(FGH)(A)
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is commutative. Moreover, since rp−1
F,G is functorial, the diagram

Rp−1F (G(H(I)/H(A)))�� rp−1
F,G

(N)// Rp−1(FG)(H(I)/H(A))��
Rp−1F (GH(M))

rp−1
F,G

(H(M))

// Rp−1(FG)(H(M))

is also commutative. Therefore the diagram

Rp−1F (GH(I)/GH(A)) //�� Rp−1F (GH(M))
rp−1
F G,H

(M)◦rp−1
F,G

(H(M)) // Rp−1(FGH)(M)��
RpF (GH(A))

rp
F G,H

(A)◦rp
F,G

(H(A))
// Rp(FGH)(A)

is commutative. By induction, rp−1
FG,H(M) ◦ rp−1

F,G(H(M)) = rp−1
F,GH(M). So by (b) by the

induction. rpFG,H(A) ◦ rpF,G(H(A)) = rpF,GH(A). This proves (b).

Proposition 6.6. Suppose that A, B, C, F : C → B and G: A → B satisfy Assumption
6.1. Let aF,G: id→ GH be the canonical adjoint functor. Then npF,G(A):

RpF (A)→ RpF (GH(A))
rp
F,G

(H(A))
→ RpFG(H(A))

is a homomorphism of δ-functors, i.e, when 0→ A→ B → C → 0 is exact, the diagram

Rp−1F (C) //�� Rp−1FG(H(C))��
RpF (A) // RpFG(H(A))

is commutative.

Proof. If 0→ A→ B → C → 0 is exact, the following diagram is commutative.

0 // A //
aG,H(A) �� B //

aG,H(B) �� C //
āG,H �� 0

0 // GH(A) // GH(B) // GH(B)/GH(A) // 0
where the right vertical map is induced by aF,G(C), i.e, āG,H satisfies the following com-
mutative diagram

(6.7) C // &&MMMMMMMMMMMM GH(B)/GH(A)��
GH(C).
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The diagram

(6.8) Rp−1F (C) //�� Rp−1F (GH(B)/GH(A))��
RpF (A) // RpF (GH(A))

is commutative. Moreover the diagram

(6.9) Rp−1F (C) // ))TTTTTTTTTTTTTTT Rp−1F (GH(B)/GH(A))��
Rp−1F (GH(C)).

is commutative. So the statement follows.

Proposition 6.10. Let K be a field, K ′/K a field extension, X = Spec (K) and X ′ =
Spec (K ′). Let i : X ′ → X be the morphism of schemes which corresponds to the inclusion
map K → K ′. Suppose that F is the functor which associates to an étale sheaf F on X
the module of its sections Γ(X,F) and that G is the functor i∗ : SX′

et
→ SXet

(the direct
image). Then rpF,G(F) : Hp(Xet, i∗(F))→ Hp(X ′et,F) coincides with

(6.11) Hp(GK ,M
ψ(GK′ )
GK

(NKer(ψ)))
≃ // Hp(ψ(GK ′), NKer(ψ))

Inf // Hp(GK ′, N)

where the first map is the isomorphism by Shapiro’s Lemma. See [S1, p.13, I,§2 Propo-
sition 10] for Shapiro’s Lemma and [S2, p.116, VII, §5] for the definition of the inflation
Inf.

Proof. The category SXet
is equivalent to the category GK-mod

(see [Me, p.53, II.Theorem.1.9]). If F ∈ SXet
, corresponds to a GK-module N , i∗(F)

corresponds to the induced module M
ψ(GK′ )
GK

(NKer(ψ)) (see [Me, p.69, II.Remarks 3.1 (e)]
and also [S1, p.13, I, 2.5] for the notation). Then rpF,G(F) and the homomorphism (6.11)
satisfy Property 6.2. So the proof is complete.

Let X, Y be quasi-compact schemes such that every finite subset is contained in an
affine open set. Let f : Y → X be a morphism of schemes and F a sheaf on Yet. If
U = (Ui → X)i∈I is a covering of X, U ′ = (Ui ×X Y → Y )i∈I is a covering of Y . So,
the natural map from the Čech cohomology of f∗(F) with respect to U into the Čech
cohomology of F with respect to U ′

Hp(U/X, f∗(F))→ Hp(U ′/Y,F)

is given. This map induces a map Ȟ
p
(X, f∗(F)) → Ȟ

p
(Y,F) from the Čech cohomology

of f∗(F) over X into the Čech cohomology of F over X ′. Čech étale cohomology groups
agree with derived functor étale cohomology groups (see [Me, p.104, III, Theorem 2.17]).
So the above map induces the map

(6.12) Hp(X, f∗(F))→ Hp(Y,F).

Then we have the following fact.
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Proposition 6.13. Let the notations X, Y, f : Y → X and F be the same as above. Then
the homomorphism (6.12) coincides with rpF,G where F is the functor which associates to
an étale sheaf F the module of its sections Γ(X,F) and G is the direct image f∗ .

Proof. This proposition also follows from Proposition 6.2.

Proposition 6.14. Let the notations X, Y , f : Y → X, F , F and G be the same as
above. Moreover, let k be a field and X = Spec (k). Then rpF,G coincides with rpF ′,G′ where
G′ is Γ(X ⊗k ks,F) and F ′ is the action of G(ks/k).

Corollary 6.15. Let k be a field. Then

Br(k) = Br(P1
k).

Proof. It is easy to show that the natural map Br(k) → Br(P1
k) is injective. So it is

sufficient to show that this map is surjective. By the Hochschild-Serre spectral sequence
Hp(Gk,H

q(P1
ks
,Gm)) ⇒ Hn(P1

k,Gm) (cf, [Me, p.105, III, Theorem 2.20]), we have the
following exact sequence

(6.16) Br(k)→ Ker
(
Br(P1

k

)
→ Br(P1

ks
))→ H1(k,Pic(P1

ks
))

(cf, [Me, p.309, Appendix B]). Then the homomorphism

Br(k)→ Ker
(
Br(P1

k

)
→ Br(P1

ks
))

is the canonical map by Proposition 6.14 and Lemma 6.26. On the other, H1(k,Pic(P1
ks

)) =
H1(k,Z) = 0 because Z is torsion free and Br(P1

ks
) = 0 by [G, III, Corollary 5.8]. So the

statement follows.

Suppose that Assumption 6.1 is satisfied. Let

0→ A→ I0 d0

→ I1 d1

→ · · ·
dp−1

→ Ip
dp

→ Ip+1 dp+1

→ · · ·

be an injective resolution of A. Then, by definition

Rp(FG)(A) = Ker(FG(dp))/ Im(FG(dp−1)),

RpG(A) = Ker(G(dp))/ Im(G(dp−1)).

So

(6.17) Im(FG(dp−1)) ⊂ F (Im(G(dp−1))).

Since F is left exact functor, the natural map F (Ker(G(dp))) → Ker(FG(dp)) is an
isomorphism. Therefore we can define a homomorphism of functors

l
p
F,G(A) : Rp(FG)(A)→ F (RpG(A))
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so that the following diagram is commutative.

(6.18)

Ker(FG(dp))
≃
←−−− F (Ker(G(dp)))y

y

Rp(FG)(A)
lp
F,G

(A)
−−−−→ F (RpG(A))

.

Note that lpF,G(A) is well-defined by (6.17). Also since Ker(FG(dp)) → Rp(FG)(A) is
surjective, this property characterizes lpF,G(A).

Lemma 6.19. (a) If 0 → A → B → C → 0 is an exact sequence, then the following
diagram

Rp(FG)(C)
δ //

l
p
F,G

(C) �� Rp+1(FG)(A)

l
p+1
F,G

(A)��
F (RpG(C))

F (δ)
// F (Rp+1(G)(A))

is commutative.

(b) Suppose that H : D → C takes injective objects to G-acyclic and FG-acyclic objects
and that GH takes injective objects to F -acyclic objects. Then we have

l
p
FG,H(A) = F (lpG,H(A)) ◦ l

p
F,GH(A).

Proof. We first prove the statement (a). Let

0→ A→ I0
A

d0
A→ I1

A

d1
A→ · · ·

dp−1
A→ IpA

dp
A→ Ip+1

A

dp+1
A→ · · ·

0→ C → I0
C

d0
C→ I1

C

d1
C→ · · ·

dp−1
C→ IpC

dp
C→ Ip+1

C

dp+1
C→ · · ·

be injective resolutions of A and C. Let IpA → IpA ⊕ IpC , IpA ⊕ IpC → IpC be the natural
homomorphisms. Then there exists an injective resolution of B in the form

0→ B → I0
A ⊕ I

0
C

d0
B→ I1

A ⊕ I
1
C

d1
B→ I1

A ⊕ I
2
C

d2
B→ · · ·

which makes the following diagram

0 // A //�� I0
A

d0
A //�� I1

A

d1
A //�� I2

A

d2
A //�� · · ·

0 // B //�� I0
A ⊕ I

0
C

d0
B //�� I1

A ⊕ I
1
C

d1
B //�� I1

A ⊕ I
2
C

d2
B //�� · · ·

0 // C // I0
C

d0
C // I1

C

d1
C // I2

C

d2
C // · · ·

commutative (see [W, p.37, 2.2.8]).
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Let sp : IpC → IpA ⊕ I
p
C be the natural homomorphism. Then there exists a homomor-

phism δ̄ : Ker(dpC)→ Ker(dp+1
A ) which makes the following diagram

Ker(dpC)
δ̄ //�� Ker(dp+1

A ) // Ip+1
A��

IpC
sp // IpA ⊕ IpC dp

B // Ip+1
A ⊕ Ip+1

C .

commutative. Since G is left exact,

G(Ker(dpC)) ≃ Ker(G(dpC)), G(Ker(dp+1
A )) ≃ Ker(G(dp+1

A )).

Moreover G(sp) is also the natural homomorphism. So

(6.20) Ker(G(dpC))
G(δ̄) //�� Ker(G(dp+1

A ))��
Rp(G)(C)

δ // Rp+1(G)(A)

is a commutative diagram by the construction of δ. Since F is left exact also, the diagram

Ker(FG(dpC)) ∼= F (Ker(G(dpC)))
FG(δ̄)//�� F (Ker(G(dp+1

A )))�� ∼= Ker(FG(dp+1
A ))

F (Rp(G)(C))
F (δ) // F (Rp+1(G)(A))

is commutative. On the other hand, the diagram

Ker(FG(dpC))
FG(δ̄)//�� Ker(FG(dp+1

A ))��
Rp(FG)(C)

δ // Rp+1(FG)(A)

is commutative as above. So the statement (a) follows from the above consideration.
We next prove the statement (b). Since the functor H : D → C takes injective objects

to G-acyclic objects, the diagram

Ker(GH(dp))�� G(Ker(H(dp)))��≃oo
Rp(GH)(A)

lp
G,H

(A) // G(RpH(A))

is commutative. By applying the functor F : B → A,

F (Ker(GH(dp)))�� FG(Ker(H(dp)))��≃oo
F (Rp(GH)(A))

F (lp
G,H

(A)) // FG(RpH(A))
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is commutative. Moreover, since GH : D → B takes injective objects to F -acyclic objects,
the diagram

Ker(FGH(dp))�� F (Ker(GH(dp)))��≃oo
Rp(FGH)(A)

lp
F,GH

(A) // F (RpGH(A))

is commutative. So the diagram

(6.21) Ker(FGH(dp))�� F (Ker(GH(dp)))≃oo FG(Ker(H(dp)))��≃oo
Rp(FGH)(A)

F (lp
G,H

(A))◦lp
F,GH

(A) // FG(RpH(A))

is commutative.
On the other hand, H : D → C takes injective objects to FG-acyclic objects, the

diagram

(6.22) Ker(FGH(dp))�� FG(Ker(H(dp)))��≃oo
Rp(FGH)(A)

lp
F G,H

(A) // FG(RpH(A))

is commutative. The statement (b) follows from the commutative diagrams (6.21) and
(6.22).

Remark 6.23. The functor lpF,G(A): Rp(FG)(A) → F (RpG(A)) is characterized by the
following properties.

(1) l0F,G(A) = idFG(A).

(2) lpF,G(A) satisfies the property of Lemma 6.19 (a).

Proposition 6.24. Let X be a connected regular scheme and g : Spec (K) → X the
generic point. Let F be the functor F → Γ(X,F) and G the direct image g∗. For x ∈ X,
let x̄ be the spectrum of the separable closure k(x)s of k(x). Then we have

Ker(lpF,G(F ′)) = Ker

(
Hp(Spec (K),F ′)

Res
→
∏

x∈X

Hp(Spec (Kx̄), F̃ ′x)

)

for any p > 0.

Proof. Let ux : x̄ → x →֒ X be the composition of the canonical morphisms x̄ → x
and x →֒ X, F ′ ∈ SSpec (K)et

, ix : Spec (Kx̄) → Spec (K) the canonical morphism and

F̃ ′x = i∗xF
′. Then the composition of the homomorphisms

Hp(Spec (K),F ′)
lp
F,G

(F ′)
−−−−→ Γ(X,Rpg∗(F

′))→Γ(X, ux ∗ux
∗(Rpg∗(F

′)))

=Rpg∗(F
′)x̄

≃Hp(Spec (Kx̄), F̃ ′x)(6.25)
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and the restriction map Res : Hp(Spec (K),F ′)→ Hp(Spec (Kx̄), F̃ ′x) satisfy the following
property which characterizes the homomorphism (see Remark 6.23).

(1) H0(Spec (K),F ′)→ H0(Spec (Kx̄), F̃ ′x) is the natural map.

(2) If 0→ F ′ → F ′′ → F ′′′ → 0 is an exact sequence of SSpec (K)et
, the diagram

Hp(Spec (K),F ′′′) δ //�� Hp+1(Spec (K),F ′)��
Hp(Spec (Kx̄), F̃ ′′′x) δ

// Hp+1(Spec (Kx̄), F̃ ′x)

is commutative.

So the homomorphism (6.25) coincides with the restriction map Res. Moreover F →∏

x∈X

ux ∗ux
∗(F) is injective for F ∈ SXet

(see [Me, p.90, Remark 1.20 (c)]). Therefore the

proof is complete.

Lemma 6.26. (see [W, p.150, The Grothendieck spectral sequence 5.8.3]) Under Assump-
tion 6.1, r

p
F,G(F), lpF,G(F) coincide with edge maps which are induced by the Grothendieck

spectral sequence Rp F (Rq G(F))⇒ Rp+q(FG)(F).

Proof. The proof of Lemma 6.26 relates to the construction of the Grothendieck spectral
sequence. So we review the proof of the Grothendieck spectral sequence ([W, p.150,
5.8.3]). Let C∗,∗ be a double complex in an abelian category, i.e., C∗,∗ has homomorphisms
dp,qh : Cp,q → Cp+1,q and dp,qv : Cp,q → Cp,q+1 satisfying

dp+1,q
h dp,qh = 0, dp,q+1

v dp,qv = 0, dp,q+1
h dp,qv + dp+1,q

v dp,qv = 0.

Then we can define the differential dpt of the total complex (tot(C∗,∗))p =
⊕

i+j=p

Ci,j as the

homomorphism satisfying the following commutative diagram

Ci,j //
dp,q

h
⊕dp,q

v �� (tot(C∗,∗))p

dp
t��

Ci+1,j ⊕ Ci,j+1 // (tot(C∗,∗))p+1.

Let Hq
v(C

p,∗) = Ker(dp,qv )/ Im(dp,q−1
v ) and Hp

h(C
∗,q) = Ker(dp,qh )/ Im(dp−1,q

h ).
Then dp,qh , dp,qv induce homomorphisms

d̄p,qh : Hq
v(C

p,∗)→ Hq
v(C

p+1,∗), d̄p,qv : Hp
h(C

∗,q)→ Hp
h(C

∗,q+1).

Let

Hp
h Hq

v(C
∗,∗) = Ker(d̄p,qh )/ Im(d̄p−1,q

h )

Hq
v Hp

h(C
∗,∗) = Ker(d̄p,qv )/ Im(d̄p,q−1

v ).
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Then there exist spectral sequences ([W, p.135, 5.5.1])

(6.27)
IE

p,q
2 = Hp

h Hq
v(C

∗,∗)⇒ Hp+q(tot(C∗,∗)),

IIE
p,q
2 = Hp

v Hq
h(C

∗,∗)⇒ Hp+q(tot(C∗,∗)).

Note that Hp
v Hq

h(C
∗,∗) = Ker(d̄q,pv )/ Im(d̄q,p−1

v ). Also note that IE
p,q
2 is a subquotient

of Cp,q whereas IIE
p,q
2 is a subquotient of Cq,p. Here the edge map Hq(tot(C∗,∗)) →

H0
h Hq

v(C
∗,∗) of IE

p,q
2 = Hp

h Hq
v(C

∗,∗) ⇒ Hp+q(tot(C∗,∗)) is induced by the natural homo-
morphism ⊕

i+j=q

Ci,j → C0,q → C0,q/ Im(d0,q−1
v )

and the edge map Hp
h H0

v(C
∗,∗)→ Hp(tot(C∗,∗)) of IE

p,q
2 = Hp

h Hq
v(C

∗,∗)⇒ Hp+q(tot(C∗,∗))
is induced by the natural homomorphism

(6.28) Ker(dp,0v )→ Cp,0 →
⊕

i+j=p

Ci,j.

The edge map Hp(tot(C∗,∗)) → H0
v Hp

h(C
∗,∗) of IIE

p,q
2 = Hp

v Hq
h(C

∗,∗) ⇒ Hp+q(tot(C∗,∗)) is
induced by the natural homomorphism

(6.29)
⊕

i+j=p

Ci,j → Cp,0 → Cp,0/ Im(dp−1,0
h )

and the edge map Hp
v H0

h(C
∗,∗)→ Hp(tot(C∗,∗)) of IIE

p,q
2 = Hp

v Hq
h(C

∗,∗)⇒ Hp+q(tot(C∗,∗))
is induced by the natural homomorphism

(6.30) Ker(d0,p
h )→ C0,p →

⊕

i+j=p

Ci,j.

Let F be an object of B,

0→ F → I0
F

d0
F−→ I1

F

d1
F−→ I2

F

d2
F−→ · · ·

an injective resolution of F and J∗,∗F a Cartan-Eilenberg resolution of the complex G(I∗F)
(where

0→ G(IpF)→ Jp,0F → Jp,1F → · · ·

is an injective resolution of G(IpF)), dp,qF ,h: J
p,q
F → Jp+1,q

F the horizontal differential, dp,qF ,v:

Jp,qF → Jp,q+1
F the vertical differential and C∗,∗F = F (J∗,∗F ). Note that the vertical (resp.

the horizontal) differential dp,qF ,v (resp. dp,qF ,h) of C∗,∗F corresponds to dp,qv (resp. dp,qh ) of the
above Cp,q.

We have two spectral sequences

IE
p,q
2 = Hp

h Hq
v(C

∗,∗
F )⇒ Hp+q(tot(C∗,∗F )),

IIE
p,q
2 = Hp

v Hq
h(C

∗,∗
F )⇒ Hp+q(tot(C∗,∗F )).
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Since J∗,∗F is a Cartan-Eilenberg resolution, Im(dp−1,q
F ,h ), Ker(dp,qF ,h) and H(dp,qF ,h) =

Ker(dp,qF ,h)/ Im(dp−1,q
F ,h ) are injective objects. So exact sequences

0→ Ker(dp,qF ,h)→ Cp,q
F → Im(dp−1,q

F ,h )→ 0(6.31)

0→ Im(dp−1,q
F ,h )→ Ker(dp,qF ,h)→ H(dp,qF ,h)→ 0

split and

Im(F (dp,qF ,h)) ≃ F (Im(dp,qF ,h)) F (Ker(dp,qF ,h))/F (Im(dp−1,q
F ,h )) ≃ F (H(dp,qF ,h)).

Therefore

(6.32) Ker(F (dp,qF ,h))/ Im(F (dp−1,q
F ,h )) ≃ F (H(dp,qF ,h)).

It follows from the above isomorphism that the complex Hq
h(C

∗,∗
F ) = H(F (d q,∗F ,h)) is given

by applying F to an injective resolution of RqG(F). So IIE
p,q
2
∼= Rp F (Rq G(F)).

On the other hand, since G(I∗F) is F -acyclic objects, the complex Cp,∗
F is exact and

Hq
v(C

∗,∗
F ) = 0 if q > 0. So IE

p,0
2
∼= Rp(FG)(F) and Rp(FG)(F) ≃ Hp(tot(C∗,∗F )) through

the edge map Hp
h H0

v(C
∗,∗
F ) → Hp(tot(C∗,∗F )) of the first spectral sequence of (6.27). So

we obtain a spectral sequence Rp F (RqG(F)) ⇒ Rp+q(FG)(F), which is called the
Grothendieck spectral sequence. By using the natural homomorphisms (6.28) and (6.29)
we see that the edge map Rn(FG)(F) → F (RnG(F)) is induced by the natural homo-
morphism

(6.33) Ker(F (dn,0F ,v))→ Cn,0
F / Im(F (dn−1,0

F ,h )).

It satisfies the following commutative diagram
(6.34)

Ker(F (dn,0F ,v))
(6.33) // Cn,0

F / Im(F (dn−1,0
F ,h ))

Ker(F (d̄n,0F ,h)) = Ker(F (dn,0F ,v)) ∩Ker(F (dn,0F ,h))

OO //�� Ker(F (dn,0F ,h))/ Im(F (dn−1,0
F ,h ))

the inclusion map

OO
Ker(F (d̄n,0F ,h))/ Im(F (d̄n−1,0

F ,h ))
the edge map // Ker(F (d̄n,0F ,v))

the inclusion map

OO
Rn(FG)(F)

≃

OO
F (RnG(F))

≃

OO
Ker(FG(dnF))/ Im(FG(dn−1

F )) F (Ker(G(dnF))/ Im(G(dn−1
F ))).

Moreover, the following diagrams

(6.35) Ker(FG(dnF))
≃ //�� Ker(F (dn,0F ,v)) ∩Ker(F (dn,0F ,h))��

Ker(FG(dnF))/ Im(FG(dn−1
F )) // Ker(F (d̄n,0F ,h))/ Im(F (d̄n−1,0

F ,h )),
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(6.36) Ker(F (dn,0F ,v))/ Im(F (dn−1,0
F ,h ))

≃

(6.32) **TTTTTTTTTTTTTTT
F (Ker(G(dnF))/ Im(G(dn−1

F )))

OO // F (H(dn,0F ,h))

are commutative.
Since the homomorphism F (RnG(F)) → F (H(dn,0F ,h)) is injective, to show that the

edge map Rn(FG)(F)→ F (RnG(F)) coincides with lnF,G(F), it suffices to show that the
composition

F (Ker(G(dnF)))→ Ker(FG(dnF))→ Rn(FG)(F)
the edge map
−−−−−−−→ F (RnG(F))→ F (H(dn,0F ,h))

coincides with

F (Ker(G(dnF)))→ Ker(FG(dnF))→ Rn(FG)(F)
lnF,G(F)
−−−−→ F (RnG(F))→ F (H(dn,0F ,h))

c.f,(6.18)
= F (Ker(G(dnF)))

the natural homomorphism
−−−−−−−−−−−−−−−→ F (H(dn,0F ,h)).

This follows from the above diagrams (6.34), (6.35) and (6.36).
Therefore this edge map agrees with lnF,G(F).
We next prove that the edge map RpF (G(F)) → RpFG(F) coincides with rpF,G(F).

For that purpose it is sufficient to prove that the edge map satisfies (2) of Property 6.2.
We prove Lemma 6.5 (a) which does not assume that F2 is an injective object and implies
Property 6.2 (2) (which assumes that F2 is an injective object). Suppose that

0→ F1
f
→ F2

g
→ F3 → 0

is an exact sequence (F2 is not always an injective object) and that

0→ F1 → I0
F1
→ I1

F1
→ · · · , 0→ F3 → I0

F3
→ I1

F3
→ · · ·

are injective resolutions of F1 and F3. Then there exist an injective resolution of the form

0→ F2 → I0
F1
⊕ I0

F3
→ I1

F1
⊕ I1

F3
→ · · ·

and chain maps f ∗1 : I∗F1
→ I∗F1

⊕ I∗F3
, g∗1: I

∗
F1
⊕ I∗F3

→ I∗F3
lifting f and g. Then

0→ I∗F1

f∗1→ I∗F1
⊕ I∗F3

g∗1→ I∗F3
→ 0

is an exact sequence by the Horseshoe Lemma [W, p.37, 2.2.8].
Moreover suppose that G(IpF1

)→ Jp,∗F1
, G(IpF3

)→ Jp,∗F3
are Cartan-Eilenberg resolutions

of G(IpF1
) and G(IpF3

). Then there exist a Cartan-Eilenberg resolution G(IpF1
)⊕G(IpF3

)→
Jp,∗F2

and homomorphisms of double complexes f p,q2 : Jp,qF1
→ Jp,qF2

, gp,q2 : Jp,qF2
→ Jp,qF3

lifting
f p1 and gp1 for all p, q such that

(6.37) 0→ Jp,qF1

fp,q
2→ Jp,qF2

gp,q
2→ Jp,qF3

→ 0
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is exact. Since Jp,qF1
, Jp,qF2

are injective objects, it splits and there exists a section sp,qg :
Jp,qF3
→ Jp,qF2

of gp,q2 .
Let Cp,q

F2
= F (Jp,qF2

) and Cp,q
F3

= F (Jp,qF3
) as above. Then the homomorphism δ̄p,qt

Cp,q
F3

F (sp,q
g )

−−−−→ Cp,q
F2

F (dp,q
F2,h

)⊕F (dp,q
F2,v

)

−−−−−−−−−−−→ Cp+1,q
F2

⊕ Cp,q+1
F2

induces the connecting homomorphism δ : Hn(tot(F3))→ Hn+1(tot(F1)).
On the other hand, since G(IpF1

) → Jp,∗F1
, G(IpF3

) → Jp,∗F3
are Cartan-Eilenberg resolu-

tions of G(I∗F1
) and G(I∗F3

) and the exact sequence (6.37) splits, rows and columns of the
commutative diagram

(6.38) 0�� 0�� 0��
0 // G(F1) //�� Ker(d0,0

F1,h
) //�� Ker(d0,1

F1,h
) //�� · · ·

0 // G(F2) // Ker(d0,0
F2,h

) // Ker(d0,1
F2,h

) // · · ·
are exact. Let f p3 : Ker(d0,p

F1,h
) → Ker(d0,p

F2,h
) be the homomorphism which is induced by

the homomorphism f 0,p
2 : I0,p

F1
→ I0,p

F2
. Since Ker(d0,p

F1,h
),Ker(d0,p

F2,h
) are injective objects,

the exact sequence

(6.39) 0→ Ker(d0,p
F1,h

)
fp
3−→ Ker(d0,p

F2,h
)→ Coker(f p3 )→ 0

splits and Coker(f p3 ) is an injective object. Then

(6.40) 0→ G(F2)/G(F1)→ Coker(f 0
3 )→ Coker(f 1

3 )→ · · ·

which is induced by the commutative diagram (6.38) is an injective resolution ofG(F2)/G(F1).
The reason is the following. Let

A0 = Im(Ker(d0,0
F1,h

)→ Ker(d0,1
F1,h

)) = Coker(G(F1)→ Ker(d0,0
F1,h

)),

B0 = Im(Ker(d0,0
F2,h

)→ Ker(d0,1
F2,h

)) = Coker(G(F2)→ Ker(d0,0
F2,h

)),

C0 = Im(Coker(f 0
3 )→ Coker(f 1

3 )).

Then the homomorphism B0 → C0 is surjective. Moreover, by chasing the diagram

(6.41) 0�� 0�� 0��
0 // A0 //�� Ker(d0,1

F1,h
) //�� Ker(d0,2

F1,h
)��

0 // B0 //�� Ker(d0,1
F2,h

) //�� Ker(d0,2
F2,h

)��
0 // C0 // Coker(f 1

3 ) // Coker(f 2
3 )
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whose rows and columns are exact except for the far left column and the bottom row, we
see that the sequence

0→ A0 → B0 → C0

is exact. Therefore, it follows from the 3-3 lemma (see [W], p.11, Exercise 1.3.2) that the
sequence

0→ G(F2)/G(F1)→ Coker(f 0
3 )→ C0 → 0

is exact. So the sequence (6.40) is an injective resolution of G(F2)/G(F1) by induction.
Since the exact sequence (6.39) splits, there exists a section sph: Coker(f p3 )→ Ker(d0,p

F2,h
)

of the natural map Ker(d0,p
F2,h

) → Coker(f p3 ). Then we have the homomorphism δ̄p which
satisfies the following diagram

F (Coker(f p3 ))

F (sp
h
) �� δ̄p // F (Ker(d0,p+1

F1,h
))��

F (Ker(d0,p
F2,h

))
F (d̃0,p

F2,v
)

// F (Ker(d0,p+1
F2,h

))

where d̃
0,p
F2,v

is induced from d
0,p
F2,v

. Moreover δ̄p induces the connecting homomorphism

RpF (G(F2)/G(F1))→ Rp+1F (G(F1)).

For all F ∈ C, we denote by ipF the natural inclusion map F (Ker(d0,p
F ,h)) →֒ C0,p

F . Let

jp be the natural inclusion map F (Coker(f p3 )) →֒ F (Ker(d0,p
F3,h

)). Then, since the diagram

F (Ker(d0,p
F2,h

)) //�� C0,p
F2��

F (Coker(f p3 )) // C0,p
F3

is commutative, the homomorphism

(6.42) F (Coker(f p3 ))
F (sp

h
)

−−−→ F (Ker(d0,p
F2,h

))
ip
F2
→֒ C0,p

F2

F (g0,p
2 )

−−−−→ C0,p
F3

coincides with the homomorphism

(6.43) F (Coker(f p3 ))
F (sp

h
)

−−−→ F (Ker(d0,p
F2,h

))→ F (Coker(f p3 ))
jp

→֒ F (Ker(d0,p
F3,h

))
ip
F3
→֒ C0,p

F3
.

Also, since F (sph) is a section of the natural homomorphism

F (Ker(d0,p
F2,h

))→ F (Coker(f p3 )),

the homomorphism (6.43) coincides with the homomorphism

(6.44) F (Coker(f p3 ))
jp

→֒ F (Ker(d0,p
F3,h

))
ip
F3
→֒ C0,p

F3
.
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Moreover, since F (s0,p
g ) is a section of the homomorphism F (g0,p

2 ), the homomorphism
(6.44) coincides with the homomorphism

F (Coker(f p3 ))
jp

→֒ F (Ker(d0,p
F3,h

)))
ip
F3
→֒ C0,p

F3

F (s0,p
g )

−−−−→ C0,p
F2

F (g0,p
2 )

−−−−→ C0,p
F3
.(6.45)

So the homomorphism (6.42) coincides with (6.45). Then

Im(F (s0,p
g ) ◦ ipF3

◦ jp − ipF2
◦ F (sph)) ⊂ C0,p

F1

by the above relation. Then

(F (d0,p
F2,v

) ◦ F (s0,p
g )) ◦ ipF3

◦ jp − ip+1
F1
◦ δ̄p

=F (d0,p
F2,v

) ◦ (F (s0,p
g ) ◦ ipF3

◦ jp − ipF2
◦ F (sph))

=F (d0,p
F1,v

) ◦ (F (s0,p
g ) ◦ ipF3

◦ jp − ipF2
◦ F (sph)).

Moreover since Im(ipF2
◦ F (sph)) ⊂ Ker(F (d0,p

F2,h
)),

(F (d0,p
F2,h

) ◦ F (s0,p
g )) ◦ ipF3

◦ jp

=F (d0,p
F2,h

) ◦ (F (s0,p
g ) ◦ ipF3

◦ jp − ipF2
◦ F (sph))

=F (d0,p
F1,h

) ◦ (F (s0,p
g ) ◦ ipF3

◦ jp − ipF2
◦ F (sph)).

Let ip,qF : Cp,q
F →֒

⊕

i+j=p+q

Ci,j
F be the natural inclusion map. Then

Im(δ̄0,p
t ◦ i

p
F3
◦ jp − i0,p+1

F1
◦ ip+1
F1
◦ δ̄p)

⊂ Im
(
(F (d0,p

F1,h
)⊕ F (d0,p

F1,v
))
)

=Im(F (dpF1,t
) ◦ i0,pF1

)

Moreover, the homomorphism

F (Ker(d0,p
F1,h

))
ip
F1
→֒ C0,p

F1

i0,p
F1
→֒
⊕

i+j=p

Ci,j
F1

which corresponds to the natural homomorphism (6.30) induces the edge map

Hp
v H0

h(C
∗,∗
F1

)→ Hp(tot(C∗,∗F1
)).

δ̄0,p
t ◦ i

p
F3
◦ jp corresponds to the homomorphism

RpF (G(F2/G(F1)))→ RpF (G(F3))→ Rp(FG)(F3)→ Rp+1(FG)(F1)

and i0,p+1
F1

◦ ip+1
F1
◦ δ̄p corresponds to the homomorphism

RpF (G(F2/G(F1)))→ Rp+1F (G(F1))→ Rp+1(FG)(F1).

This means that the edge map satisfies (2) of Property 6.2.
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7 The proof of the main result

This section make reference to [Me, pp.106-107, III, Example 2.22]. Let X be a regular
integral quasi-compact scheme and g : Spec(K) → X the generic point. For v ∈ X(1),

let iv : v →֒ X be the canonical map and DX =
⊕

v∈X(1)

iv ∗(Z). Then, we have the exact

sequence

(7.1) 0→ Gm → g∗(Gm,K)→ DX → 0

so that we have the long exact sequence of étale cohomology

(7.2) · · · → Hn(X,Gm)→ Hn(X, g∗(Gm,K))→ Hn(X,DX)→ · · · .

Using the Leray spectral sequence

Hp(X,Rqiv∗(Z))⇒ Hp+q(Spec(κ(v)),Z)

for iv : v →֒ X, we have the injective homomorphism H1(X, iv ∗(Z))→ H1(Spec(κ(v)),Z).
On the other hand, since Z has no finite subgroups,

H1(Spec(κ(v)),Z) = Homconts(Gκ(v),Z) = 0

where Homconts is the set of continuous homomorphisms. So H1(X,DX) = 0 andR1iv ∗(Z) =
0. Also, since Q is uniquely divisible, Hr(κ(v),Q) = 0 for any r > 0. So Hr(κ(v),Q/Z) =
Hr−1(κ(v),Z). Therefore, we have the exact sequence

(7.3) 0→ H2(X,Gm)→ H2(X, g∗(Gm,K))→ H2(X,DX)

and
H2(X,DX) →֒ H2(κ(v),Z) = H1(κ(v),Q/Z) = X(G(κ(v)s/κ(v))).

Moreover, Hp(X, g∗(Gm,K)) can be expressed by a group cohomology in the following
Lemmas 7.4 and 7.8.

Lemma 7.4. Let X be a regular integral quasi-compact scheme, K = R(X) and g :
SpecK → X the generic point of X. Then

H2(X, g∗(Gm,K)) = Ker


Br(K)

Res
→

∏

x∈X(0)

Br(Kx̄)


 .

Proof. In general, for a spectral sequence Ep,q
2 ⇒ Hp+q, we have the exact sequence

E0,1
2 → E2,0

2

the edge map
−−−−−−−→ E2

1 → E1,1
2

where E2
1 = Ker(H2 → E0,2

2 ). Since

(7.5) R1g*(Gm) = 0

47



by [Me, p.89, III, Remark 1.17 (a)] and Hilbert Theorem 90, considering (7.5) for the
Leray spectral sequence

Ep,q
2 = Hp(X,Rqg∗(Gm))⇒ Hp+q(Spec(K),Gm),

we see that

H2(X, g∗(Gm,K)) = Ker
(
H2(Spec(K),Gm)→ H0(X,R2g∗(Gm))

)
.

Therefore, we have

(7.6) H2(X, g∗(Gm,K)) = Ker

(
Br(K)

Res
→
∏

x∈X

Br(Kx̄)

)

by Proposition 6.24 and Lemma 6.26.
Moreover, it follows from the definition of the étale neighborhood of x̄ ([Me, p.38, I,

Remark 4.11]) and the fact that a flat morphism satisfies the going-down theorem [M,
Theorem 9.5] that Kx̄ ⊂ Kȳ for x ∈ ¯{y} . Therefore, we can replace x ∈ X by x ∈ X(0)

in (7.6). So the proof is complete.

Remark 7.7. Suppose that A is a regular integral domain with dim(A) = 1 which contains
a field k and m is a positive integer with (ch(k), m) = 1. For x ∈ Spec (A), Br(Kx̄)m = 0
(cf, [S1, p.111, Appendix, §2]). Therefore

Br(K)m ⊂ H2(X, g∗(Gm,K)).

Moreover, suppose that k is a perfect field. Then

Br(K) = H2(X, g∗(Gm,K))

by Lang’s theorem [S2, p.162, X, §7].

Lemma 7.8. Let A be a Henselian discrete valuation ring, K its quotient field , k its
residue field and Knr its maximal unramified extension. Then

Hp(Spec (A), g∗(Gm)) = Hp(Knr/K, (Knr)
∗)

for any p > 0.

Proof. Let i : Spec (k)→ Spec (A) be the natural map. Then, i∗ is exact. Let (set) be the
class of all separated étale morphisms and f : Xet → Xset the continuous morphism which
is induced by identity map on X. Then f∗ is exact by [Me, p.112, (b) of Examples 3.4].
Let (fet) be the class of all finite étale morphisms and f ′: Xset → Xfet the continuous
morphism which is induced by identity map on X.

Let Y → X be a separated étale morphism with Y connected, R(Y ) the ring of
rational functions of Y , A→ B the normalization of A in R(Y ) and X ′ = Spec (B). Then
R(Y )/K is a finite separable extension and Y is an open subscheme of X ′ by [Me, p.29,
I, Theorem 3.20]. Moreover X ′ → X is finite by [Me, p.4, I, Proposition 1.1]. Then,
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since A is a Henselian discrete valuation ring, B is a Henselian discrete valuation ring by
[Me, p.33, I, (b) of Theorem 4.2] and [Me, p.34, I, Corollary 4.3]. Also R(X ′)/R(X) is an
unramified extension. Therefore f ′∗ is exact by [Me, p.111, III, Proposition 3.3]. So f ′∗ ◦f∗
is exact and

Hp
fet(X, (f

′ ◦ f)∗(F)) ≃ Hp
et(X,F)

for any F ∈ SXet
.

We have the isomorphism GK-mod ≃ SSpec (K)et
by [Me, p.53, II.§1,Theorem1.9]. Let

the functor N be defined as

(GK-mod) ∋M 7−→MGal(Ks/Knr) ∈ (Gk-mod)

and N ′ : SSpec (K)et
→ SSpec (k)et

the functor which corresponds to N . Let Y ′′ ∈ Xfet

be connected. Moreover, let K ′′ = R(Y ′′) and k′′ the finite extension field of k which
corresponds to the closed point of Y ′′. Then

N ′(F )(Spec (k′′)) = F (Spec (K ′′))

for F ∈ SSpec (K)et
because

G(Knr/K
′′) ≃ Gk′′, G(Knr/K

′′) ≃ GK ′′/GKnr
.

Therefore the diagram

GK-mod

N �� ≃ SSpec (K)et

f ′∗◦f∗◦g∗ //
N ′�� SXfet

Gk-mod ≃ SSpec (k)et

f ′∗◦f∗◦i∗

99ttttttttt
.

is commutative. So

Hp
et(X, g∗(Gm)) = Hp

fet(X, f
′

◦ f ◦ g∗(Gm))

= Hp
fet(X, f

′

◦ f ◦ i∗(N
′(Gm)))

= Hp
et(X, i∗(N

′(Gm)))

= Hp
et(Spec (k), N ′(Gm))

= Hp(k, (Knr)
∗) = Hp(Knr/K, (Knr)

∗).

Hence the proof is complete.

Remark 7.9. Let A be a Henselian discrete valuation ring, K its quotient field and Knr

the maximal unramified extension of K and X = Spec (A).
For any p > 0, the following diagram

(7.10) Hp(X, g∗(Gm)) //
the edge map �� Hp(X, i∗(Z))

the edge map��
Hp(k, (Knr)

∗) // Hp(k,Z)
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is commutative where two downward morphisms are the edge maps of spectral sequences.
So it follows from Lemma 7.8 that the exact sequence (7.3) corresponds to the exact
sequence

0→ Br(A)
(α)
→ Ker

(
Br(K)

Res
→ Br(Knr)

)
(β)
→ H2(k,Z)

where (α) is the map which is induced by the natural map Br(A)→ Br(K) and (β) is the

composition of the isomorphism Ker
(
Br(K)

Res
→ Br(Knr)

)
= H2(k, (Knr)

∗) [S2, p.156, X,

Corollary of Proposition 6] and the map Hp(k, (Knr)
∗) → Hp(k,Z) which is induced by

the discrete valuation of A.

Corollary 7.11. We consider the situation of Lemma 7.8. Let Â, K̂ be the completions
of A,K and k the residue field of A and Â. Then

Hp(Knr/K, (Knr)
∗) = Hp(K̂nr/K̂, (K̂nr)

∗)

= Hp(k, (ks)
∗)⊕ Hp−1(k,Q/Z)

for any p > 0.

Proof. We have

Hp(Spec (A),Gm) = Hp(Spec (k),Gm) = Hp(Spec (Â),Gm)

by [Me, p.116, III, Remark 3.11 (a)]. Corollary 7.11 follows from this fact and the fact
that the exact sequence (7.2) splits ( because there is a section of the homomorphism

Hp(k, (Knr)
∗)→ Hp(k,Z) = Hp−1(k,Q/Z),

cf, [S2, p.186, XII, §3, Proposition 4]).

For a regular ring A and x ∈ SpecA(1), let

(7.12) Br(A)→ Ker


Br(K)

Res
→

∏

x∈X(1)

Br(Kx̄)




be the homomorphism which is induced by the natural map and

(7.13) Ker


Br(K)

Res
→

∏

x∈Spec (A)(1)

Br(Kx̄)


→

⊕

x∈Spec (A)(1)

X(Gκ(x))

the homomorphism which satisfies the following commutative diagram

Ker


Br(K)

Res
→

∏

x∈Spec (A)(1)

Br(Kx̄)


 (7.13)//

(∗) ��
⊕

x∈Spec (A)(1)

X(Gκ(x))��
Ker

(
Br(K̂x)

Res
→ Br(K̂x̄)

)
(∗∗)

// X(Gκ(x))
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where the homomorphism (∗) is induced by the natural map Br(K) → Br(K̂x) and the
homomorphism (∗∗) is induced by the valuation (see [S2, p.186, XII, Proposition 4]).
Then, the following result follows from Lemmas 7.4, 7.8.

Proposition 7.14. Let A be an integral domain of finite type over a field k such that A⊗k̄
is regular, i.e., Spec (A) is smooth over k, K the quotient field of A and X = Spec (A).
Then the sequence

(7.15) 0→ Br(A)
(7.12)
→ Ker


Br(K)

Res
→

∏

x∈X(1)

Br(Kx̄)


 (7.13)
→

∏

x∈X(1)

X(Gκ(x)).

is exact. Moreover, if an integer m is respectively prime to ch(k), there is an exact
sequence

0→ Br(A)m → Br(K)m →
∏

x∈X(1)

X(Gκ(x))m.

Proof. Suppose that A is a 1 dimensional regular ring which contains a field k ( A does
not have to be smooth). Then the exact sequence (7.15) is given by the exact sequence
(7.3) as follows. Proposition 6.13 shows that the first map of (7.3) coincides with the
homomorphism (7.12).

Now, for x ∈ X(1), X̂x denotes Spec Âx. Then, let

ix : Spec (κ(x))→ X, îx : Spec (κ(x))→ X̂x

be the canonical maps,

g : Spec (K)→ X, ĝx : Spec (K̂x)→ X̂x

the generic point, and jKx : Spec (K̂x) → Spec (K) ( resp. jAx : Spec (Âx) → Spec (A))

the morphisms of schemes which correspond to the extension of field K̂x/K ( resp. the

extension of ring Âx/A).
We have the following commutative diagram

(7.16)

H2(X, g∗(Gm,K)) //
the edge map �� H2(X, g∗((j

K
x )∗(Gm, bK)))

(∗) the edge map��
(∗∗∗)

H2(X, (jAx )∗((ĝx)∗(Gm, bK)))

the edge map��
H2(K,Gm,K) //

(γ) &&MMMMMMMMMMMMMMMMMMMMMMM
H2(K, (jKx )∗(Gm, bK))

the edge map��(∗∗)

H2(X̂x, (ĝx)∗(Gm, bK))

the edge mapwwooooooooooooooooooooooooo
H2(K̂,Gm, bK)

where the vertical arrows of (∗) are induced by the natural map Gm,K → (jKx )∗(Gm, bK)
and (γ) is the natural map.
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It follows from Proposition 6.10 that the diagram (∗∗) is commutative. The reason
why the diagram (∗ ∗ ∗) is commutative is that the left side of (∗ ∗ ∗) is the edge map

H2(X, g∗((j
K
x )∗(Gm, bK))) → H2(K̂,Gm, bK) and the right side of (∗ ∗ ∗) is the edge map

H2(X, (jAx )∗((ĝx)∗(Gm, bK)))→ H2(K̂,Gm, bK) by Lemma 6.5 (b). Therefore the composition

H2(X, g∗(Gm,K))→ H2(X̂x, (ĝx)∗(Gm, bK)) in (7.16) corresponds to the homomorphism (γ).
Also, the diagram

(7.17) H2(X, g∗(Gm,K))
cf, (7.1) //�� H2(X, (ix)∗(Z))

the edge map

  AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAH2(X, g∗((j

K
x )∗(Gm, bK)))

H2(X, (jAx )∗((ĝx)∗(Gm, bK)))
cf, (7.1)

//
the edge map �� H2(X, (jAx )∗((̂ix)∗(Z)))

the edge map��
H2(X̂x, (ĝx)∗(Gm, bK))

cf, (7.1)
// H2(X̂x, (̂ix)∗(Z))

the edge map
// H2(κ(x),Z)

is commutative. So the homomorphism (7.13) coincides with the homomorphism H2(X, g∗(Gm))→
H2(X, (ix)∗(Z)) in the exact sequence (7.2) by commutative diagrams (7.10), (7.16), (7.17).
In general, if Spec (A) is smooth over k (SpecA is not necessarily of dimension 1),

Br(A) =
⋂

p∈Spec (A)(1)

Br(Ap) by [H, Corollary.2]. Therefore (7.15) is an exact sequence.

Remark 7.18. Let X be a regular integral quasi-compact scheme. Then the sequence

0→ Br(X)→ Ker


Br(R(X))

Res
→

∏

x∈X(0)

Br(R(OX,x̄))


→

⊕

x∈X(1)

X(Gκ(x)).

is exact by the proof of Proposition 7.14.

Corollary 7.19. Let X be a 1-dimensional connected regular scheme, K its quotient
field. Then

(7.20) 0 // Br(X) // Br(K) // ∏
p∈X(1)

Br(R̃(X)
p
)/Br(ÕX,p)

is exact.

Proof. Let O be a discrete valuation ring, K = R(O), X = Spec (O) and x the closed
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point of X. Then we have the following commutative diagram

0�� 0�� 0��
0 // Br(O) //

≃�� Ker(Br(K)→ Br(Kx̄)) //�� Ker(Br(K̃)→ Br(Kx̄))/Br(Õ)��
0 // Br(O) //�� Br(K) //�� Br(K̃)/Br(Õ)��

0 // Br(Kx̄) // Br(Kx̄)

where the vertical sequences are exact and the horizontal ones are exact except for the
middle horizontal sequence. So the middle horizontal sequence is exact.

An alternative proof of Corollary 7.19. Suppose that B is a discrete valuation ring, L is
its quotient field, Y = SpecB and Z = Y \ SpecL = {p}. Then we have the exact
sequence

(7.21) Hp(Y,Gm)→ Hp(SpecL,Gm)→ Hp+1
Z (Y,Gm)

by [Me, p.92, III, Proposition 1.25] and H2(Y,Gm)→ H2(SpecL,Gm) is injective by [Me,
p.145, IV, §2]. Moreover we have

(7.22) Hp
Z(Y,Gm) ≃ Hp

{p}(Spec (ÕY,p),Gm)

by [Me, p.93, III, Corollary 1.28]. Also, the diagram

Br(K)/Br(OX,p) //�� Br(R̃(X)
p
)/Br(Õp)��

H3
{p}(Spec (OX,p),Gm)

cf,(7.22)

≃ // H3
{p}(Spec (ÕX,p),Gm)

is commutative. Therefore

Br(K)/Br(OX,p)→ Br(R̃(X)
p
)/Br(ÕX,p)

is injective. So the statement follows from [G, p.77, II, Proposition 2.3].

Moreover, we obtain the following result.

Corollary 7.23. Let X be an algebraic curve over a separably closed field such that
regular and proper. Then, the local-global map

Br(R(X))→
∏

p∈X(1)

Br(R̂(X)
p
)

is injective.
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Proof. The statement follows from Corollary 7.19 and [G, III, Corollary 5.8].

We use the following lemmas in the proof of the main result.

Lemma 7.24. Let A,B,C be commutative groups and c a group homomorphism from
C into A ⊕ B. Let a, b be the projections from A ⊕ B to A,B. Moreover, let i be an
inclusion map from Ker(a ◦ c) into C. Then

Ker(c) = Ker(b ◦ c ◦ i).

Lemma 7.25. Let A,B,C be commutative groups and f : A → B be a group homo-
morphism. We assume that Ker(f) ⊂ C ⊂ A. Let i : C → A be the inclusion map.
Then

Ker(f ) = Ker(f ◦ i).

We also need the following propositions.

Proposition 7.26. (See [YS] or [Me, pp.153-154, IV, Exercise 2.20 (d)]) Let K̃ be the
quotient field of the Henselization of k[t](t). Then, there is an exact sequence

0→ Br(k[t])→ Br(K̃)→ X(Gk)→ 0

where the first map is induced by t 7→ t−1 .

We now prove the main result.

Theorem 7.27. For any field k, let k(t) be the purely transcendental extension field in
one variable t over k. Then, the local-global map

(7.28) Br(k(t))→
∏

p∈P
1(1)
k

Br(k̂(t)
p
)

is injective.

Proof. It is known that a finitely generated ring over an excellent ring and its localization
are excellent ([EGA, §7.8]). Also, a discrete valuation ring is excellent if and only if its
Henselization is excellent (see [Me, I, Remark 1.2]). So, it follows from Proposition 3.9
that the kernel of the local-global map

(7.29) Br(k(t))→
∏

p∈P
1(1)
k

Br(k̃(t)
p
)

is equal to the kernel of the local-global map (7.28). Since we have the restriction map

Br(k̃(t)
p
)→ Br(k(t)p̄), it follows from Lemma 7.25 that the kernel of the local-global map

(7.29) is equal to the kernel of the local-global map (7.29) restricted to

Ker


Br(k(t))

Res
→

∏

p∈Spec (k[t])(1)

Br(k(t)p̄)


 .
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For the rest of this section, we denote the point which corresponds to (1
t
) ∈ Spec (k[1

t
]) ⊂

P1
k by ∞. Note that


 ∏

p∈Spec (k[t])(1)

Ker
(
Br(k̃(t)

p
)

Res
→ Br(k(t)p̄)

)

⊕ Br(k̃(t)∞)

contains the image of the composition of the inclusion map

Ker


Br(k(t))

Res
→

∏

p∈Spec (k[t])(1)

Br(k(t)p̄)


→ Br(k(t))

and the local-global map (7.29).
In Lemma 7.24, let

C =Ker


Br(k(t))

Res
→

∏

p∈Spec (k[t])(1)

Br(k(t)p̄)


 B =Br(k̃(t)∞)

A =
∏

p∈Spec (k[t])(1)

Ker
(
Br(k̃(t)

p
)

Res
→ Br(k(t)p̄)

)

and c the map which is induced by the local-global map (7.29) restricted to

Ker


Br(k(t))

Res
→

∏

p∈Spec (k[t])(1)

Br(k(t)p̄)


 .

Then, by Corollary 7.11 and [S2, X, Corollary of Proposition 6] (which follows from the
inflation restriction sequence),

∏

p∈Spec (k[t])(1)

Ker
(
Br(k̃(t)

p
)

Res
→ Br(k(t)p̄)

)

=
∏

p∈Spec (k[t])(1)

H2(k(t)p̄/k̃(t)p
, (k(t)p̄)

∗)

=
∏

p∈Spec (k[t])(1)

Br(κ(p))⊕
∏

p∈Spec (k[t])(1)

X(Gκ(p)).

Note that k(t)p̄ is the maximal unramified extension of k̃(t)
p
. Therefore by Proposition

7.31, Ker(a ◦ c) ⊂ Br(k[t]). Moreover, by Proposition 7.26, b ◦ c ◦ i is injective. Therefore,
Theorem 7.27 follows from Lemma 7.24.

Remark 7.30. If k is perfect, it is well-known fact that the sequence

(7.31) 0→ Br(P1
k)→ Br(k(x))→

⊕

p∈P
1(1)
k

X(Gκ(p))
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is exact. But it is unknown fact whether (7.31) is exact. The sequence (7.20) is exact in
Corollary 7.19, but the sequence (7.31) is not exact in the case where k is not perfect as
follows.

It is known that k is perfect if and only if Br(k) = Br(k[x]) (cf, [A-G, p.389, Theorem
7.5]). So Br(k[x]) 6= 0 in the case where k is the separable closure of an imperfect field
and Br(k(x)) 6= 0 because Br(k[x]) ⊂ Br(k(x)). On the other hand, X(Gκ(p)) = {1} and
Br(P1

k) = Br(k) = {0}. So the sequence (7.31) is not exact.
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