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Chapter 1

Introduction

Shape memory alloys are the materials which, after being strained, revert back to their
original shape at a certain temperature. The most widely used alloys include NiTi (Nickel-
Titanium), CuZnAl and CuAINi. Shape memory alloys are not only well-known materials
having a wide variety of applications but also the good examples for the researches of
the phase transitions in mathematical field. Shape memory effect is due to first-order
phase transitions between different equilibrium configurations of the metallic lattice, called
austenite and martensite.

In this thesis, we consider the unique global existence for the systems which describe
the relation between the strain and the heat conduction in shape memory alloys. Although
there are many systems representing the phase transition occurring on shape memory
alloys, the system we consider seems to be the most popular in these systems.

This thesis consists of two parts. In the rest of this chapter, we introduce the derivation
of the system and describe the known results and our main results. In Chapter 2, we
consider the unique global existence for the one-dimensional system called the Falk model
system. In Chapter 3, two and three dimensional systems are treated. In Appendix A,
we give a remark on the existence result for the two-dimensional system with the different

type of the nonlinear term from that treated in Chapter 3.

1.1 Derivation of the System

In [21], Falk presented the Ginzburg-Landau type theory using the shear strain ¢ = u,
as an order parameter in order to explain the martensitic-austenitic phase transitions
occurring in a rod which is made of shape memory alloys with the length [. Here, we

denote the displacement by u and the absolute temperature by 6. He chose the free energy



density F' as follows:

F =F(ee,,0)
~ 1.1.1
= Fy(0) + F(e,0) + gai, ( )
where Fy(0) is typically taken as the following form:

Fo(0) = —c,01og(0/63) + ¢,0 + ¢, (1.1.2)

and F(e,0) = G(0)F,(¢) + Fy(¢) is given by the Devonshire form:
Fi(e) = ayé?, (1.1.3)
Fy(e) = —ane + aze’, (1.1.4)
G#) =0—4.. (1.1.5)

Here, ¢, oy, as, a3 and 03 are positive physical constants. Positive constants ¢, and 6. are
the caloric specific heat and the critical temperature, respectively. We assume that there

is no displacement at the endpoint of the rod, that is,
u(0,t) = u(l,t) =0 for ¢t € [0, 00).

The total free energy and the total kinetic energy at time t are given by

fmt(t):/o F(e, ep,0)(z,t)dz

and

respectively. Here p is the mass density of shape memory alloys. Applying Hamilton’s
principle in the usual way to the total Lagrangian: L(t) = Egin(t) — Fior(t), one easily
deduces the equation of motion:

0 (0F
Puy + Ku ( R (e )) ( )
if the variational boundary condition
Uz (0, 1) = Uz (1,1) =0

is satisfied for ¢ € [0, 00).



We assume that the volume is not changed. Then, from the definition of the free
energy density F' = U — S for the entropy density S and the first law of thermodynamics
0U = pdV + 005, we deduce that

OF

U=F —-0—. 1.1.7
50 (1.1.7)
According to Falk [21], the balance law of internal energy is represented by
oF OF
U, e = — —Eut, 1.1.8
t+4 888t+8518t ( )

where U is the internal energy and ¢ is the heat flux. The heat flux is assumed to be

given by the Fourier form
q=—kb,, (1.1.9)

where the heat conductivity k is assumed to be a positive constant. Differentiating the
both sides of (1.1.7) with respect to the time variable ¢ and substituting (1.1.8) and (1.1.9)

to the resulting equation, we obtain

O*F 0*F OPF
—0—0; — kO, =0 7 wt- 1.1.1
o o99=" " " 9002, (1.1.10)
If we assume (1.1.1)—(1.1.5), then we have 8‘321; =0 and
O*F 1
— = —Cy—. 1.1.11
067~ 9 (L1.11)
Therefore we can simplify (1.1.10) to
0F,
w0 — kO = O ——. 1.1.12
Gl €t R ( )
Combining (1.1.6) and (1.1.12), we obtain the following system:
PUt + KlUgzee = (fl (ux)(g - 90) + fQ(Um))Iv
o0 — KOy = )0y, t,x) € RT x (0,1),
il filubun, (1) R x (0.1 )

u(0,2) = ug(x), u(0,2) =wui(z), 6(0,2)=6y(x) >0,
\u(t, 0) = u(t,l) = Uz (t,0) = ug (t,1) = 0,(¢,0) = 0,.(¢,1) =0,

where RY = (0,00), fi(r) = F{(r) = 2aqr and fo(r) = F(r) = —4daer® + 6ar?.
In the three-dimensional case, the problem is somewhat complicated. The model is
based on the linearized strain tensor e(u) = (¢;;) such that

i = 2 al‘j ze

). (1.1.14)
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Here u = (uy, ug, u3) is the displacement vector. From an argument similar to the one-

dimensional case (1.1.1), Falk and Konopka [22] gave the free energy density as follows:

F(e,Qu,9) = Fy(0) + F(6,¢) + 5| Qul’

- (1.1.15)
= Fol6) + G(O) Fi(e) + Fa(e) + 5 1Qul”,

where
3 5
Fi(e) =Y alJl(e)+ > alJi(e), (1.1.16)
=1 =1
2
Fy(e)=> a}Ji(e) (1.1.17)
=1

and Fy(f) and G(6) are given by (1.1.2) and (1.1.5), respectively. Here af and 6. are

constants and JF is given as follows:

J= (B h=dtetea  Jy=(5)"
Ji=J3J3,  Jy=€(es—e3)’ + (et e3)’ + dees,
= (137 Ty =6l — )
with
€1 = trace€/3, €3 = (2€33 — €11 — €22) /6,
€3 = (€11 — €22)/2, €1 = €23, €5 = €13, €% = €12-

We define the linearized elasticity operator () by the following second order differential
operator

Qu = pAu+ (A + p)V(V - u).

As in the one-dimensional case, Pawlow [35] derived the three-dimensional thermoe-

lasticity system of shape memory alloys:

(

Pl + RQQU =V- EE(Ea 9)7
Coby — EAO = 0F g (€,0) : ¢ in Q. :=R" x Q,
’ . (1.1.18)
u=Qu=V0-n=0 on S ;=R x 09,
\<U(O, -),ut(O, )) = (110, ul), 9(0, ) = 90 2 0 n Q,



where R = [0,00), Fe = (£5), Fg= (%) and € : e = ijzl €j€i;- We assume that the
ij P

Lamé constants A and p satisfy
w>0 and nA+2u>0 (1.1.19)

for n = 3, which assure the strong ellipticity of Q.

Shape memory alloys have another interesting property called hysteresis. There are
a lot of models and results from this point of view. For related results to hysteresis, we
refer to [3]-[6], [30] and [31] (see also [51]).

In Sections 1.2 and 1.3, after introducing the known results we present our main
results for the one-dimensional Falk model system and for the multi-dimensional system,

respectively. In Section 1.4, we give the notation which will be often used.

1.2 One-Dimensional Case

In this section, we present a brief review on the results of the one-dimensional system
(1.1.13) and its related system.

Sprekels and Zheng [41] proved the unique global existence of smooth solution for
(1.1.13). In [11], Bubner and Sprekels established the unique global existence of (1.1.13)
for data (ug,u1,6y) € H> x H' x H' and discussed the optimal control problem in the
case

fi(r) =2ayr  and  fo(r) = 6asr® — dagr®. (1.2.1)

Here the spaces W)™ and H™ are the standard Sobolev spaces, that is, W, is equipped

with the norm

1w = D 1D%F o,

0<k<m
and H™ = W3, Aiki [2] proved the unique global existence of solution with (ug,u1,00) €

H? x H' x H! for more general nonlinearity, that is,

fi, fa € C*(R) (1.2.2)
and
Fy(r) > —=C for r € R, (1.2.3)

where Fy(r) = [ f2(s)ds. We note that the condition (1.2.1) implies the conditions
(1.2.2) and (1.2.3).
We show the unique global existence of the solution for (1.1.13) in the energy class. The

energy class is the function space which is characterized from the form of the Hamiltonian

7



H = Epin+Fior, and hence this is the most natural class of the solution in which to consider
the equation from not only a physical point of view but also a mathematical point of view.

Precisely, in our case the energy class F is defined by
E=H?xL*>x L* 3 (u(t),u(t), 0(t)). (1.2.4)

The energy norm of solutions does not increase from the energy conservation law. There-
fore the energy space is expected to be useful to investigate the temporal behavior of the
solution. For these reasons we consider the existence of the solution for (1.1.13) in the
energy class. We give the precise formulation of the problem in Chapter 2.

We give some related results. Systems related to (1.1.13) have been studied by many
authors for the case of viscous materials which has the shear stress o containing additional

viscous component of the following form:

oF
o= — +ve,

Oe

where the viscosity coefficient v is a positive constant. Correspondingly, the equations
(1.1.13) are modified as follows:

PU + KlUgpge — VlUggt = (fl(g)e + f2<€>>r7

(1.2.5)
Cvet — kgxx = fl(c“:)ec“:t + V|5t|2.

The viscosity term changes the feature of the system because this term has smoothing
property. In fact, K.-H. Hoffmann and Zochowski in [29] established the unique global
existence result by decomposing the first equation in (1.2.5) into a system of two parabolic
equations. There are also some results for the system without capillarity (i.e. x =0 and
v > 0) called thermoviscoelasticity (see e.g. Dafermos and Hsiao [15]). Sprekels, Zheng
and Zhu [42] studied the asymptotic behavior of the solution for (1.2.5) as t — oo.
However, it seems to be an open problem to determine the asymptotic behavior of the
solution for (1.1.13).

Our result is concerned with the unique global existence for (1.1.13) in the energy class
H? x L? x L'. We define Lj (R") by the set of all functions u such that ||ul| ey < oo

for each compact subinterval I of RT.

Theorem 1.1. Assume that (1.2.2)—(1.2.3) holds. Let any p € [4,00], ¢ € [2,4] and
r € (4/3,8/5) be fized such that
1

1
, r>7p, . + 37 > 1. (1.2.6)



Then for any (ug,ui,00) € H?* x L* x L', there exists a unique solution (u,0) to the

problem (1.1.13) satisfying

ue CR; HA(0,1)), Ugy € L, (RT3 L9(0,1)),
w € L°R"; L2(0,1)), u € IP (RT3 L9(0,1)),
0 CR";LY(0,1)), 0, € Ly, (R*: L7(0,1)).

The main tools of the proof of our theorem are the maximal regularity estimate and
the Strichartz estimate. The maximal regularity estimate is the classical estimate of
parabolic equations, and is concerned with the solvability of linear parabolic equations.
This can be proved by using the Mikhlin multiplier theorem (see [32] and [33]). The
Strichartz estimate established in [43] is closely related to the restriction theory of the
Fourier transform to surfaces and used often in various areas of the study of nonlinear
wave and dispersive equations (see [12]).

The Strichartz estimate in the spatially periodic setting was established by J. Bourgain
[9] and the more transparent proof was given by Fang and Grillakis in [24]. We consider
the following initial value problem with periodic boundary conditions, which is closely
related to (1.1.13).

PUit + Klggze = (fl (uz)e + fQ(U'a:)):ca
Cvet - kemz = fl(uz)euxt in RT x Q, (127)
uw(0,) =up, w(0,:)=w, 6(0,-)=6,>0 inQ

for Q = T = R/Z. From a physical point of view, the problem (1.2.7) describes the
dynamics of the ring made of shape memory alloys. This is also an interesting problem.
Besides, Theorem 1.1 follows immediately from the following theorem for (1.2.7), because
we can regard the initial boundary value problem (1.1.13) as the problem (1.2.7) with
periodic boundary conditions, extending the solutions v and # of (1.1.13) as odd and even
periodic functions, respectively.

We can also obtain the result for (1.2.7) with Q@ = R. This is motivated by the work of
Falk, Laedke and Spatschek [23]. They studied the stability and existence of the solitary
wave appearing on the shape memory alloy rod in R without heat conduction. Theorems
1.1 and 1.2 are based on the results in [47] an [50].

Theorem 1.2. (i) Assume that Q@ = T = R/Z and (1.2.2)~(1.2.3) hold. Let any p €
[4,00], q € [2,4] and r € (4/3,8/5) be fized satisfying (1.2.6). Then for any (ug,uy,0) €



H? x L? x L', there erists a unique solution (u,0) to the problem (1.2.7) satisfying

uwe CR" HX(T)), Ugy € L (R LY(T)),
u € L°R"; L3(T)), u € LV (RT; LY(T)),
9 e C(R"; LY(T)), 0, € L], (RT; LY (T)).

(17) Assume that Q = R and that (1.2.1) hold. Let any p € [4,0], ¢ € [2,00] and
r € (4/3,2) be fized such that

1 1
, r>p, - + 57 > 1. (1.2.8)

N
|~

Then for any (ug,u1,00) € H?* x L* x L', there exists a unique solution (u,0) to the

problem (1.2.7) satisfying

ue C(R; HA(R)), Uge € L2 (RT; LY(R)),
u € L°(R"; L2(R)), u, € L (R*; LY(R)),
0 € C(R"; L'(R)), 0, € Lj,.(R"; LY (R)).

Remark. We note that the nonlinear terms of the second equation in (1.2.7) and (1.1.13)

are rewritten as follows:

fl (ux)eutx = (fl (ux)eut)x - f{ (ux)uxxeut - f(uz)exuta

which makes sense in the distribution class.

1.3 Multi-Dimensional Case

In this section we describe the results for the multi-dimensional thermoelastic system.

At first, we cite the following sentences in [10]:

o “Falk-Konopka (1990) proposed a three-dimensional Landau theory for the marten-
sitic phase transformations in shape memory alloys. Apparently, this model has not
yet been studied mathematically.” (Remark 5.2.3, p. 216).

As is written here, the multi-dimensional problem is generally difficult due to several rea-
sons. Comparing (1.1.16) with (1.1.3), we must take Fi(€) as the fourth order polynomial
in three-dimensional case, where the shear strain tensor € is defined by (1.1.14). This
makes it difficult to treat the system (1.1.18). Moreover, the useful embedding H! — L>

does not hold in the multi-dimensional case, which causes another difficulty. Indeed, there
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have been no result on the solvability of (1.1.18) up to now (the monograph [10] cited
above was published in 1996).
Recently, Pawlow and Zochowski studied the n-dimensional system (n = 2 or 3) with

viscosity such as (1.2.5), namely, the system with shear stress tensor o satisfying that
og=1F.c0)— rAe(V - Ae(u)) + vAe,.
Here, the fourth order tensor A represents linear isotropic Hooke’s law, being defined by
Ajji = N0k + (01 + 04dj).
We note that the tensor has the following symmetry properties
Aijit = Ariijy  Aijin = Ajine,  Aijin = Aijin (1.3.1)
and the relation Qu = V - £(u) A holds. It follows from (1.1.19) that
ale]? < (Ae) : e < alel? (1.3.2)

holds for a, = min{nA + 2y, 2u} and a* = max{n\ + 2u, 2u}.

The essence of the choice of the polynomial forms (1.1.3)—(1.1.5) and (1.1.16)—(1.1.17)
is to have two different local minima depending on the temperature. Although the poly-
nomial forms give the simplest form satisfying this property, we can also represent this
property by other general nonlinearities G, F; and F;. For the general nonlinearity

F(e,0) = G(0)Fi(e) + Fy(e), we can deduce the following quasilinear system:

¢

puy + kQ*u — vQu, = V - [G(0)Fy . (€) + Fac(€)],
{cy — 0G"(0)Fy(e)}0, — kA = 0G' (0)D,F1(€) + v(Aey) : &, in O,

(1.3.3)
u=Qu=V0-n=0 on Sr,
\(u(O, ), 1(0,4)) = (wg,wy), 6(0,-) =6p>0 in Q.
In this case, the equation corresponding to the second equation of (1.1.18) is as above
because P2 .
5 —Cvy + G"(0)Fy(e)

instead of (1.1.11). We note that if G(0) = C'(6—6..) then the quasilinear term 0G" (0) H (¢)6;
does not appear. Here, we assume that Q C R? is a bounded domain with a smooth
boundary 0f).

We consider the following structure of the nonlinearity: the elastic energy density
F(0,¢) = G(0)Fy(¢) + Fy(e) satisfies that

11



(N1) G € CHR,R) is as follows:

Ci0 it 6 € 0,6,
G0) =< o) it elb, o)
Col”  if 0 € [0y, 00),

where p € C*(R,R), ¢" < 0 and C and C, are positive constants for some fixed 6y,
0y satisfying 0 < 0 < 0, < co. We extend G to an odd function on R.

(N2) F, € C*(Sym(n,R),R) satisfies that F}(e) > 0, where Sym(n,R) denotes the set of

all symmetric second order tensors in R3.
(N3) F, € C*(Sym(n,R),R) satisfies that Fy(¢) > —C3, where Cj is some real constant.

(N4) Fi(e) and Fy(e) satisfy the following growth conditions:

|Fie(e)] < Clel™, |Fac(e)] < Clel™,
‘Fl,ee(e)‘ < C|€|K1_2a ]F27€5(e)] < C(|€|K2_2>
| Fcec(€)| < Clel™ 172, | Focec(€)| < Cle™?

for large |e].

We first state the results for the thermoelastic system in the three-dimensional case

(n = 3). Pawlow and Zochowski [36] studied the following semilinearized system

puy + /{Q2u —vQu, =V - Ee(ea 9)7

(1.3.4)
cobly — kA0 = 0F g (€,0) 1 61 + v(Aey) : €.

The system corresponds to the model (1.3.3) without quasilinear term 0G”(0)H (€)b;.
They showed unique global existence of the sufficiently smooth solution for the three-

dimensional system (1.3.4) under the assumptions:

1 1
O§T<§, 0§K1§(§—7’>K2+1 and 0§K2§ . (135)

In addition, when they apply parabolic decomposition of elasticity system, they need to
assume the relation 0 < 2\/k < v between viscosity and capillarity. Such an assumption,
however, seems not realistic for shape memory alloys whose viscosity effects are negligibly
small. In [48], the author showed the unique global existence of the solution for (1.3.4) in
a larger class, by using the contraction mapping principle. In the result we does not need

conditions between s and v and the upper bound of K5 is generalized to Ky < 6. The

12



first two assumptions of (1.3.5) appear due to the semilinearization which causes the lack
of energy conservation laws.

We recall the result of the system called thermouviscoelasticity in the case that kK = 0
and v > 0. The thermoviscoelasticity system was treated in one-dimensional case [15] and
in three-dimensional case [53]. For the viscoelastic system neglecting heat conduction, we
refer to [39].

Recently, Pawlow and Zajaczkowski [37] proved the unique global existence theorem

for the three-dimensional quasilinear system (1.3.3) under the assumptions:

2 15 9
O§T<§, 0<K1<Z and 0<K2§§, (136)
where r and K7 are linked by the equality 4K; + 157 = 15. In [52], we showed the unique

global existence of solution for (1.3.3) under the following power of nonlinearity:

5
0<r<g  O0<K,K<6 and 6r+K <6. (1.3.7)

In addition, we admit arbitrary positive coefficients of capillarity x > 0 and viscosity
v > 0.

Next, we state several remarks on the two-dimensional case. We can deduce the two-
dimensional model (1.3.3) from obvious modifications of the three-dimensional case. In
36], Pawlow and Zochowski also showed the unique global existence of solution for the
two-dimensional semilinear system (1.3.4) which is the semilinearized model of (1.3.3).
The unique global existence for the quasilinear system (1.3.3) was established in [3§]

under the assumption:

0<r< and 0< K, Ky < o0. (1.3.8)

—~ 00|

In [52], we showed that the system

tions:

1.3.3) has a unique global solution under the assump-

0<r<1 and 0<K; Ky <o0. (1.3.9)

Before stating our results more precisely, we introduce several function spaces. The

Sobolev space WPZZ’I(QT) is equipped with the norm

21
lullyzrian =Y D I1DiDgullinn),

3=0 2r+|a|=j

where D, := i%, DS = H Dy* and Dy, := ia%k for multi index o = (avy, ..., ), and

a=a1taz+tasz

I/Vp2 "l is the set of all functions u such that [ul[yy211q,) < oo for each compact subinterval
’ p

13



I of R*. The Besov space B; , = B; (Q) is defined by By = [LP(Q), W](Q)]s/;,q, Where
[X,Y],/;4 is the real interpolation space between Banach spaces X and Y. For more
details of the Besov space we refer to [1] and [45].

We now state our results. These results are based on a joint work with Irena Pawlow

and Wojciech M. Zajaczkowski [52].

Theorem 1.3 (Unique Global Existence for Three-Dimensional System). Let
n=3andb < p < q < oco. Assume that v > 0 and (1.3.7) hold. Then for any
(ug,uy,0) € B;i_pwp X Bz,f/p X Bg,f/q, there exists a unique solution (u,@) to the three-
dimensional system (1.3.3) satisfying

(w,0) e Wh2 x W>!

p,loc q,loc’

Moreover, if we assume that ming 0y = 6, > 0 then there exists a positive constant w such
that
0 > 0, exp(—wt),

where w depends only on A, 0, and F.

Theorem 1.4 (Unique Global Existence for Two-Dimensional System). Let n =
2 and 4 < p < q < oo. Suppose that v > 0 and (1.3.9) hold. Then for the two-dimensional

system (1.3.3) the same conclusion as in Theorem 1.8 holds.

We shall describe the proof of this theorem in Chapter 3. We prove the existence part
in Theorem 1.3 by using the Leray-Schauder fixed point principle. The key estimates
to the proof are the maximal regularity estimate for the first equation of (1.3.3), the
classical energy estimate and the parabolic De Giorgi method for the second equation
of (1.3.3). The maximal regularity theory is concerned with the theory of solvability for
linear parabolic equations, and the maximal regularity is the subordinate estimate to the
maximal regularity theory. In the maximal regularity, a loss of regularity does not occur,
such as the Schauder estimate for elliptic equations. The maximal regularity theory was
extensively studied by many authors. For more details of the maximal regularity, we refer
to [7]. In particular, for more recent developments of the maximal LP-regularity we refer
to [18]. We also give a brief review of the maximal regularity theory in Section 3.2 of this
thesis.

Since the maximal regularity theory is limited to linear parabolic equations, we cannot
use it directly for the second equation of the problem (1.3.3). To obtain the higher
order a priori estimates we also use the classical energy methods and the parabolic De

Giorgi method (see [32], [34]). Using these methods we can show the Holder continuity
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of 6. From this regularity result, we arrive at the estimate for the higher Sobolev norm
W2 (Qr) x W2 (Qy) for T < oo.

Comparing these assumptions with (1.3.8), we see that the restriction for r is weaker,
and we can choose r arbitrarily close to 1.

In [49], the author showed the unique global existence for the two-dimensional system
(1.3.3) under r = 1, K; € [0,1], Ky € [0,00) and the smallness for the energy of initial
data [|ug|| gz + [Jui]|z2 + ||0o]| 1. We give the proof of this theorem in Appendix.

Theorem 1.5 (Small Energy Global Existence). Let n = 2, v > 0, p > 4 and
suppose that F' satisfies C3 = 0 and

r=1, K, €0,1], K, € ]0,00), Fy(e) < Cle|*2. (1.3.10)

4—2 92 238
Then there exists n > 0 such that for any (ug,uy,0y) € Bpp” X Bpp” X Ba, & satisfying

3p 3p
K

|(ag, u1,00)||g < 1 there exists a unique global solution (u,0) of the two-dimensional

system (1.3.3) satisfying that
(u,0) € Wiz, x W?I’,lloc
4 b

and that there exists the monotone increasing function K(x) > 0 such that K(0) =0 and

[(a(t), u:(t),0(t) |z < K(|[(wo, 1, 60)|| )

for any t € [0,00).
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1.4 Notation

We show the notation and collect definitions that we use throughout this treatise.

e By C, M and ¢, we denote various positive constants which may differ from line
to line. In particular, the constant at which we emphasis the dependence of the

variable r is denoted by C(r).

e A number ¢’ means the Holder conjugate of g € [1, 00|, that is, ¢’ and ¢ satisfy the
relation 1/q+ 1/¢ = 1.

e We denote a partial derivative with respect to a variable y by 0, := % and a weak

>
derivative by D,. We also use the notation u, for d,u. In particular, we denote a

weak derivative with respective to z; direction by D;.
e We denote the norm of f for a normed space X by || f; X|| or || f]|x-

e [? is the standard Lebesgue space. We denote by L (J) the set of the functions u

loc

such that ||u|[z»r) < oo for each compact subinterval I of J.

e The spaces W and H™ are the Sobolev spaces, that is, W is equipped with the

norm

Iflwg = > IDEf s,

0<k<m

and H™ = WJ".

e In this thesis, the energy class of the shape memory alloy systems is H? x L? x L' 3
(u, ug, 8). We denote the energy norm of (u, us, 0) by || (u, us, 0)|| g = ||w|| g2 + ||| 2 +
160121

e We frequently use the following abbreviations: LYLZ or LYL(Q2) for LP(I; LY(2))
and Lj , or LP(Qy) for LP(I; LP(2)) for a connected interval I C R. In particular,

L8 L2 means LP(0,T; L9) for T € (0,00]. A similar notation is applied to other cases
such as C;LP.

Next we give the notation used in each of chapters.
Chapter 2.

e We denote by fU) the j-th derivative of f.

e We denote the one-dimensional torus by T = R/Z, the set of positive real numbers

by R = (0, 00) and the set of nonnegative real numbers by R = 0, 00).
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o We write 05 F := H32 x H® x Wy,

e The heat kernel == exp —y ig denoted by Gy(x).
VAart 2t

Chapter 3 and Appendix.
e For I = (a,b) we set Q; = (a,b) x Q and S; = [a,b) x 9, where 0 < a < b < 0.
In particular, ; = (0,¢) x Q and S; = [0,t) x 9 for t € (0, o).

e The Sobolev space W;I’Z(QT) is the Banach space equipped with the norm

21
Il =D D IDiDsulliaon),

§=0 2r+|a|=j

for multi index o = (o)} ;.

e The Besov space By, = Bj (Q) is defined by Bj = [LP(Q), W](Q)]s/;4, Where

P
[Eo, Els/j,q is the real interpolation space of the interpolation couple [Ey, E].

The pair [Ey, E1] is said to be an interpolation couple if there exists a locally convex

space X such that E; — X for j =0, 1.

The real interpolation space [Ey, F1ls/j, is the Banach space equipped with the

norm
2550 7= 16Kt )| Loger aese)
for0<s<j,1<g<ooandzx € Ey+ F, and

K(t,x) = K(t,z, Ey, Ey) := inf{|| xo; Eol| +t||z1; E1| | = o + 21}

o W;le}ic is the set of the functions such that HuHWEz,z (o) < 00 for each compact subin-

terval I of RT.

o C*%/2(Qy) is the Holder space: the set of all continuous functions in Qp satisfying

Holder condition in # with exponent o and in ¢ with exponent «/2.
e BUC(I) consists of all bounded and uniformly continuous functions on a interval I.

o Let F, := <§€_Z)’ Fy:= (a—g) and €:e:= ) 1 e

o We set U(p,q) = Bpy'” X Byp'? x Bag™" and VB := WA2(Qr) x W2 (Qr). In
particular, we write UP = U(p, 3p/4), which we will use in Appendix. In the proof

of Lemma 3.4.5, to shorten the notation, we set

175 7/5 -
Ui(m) = Bio3.10/3 X Bioaios X (L™ N HY),
_ 3—-2 17/5 1-2 7/5 oo 1
Uy = (B, 7N Bio/z10/3) X (Bpyp 7N Bio/z10/3) X (LZNH).
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e For the linear operator A, we denote the domain of A by D(A).

e We define the linear operators Q and ® in LP(Q2) for p € (1,00) by

D(Q) ={ue W) |u=0on 00},

Qu = Qu

and
D(®) ={ue WZ(Q)|u=0on o0},
Du = Au,

respectively.

e We denote a number less than p by p—.

e Sym(n,R) denotes the set of all symmetric second order tensors in R”

18



Chapter 2

One-Dimensional Case

This chapter is based on the result of [47] and [50]. Let u = u(t,z): R xQ — R be the
displacement of shape memory alloys and 6 = 6(t, x): R x Q — R be the temperature,
where RT = (0, 00) and R = [0, 00). In this chapter, we study the initial boundary value

problem of the Boussinesg-heat system:

Utt + Uggre = (f1(ue)0 + fa(uz))w, (2.0.1)
Or — Oue = f1(us) Oz in R* xQ, (2.0.2)
u(0,) =up, u(0,-) =u, 6(0,-) =6 on €, (2.0.3)
u(t,0) = u(t,1) = g (t,0) = upe(t,1) = 0,(t,0) = 0,(¢,1) =0  on R, (2.0.4)

where 2 = (0, 1). For simplicity, we normalize all the physical coefficients and the length

[ to unity. We also consider the initial value problems:

O — O = f1(ug)Ouy in R™ x Q, (2.0.6)
u(0,-) = uo, u(0,-) =uy, 6(0,-) =0 on €, (2.0.7)

where (2 =T or R.
The nonlinearity satisfies

f1, f2 € CQ<R) (208)

and
Fy(r) > —M for r € R, (2.0.9)

where Fy(r) = fos fa(s)ds. The typical and realistic example of f; and f, are given by

flr)y=7r and  fo(r)=r"—r®—r (2.0.10)
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In this chapter, we prove the unique global existence for (2.0.1)—(2.0.4) and (2.0.5)—
(2.0.7) in the energy class E = H? x L? x L'. Theorems 1.1 and 1.2 follow immediately

from the following theorems.

Theorem 2.1 (Unique Local Existence on T). Assume that Q =T and (2.0.8) hold.
Let p € [4,00], q € [2,4] and r € (4/3,8/5) be arbitrary constants satisfying
11 1 |
=-_Z -+ —>1 2.0.11
P Rt r>p, T+2q,> (2.0.11)
Then for any (ug,uy,0p) € E = H?* x L? x L', there exists T = T(||(uo, u1,6)||g) > 0
such that the initial value problem (2.0.5)~(2.0.7) has a unique solution (u, @) on the time
interval [0, T, satisfying
u € CrH?*(R), Upe € LHLI(SY),
uy € LLA(Q), uy € LHLI(RY), (2.0.12)
0 c CrLYQ), 60, € LLL7(Q).
Theorem 2.2 (Unique Local Existence). Assume that 2 = (0,1) and (2.0.8) hold.
Let p € [4,00], q € [2,4] and r € (4/3,8/5) be arbitrary constants satisfying the relations
(2.0.11). Then for any (ug,u1,0y) € E, there exists T = T(||(ug, u1,00)||g) > 0 such that

the initial boundary value problem (2.0.1)—(2.0.4) has a unique solution (u, ) on the time
interval [0, T, satisfying (2.0.12).

Theorem 2.3 (Unique Local Existence on R). Assume that 2 = R and (2.0.8) hold.
Let p € [4,00], q € [2,00] and r € (4/3,2) be arbitrary constants satisfying

2_1_1 > pf 1+1>1 (2.0.13)
PR r>p, S tag . 0.
Then for any (ug,u1,0y) € E, there exists T = T(||(uo,u1,00)||g) > 0 such that the

initial value problem (2.0.5)—(2.0.7) has a unique solution (u,8) on the time interval [0, T,
satisfying (2.0.12) with (2.0.13).

Combining these results with the energy conservation law, we obtain the following
global result.

Theorem 2.4 (Global Existence). (i) In addition to the assumptions of Theorem 2.2
(Theorem 2.1, resp.), suppose that (2.0.9) and 8y > 0 hold. Then the solution for (2.0.1)—
(2.0.4) ((2.0.5)~(2.0.7), resp.) given by Theorem 2.2 (Theorem 2.1, resp.) can be extended
globally in time.

(12) In addition to the assumptions of Theorem 2.3, suppose that (2.0.10) and 6y > 0 hold.
Then the solution for (2.0.5)—(2.0.7) given by Theorem 2.3 can be extended globally in

time.
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In Section 2.1, we introduce the several preliminary lemmas. In Sections 2.2, 2.3 and
2.4, we prove Theorems 2.1, 2.2 and 2.3, respectively. In Section 2.5, we prove the global

existence theorem (Theorem 2.4).

2.1 Preliminary Results

In this section, we summarize several lemmas to be used in the proof of theorems.
The key estimates for this result are a space-time estimate for the free solution of the
Schrédinger equation (the so-called Strichartz estimate) and the maximal regularity esti-

mate of the heat equation.
Lemma 2.1.1 (Strichartz Estimate). Let e¥% be the Schrodinger group on R or T.
(1) Let p; € [4,00] and q; € [2,00] satisfy 1%_ =1- é (1=1,2). Then,
| g ; L LY (R)]| < Ol uo; Ly(R)]| (2.1.1)

and

(13) Let p; € [4,00] and ¢; € [2,00] satisfy i =1- % (1=1,2). Then,

t
/ eﬂ@sw%f(s)ds;L?L;l(wH <Olf: ALE®). (212)
0

| e¥%uq s LB L2 (T)|| < C|uo; LA(T))| (2.1.3)

and

i

For the proof of (i), see the literature by Cazenave [12]. For the periodic case (ii), we
refer to [9] or [24].

t
/ ew—sw%f(s)ds;L%L?(T)H <Clf: AT (214)
0

Lemma 2.1.2 (Maximal Regularity). Let 2 be R or T. For any p,q € (1,00), we

have .
o2 [ et pisyass pyove| < i s ) (215
0
where ¢'% is the heat semigroup on €.

For the proof, we refer to the literature by Lemarié-Rieusset [33].
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Proposition 2.1.3 (LP-L? Estimate). (i) In the case of T, if 1 < ¢ <p < oo andt >0,

then we have
|e%g; 12(D)| < € (14+1736) |l g; L3(D)|

and
| 0.c%g; L(T)) < €3 (14073670 |l g5 LA(T)].
(17) In the case of R, if 1 < g <p < oo andt > 0, then we have
le®g; LAR)|| < Ot 20| g LIR))|

and

2 oo N vy— 2 (L L
|0:ct®g; LAR)| < Ct72 723 g5 LA(R)].

xT

(2.1.6)

(2.1.7)

(2.1.8)

(2.1.9)

Proof. We first prove the case (7). We notice that the following fundamental estimates

for the analytic semigroup e hold
| 2% 5 L2]| < CE3|| f 5 L2

and

le' £ L2l < C|l 5 L2
for any p € [1, 00]. If we obtain
2 00 _1
leg; L2l < C (7% +1) llgs L,

then we have (2.1.4) by interpolation with (2.1.7).

We can write the heat kernel Gy on T as the following form

o0

Gy = Z Gi(xr +n),
where the G(z) is given by
1 lz|?
S vV 47rte o

22
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Then we have

Therefore, it holds that

Aéux—wmw@JS s (Gl g LA(T)]

z€[-1,1

< C sup \ét(l’)‘ g; Li(T)H

xz€[0,1]

1
<C|1+— L.
_( ﬂﬂgr

Then we have the desired estimate (2.1.12), and hence we obtain (2.1.6).

In an argument similar to above, we prove (2.1.7). By (2.1.11), it is sufficient to prove

> - C 1
Ion% g L1 < 575 (14 53 ) s 221 2114
By (2.1.13), we have
~ = C x + n|?
0,Gy = Z m|x+n|exp(—| ; ‘)
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Then it follows that

S
z€[0,1] z€[0,1] , "
C 2
<S5 sup {0 o (210
(PR G :
1/72)
_¢ Y e {lfﬁ+nlexp(_\fﬁ+nl2>}
B W !

> |z + n| ( |x+n|2)}
+ E sup { exp| ———— ,
z€[0,1] /2 t

n=I(+/t/2)+1

where I(z) denotes the integral part of z, i.e., I(x) is the integer n satisfying n < x < n-+1.
Noting that z/t - exp(—z?/t) attains the maximum value \/1/2¢ at z = /t/2 and is

monotone decreasing for = > \/t/2, we have
I\ [t
— —+1
<2@) ( 2 * )
C

I t/2
(V/1/2) . {|x+n| exp <_|x+n|2)}
zepo L Y2 14
(Vt+1),

i |z + n| |z + n|? </°° T 7 y
Ssu eX I — —- X _—— i

n=I(4/t/2)+1

IN

n=0

<

and

<C.

Consequently, we arrive at

~ C
sup |0,Gi(x)] < —
z€[0,1] t

((\/¥+ 1) +C>

C 1
which implies the desired inequality (2.1.14). For the proof of the case (ii), we refer to

13] 0

Remarks. (i) One could place other numbers of derivative in (2.1.7).
(ii) In this thesis, since these estimates in time global setting are not needed, we may

regard these estimates as the following well-known inequality:
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and
| O g LT[ < Ct3726 0| g5 LA(T)]|
Next, we formulate the estimates obtained by using the Gagliardo-Nirenberg inequal-

ity. We shall make frequent use of the following lemmas in this chapter.
Lemma 2.1.4 (Leibniz’s Rule). If s > 1 is any integer and }—17 = qil + % = q% + %, then
10:(fg); Lol < €U 055 L@ g s LM+ W f5 L& 9295 L))

Proof. This is easy consequence of the Leibniz rule 9%(fg) = > (051 fO22g) and the

S1+S2=s
Gagliardo-Nirenberg inequality. m
Next we introduce a useful lemma.
Lemma 2.1.5. Let €2 be R or T. If the assumption
1\ 1 1 1
F,.(a,b) =(1+-|—-"4+——-> 2.1.1
o= (142) 24 5220 (2.1.15)
holds for a, b, q, r € [1,00], then we have
| £5 LS L@ < CT) £5 LELAQ) 7N fus LypLE(@Q)7, (21.16)
where
b
0= 56”(@, b) = ﬁqu(a, b),
b—1
o=0,0b) = ( )q‘
(g+1)b

Proof. By the Gagliardo-Nirenberg inequality we have
165 LIl < CII 65 Lyl 625 LL||".
Therefore, we have

If: LiLl < CH 1Fs Lol fos LEN7 5 LG

<O\ fi LELU ||| fo3 LL)7; LS

<CIfi LRL)2 Nl fos LELEN".
It follows from the assumption (2.1.15) that

1 1 b g+1 b-1 b
—_—— = = — - FT’ 7b 20
ac T b—l( aq rb ) b—1 ar(0:0)

Then it follows that
/ 1 1 r / r /
| fo; LY LEN < CTae ™7 || fo; LELE || = CT°|| fo; LELY |,

which completes the proof. O]
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2.2 Local Existence on T

In this section, we prove the local existence for the problem (2.0.5)—(2.0.6) with Q = T.

We denote by f(k) the Fourier coefficient of the function f with respect to the space

variable, i.e.,
1
f(k) :/ e~ 2k f () d.
0

We write F := f1()0 + fa(c), where & := u,. Since F(0) does not depend on z, the

equation (2.0.1) can be rewritten as follows:
Ut + Ugaze = {F — F(0)},. (2.2.1)

Differentiating both sides of (2.2.1) for sufficiently smooth solutions u, we can derive the

equation of € as:
1t + Eaae = {F — F(0)} 4o (2.2.2)

Here for any f such that f(0) = 0, we define 9,2 by

€2mkm -

27rk:)2f(k)'

0, f(x) ==Y

k£0 (

We note that £(0) = 0 and ;(0) = 0 by the definition of e. Putting
et = e 400 %,

we have

(9,58 = &t + i@;%tt

=& 10, {—(ax)“e + 05 (F — ﬁ(O))}

R (2.2.3)
=g, Fi02c +i(F — F(0))
= Fid? (e +i0; %) £ i(F — F(0)).
Then (2.2.2) is reduced to the following Schrodinger type equations:
de™ = Fid%eT £ i{F — F(0)}.
Noticing that
£ —85(5“—5_) (2.2.4)
DY ’ -

this transformation is useful for the estimate of &;.

26



We first show the time local existence and uniqueness of solution (e*,c7,0) with
£5(0) = 0 in the space H' x H* x L'. We set

le*lls = Ile*; LF Hy |l + || 0™ ; LELE],
101l = 1103 LF Lell + 110203 Ly LE |-

Given L > 0, we define the space
Xz ={5e7,0) I e7, Ollxp = e ls + e lls + 10]lm < L}

and the operator A : (¢7,e7,0) — (A,et, A_e~, Agh) is defined by
t
Ape® = eF102%(0) + 2/ eF=9)02 (F — F(0))ds, (2.2.5)
0

t
Ayb = %26, +/ T (£ (ug ) ugy) (s)ds. (2.2.6)
0

We shall prove that the operator A is a contraction of X% into itself for an appropriate
choice of L and T. Without loss of generality we may assume 7' < 1. We note that
££(0,z) and (F — F(0)) have average zero, therefore, so do A e®.
For the linear part of (2.2.5), it follows from (2.1.3) that
e 2= (0)ls < [|e**%*(0); LEH| + || Que™%e*(0); L5 LY)|

< C(lJuos H?|| + [ ur s L2)).
Since by the embedding inequality || e; L°|| < C'L, we have

1£(e) 5 Ll < sup. 119 (r) < C(L) (2.2.7)
rie

for i =1,2 and j =0,1,2. By (2.0.11) we have

AEDEDEDED

Then it follows from (2.1.16) and (2.2.7) that

10:(1(2)0) s LELY | < CTv e (605 LRLE ||| fule) s L

1105 Ly L33 s LBLE] f1(e) 5 L) (2.2.9)
1_1
<c@T> (0 mlells + 16]x),
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for v € [p/, r], and

10:(f2(e)) s LELEN < Cll f3(e) 5 LTl eas LFLE

(2.2.10)
< C(L)lle]]s-

For the nonlinear part, by (2.1.4), (2.1.16), (2.2.9) and (2.2.10), we have

t
/ 0% (F(s) — F(0))ds ; LT H
0

|

/t eFU9(F(s) — F(0))ds

S

¢
&E/ T2 (F(s) — F(0))ds; Lb.LS
0

i

< O 0u(f1(e)8); LELL|| + C|| D, fole) ; LELY|
< OTv || 8,(f1(e)8) ; Ly LY || + CT|| 8, fole) ; LFL|
< @) (0] ulells + llells)-

Therefore, noting that € = ¢ + &~ holds, we obtain the following estimate
IAse*]ls < Cllluollm + llurllz2) + CL)T=+(le* s l0llzr + 101l + [le¥]]s).  (2.2.11)
Next, we estimate the heat equation (2.0.6). It follows from Lemma 2.1.3 that

82 ! T C 1/T
I0:e%00; 152 < [ ool L)
0

< CT 37 Y|6y; LY

for % + 2%}, > 1. We can split the nonlinear term into the four parts as follows:

g

/ | %y (5)(0f1(2))a(s)ds s LFL,
0

/0 e(t=)0z (w0 f1(2))(s)ds

H

+ || Op /t %0, (5) (0 f1(€))o(s)ds ; LrTLg,H
0

¢
+ /e(t_s)az(uﬂfl(s))x(s)ds;L%"Li

0

¢
+ 03;/ e(t_s)az(uﬂfl(s))x(s)ds; LTTLZ/
0

=ha+ Lo+ Ii+ oo
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Using the Holder inequality, the Hardy-Littlewood-Sobolev inequality and (2.2.9), we have

L, <

/ ) (O (£))(s) s Lids: Ly
0 (t—s) 2

< CTi

A ﬁ“ (ur(0f1(€))2)(s); Lgchds; L%%

< CT5 | u(0f1(e))e; LE7LY|
< OTH | ug; LELA|| (01())a ; LiLY ||
< OT7|e* |20l x
for r, p and ¢ satisfying (2.0.11). Similarly, by (2.2.9) we have
L < |ug(0fi(e))e; LYLLY
< lwes ZBLE| (B f1(e))a; LELY |
< @ (4141161 + 5 15161 1)-

Since by (2.0.11) we have

it follows from the Holder inequality and (2.1.16) that

t
C
has | [ =Sl wosne)s Lhias: L
0

8
< CTs||wbf(e); LALL|

l o0 § o0
< OT5 |\ ug; LEL20; LAL2|[| fr(e) s Ll
< C(L)TH|* 110l

By (2.1.5) and (2.2.8) we have

Ly < Cllubfi(e); LpLY ||

< Ol ug; THLAY 65 Ly L2 ||| fae) s LS
< C(L)T |5 51101

.

Then, combining these estimates, we obtain the following estimate:

IA50l < Cll6o; Lol + CT*(101l el (15 + 0]l ]1s), (2.2.12)
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r?

where £ := min {i, -1 }l} Consequently, from (2.2.11) and (2.2.12), we arrive at
p

IA(e* e, O)llx, < CUIF(0)s HI + [[60: L))

o L (2.2.13)
+CTR((I(™, 7, Ol x5 7, O)lxrs
where h(r) :==1+r+r?
Here, it follows from the mean value theorem and (2.2.7) that
1196 - 0@ < || le =8l [ f7 e + (1= 98 17| < Clle - £: 7]
0

for i = 1,2 and j = 0,1. By using this, we obtain
IAGTe.0) — AGEY,E.0)x,
< T (R(I(*,27,0)lxe) + RUIET,E7,0) 1x,) ) (2.2.14)
x [[(e7.67,0) — (", D) x,.

Hence, it is sufficient to choose L = 2C(||uol| g2, ||u1 |22, [|€]| 1) and T such that
" - t o~ F 1
)T (P27, 0)llxr) + R(IET E7,0)l1xr)) < 5 (2.2.15)

to obtain from (2.2.13) that A maps X% into itself. The inequality (2.2.14) implies that
under the same restrictions (2.2.15) on L and T, the mapping A is a contraction on Xk.
The contraction mapping principle shows the existence of a unique solution in the ball
|(eT,e7,0)||x, < L. To prove the uniqueness in the whole of the space, it is enough to
take T sufficiently small. Then the solution (¢*,e7,0) € H' x H' x L' with ££(0) = 0
is obtained and this also means the existence of (¢,0) € H' x L' with £(0) = 0 because
e=¢et+e .

Finally, we verify that the unique existence of ¢ € H'! leads to that of u € H?. We

can expand ¢ into the trigonometric series:
e(x) = E(k)e™™ k.
k#0
Then if %(0) is obtained, u can be written as
Ek) omike | =
— TIRT 0 .
u Z ik +u(0)
k#0
Obviously the first term of the right hand side converges. The remaining problem is how
4(0) should be determined. Since i (0) = 0 by (2.2.1), we have
u(0) = tuy(0) + up(0). (2.2.16)
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It is also necessary to show u € H2. It follows from the Poincaré inequality that
|u—1a(0); Lz || <l e; L3

Then it follows from (2.2.13) that ||u; L2|| < C (0 < ¢t < T). This implies u € H?.
We have completed the proof of the local existence for the problem (2.0.5)—(2.0.6) with
Q=T.

2.3 Initial Boundary Value Problem

In this section, we prove Theorem 2.2 for the initial boundary value problem (2.0.1)-
(2.0.4). We first define the operator A such that

A=

and

D(A) = {f € H?| f,(0) = f.(1) = O}

o~

In this section, we denote f(k) by the coefficient of the Fourier cosine expansion of f, i.e.

fA: 2/1 f(z) cos 2rkxdzx.
0

As in Section 2.2, we restate the equation (2.0.1). Differentiating both sides of (2.0.1)

and putting € := u,, the equation can be written as follows:

~

Notice that we can expand
€= Z £(k) cos 2mkz.
k>1

-~

For any f such that f(0) = 0, we define the inverse map of A by

R cos 2mkx
A e = ;—(QWk:)? e(k).

By the boundary condition (2.0.4), we have

Fx‘x:{D,l} = (fi(e)eat + fi(e)0s + fé(’f)%)‘x:{m} =0, (2.3.2)

utt‘z:{(},l} =0.
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Then the smooth solution of the equation (2.0.1) satisfies
Therefore the boundary condition of (2.3.1) is made into

£:(t,0) = e,(t,1) =0,

(2.3.3)
5J:$x(t7 0) = 5:L’xx(t7 1) = 0.

Next, put e* := ¢ £iAte;. Observing (2.3.2) and (2.3.3),
3t€i = &¢ + iA_létt

zgﬁfuyl{—A%+uMFt-ﬁm»}
=&, Fide +i(F — F(0))
= FiA(e £iA'e) £ i(F — F(0))
= FiAe* £ i(F — F(0)).

Then, (2.3.1) and (2.3.3) are rewritten as the following form:
de* = Fid2e® +i(F — F(0)),
ef(t,0) =eX(t,1) = 0.

We can prove similar results to Propositions 2.1.1, 2.1.2 and 2.1.3 under the Neumann

boundary condition.

Proposition 2.3.1. Let p; € [4,00] and q; € [2,4] satisfy i = % — % (1 =1,2). Then,
we have
| e g ; L LE(0,1)]] < Cfluo; L2(0,1)] (2.3.4)
and .
| [ seas; o) <l s o) (235
0

Proof. Note that ¢ := e*4¢;(z) is the solution of the initial boundary value problem:

g = Fid%e,
ex(t,0) = e,(t,1) =0,
e(0,x) = gg(x).

Let € be an extension of £ as an even function on R, i.e.,
E2m £ x) = e(x),
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where m € Z and x € [0,1]. Then we can prove the estimate on a torus of period 2, that
is, (R/2Z). If we restrict the estimate to [0, 1], the desired estimate (2.3.4) is obtained.
Similarly, we can obtain (2.3.5). O

By the same idea, we can show the following two propositions.

Proposition 2.3.2. For any p,q € (1,00), we have

o [ e sispas: o <ol o) (23.6)
Proposition 2.3.3. If 1 <q¢<p<oo andt >0, then we have
lethg; 22l < € (14+72G0)) g 2] (2.3.7)
and
| 8,etg; L2| < Ot (1 3G ) lg; LA (2.3.8)

As in Section 2.2, we can prove the local existence of the solution (¢*,e7,6) (namely,
(¢,0)). Thus it remains to verify the existence of u € H?. Obviously u can be determined

uniquely because of the boundary condition (2.0.4), and the Poincaré inequality implies
lus L?|| < Clle; L2

This assures that v € H?, which completes the proof.

2.4 Local Existence on R

In this section, we prove the local existence and uniqueness for the problem (2.0.5)—
(2.0.7) in the case of Q@ = R (Theorem 2.3). We give a slightly different proof from the
one of Theorem 2.2.

To shorten notation, we write F':= (f1(u,)0 + fo(u,)). Putting

uF i=uti(l— 03 uy, (2.4.1)

xz

we restate the equation (2.0.1) as follows:

&gui = Ut + (1 — 82) lutt

T

=, +i(1—0%)7"

T

(
=, +i(1—0%)7"
( )

{-
{- (1—82)u—|—F — 207u + u}
j:z(l—82 YF, —202u+u}

=u, Fi(l—P)u
= Fi(l — 2)u* £i(1 —02) ' {F, —202u+u}.
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Then the equation (2.0.1) is reduced to the following Schrédinger type equations
Ot = +id>ut + F,
where we set
F=i(1-0%)"(F, —20%u+u) — iu*

Notice that since
1 — o2

U= o (ut —u), (2.4.2)
the transformation (2.4.1) is useful for the estimate of u,.
We set
g o= lu™s LEHZ| + (| 05w ; LRLLI,

1611z = 1165 LF Lyl + 1] 0.6 5 LyLL |-

We show the time local existence and uniqueness of solution (u*,u~,#) in the space
H? x H?> x L'. For L > 0 to be determined later, we define the space

Xf = {(" w0 sl w0z, = llut g+ lulls + 0lla < L},

The operator A : (u™,u™,0) — (/N\+u+, K_u_,AHQ) is defined by

t
Aout = eiitagui(o) :l:z'/ eii(t—S)aip(S)ds’ (2.4.3)
0

t
Ayb = %6, —|—/ T (£ (g )ugy) (s)ds. (2.4.4)
0

We shall prove that for an appropriate choice of L and T, the operator A is a contraction
of X% into itself. Without loss of generality we may assume 7' < 1.
For the linear part, it follows from (2.1.1) that

=% O)])5 < || % (0) : L H2| + || 92 %0 (0) ; LhLY|

< C|lu*(0); H?|.

By (2.0.13) we have

rp q
(1)
r—p q

- (% - é) (1 * é) (2.4.5)
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Then it follows from (2.1.16) that
v / 1_1 r / 0o
| (f1(uz)0)e; LpLL|| < CTv™r (H Ou 5 L LI fi(ue) ;s LT,
b 2 . oo 2.4.6
1185 LE LE s LBLE) | £ (1) LT@H) (2:4.6)

1_1
< CT [0l mllull5,

for v € [p/,r]. We remark that 92(1 — 9%)~! and (1 — 9?)~! are L4-bounded operators for
any ¢ € (1,00) because 92 admits a bounded H>-calculus (see [18]). By (2.1.2), (2.4.6)

and the Sobolev inequality, we have

t
‘ / eii(tfs)BgF(SﬁiS
0

< C(H G2(1 — 21 (fu(u)0) s LILLY |
S

1821 = ) (falata))e — 2upe + 1+ P2 L;Liu)
< C(|| (fi(w)8)s; LELL|| + T u*; L H?)
< O Ha 500 + Tllls).

Therefore, we obtain the following estimate,

| Avu*|lg < Cllu*(0); H'| + CT*(lu*||5ll6llm + [[u*[l3), (2.4.7)

r)

Note that (2.4.5) and

where k := min {]% — 1 1}.

8 13 1 1
F.l=2]=(14-)=-——>—2>0.
B (3 ) (+q)8 2r 8¢

Then the estimate for the heat equation (2.4.4) follows from the same calculation as that

in the proof of Section 2.2. Therefore, we have
IAublli < Cllf; LL| + O8]l (248)
Consequently, from (2.4.7) and (2.4.8), we arrive at
IA(w*, u™,0)] 5, < O u™(0); H?|| + [ 603 L'])) (2.4.9)
+CT ([ (™, u™, ) g M (u™,u™,0)| 5.,
where h(r) = 1+ r + r?. Similarly we have
IA(u™ 0™, 0) = A@*,a™,0)ll5,
< o [l ™. 0)5,) + b 5. B) 5, (2.4.10)

X ||(U+,U_,9) - (ﬁ+,ﬂ_,é)||)~(T-
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Hence it is sufficient to take L = 2C(||u*(0); H?|| + ||6o; L'||) and T such that
CT*h(L) < § to obtain from (2.4.9) that A maps XL into itself. The inequality (2.4.10)
implies that under the same restrictions on L and 7', the mapping A is a contraction on
)N(:% . The contraction mapping principle shows the existence of a unique solution within
the ball ||(u™,u™,0)||s < L. To prove the uniqueness in the whole of the space, it is
enough to take T sufficiently small. Then the solution (u*,u~,0) € H?> x H? x L' is
obtained, and hence this also means the existence and uniqueness of (u,0) € H? x L'

because u = u* + u~. We have completed the proof.

2.5 Global Existence

In this section, we prove Theorem 2.4. We first consider the case of periodic boundary

conditions. For the smooth solution (u, #), multiplying (2.0.5) by u:, we have

= 1708+ ol (25.1)

/f1 Uy ) Oy IL'——/F2 uy)d

Integrating (2.0.6) over T, we have

% /T 0(t)dz — /T fi (). (2:5.2)

Adding (2.5.1) to (2.5.2) yields

%(ulut() L2+ 1||um(t); L;25||2+A€(t)dx+AFg(ux)(t)dx) =0.  (25.3)

Integrating (2.5.3) with respect to the time variable, we have

1 1 1 1
-me;@W+—mmm;@W+/ewM§—WmLm%~memP+/%w
2 2 . 2 2 .

T

Next, in the case of {2 = R, the same calculation as above yields

d (1 1
— | = .L22 _ .L22
ﬁ(ﬂmm,xn+gmmm,xn+4mwm



Here we note that

1
gl L2 < Cllus LIl e 5 L2

1
< gl LEIP + Cllus LI,

1
s Lall* < Sllues LE]° + Cllua s LT

IN
D =] =

1
Feta s L + Sl e s LEN° + Cllws LEIP

and
2
Ju; L2 =

t
U0+/ us(s)ds; L
0

t
< Clluos I+ € [ flun(s)s LifPas.
0
Therefore, integrating (2.5.4) over [0,t|, we have
1 2112 1 2112
L) 2217 + Yy 2212+ [ 0(t)da
2 4 .
1 t
< gllus L2174+ Cllugs 827 + [ boda+C [ uuto)s 22)Pds
R 0

Hence, if # > 0 holds, then by the Gronwall inequality we obtain

1 1
Sllue®) s L2+l e (8); L2+ 16(2); Lell < C(T | (uo, w1, 60)ll)-

These formal calculations can be justified by the following Lemma 2.5.1, which is
concerned with the regularized approximation of weak solution. From now on, we only
prove the problem of periodic boundary conditions (obviously the proof of other cases
follows from a modification similar to this case). We denote H*™ x H® x W by OSF.

Lemma 2.5.1. Let p, q € [2,4] and r be fixed satisfying (2.0.11). Assume that fi, fo €
Cs*2 where s > 1 is any integer. Then for any (ug,u1,00) € OSE, there exists T =
T(||(ug, u1,60)||g) > 0 such that the problem (2.0.4)~(2.0.7) has a unique solution (u, )

on the time interval [0,T), satisfying

we CpH*(T) N LEW;(T),
O € LPH(T) N LEWE(T), (2.5.5)
0 € CoWs(T), 9570 e LLLY(T).
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Moreover, for any T" with0 < T" < T, there exists n = n(||(uo, u1, 00)|| &, || f1]

cst2, || fal|gav) >

0 such that the map uy — u(t) from

{(ﬁo,ﬂl,%,ﬁ,fz) € 0, F x (CSH(R))Q‘

loc

(o, w1, 60, fr, f2) = (@0, W1, 0o, fr o)llos (g 2y < 1}

into the class defined by (2.5.5) with T instead of T is Lipschitz, where T is the existence
time of solution given above for (ug,uy, 0o, f1, f2) and @ is a solution of (2.0.5)—(2.0.7) for

(770751’/17507}717 .]72)

Proof. As in the proof of Theorem 2.1, we prove the unique local existence of sufficiently

smooth solution. Using Lemma 2.1.4, we can obtain the following estimates

10;A (™, e7.0) | xp < C(|Juol |6llwe.1)
+CTh([|(e", &7, 0)lx ) 03(7, 67, )l x,

Hs+2, Huﬂ Hs,

and

10:{A(E",27,0) = AL, D), < T (A7, 0)lxe) + R(IEY, 27 D)lIx,))
x 103{(e",e7,0) = (57,87, 0)}|x,.
Therefore taking the same local time 7" as in the proof of Theorem 2.1, we can show the

local existence result. The continuous dependence of the solution upon the data in the

L>(0,T;0:E)-norm follows from a similar argument. O

In order to regard the third term of the right hand side of (2.5.3) as L'-norm of 6, we

give a claim related to a sign property for the temperature 6.

Proposition 2.5.2 (Maximum Principle). If 6, > 0 then the solution 6 of (2.0.5)-
(2.0.7) satisfies ® > 0 a.e. on [0,T] x T.

Proof. The smooth solution satisfies the maximum principle (e.g. [2]). Therefore, ap-

proximating the energy class solution by smooth solutions with the relation:

(u0n>u1na90na flna f2n) - (u07u1a907f1a f2) in &' x (CZQOC(R))za

we obtain the desired result. We observe that the local existence time depends only on
the energy norm of the data (||(uo, u1,6p)||r) by Lemma 2.5.1. This means that the local

existence time 7" does not tend to 0 as n — 0. O
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Combining this proposition with the energy conservation law (2.5.3), we obtain
), (@), 0E)ls < C(l(uoyur, Bo)ls)  for0<t<T.

Then the solution obtained by Theorem 2.1 can be extended globally in time.

Remark. If we take ¢ = 2 in Theorems 1.1 and 1.2, the Strichartz estimate is not
necessarily needed for the proof. This is because we can take a number p greater than
¢ in the maximal regularity. In other words, we can say that the smoothing effect of
the heat equation is sufficient for the unique global existence theorem for the problems
(1.1.13) and (1.2.7) with ¢ = 2.
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Chapter 3

Multi-Dimensional Case

Let Q C R™ be a bounded domain with a smooth boundary 0f2. In this chapter,
we study the following n-dimensional (n = 2 or 3) thermoelastic system with internal
viscosity:

uy + Qu— vQuy = V - [G(0) Fy (€) + Fac(e)],
[1—0G"(0)Fi(€)]0; — A = 0G'(0)0,F1(e) + v(Agy) 1 ey in Qp =(0,T) x Q,
u=Qu=V#-n=0 on Sy =1[0,7T) x 09,

(u(0,+),u(0,-)) = (wg,uy), 6(0,-)=6,>0 in
where n is unit outward normal on 99). The relation Qu = V - ¢(u)A holds between
the second order differential operator @ = pAu + (A + p)V(V - u) and the fourth order
tensor A = (A;jx) such that A;jp = A0k + p(dik0j; + 60,1 ). We assume that the Lamé

constants A and pu satisfy
pnw>0 and nA+2u > 0. (3.0.5)

We normalize the physical coefficients to unity except the viscosity coefficient v > 0.
We let v lie in order to emphasize that we can take v sufficiently small. We restate the
structure of nonlinearity: F(6,¢) = G(0)Fy(¢) + Fy(e) satisfies that

(N1) G € C3(R,R) is as follows:
C0 if0e0,6],
G(@) = @(9) lf 0 c [01, ‘92],
Cy0" if 6 € [92, OO),

where ¢ € C}(R,R), ¢” < 0 and C, Cy are positive constants for some fixed 6, 0,
satisfying 0 < 6; < 03 < co. We extend G defined on R as an odd function.
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(N2) Fy € C3(Sym(n,R),R) satisfies that Fj(e) > 0, where Sym(n,R) denotes the set of

all symmetric second order tensors in R".
(N3) F, € C3¥(Sym(n,R),R) satisfies that Fy(e) > —C3, where Cj is some real constant.

(N4) Fi(e) and Fy(e) satisfy the following growth conditions:

|Fie(e)] < Clef™, | Foc(e)] < Ol
|Fiee(€)] < Clel™ 2, | Foce(€)| < Cle™72,
|F17eee(€)| < C’|‘€|K1_3’ |F27666(5)| < O|€|K2_3

for large |€|.
We also restate the assumptions of nonlinearity:
0§r<g, 0<K;, Kb<6 and ©6r+K;<6 (3.0.6)
in three-dimensional case and
0<r<1l and O0< K, K,<o (3.0.7)
in two-dimensional case.

Theorem 3.1 (Existence for Three-Dimensional System). Let n = 3, v > 0 and
5<p<q< oo Assume (ug,ui,0p) € Up,q) = Bpp'? x Bap™" x B2g”" and that
(3.0.6) holds. Then for any T > 0 there exists at least one solution (u,0) to the three-
dimensional system (3.0.1)—(3.0.4) satisfying

(u,0) € Vr(p, q) := W, *(Qr) x W2 (Qr).
Moreover, if we assume ming 6y = 6, > 0 then there exists a positive constant w such that
0 > 0, exp(—wt) in Qrp.

Theorem 3.2 (Existence for Two-Dimensional System). Let n = 2, v > 0 and
4 < p<q< oo, and suppose that (3.0.7) holds. Then for the two-dimensional system
(3.0.1)~(3.0.4) the same conclusion as in Theorem 3.1 holds.

We can obtain the following uniqueness result.

Theorem 3.3 (Uniqueness). In addition to the assumptions of Theorems 3.1 and 3.2,
suppose that F(e,0) € C*Sym(n,R) x RT,R). Then the solution (u,0) € Vr(p,q) to
(3.0.1)~(3.0.4) constructed above is unique.
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2

Noting the embedding BUC([0, T'; Bj;,g) — W2'(Qr), we can immediately obtain
Theorems 1.3 and 1.4 from Theorems 3.1, 3.2 and 3.3.

In Section 3.1, we introduce the several lemmas. In Section 3.2, after giving a brief
review of the maximal regularity, we prove the maximal regularity estimate used in the
proofs of this chapter. In Sections 3.3 and 3.4, we prove the existence theorem for the
three-dimensional system (Theorem 3.1). In Section 3.5, we show the uniqueness result
(Theorem 3.3). In Section 3.6, we state the proof of the existence theorem for the two-

dimensional system (Theorem 3.2).

3.1 Preliminary Results

In this section, we present some auxiliary results which will be used in the subsequent

sections. We recall the useful space-time embedding lemma.

Lemma 3.1.1 (Embedding [32, Lemma II1.3.3]). Let f € W2™"™(Qr). Then, for

m € Z1 and multi index «, it follows that
| DpDEf 3 LAQ)I| < Com*]l £ W2 ()| + Co~¥) £ 1P(Q0)l, (3.1)

pmm’dedquandw::r—i-%—l—”T”(%—%)§m. [fgo::r—l—‘%'—i— "2—+pz<m, then

I DiDYf 3 L(Qg)|| < Com 2| f 5 W™ Q)| + C6~%|| f5 LP(Q)], (3.1.2)

moreover, DI DS f is Hélder continuous. Here, 6 € (0, min(T,(?)] and ¢ is the altitude of

the cone in the statement of the cone condition satisfied by 2.

The next lemma is the technical one which we use to assure the nonnegativity of

energy.
Lemma 3.1.2. Let ¢ be given in (N1). Then the function ¢(s) satisfies

o(s) —s¢'(s) >0 (3.1.3)
for any s € [01,0-].

Proof. Putting f(s) = ¢(s) — s¢'(s), we have f'(s) = —s¢"(s) > 0 and f(6y) = 0. Then
f(s) = w(s) —s¢'(s) > 0in [0y, 0s]. O

Next, we introduce the Aubin compactness theorem.
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Lemma 3.1.3 (Aubin Compactness Theorem). Let Xy, X; and X be Banach spaces,
Xo and X are reflexive, for which the following embeddings hold:

XOC—>X‘—>X1,

where the first embedding is compact and the last embedding is continuous. Assuming py,

p1 > 1, define the space
Y = {U | u € LZ;OXo, U € Lz;le}
with an appropriate norm. Then the embedding Y — LY X is compact.

To show Theorem 3.1 we apply the Leray-Schauder fixed point principle. We recall it

here in one of its equivalent formulations for the reader’s convenience .

Theorem 3.1.4 (Leray-Schauder Fixed Point Principle [15]). Let X be a Banach
space. Assume that ® : [0,1] x X — X is a map with the following properties.

(L1) For any fized T € [0,1] the map ®(7,-) : X — X is compact.

(L2) For every bounded subset B of X, the family of maps ®(-,€) : [0,1] — X, £ € B, is

uniformly equicontinuous.
(L3) ®(0,-) has precisely one fized point in X.

(L4) There is a bounded subset B of X such that any fized point in X of ®(7,-) is contained
i B for every 0 < 7 < 1.

Then ®(1,-) has at least one fized point in X.

3.2 Maximal Regularity

Our purpose of this section is to prove the following lemma called the maximal regu-

larity.

Lemma 3.2.1 (Maximal Regularity). Let p € (1,00). Denote by u the solution of the

linear problem
uy +Qu—vQu =V-f inQp,
u=Qu=0 on St, (3.2.1)
u(0,-) =uy, w(0,")=u; inQ.
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(1) The solution u to (3.2.1) satisfies the following estimate:
_2 _2
s W@l < (0w Bt |+ lues B+ 95 @) (22)
for any (ug,u) € BppP x BEYP and V- f € LP(Qr).
(17) The solution u to (3.2.1) satisfies the following estimate:
_2 _2
| Vus W2 < (| wos Bop? || + |uss Bow?|| + || /3 P(Q0)]))  (3:2.3)
for any (ug,uy) € Boy?? x Bpy?'" and f € LP(Qy).

We give a brief review of the maximal regularity theory before we prove Lemma 3.2.1.
Let X be a Banach space and A a closed linear unbounded operator in X with dense
domain D(A). Consider the abstract Cauchy problem

u(t) + Au(t) = (1), t>0,

)0, (3.2.4)

where f : RT — X is a given function. We say that this problem has the prop-
erty of mazimal regularity if for each f € LP(RT;X) there exists a unique solution
u € W)(R*; X) N LP(RT; X) satisfying (3.2.4) in the LP(R*; X)-sense. The important
estimate

lws W, R X)) + || Aus LR X)|| < C|| f5 LP(RF; X)) (3.2.5)

follows from the property of maximal regularity and the closed graph theorem, where
C > 0 is independent of f. In this thesis we call this estimate the mazimal reqularity
as well. The first abstract result on sufficient conditions for the maximal regularity was
obtained by de Simon [16]. He shows that in the case of Hilbert spaces X if —A is the
generator of a bounded analytic Cy-semigroup in X with negative exponential type, then
the problem (3.2.4) has the property of maximal regularity. In 1987, Dore and Venni [19]
obtained that if A € BZP(X) (bounded imaginary powers) with power angle &7 < 7 /2
provided X in a Banach space of class H7 . We give the definitions of these concepts below.
The class H7 is known to coincide with the class of UMD Banach space and also with
(-convex Banach space (see [7]). We note that LP(£2) belongs to H7Z for any p € (1,00).
There is a more extended concept called a bounded H>-calculus. The class H*(X) is of
operators which admit a functional calculus for a large function class including bounded
imaginary powers. We comment on the important result obtained in Weis [46], although
we do not use these facts explicitly. He proved that, in the case of X € H7, the problem
(3.2.4) has the property of maximal regularity if and only if A € RS(X) with R-angle
o < /2. We give the definition of these concepts following the monograph [18].
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Definition 3.2.2 ([18]). Let X be a complex Banach space and A a closed linear operator

in X. We define the sector X, in the complex plane by ¥, := {z € C | |arg 2| < ¢}.

(i)

(i)

(i)

A Banach space X belongs to H7 if the Hilbert transform is bounded on LP(R; X)
for some (and then all) p € (1,00).

A closed operator A is called sectorial if A has the dense domain and range,
(—00,0) C p(A) and

|t + A7 <M forallt >0 and some M < oo.

The class of sectorial operators in X will be denoted by S(X).

A sectorial operator A is said to admit bounded imaginary powers if A* is bounded
on X for each s € R, and there is a constant C' > 0 such that [|A*|| < C for each
|s| < 1. The class of such operators is denoted by BZP(X). The power angle of A

is defined by
T 1 is
OB = hmsﬂoomlogHA |-
A sectorial operator A is said to admit a bounded H>(X)-calculus if there are

@ > 4 and a constant K, < oo such that
FA S KfE  forall [ Ho(S,), (3.2.6)
where |f|2, := sup{[f(A)] | [arg A| <}, and

Ho(2p) = Ua,g<o{f € H(Zy) | sup A% ]+ sup AT f] < oo},

Al<1 [A|>

H(X,) = {f | £, — C, holomorphic}.

The class of such sectorial operators A will be denoted by H>(X). The H>-angle
of A is defined by ¢ = inf{p > ¢4 | (3.2.6) is valid }.

A family of operators 7 C B(X) is called R-bounded if there are a constant C' > 0
and p € [1,00) such that for each N € N, T € 7, z; € X and for all independent,
symmetric, {1, 1}-valued random variables r; on a probability space (€2, M, i) the

inequality
N N
> T ) < C1Y gl
j=1 j=1

is valid. The smallest such C'is called R-bound of 7 (we denote it by R(7T)).
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(vi) A sectorial operator A is called R-sectorial if R4(0) < oo, where
Ra() = REAA+ A) 7 Jarg Al < ¢}).

The class of such operators is denoted by RS(X). The R-angle ©% of A is defined
by @l := inf{p € (0,7); Ra(m —¢) < oo}

We have the inclusions H*(X) C BZP(X) C RS(X) and the inequalities ¢% > @§F" >
©%. Hence, if we obtain A € H>®(X) with % < 7/2, then the maximal regularity (3.2.5)
holds. For more detail of these facts, we refer to the monograph [18].

We turn back to the argument for Lemma 3.2.1. We define the linear operator Q in
LP(Q2) for p € (1,00) by

D(Q) = {ue W2(Q) | u=0on 90},
Qu = Qua

(3.2.7)

where we denote the domain of an operator A by D(A).

Proof of Lemma 8.2.1 (i). For o := § +iy/1 — VZQ, we write w := w; — a@Qu. Then the

equation (3.2.1) can be decomposed as follows:

u, —aQu=w in Qrp,

u(0,z) =up(z) inQ (3:28)

and
w;—aQw=V-f in Qr,

(3.2.9)
w(0,2) = uy(z) — aQue(x) in Q,

where u and w are extended as C*-valued functions. We claim the maximal regularity of
both (3.2.8) and (3.2.9):

92
e (0] + 11 Qus Q)| < C(llw: ()]l + luo: Boy’l)  (3:2.10)
and
22
Iwes L@+ | Qw: L@ < CIV - F5 220 + | u — Quos Byy? ). (3:211)

We give the proof of the claim as Lemma 3.2.3. Combining these estimates and restricting

to R3-valued functions we obtain the desired estimate. O
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Hence, we only show the maximal regularity for (3.2.10) and (3.2.11). This is com-
pletely covered by Denk, Hieber and Priiss [18] and by Denk, Dore, Hieber, Priiss and
Venni [17]. These papers say that the LP-realization of the parameter elliptic operator
admits H>-calculus and the elliptic angle % := sup¢_, |argo(A(£))| satisfies the in-
equality ¢4 > ¢%. Here, the parameter elliptic operator is of order m and has Holder
continuous coefficients and C™-compact boundary domain under general boundary con-
dition (see [18]). Although our case is included in [18] and [17], it is not so easy to check

whether the assumptions are satisfied. We give a simple proof here.

Lemma 3.2.3. Let Rea > 0. Then —aQ and —aQ have the property of mazximal requ-
larity, i.e., the solutions of the equation (3.2.8) and (3.2.9) satisfy (3.2.10) and (3.2.11),
respectively, for any p € (1,00).

Proof. We first consider the problem with the zero initial data. We prove that —aQ and —
aQ € H®(X) with ¢>,, and ¢, < 7/2. Let o = re’¥. Notice that 1) < 7 since
Rea > 0. Since Q is a strong elliptic operator, hence, it is the generator of a bounded Cjy-
semigroup on LP-spaces as well. Therefore —Q admits a bounded H>-calculus, (see [20]),
so that —aQ and —@Q also admit a bounded H*°-calculus with >0 and $* %50 < <p‘i°Q—H/J

(see [18, Proposition 2.11]). Here, by the strong ellipticity of Q, we have ¢>; = 0. Indeed,
we may write —Q(§) := (=Q(§)i;) = (227121 Aiji&r&r) since

1

j7k7l

A1ju(i0;)(i0)  Aryu(i0;)(i0)  Aujz(i0;)(i0))
- Agju(i0;)(i0)  Agpu(i0;)(i0))  Azj(i0;)(i0) | u
Azju(i0;)(10)  Asjou(i0;)(i0))  Asjz(i0;) (i)
] A1 (i0;)(10)  A1jr2(i0;)(i0))  Aujra(i0;)(i0k)
5 | Az (i0)(@0k)  Agjra(i0;)(i0k)  Agjis(i0;) (i) [ 1
Azj1(i0;)(i0k)  Asjia(i0;)(i0k)  Asjra(i0;)(i0k)
A1ju(i0;)(i0)  Arju(i0;)(i0) A1y (i0;)(i0h)
Azjui(i0;)(i0;)  Agjmu(i0;)(i01)  Agjz(i0;)(i0;) | u
Azju(i0;)(i01)  Asjm(10;)(i0))  Asjz(i0;) (i)

by symmetry property (1.3.1) of (Ajw). Then for any z € C* and ¢ € R? such that
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|€] = 1 we have

8

7 (-Q&))x = Z Aiji&iTivy

1,5,k,l

= 3" A& (&)

1,5,k,l

>a. Y &luil* = alal’,
i

where a, := min[3\ + 2u, 2u] > 0. Therefore, since (—Q(§)) is positive definite for any &,

these eigenvalues are positive. This implies that >, = ©¢ 5 = 0. Consequently, we have
X0 P < T/2.
Next, we consider the case of nonzero initial data. From the above argument it also

yields that «Q and @Q generate analytic semigroups T'(t) and T'(t) on LP(f2), respectively.
2

It is well-known that ug and (u; — aQuy) are in the trace space of W2'(Qr) (i.e., B;_pg)
if and only if T(-)uy and T(-)(u; — aQug) € W2 (Qr), respectively (see [45, Theorem
1.14.5)).
Hence, for (3.2.8) and (3.2.9) without inhomogeneous terms, it follows that
2,1 2-2
s W Q)] < Clluo; Byp” |,
92
lws W (Qr)]| < Cllwy — aQuo; Byp”|l,

from which we have (3.2.10) and (3.2.11). O

Remark. In general, the constants C' of the estimates (3.2.10) and (3.2.11) should depend
on time 7. However, by using the cutoff argument, we obtain that for any given 7y > 0
there exists A(Tp) > 0 independent of T' € (0, Ty such that

las W2 Q)| < ATo) (I w s LP(Qr)| + [l wos By, 7).
Therefore we may write the constant such as independent of time T' (see [14]).

Although the estimate (3.2.3) can be obtained by using the Friedman-Necas method
(see [36], [25]), we give a proof by using the another method.

Proof of Lemma 3.2.1 (ii). We show that, for the equation (3.2.9),

2

1—=
IVw; LP(Qr)|| < C[l f5 L (Qr) ]| + Clluy — aQuo; Bpy”|.

We first consider the equation with zero initial data. Denote the operator A with the
Dirichlet boundary condition by ®. We know that I — Q and [ —® € BZP(X) by the
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permanence property for BIP (see [18, Proposition 2.6]), and D(I — Q) = D(I — D) =
W2(Q), where |
Wo(Q) :=={ue W/(Q); u=0on 00}

It follows from [18, Theorem 2.5] that D((I—Q)z) = D((I—®)z). Hence, using the result
by D. Fujiwara [26], we know that D((I—Q)z) = W}, Here, if we put v := (I —Q)™'/?w

then the equation (3.2.9) with zero initial data becomes

vi—aQv=(1—-Q) 2V - f in Qp,

v(0) =0 in Q. (32.12)

By the permanence property of H* ([18, Proposition 2.11]), the maximal regularity with

perturbation
Ive; Z2Qr) ||+ | (1 = Qv Ly(Qr) | < O (1 = Q)Y - 5 LP(Qr) |
holds, so that

(7= Q) 2wis (@) +11 (7 = s L7(6)| o)
<O (1 -Q)7 V- f; LP(Q)]. -

Now we claim that for any ¢ € (1, 00),
IVg; LYQ)| < Cl (I - Q)2g; LYQ)|. (3.2.14)

Using the claim (3.2.14), the second term of the left hand side of (3.2.13) is estimated as
follows:

(I = Q)*w LF(Qr)l| = C|| Vw; LF(Qr)]].
The right hand side of (3.2.13) satisfies

|1 Q) 2V - £ L@ < € £ L)) (3.2.15)

Indeed, for smooth function g, we have

(I—=Q)2(V-f),9)= (V- f.(I-Q) g) (3.2.16)
— (f; V(I - Q) 7g) (3.2.17)
< C|fllzllgll, 2. (3.2.18)

where (f,g) := [ f - gdz and ( f g) = [ [ : gdz. The first equality (3.2.16) follows from
the self—adjomtneSS of (I — @)z, the second one (3.2.17) is obtained by the divergence
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formula with (I — Q)~7g € D((I — Q)/?) = W/, and the last inequality (3.2.18) is the
consequence of (3.2.14). Hence, the desired results follow if we accept the claim (3.2.14).
The claim follows from the complex interpolation ([26, Theorem 5]) between the fol-

lowing Calderon-Zygmund inequality for the strong elliptic operator Q — I (see [27]):
[w; W2 < O (I - Qw; LUQ)]|
and the trivial equality:
[w; LYQ)| = [[w; L)

Next we consider the case of the homogeneous equation with nonzero data. By (3.2.14)

and the real interpolation, we have

1—2

92
1v(0); Bop” || < CII (1 = ©Y*v(0); Bpp” |,
which completes the proof. O

We also give the maximal regularity for the heat equation with the Holder continuous

coefficient. The estimate is the particular case of [28, Example 3.2, A), 2)].

Lemma 3.2.4. Let q € (1,00). Assume that p(x) is Hélder continuous in 2 such that
infg p > 0. Denote by 0 the solution of the linear problem

0, — pAd =g inQrp,
n-Vé=0 on Sr, (3.2.19)
0(0,x) = p(x) in Q.

Then the following estimate holds

2_2
[6: W2 Q)| < | 6o; Bra® || + 1193 L) (3:2.20)

2/q

for any 6y € Bq2,; , where C' depends on infq p.

3.3 Truncated Problem

In this section, we consider the three-dimensional case. We define the truncation

function I';, of level L such as

x if |[x] < L,

L& if |z] > L.

FL(JI) =
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In order to assure the nonnegativity of temperature 6, we need the sufficiently strong

regularity assumption to u. Then we first consider the following truncated problem:
(

W+ Qu— vQu = Ty (V- [G(O) Fue(e) + Fo(6)]),

0, — A0 = 0G"(0)0:F(e) + 0G'(0)0,F1(€) + v(Aet) : in Qp,

u=Qu=V0-n=0 on Sr,
\u(O,m) =up(z), w(0,z)=us(z), 6(0,z)=06b(x)>0 in Q.

(3.3.1)

We prove the unique global existence for the truncated system (3.3.1).

Theorem 3.3.1. Let L > 0 and 5 < p < q < oo. Assume that 0y > 0, that v, K1, K,
satisfy (3.0.6), and that F(e,0) € C*(Sym(n,R) x R, R) holds. Then for any T >0 and
(uo, u1,6) € U(p, q), there exists a unique solution (ur,0r) to (3.3.1) satisfying (ur,0r) €
Vr(p,q).

Proof. We apply Theorem 3.1.4 to the map ® from Vr(p,q) into Vr(p, q),

dL (1, 0) — (u,0), T € [0,1],

defined by means of the following initial-boundary value problems:
(1w + Qu = vQu, = 7T, (V- [GO)F.(6) + B (9)] ).

0, — A0 =1 (éG”(é)@tFl(e) + 0G"(0)0.Fy(€) + v(Aey) et) in Qrp,
u=Qu=V0-n=0 on S,
\u(O,a:) =T1ug(z), w(0,z)=7ui(z), 6(0,z)=700(x) inQ,

where € = e(1). A fixed point of ®£(1,-) in Vp(p, q) is the desired solution of the system
(3.3.1). Therefore, to prove the existence statement, it is sufficient to check that the map
L satisfies assumptions (L1)—(L4) of Theorem 3.1.4.

Step 1.

We can check the assumptions (L1), (L2) and (L3) for &, as the same as in [37,
Section 3]. For the sake of completeness, we state the proof of these parts. Here ®, from
Vr(p, q) into Vr(p, q) is defined as follows:

®,: (11,0) — (u,0), T € [0,1],

defined by means of the following initial-boundary value problems:

(0 + Q0= vQu, = 7V [GO)F(0) + Fac(e)),

0, — A0 = 7 [0G"(0)0,F, () + 0G'(0)0,Fi () + v(Ae) - &] in Qr,
u=Qu=V0-n=0 on Sr,
\u(O,a:) =T1up(z), w(0,z)=r71ui(z), 6(0,z)=70(zr) in Q.

(3.3.2)

52



We remark that if the conditions (L1)—(L3) for ®. are satisfied then the conditions (L1)-
(L3) for ®F are also satisfied from the Lipschitz continuity of T'f.

The property (L1) follows by showing that for any fixed 7 € [0,1], &, maps the
bounded subsets into precompact subsets in V(p, q). Let (@”, 6") be a bounded sequence
in V(p, q) such that

n

weakly in W;Q(QT) for 5 < p < o0,

ol

— (3.3.3)
0" — 0  weakly in W;’Z(QT) for 5 < ¢ < o0,
as n — oo. Our aim is to show that for the values of ®,(-) given by
(u™,0") = d.(a", "), (3.3.4)
the following convergences hold
u” — u strongly in W;’Q(QT) for 5 < p < o0, (3.3.5)
0" — 6  strongly in W>'(Qr) for 5 < ¢ < oo, (3.3.6)
as n — 00, where
(u,0) = ®.(,0). (3.3.7)
Applying the Aubin compactness theorem (Lemma 3.1.3), we obtain
W2(Qr) — W2 (Qr) and  W2P'(Qr) — LLW,  are compact.
With the help of the compact embeddings results, it follow from (3.3.3) that
(") — e(m) strongly in W2 (Qp) for 5 < p < o0, (3.38)

" — 0 strongly in LIW, for 5 < ¢ < o0

as n — Q.

We also obtain that recalling €2 is bounded,
W2HQr) — Co2(Qp)  is compact

for ¢ > 5/2 and a < 2 —5/q, since W2 (Q) — C?#/2(Q7) is continuous from Lemma
3.1.1 for B =2 —5/q and CPF/2(Qp) — C¥/2(Qy) is compact for a < 3 (see [1]). This,
by virtue of this compact embedding, implies that

€ —¢€ Ve —Ve 0"—0, (3.3.9)
strongly in spaces of Holder continuous functions in €27, where

€' =¢e(a"), €e=e(n).



Thanks to the above convergences, it follows that

VF(",0") = F(¢",0")\VE" + F 4(e",0")VO"
— Fo(€,0)Ve+ F(€,0)V0 = V - F(€,0)
strongly in LP(Q7) for 5 < p < ¢ < o0.

Consequently, it follows from the maximal regularity that
u" —u  strongly in W, *(Qr).

This implies the convergence (3.3.5).

(3.3.10)

Furthermore, we note that, by (3.3.5) and continuous embeddings (Lemma 3.1.1),

€ —e€ € —e

strongly in spaces of Holder continuous functions in 7, where

" =e€(u"), € =¢€uy), e=ceu), €=c(u).

In order to prove convergence (3.3.6), we consider the difference
n"=0"—46.

By definition, n™ satisfies the following problem

cole, 0, 7)nt — An™ = TR(€",0") — TR(e, 0)

— (co(€™,0™,7) — cole,0,7))07 in Qr,
n"(0,:) =0 in Q,
n-Vn"=0 on St,

where

=1—70G"(0)F(e),
( ) =0"G'(0")F1 (") : €} + v(Ae}) : €},
(e, ) G'(O)Fie(e) 1 & +v(Ae) : &

In view of Hélder continuity of the coefficient ¢y(e, 8, 7), in order to prove that

n™ — 0 strongly in WqQ’l(QT) as n — oo,

o4

(3.3.11)

(3.3.12)



it is sufficient, by virtue of the maximal regularity, to show that the right hand side of
(3.3.12) converges to 0 is L?(Qr)-norm. Indeed, we have
| R(¢",6™) — R(e,0); LU(Qr)||
< CO[10" = 01| Foe(e",0™)|er]; L(Qr)|| + C| Olep (" — e + |6 — 8]); L(Qr) |
+C[| 0| Foc(e,0)] e — el L(Qr)|| + C|[ e — ecl(lef'| + |ee]) s L)
—0 asn—0,
where we have used uniform Hélder bounds on €”, ¢! and " with respect to n, and the
convergences (3.3.9) and (3.3.11). Furthermore,
H (60(6n7 én’ 7_)_00(67 é? 7—))9? ; Lq(QT) H
< H (co(e",0",7) = cole, 0,7)); LOO(QT)” || 0r'; Lq(QT)H
— 0 asn— oo.

This shows (3.3.6) and thereby the complete continuity of ®.(-).

The uniform equicontinuity property (L2) follows by direct comparison of two solutions

(u, ) to the problem (3.3.2) with 7 = 7, and (1, #) to the problem (3.3.2) with 7 = 75, and
applying the maximal regularity estimate. The property (L3) is obvious by the definition
of @, ().

From the Lipschitz continuity of I';, we can immediately check the conditions (L1)-

(L3) for ®L in the same way as above.

Step 2.

Next, we check the assumption (L4), namely, to derive a priori bounds for a fixed
point of the solution map ®£. Without loss of generality we may set 7 = 1. Hence
from now on our purpose is to obtain a priori bounds for (3.3.1). To this end we prepare

several lemmas. If there is no danger of confusion we write for simplicity (u, ) instead of
(ur,0r).

Lemma 3.3.2 (Maximum Principle). Let (ug,u;,00) € Bap’/” x Bip?? x L2 for
p > 5. Assume that ming 6y > 0. Then the solution 0 to the truncated problem (3.3.1) is

non-negative almost everywhere in Q.
Proof. 1t follows from the maximal regularity (3.2.2) that
Jws W2l < C(Jluo; B2+ llws B2
H[|T2 (V- [GOF (0 + Bo@) 2200
< C (Jluos Bi27)l + llurs B27| + L)
< A(L).

(3.3.13)
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Then taking p > 5, by Lemma 3.1.1 we have
le; L2(Q)|[ + [ e L7(Q)[| < A(L) < o0, (3.3.14)
Therefore it holds that
10eF1(e) s L)l < llees L(Qr)llll e; L(Qr) |7 < A(L)
for Ky > 1. Since sup,cg |F1(€)| < M for K; <1, we conclude that
|0Fi(); L) < A(L) (3.3.15)

for every K; > 0. From now on throughout this section we shall write A = A(L).

Multiplying the second equation of (3.3.1) by 6_ := min{6,0} and integrating over €2,

we have
;jt 92dx+/|V9 2dz
- /Q 100G (0)6:F1(€) + 0_0G'(0)0,F (¢) + v0_Ac, : ] da
ccllt Fi(e)Gy(0_ d:L'—i—/Gg VO F (€ )dx—l—/QVH A¢; : gdu,
where G5(0) = 6°G'(0) — G2(#) and G1(0) = 2[0 sG'(s)ds. We have G»(0) = 0 and

Gy(y) = y*G"(y) > 0 for y < 0, because G” is the odd function such that G”(y) < 0 for
y > 0. Then G5(y) <0 for y > 0. Hence we have

—/ Fi(e)Ga(6_)dz > 0.
Q
It follows from (1.3.2) that

/ vh_Ae, : dx < l/a*/ 0_le|*dr < 0.
Q Q

Noting that Gy(f) = %(1192 for 6 € [—61,6,], we have sup,p @i%)‘ < C. Therefore we

conclude that

N
/G2 VO, (e dx</|9 2! |29 ; M \0,F(0)[da

< A0

Consequently, we have

S (10-00; - [ AGi0)
A (1005 @I - [ R0t
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Using the Gronwall inequality, we obtain
16-(t); LAQ)II* < [10-(1); L*(Q)|* — / Fi(€)Ga(0-)dx
Q

< AeM (H o-(0): I - [ F1<e<o>>Gz<9_<o>>dx)
-0,

which completes the proof. O]

Lemma 3.3.3. Let m > 2 be arbitrary integer, and assume that r < 1. Then for any
(ug,u1,00) € By x Bi/P x L™, the solution (u,0) to the truncated problem (3.3.1)
satisfies

1605 L L™ < A,
where A = A(T, || (u,uz, bp) ; Ba2? x BEYP x L™|). Moreover, if (ug, uy,6) € Bpy2/Px

32 2p o L, then we have

165 L=(Qr)|| < A,
where A = A(T, || (uy, us,00) : Bpp’'” x Bop?/® x L|)).

Proof. Multiplying the second equation of (3.3.1) by #™~! and integrating over €2, we have

1d
mdt” O; L™()||™ + (m — 1)[29m_2|v9|2dx = /91/97”_1146,5 s edx
+ / ("G (0)0,F (¢) + 07 G (0)0, Fi(€)) dx
@ (3.3.16)
= 1// 0™ Ae, - e,dr + —/ 0)F(e)dx
+ [ Goari
where G,,(0) = 0™G'(0) — G,,(0) and G,,(0) = mfoe s™ G (s)ds. Since
Cor(r —1)gm™ =1 <0 for 6 > 0,,
0"G"(0) = < 6" (0) <0 for 6, < 0 < 0y, (3.3.17)
0 for 6 < 64,
we have G! (0) = 0™G"(0) <0 for § > 0 and G/,(0) = 0. Thereby, we obtain
Gn(0) <0 for 6> 0. (3.3.18)
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We put

é:e(1-%)1/m.

We note that § > 6 due to (3.3.18). Since SUDse(0,00) |G (8)] =1 M < o0, we have

0
G (0)| = 'm/ s"IG (s)ds| < CO™
0

and
G (0)] < MO™ + |G (0)] < CO™.

In view of (3.3.14) and (3.3.15) we obtain

< Clloms LN aiFe) s =@~ < Allo; L™ (@)™

/ G (0)0,F1(e)dw

and
/emlflﬁt e < Oflers L2(QP16; L™ HQ)I™ ™ < All6; L™ Q)™
Q

Since 20,[|0; L™||™ = ||6; L™, 6; L™, it follows from (3.3.16) that
d N m m
105 LDl < A6 L™(Q)] + A

< A6 L™Q)|| + A.

Thus by the Gronwall inequality we have

165 LFL™| < Al 6o; L™ ()] + A. (3.3.19)

Since

R MG (00) Fi(0) \ ™
_ 1 —
by = 6, ( 931

< By (1+mMA)Y™,

we can obtain the first assertion. Here we note that the constant A in (3.3.19) is inde-
pendent of m. Therefore taking a limit as m — oo we can obtain the second assertion.

This completes the proof. O

Lemma 3.3.4. Let r < 1. Then for any (o, uy,60) € Bpp'" x Bip?/? x HY, the solution
(u,0) to the truncated problem (3.3.1) satisfies

165 Wo" (Qr)] < A,

where A depends on T and || (g, u,6) ; Bf,‘,_pwp X B,?;?/p x H.
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Proof. By using Lemma 3.3.3 thanks to §, € H! — L?, we have
|6; LFL?| < A. (3.3.20)
Since 0G"(0) < 0 from (3.3.17) for m = 1, the following estimate holds true
/ [ 620G 0)Fi(e) ot < 0. (3.3.21)
T
Multiplying the second equation of (3.3.1) by 6; and integrating over 27, we have

1 1
1605 QI+ 51 96 LELP < 5l 00 @I+ [ vbide: cdnas
Qp

+/ QtGG’(G)atFl(e)dxdt—i—/ 020G" (0) F, (e)dxdt
Qp

Qp
< [16oll3 () + All 0 LFL?|[[| €5 L(Qr)|?
+ A 05 L2(Q) 05 LF L2 0 (€) 5 L=(Qr) |
< 160 Q@I+ 516 L@ + A
thanks to (3.3.14), (3.3.15), (3.3.20) and (3.3.21). Therefore we arrive at
10 L2(Qr)ll + 1 V0 LFL*|| < A(]| (w0, w1, 60) ; Uz]))-

Next multiplying the second equation of (3.3.1) by ﬁ and integrating over

Fy(e)
Q, we get
1d (AQ)Q
~ L) vo); 12 2+/ J
pai| VOO I | T e R ™
Af
< / : '
- /Q 1 — HG”(Q)Fl(e) (GG (e)atFl(C) + vAeg et) dz

Here we remark that
1<1~— 0G”(9)F1(e) <1+ MA,

where 0 < supyso(—0G"(0)) =: M < oo. Then integrating over [0,¢] for t < T, we
conclude the estimate

2
.72 2 72 2 ) 2
V600 Q)P + 1 205 L@ < | V5 22(@)]
+ 2| AG; L*(Q7)]| H 0G'(0)0,Fy(€) + vAe; : € ; LQ(QT)H
1
< O L?||? + ———— || AG: L*(Qp)|?
2
(14 AM) (A 05 LEL2 P (€) ; =) + All s L=(r)])
1
< —— A0 L*(Qp)|]? + A.
Consequently we arrive at the desired result. O
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The same procedure as in [37, Section 6] yields that § € C**/2(Qy) for some Holder
exponent 0 < a < 1 depending on T, supg, 6y and || 6; L>(Qr)]|.

Lemma 3.3.5 ([37, Lemma 6.1]). Assume that supg 0y < oo and that > 0 in Q.
Suppose that the solution for the problem (3.3.1) satisfies that

le; LX)+ | e; WEHQ)I + 1165 W (o)l + 165 L2(Q)| <A (3.3.22)
for any s € (1,00). Then 6 € C**/2(Qyp) with the Hélder exponent o € (0,1) depending
on A and k.

For the sake of completeness we give the proof of this lemma. Essentially, the proof
of this lemma relies on the classical De Giorgi method for parabolic equations. For more
precise information of this method we refer to [32, Chapter 11, §7] and [34, Chapter VI,
§12]. Here we note that e is Holder continuous because of Lemma 3.1.1. We first define
the parabolic De Giorgi class By (Qr, M, vy, 7,0, K).

Definition 3.3.6 (Parabolic De Giorgi Class). Let M, v, r, §, k be positive numbers.
The function u belongs to By (2, M, v, 1,9, k) if the following conditions are satisfied:

(D1) u e Vy"°(Qr) = CpL? N L2H,
(D2) [Ju; L=(Qr)| < M,
(D3) the function w(x,t) = tu(x,t) satisfies the following inequalities:
ma || (w = k)1 L (Boop(z)) I < ll(w — )4 (o) 3 LB, (o)

to<t<to+T
+ 7 [(01p) 2 (w = K) 15 LXQ(p, 7)) + 29 (K, p, 7)]

and

(w0 = k) s Vo(Q((1 = o1)p, (1 = 327 |
<4 { (# ; i) (w0 = ks L2Qo )P + 120+ (ke r>} .

(o1p)? 09T

Here we denote by (w — k)4 = max{w — k,0}, B,(x¢) = {z € Q| |xr — x| < p} and
Q(p,7) = By(xo) x (to, to+7) = {(x,t) € Qp ||z — x| < p, ty <t < ty+ 7}, where
p and T are arbitrary positive numbers, o1 and oy are arbitrary numbers from the

interval (0, 1), and k is an arbitrary number satisfying the condition:

lw(z,t); L=(Q(p, 7)) — k < 4.
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Moreover, we set
Ay p(t) = {x € By(zo) | w(z,t) > k},

to+T7 -
u(k, 0, 7) = / A (8)] 5 dt,

to

where positive numbers ¢ and r are linked by the relation

ro 2q¢ 4’
with the admissible ranges
q € (2,2n/(n—2)], r € [2,00) for n > 3,
q € (2,00), r € (2,00) for n > 2,
q € (2,00], r € [4,00) for n > 1.

Besides, we write
Vo(Qp) = LEL* N L3H".

We call By(Qr, M, 7,7, 0, k) the parabolic De Giorgi class.

The embedding By (2, M, 7, 7,6, k) — C**/2(Qr) holds (see [32, Theorem I1.7.1]).
Hence, if we prove 6 € By(Qp, M, v, 7,6, k), then we can obtain the desired result.

Proof of Lemma 3.3.5. We shall prove 0 € By(Qp, M,v,7,d,k), where r = ¢ = 10/3,
k=1/3, M :=10; L>®(Qr)|, v = A and 0 is some constant such that § > M — k for a
positive number satisfying k > supg, 6p(z). We determine § later.

It is sufficient to check that 0 satisfies conditions (D1)—(D3) in the definition of the
space Bo(Qr, M, v, 7,0, k). Since 0 € WQQ’I(QT), by the embedding theorem, it follows that

0 C[()’T}Hl,

so that the condition (D1) is clearly satisfied. Furthermore, thanks to the assumption
(3.3.22), condition (D2) is also satisfied with the constant M = A.

We proceed now to check that 6 satisfies the second inequality in condition (D3). Let
Q(p, ) = B,(xg) x (to,to + 7) be an arbitrary cylinder in Qp, and ((z,t) be a smooth
function such that supp {(x,t) C Q(p,7) and {(x,t) = 1 for (z,t) € Q((1—01)p, (1—02)7),

where o1, 09 € (0,1). Moreover, let

Auy(t) = {z € B,(zo) | 0(z,t) > k}.
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Multiplying the equation (3.0.2) by (?(6 — k), and integrating over €2, we obtain

1/%6—@ kdwﬁLWW—@ﬁﬁm

(3.3.23)

+ 2/ CO—k) V(O —k)y Vidr = / RC*(0 — k) dz,
Q Q

where for simplicity we have denoted the right hand side of (3.0.2) by f, i.e.,
R =R(e,0) = 0G'(0)F1.(€) : & + v(Ae) : €,

and co(€,6) = 1—0G"(0) Fi(€). The first term on the left hand side of (3.3.23) is rearranged

as

1
_ 5 /Akm(t)(COﬁ : Et)(e — k’)iCQdQE — 5/ 6079016(9 _ k)ic?dx (3324>

Ak,p(t)
— / co(0 — k‘)iCCtdx.
Ak,p(t)

The third integral on the right hand side of the above inequality requires special technical
treatment because of the presence of ;. To this end we first observe that on the set
Ay (%) it holds that

co(€,0) =co(e, (0 — k)4 + k),

and hence we have
00,9(67 9) = Co,(0—k)+ (67 (9 - k)+ + k) on Ak,p(t)-

Now, restricting considerations to the set Ay ,(t), we define the function

H(e, (0 —k),) = /0 o o€, & + k)EdE. (3.3.25)
Clearly, it satisfies the conditions
H(e,0) =0,
H (g-ky, (€, (0 — k)1) = coo-k). (6, (0 — k)« + k) (0 — k)3

Then the third mentioned above integral transforms as follows:

1 1
5 | - 0iCdr == [ o0 BECO0O -~ k)da
2 J 4y (0) 2 J 4 (0)
1
- / H (o1, C20,(60 — k) . d (3.3.26)
Ak,p(t)

1 1
:_5/ (@m@m—§/ (He:e)( dw.
A o(t) Ar,p(t)
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Setting
H(e, (0 —k)y) for 6>k,
0 for 0 < k,

H+:

we rewrite the first integral in the last equality as

1 1
5 | @ = [(@mH)¢a
Ao (1) o (3.3.27)
14 )

Summarizing, in view of (3.3.24), (3.3.26) and (3.3.27), the identity (3.3.23) takes the

form

1d
—— [ co(0 — k)2Cdx + / V(0 — k), |*¢dx

1d 1
== / H,Cdx — / H, CCdr — = / CCH, : edx
2dt [¢) [¢) 2 Ak,p(t)

1
+ / co(0 — k)2 CGdx + —/ (0 —k)icoe : eda
A0 2

Ak,p(t)

(3.3.28)

- 2/ C(O—k), V(O —k)y Vdr+ / RC*(0 — k) dx.
Ak’p(t) Ak’p(t)

Integrating (3.3.28) with respect to ¢, and taking into account that () — k); = 0 and
H (e, (6p — k)4+) = 0, we obtain
1
5 /(9 —k2Cdr+ | V(0 — k), 2Cduds
Q Q

< (/ |H+|C2dx+/ |H. | |Cs|dxds—|-/ |H| |es|¢2dxds
) N " (3.3.29)
+ lco| (6 — /f)i\@]dxds + |Co.e €] (0 — k’)iCQda:ds

of Q4

+ [ 1810 -0 IcPaods + [ (01190 =111 rvadxds).

of

Now we observe that owing to the boundedness of functions ¢y and cg g, it follows that
[H (e, (0 — k)1 )| + [H (e, (0 = k)1)] < e — k)Y (3.3.30)
Moreover, by the assumption on k,

|H (e, (0 —k)4)| < cd(0— k)3 (3.3.31)
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Therefore, choosing § appropriately, the first integral on the right hand side of (3.3.29)
can be absorbed by the left hand side. The last integral on the right hand side of (3.3.29)

is estimated by use of the Young inequality as follows:

/ (0 — k)2 |V(8 — k)| [C]|VC|dds

Qt . ) (3.3.32)

<= | V(0 - k). 2CPdads + - / (0 — k)2 |V 2dds,
2 2 Jo,

Q4

then the first integral on the right hand side of the above inequality is absorbed by the
left hand side of (3.3.29). Combining (3.3.30)—(3.3.32) in (3.3.29), we arrive at

/(0 Rz + [ V(0 — k)4 |*CPdads
Q Qi

<c / (6 — k)2 (C% 4 V¢ + |G dods s

€ [ (el = 17 + 11106~ 1).) dads
Q
= Il + Ig.
Clearly, the integral I; is estimated by

1 1
L <C <—2 + —) / (0 — k) dxds.
(010)? 027/ Ja(om)

For the integral I, using the boundedness of ¢t and applying the Holder inequality, we
obtain

to+71
L<C / / (les] + f1)C2dads
to Ak,p(s)

to+7 % to+T1 %
<C (/ / (les]® + |f‘5)c2dxds> (/ |Ak,p(s)\ds> .
to Ak, p(s) to

Consequently, we obtain

4
5

I, < (” ) L5(Qt)” + ” R; L5(QT)H) H (k7p7 T)'

Taking into account that by assumptions
1f5 L2(Qr)| < C (llees L)l + lees L(Qr)]?) < A,

we have
12 S AM2(1+H)/r(k’p’ 7_)
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for Kk =1/3 and r = 10/3. Combining estimates on [; and I, in (3.3.33) leads to

10 = &)+ V2(Q((1 = a1)p, (1 — o2)7)) |

:H [o—wzci x|+ [ 190 -k P
Q Qr

o1p)? 09T

<A [((L + L) 16 — k)4 s L2(Q(p, )| + 120977 (ke p,7)

Since 6 > 0, this shows that the second inequality in condition (D3) is satisfied with
constant vy = A.

The first inequality in (D3) can be proved by multiplying (3.0.2) by (2(6 — k)., where
Co(z) is a smooth function such that supp (o(x) C B,(20), (o(x) = 1 for & € B_o,),(0),
the next integrating over €2 x (to,to + 7). In this case, repeating the above arguments,

inequality (3.3.33) is replaced by

Jo-1iGdns [ V(0 k). Peidodt
Q Q(p,7)

sc[ [0 -miGae s [ 0- RGP (333)
Bs(z0) Q(p,7)

# [ el - K171 - k) Gdea]
Qlp7)

Since the last two integrals on the right hand side of (3.3.34) are estimated as above, this
leads to the required inequality. The proof is completed. O]

Lemma 3.3.7. Assume that (3.3.22) holds. Then for any (ug,uy,6y) € U(p,q) and 5 < p,

q < o0, we have
1 (w,0); Vr(p,a)ll = [lw; W2(Q)|| + [ 05 Wt (Qr)l| < A,
where A depends on ||(ug,u1,600); U(p,q)|| and T

Proof. By using Lemma 3.3.5, we have # is Holder continuous, i.e., § € C**/2(Qr). At
the first step we prove the Holder continuous of 6 in o 7).

Step 1.

To prove the Holder continuity of § in the domain Q) := [0,7) x Q (D Qp), we first
show the unique local existence to the problem (3.0.1)—(3.0.4) for sufficiently small time
interval [0,d] for § < 7. We remark that the unique local existence to the truncated

problem (3.3.1) follows from the easy modification of this proof, thanks to the Lipschitz
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continuity of I';. We consider the map W : (u,6) — (1, ) such that

(G + Qi — Qi = V- (GO)F() + o (6))

[1—0G"(0)F,(€)]6, — AG = 0G'(0)d,Fy(e) + v(Ae,) - ¢ in Qs,
ﬁ:Quzva-n:() on Sg,
\u((), ) =ug, w(0,:)=uy, 0(0,:) =0 in .

For some M > 0, we define the subset 17%4(]0, q) of 17T(p, q) by

Vi (p.q) = {(1.0) € Ve(p.q) | 1(w.0)][5, ) < M.
(u(0,-),u(0,-),6(0,-)) = (ug, uy, 00)}.
In this case of 5 < p < ¢ < 00, the norm of )~/T(p, q) is
1, D15, gy = 105 W2 Q)|+ [ €5 WEHQr)]]
105 Wl Q)| + 1105 LEWL]-
We shall show that the map ¥(u, ) is a contraction from 17({”(19, q) into 1757”(]9, q),

where positive number M is determined later.

From the Holder inequality, it follows that
1
IV Fe; LP(Qq)|| < CT7[|V - Fe; L2(Qr)]]
1 T
< CTv (16115, (p.g) + 10155, ) 10l oy + 012

Vr(p,q)
1
< CT?ha([[(0, 0) (15,0l (1, )||9T(p,q)7

where hy (y) = yf1t7 =24y K171 4 ¢K2=2 By the maximal regularity (3.2.2) and Proposition
A.1.3, we have

1@, 0) v gy < Cl (w0, 11, 0); Up, @) + C|| V- Fies LP(Q)|
< O (uo,u1,0); Ulp, @)l + Toha ([l (w, )55, ) (@ )5,

On the other hand, we can rewrite the heat equation as follows

[1— 0oG" (60) Fy(€0)]0; — A = D(e, 0)8, + R(e, 6),

where
co(e,0) = [1 —0G"(0)Fy(e)], (3.3.35)
R(e,0) = [0G'(0)0,F1(e) + v(Ae) : &, (3.3.36)
D(e,0) = 0,G"(0) F1(e0) — OG" () F1 (). (3.3.37)
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We note that cq(€g,60p), D(e,0) and R(e,0) are the given Hélder continuous functions.

Then, by the maximal regularity (3.2.20) and Proposition A.1.3, we have

100,015,y < C11 (0,0, 0) 5 TU(p, )|
+ | D, 0)fr; L(Qr) | + CT4| R(u.6): L¥(2r)]
< C[1(0,0,60); U(p, )ll + P(w, 8) ; L=(Qr)[[[| 65 L)
+ Moha ([ (w, 0)[I55,. ()1 (0, O) 55,09
where hy(y) := y™ 172" +y. We set M = 2C||(wg, uy,6p)||u(p,q)- If we choose T} < T such
that || D(u, 0); L>®(Qp,)| < 1/2 and QCTI%h(M) < M, then we have

1@ 0) 5, gy < CUl0. 1,80 l0) + CTF B 6) 5, ) 1065,
<M,

where h(y) = hi(y) + ho(y). This implies that (4, 6) € 9% N
Given (u,0) € V¥ (p,q) and (U ,0) € VM(p,q), we set (U,0) = ¥(T,f), w = u— 1,
nz&—g,ﬁzﬁ—ﬁandnzﬁ #. Then we have
Wi + QW — vQW, = V - (F(e(u), ) — F(e(),0)),
co(€o, 00)e — A1 = D(e(u), 6)0n
+ [D(e(u). 6) — D(e(n), )08 + (R(c(n),0) — R(c(u).B)),
w=0Qw=Vn-n=0,
w(0,-) = w(0,-) =n(0,-) =

From Lemma 3.2.1 and Proposition A.1.3, we obtain

(W, 0) 15 () < CT# [ (|| (u, N5, 0) T LU D)5, 00 )TV D5, 00
and
10, D15, gy < ClID(e(u), 8) 5 L (Qr)|[[| Oy 5 L(Q27)|
+ C|| D(e(u),0) — D(e(w),0) ; L)l 005 L()]|
+ CT4|| R(e(u),0) — R(e(n), 0) ; L®(Q)]|
< C|D(e(u),0); L=(Qr)|ll| 05 L (Q27)]|
+CJ100; L) [Ps(1 (0, 0) 15, 0.)) + P3N D15, 00 )TNV D5, 000
JII(w

+ CT s [ (| (0, )5, .0)) + P2 (I )15, ) LN (W )15, 50
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where hg(r) = ' =1 + 5" Since fe W2 (Qr), we can take sufficiently small T3 such
that N

Cl08; L0 |s(M) < -
Therefore, if we take T3 < T, such that

Cl| D(e(u),8); L®(Qp)| < 1/2 and  CTyihy(M) < 1/16,
then we arrive at
10 (w.0) = U(w@0); Vr(p)]
< w6 — @8 Vo)l

Choosing the time 6 = min{7}, T5, T3}, we obtain the unique existence of the solution
for (3.0.1)—(3.0.4) in 175‘4(]0, q). To prove the uniqueness in the whole of the space 175(]9, q),
it is enough to take 0 sufficiently small. By the embedding (Lemma 3.1.1) we have
]75(p, q) = Vs(p,q). It follows from the Banach fixed point principle that there exists a
unique local solution (u, @) for the system on small time interval [0, ¢].

We know the embedding Bag?/? < C(Q) for ¢ > 5/2, then from the above we have
0 € C(Qp,)). Therefore, since if f € C([0,6]) N C*((0,T")) then f € C*([0,T)), we have
0 € C2(Qp.1))-

Step 2.
Using the definitions (3.3.35)—(3.3.36), the equation (3.0.2) can be rewritten as

co(€0,00)0; — AO = D(€,0)0, + R(e,0).
It follows from the assumptions that

[ R(e, 0); L)l < Ol 05 L=(Q) "} Fre(e); L)l e L)l
+Clles L*(Qr)|I*
<A.

From the Holder continuity of the solution (u, ) on Qo , it follows that
| D(e,8); L=(Qomy)|| < KT,?,

where K is the Holder constant independent of 77. Here, T} < T will be determined
later.

Next we show that for fixed Ts, 1/cy(¢,0)(x,Ty) is Holder continuous with respect to
the space variable. Noting that

G(y) == yG"(y) € [0, M]
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and G € C! is Lipschitz continuous, we have

L) - L m) ’ (!, To))Fi(e(a, Ty)) — G(0(x, T)) Fi (e(, To)) ‘
| (1= 600, T)Fi(e(r, T) H1 - GO, ) Fr(e(a', )}

< '{9(9($’7T2))F1(6(33’,Tz)) = G(0(z, o)) Fi(e(2, T2)) }

+ {g Z, T2 >F1<€(I/,T2)) — g(@(x,Tg))Fl(e(x,TQ))}‘

< [Fi(e(2', T2))|1G(0(2", T2)) — G(0(, T2))]
+16(0(x, T2))| [F1(e(2', T2)) — Fi(e(w, T2))

< AK|zx —2'|*+ CM|z — 2'|*

< Alx —2/|*

Y

where A is independent of T,. Therefore [1/cy(¢,0)|(x,T3) is Holder continuous for any
T, € [0,T]. Moreover, we have supg, [1/co(e,0)] > 1/(1 + MA). These assure that

mA has the mai{imal regularity property according to Lemma 3.2.4. Hence,

taking 177 = (W) E, we have

16 Wet Q)| < AU, M T)(|ID(e, 0) 5 L=(Qm) || 63 L7(2g,)
+ 1 R(e,0) s L9(Qm)l| + 1605 By, (D))

< Sl10e5 L9Qa) || + A + Al o5 BE ()]

—_

’

\V)

which yields
165 Wi Q)| < A+ Allbo; By 4(9)].

Here we remark that

160(Ty); B2 < C(T0)] 6 W2 Q)| < C(T1) (A + Al 603 B2,24))

2

thanks to the embedding W' (Qg,) < BUC([0, T1], B;;g) (see [7], [45]). Then similarly
for the interval [T7,27}] we have

165 Wt (Quram) | < A+ A 6(T1) 5 By 24 < A+ Al 6o; By < A
Repeating the same operation as above, we obtain
105 W Qe eyl < A

Summing the inequalities from k& = 0 to k = m satisfying (m + 1)T} > T and mT; < T,
we conclude that
160 ;W Q)| < A
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Next we estimate the norm || u; W,"*(Qp)|. From Lemma 3.1.1 it follows that
IVO; L=(Qr)|| + || Ve; L2(Qr)|| < A
for ¢ > 5. Therefore, by virtue of the maximal regularity (3.2.2), we have

s W2 ()| < O (wo,u1,0); U, )| + |V - Fale); LP(Q)|
+ | V- (GO)Fre(e); LP(Q0r) ||
< C[ (ug, w1, 0); Ulp, @)l + Al Ve L=(Q)||[| Foee(e) ; L=(Qr)]
+ A VO; L= Q) Il G'(0) ; L ()|l Faele) ; L(Q)]|
+A[[0; L= Q)" Ve L2(Qr)[|| Free(e) 5 L)
< A(|] (g, uy,0); Up, g)ll),

which completes the proof.
O

Proof of Theorem 3.3.1 (continuation). The assumption (L4) is satisfied thanks to Lemma
3.3.7. Then the existence of a solution to the problem (3.3.1) results from Theorem 3.1.4.
Noting that 'y, is Lipschitz continuous, we can obtain the uniqueness result by repeating
the proof of uniqueness theorem which we shall give in Section 3.6. Thereby the proof of
Theorem 3.3.1 is completed. O

3.4 Global Existence

The idea of the proof consists in showing that the solution (uy,67) to the truncated
problem (3.3.1) constructed in Section 3 satisfies also the original system (3.0.1)—(3.0.4)
for sufficiently large truncation size L. To this purpose, assuming that there exists a
sufficiently smooth solution of problem (3.0.1)—(3.0.4) such that § > 0, we derive for it a

sequence of a priori estimates which are independent of L.

Lemma 3.4.1 (Energy Conservation Law). Assume that 0 > 0 a.e. in Qp and that
0<r<1, 0<K, Ky,<6,  6r+K, <6.

Then for any t € [0,T] a smooth solution of (3.0.1)—(3.0.4) satisfies

16(t): LN + [ w(t) s L2A(Q)] + [ Qu(t) ; L*(Q)]

(3.4.1)
< C(|| (wo, w1, 6o) ; H? x L x L'|)).
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Proof. Multiplying (3.0.1) by u; and integrating the resulting equation with respect to

the space variable, we have

d

1 1
i (3lue @PSlu 2+ [ R
Q

2
= /Q (Ae,) : exdr — /Q G(H)%Fl(e)dx-

Integrating (3.0.2) over 2, we obtain

d

— [ fdx = V/(Aet) : etdx—l—/HG’(H)QFl(e)dw%—/GG”(H)HtFl(e)da:.

Combining these equalities, we deduce

d (1 1
& (hos @I+ glQus 2P+ [ oas+ [ Rioe)
Q Q

_ /Q (ea'(e)%ﬂ(e) +0G"(0)0,F) () — G(@)%Fl(e)> dz
d [ —
=—a G(0)Fi(e)dx,

where G() = G(0) — 0G'(#). Consequently, we have

d

1 1 _
& (o 227+ s 227+ [ o+ [ Raas+ [ @R () =0
Q Q Q

Here we recall that § > 0 and Fy(¢) > 0. By the structure of G(6) the function G() is as

follows:
0 if 6 € [0, 64],

G(r) =< p(8) —04(0) if 6 € [61,62],
Co(1 —1r)or if 6 € [0, 00).

Since from Lemma 3.1.2 we have G(f) > 0. Consequently, it follows from the structure
of the nonlinearity (N3) that

Slw(e)s Q) + Sl u(e): BHQ)IP + 160 2]

1
< glhwos B2+ Slws LA + (160 L) +/ | F2(€o)|dx + Cs
Q

N —

" /{ [p(60) = b0 (G0) Fi{ea)ds + Cal1 =) /{ B ()

2>00>61}NQ 0>02}NQ
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where €y = €(ug). Since the smooth function ¢(s) — s¢'(s) is bounded for s € [0y, 6], we

have
/ (£(60) 60 @) Frlea)da < € [ Jeo e
{92 >600 Z@l}ﬂQ Q
< Cluo 1

for K; <6,

Kq
/ OoH (€0)dz < O s LAl €03 L= ()]
{60>623N2
< Cll0os LI o5 H2(Q)]™

for 6r + K; <6 and
/ Fa(eo)lde < [luoll "
Q

for Ky < 6. Hence we conclude the assertion. O

Lemma 3.4.2. Assume that 6 > 0 a.e. in Qr and that (3.0.6) holds. Then for any
(ug,uy,6p) € B8 x B8 x L%, the solution (u, ) to (3.0.1)~(3.0.4) satisfies

16/5,16/5 16/5,16/5
le; Wig)s(Q)ll + 1 V05 LA(Q) || + 165 LF L] < A, (3.4.2)
where A depends on T and || (g, uy,6) ; 3113;216/5 Bfé?aw/s x L%||. Moreover we have
e L@l + 116; L°%()]| < A. (3.4.3)

Proof. Remark that from the embedding (see [1]) we have

| (o, us,00); H? x L2 x L'|| < C|| (w0, w1, 60); BYE - x BY/S

2
16/5,16/5 16/5,16/5 %< L I

From the Gagliardo-Nirenberg inequality and Lemma 3.4.1 it follows that

le: 2@l < C | e L5@)I1F ] e; W2QIIF 5 LF

< Olle; LELE|5 | e; W2 Q)5

(3.4.4)
< Cl|u; LEH?|5]| e; W2 Q)5
< Olle; W2 Q)5
and
165 L2@n)| < c||llo; L@t 0: B 15|
<C|l6; LELY|3)|0; L2H"||3 (3.4.5)

< A(|VO; LX(Qp)|| + || 6; LEL?|))*.
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It follows from (3.4.3) that

| Faele); L'(Qr)|| < Clle; L'(Qg)| 27"
2.1 Ko—
< Alle; Wig (Qr)| 3

1
< e W @)+ A

for Ky € [1,6) and
| Facle)s L@ < MQr|t5 < A
for Kg S [O, 1)
We first consider the case of K7 > 1. Applying the growth condition and the Young
inequality, we have
16 —1) -
| GO)Fr () L¥ Q)| < [10: LEQ)|[ €5 L5 ()50

16(K1 1) B
+ sup |GO)[lle; L™ (Qp)|1
6€[0,02]

< AJ0; L3 (@)l €5 Q)27 + Alle; Z(Qq) ]+

for 6r + K1 <6 (and K; < 6). Then we have

(L+116: Q)N e; Q)71 < Al es Wig)y
+[10; LF L))

Q)Y+ A(| VO L2 Q)|

3r/4 _
e Wil (Qp)|| -1/

1
< 7€ Wik @o] + A

+A(IVE; L) + 1165 L La) |
for 6r + K; < 6 (and K; < 6). From the maximal regularity (3.2.3) it follows that

9 3/8
Q)| < Ol (o, s, 00) 1 Bigls 165 X Biysaess < Ll
+ | G(O) Fre(e): L5(Q)|| + || Facle) s L))

19/8 3/8
< Cff (g, uy, 6) ; Bl6;5,16/5 X Blé/5,16/5 X L2|| + A

+A(|VO; LXQp)|| + [ 0; L3 L)) T 0

2,1
e W16/5

(3.4.6)
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Next, multiplying (3.0.2) by 6 and integrating over €2, we have
|| 0(t); L2 Q) + 1| VO L*(Q)|* = / 0*G"(0)0,F) (€)d
2 dt Q
+ / 0>°G'(0)0,F(e)dx + u/ 0Ae; : edx
Q Q
= / G5 (0)0,F1(e)dx + / Go(0)0:Fy(e)dx
Q Q

(3.4.7)
2/62(9)815F1(6)dx+ 1// 0Ae, : e,dx
Q Q

d
T at

+ V/ 0Ae; : ed,
Q

[ GaO)R (o +2 / Co(0)0,F (€)da

where G5(6) and Go(6) are given in the proof of Lemma 3.3.2. Recall that

Cor(r—1) .4 = 2051 01
=" < = " >

Go(0) ) 0 <0 and Go(0) = 7‘+18 for 6 > 05,

and
sup |Go(0)] + sup |Go(0)| = M < .
0€(0,02] 0€(0,02]

Then we have

—/ GQ(Q)Fl(E)de’ = —/ Gg(e)Fl(E)d[E —/ G2(9>F1(€>dl’

Q QN{0>0} QN{0,<0<05}

> —M/ |Fi(€)|dz.
Q
Hence, integrating (3.4.7) with respect to time variable, we obtain
1 - 1
0 LELP P+ 1 V05 LAQ)[” < S 11605 LI + | G2(6)0F1(e) s L ()]

+v||0Ae e LNQp)|| + M sup /|F1 ))|dx

t€[0,T]
‘|‘/ ‘GQ(eo)Fl(Eo)‘d[K
Q
By (3.4.3), (3.4.5) and the assumptions we have

107 0 F(e) ; L) < Al 65 L¥(Qr) |7 w; Wi s ()|l €5 LM(Qq) |12
(r+ )
||11 Wfﬁ}5(QT)|

<A(IVO; Q)| + 1105 LF La|])
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16A€, : s LNQ)[ < Cll 63 L3 Q)| &5 L= Q)|
<A(IVO; L2Qe)| + 1105 LFLa|l) 3|l e s L= Q)]

/Q IFy(e(t))ldx < Ol u(t); HAQ)[X* < A
and

2K
16057 Fa(eo) s LN(Q)I < Cll6os LX)l eo; L1 ()™
< Cll0os LX) wo; H* ().

Consequently we arrive at

165 LFL|” + | V05 L) |” < A(]| (o, w1, 80) 5 Bigs 165 % Brajsiays % L)
3(r+1) 4, Ky
+A(IVO; L2Qr)| + 105 LELal) T |l es Wigs(Qn)l|s* (3.4:8)

+A(| VO LAQr)|| + 1165 LELa|) T &5 LS (Q)].
Substituting (3.4.6) into (3.4.8), we have

o 19/8 3/8
165 LEL2)* + (| VO ; L2 Q)| < A(] (wo, wi, 6p) ; 316;5,16/5 X Blé/5,16/5 x L?[])

3(r+1)
4

+A(IVE; L2 Q)| + (165 LT Ls|))

LiS]
3

SIS

X (|| (o, ur,6); BYS % BY®

___15r
to/as/s X Bitgsess X L2 + 1103 L2(Q) | 750 )

+A(|VO; L) + 1|05 LFLo|))3

19/8 3/8 157 2
(11 (o, B0) s Bigla 5 % Biassogs x L2+ V8 LA(Qp) |75 )

Here from the assumption 6r + K; < 6 it follows that

3(7‘+1)+ 15r <§ g):30r+3(6—K1)<5(6—K1)+3(6—K1):2
4 46—-K)\5 5 4(6 — K1) 4(6 — K1) ’
3 30r 3 5
1T a6-m) “1tiT?

Thus we obtain

105 LF L+ VO 5 L*(Qr)

< A(]| (wg,uy,6p) ; B8 x B8

16/5,16/5 16/5,16/5 < L2+ A Ve ; L2(Q0)[|

Here we use p— to denote a number less than p. Hence by the Young inequality we have

o 19/8 3/8
|| 0; LT L2|| + || Vo, LQ(QT)H < A(H (an u1:90)5 B16//5,16/5 X B1é/5,16/5 X L2||>-
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Substituting the above inequality into (3.4.6), we also obtain the following

19/8 3/8
Q)] < A(ll (w0, us, 6) Bl6//5,16/5 X Blé/5,16/5 x L2|)).

e; W2

16/5

Next, we consider the case of 0 < K; < 1 and 0 < r < 5/6. In this case it follows that
|F1c(€) < C < 0.

From an argument similar to the above we have

Q)| < Il (o, w1,0); Bigls 165 % Bisys e/
+ | GO)Fyc(e); L5(y)|

< | (ug,uy,0); BE x BYS x L?|

e; Wi

16/5 x L7

16/5,16/5 16/5,16/5
+C0: L Q)] +C sup G(O) (3.4.9)
0€[0,602]
19/8 3/8
< [| (o, u1, 0); B16;5,16/5 X 316//5,16/5 x L7

+ A0 L5 (Qr)|" + C.
Noting that
16710 F1(e) s LY Q)| < AJJ0; L3 (Qa) |7 ws WL (Q0)]],

we obtain

165 LEL?|” + || VO ; L*(Qp)|1> < |16 L*||> + |07 0, Fi(e) ; LN(Q7)]]
+ || 0Ae; : € ; Ll(QT)H

M sup / IFy(e(t))|de + / 1Ga(60) F (e0) | d

t€[0,T]

< Al (wo, w1, 60) s Bigs 15 X Bitgs.ias % Ll
+ A0 L3 Q) |7 us W (20l
+C)10; L)l w; Wigs Q)]

< A(]l (uo, wr, 0) ; Bi?f?,w/s X B%/85,16/5 x L?))

+A(IVO; L2(Qq)| + 1165 LFEL2|)*Er D/,

Since 3(2r 4+ 1)/4 < 2, we obtain the desired estimate (3.4.2).
The estimate (3.4.3) follows with the help of the embedding

les L2(Qr)l| < Alles Wygs(Qr)
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and of the inequality
165 L2 @) < c||llo; 2@ No; HY@)°ls L
< Cllo; LEL|PP) 05 L2H! |,
This completes the proof. O

Lemma 3.4.3. Assume that 0 > 0 a.e. in Qp and that (3.0.6) holds. Then for any
(ug, uy,0) € Bif X Bi/f x H' the following estimate holds

le: W Q)| + V65 LEL?(| + 105 W (Qa)l| < A,
where constant A depends on T and || (v, uy, 6p); Bi/f X Bi/f x HY||. Moreover, we have
185 L% (Qr)| + 165 LO(Qr)|| + 1| Ve; L2(Qr)]| < A

Proof. Remark that By} x ByY x H' < BJJ/2 - x B

16/5.16/5 16/5.16/5 < L2 Set r <5/6. From
(3.4.3), we have
IGO)Fre(e)s LQr)ll < (165 L (Q0)| || e; L=(Qr)
for K1 > 1, and
IGO)F1e(e)s LY Q)| < Asup [Fy[[|65 L Q)|
for K; < 1. Then we arrive at
| GOFL0); /@) < A (3.4.10)

From the maximal regularity (3.2.3) it follows that

les WM< | (uo, i, 00) 5 BY x BYY x H'| + | GO)Fy(e); LYQ)| <A (3.4.11)

Multiplying (3.0.2) by 6, and integrating over Q7, we get

1 1
16:; L*(Q)]1? + v LEL*|* < SLLCE Q) + // 070G" () F(¢)dxdt
Qr

+ // QteG/(ﬁ)ﬁtFl(e)d:I:dt—i- // GtAet . Etdl'dt
QT QT
1 1 2 2 T 4 4
S0 HA(Q[" + Cll s LX Q)07 Fre(e) s LD e 5 LH(Q)]]

IN

+ 0 L2l e s LY
1
< 5l6os H(I® + Al 6r; L2(Q0)l|

1
< (]| (o, ur, 60) s BYY x By x HY) + ] 6,5 L2 ()],
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where we applied (3.4.3), (3.4.10) and (3.4.11). Therefore we arrive at

;Wi Q)| + || 6 L2 Q)| + || VO LFL? (3.4.12)
< A(|| (o, wi, 60) 5 BYY x By x HY|).

Next multiplying (3.0.2) by WA@&;H(E) and integrating over €2, we have

1d Nk
——|IVO(t); L* 2+/ d
2! VOO LI | e m o™

A6 , .
< /Q TG (0)F. () (0G'(8)0F1(€) + vAe; : &) dx.

Here we recall that
1<1— HG”(H)Fl(e) <1+ MA,

where 0 < supyso(—0G”(0)) =: M < oo. Then integrating with respect to time variable,
we conclude that

2
1+AM

< || Vbo; L*(Q)* +

Ive(t); L*(Q))* + | A0 L* Q)]

1
1+AM
+(1+AM) || 0G (0)8,Fi(e) + Aey : e L) |

1A0; L*(Qr)|?

<A+

180 L@+ AQD e L@

+AMD 0" Fe(e) s LA Q) Il L Q)]

1
< . T2 2

due to (3.4.10) and (3.4.11). Consequently we obtain the first assertion.
With the help of Lemma 3.1.1, we also obtain
I8 L)l + 1165 L(Qr)l| + || Ve; L)
< A6 Wy ()l + [l e W Q)
<A,

which completes the proof. n

Lemma 3.4.4. Assume that 6 > 0 a.e. in Qr and that (3.0.6) holds. Then for any
(ug,u1,00) € Bpp?'” x BapY? x H' with p € [20/9,10/3], the solution (u,8) to (3.0.1)—
(3.0.4) satisfies

lu; W2(Qr)l < A,

where A depends on T and || (g, u1,6) ; Bf,‘,_pwp X B,?;?/p x H|.
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2

Proof. Since the embedding B;i;”

have

5
— B}, holds for any % < p, by the Lemma 3.4.3 we

e WEN Q)|+ 1165 W5 Q)| < Al (wo, wi, 60); B x Bi/f x H')
< A(|| (wo, w1, 60) ; By, *? x B2 2?7 x H'|)).

For any p < % we have

IV (GO) Fre(e)) s LP(Qr)ll < AIVO5 LP(Qr) || G'(0) 5 L2(Qr) | Frele) s L¥(Qr)]
+A10; L) "l Ve L2Qa) | Free(e) ; L2(Qr)]
<A

and
IV - Fyele); LP(Qr)|| < Al Ve; L2(Q)|[l| Faee(e) s L=(Qr)]| < A,

thanks to Lemmas 3.4.2 and 3.4.3. Then by the maximal regularity (3.2.3) we have

[w; W2 (Qr)|| < C| (uo, wi,0); By ,»* x B2 7 x H'|
+ OV - (GO) Fre(e) ;s L) + |V - Foele) s LP(Qr)]])
< A(|| (wo, w1, 6) s By, *P x B2 2P x H'|)).

This completes the proof. n
To shorten the notation we write

Ui(m) = B2 x B75  x (L™N HY),

10/3,10/3 10/3,10/3
_ (n3-2 17/5 1-2 7/5 00 1
Uz = (prp 70 810/3,10/3> X (Bp,p ”n B10/3,10/3) x (L nH )

Lemma 3.4.5. Let m > 2 be arbitrary integer and p € (1,00). Assume that 6 > 0 a.e.
in Qr and that (3.0.6) holds. Then for any (ug,uy,0y) € Ui(m), the solution (u,@) to
(3.0.1)—(3.0.4) satisfies

165 Ly Ly < A,

where A = A(T, || (ug,uz,6y); Ui(m)||). Moreover, if (ug,uy,6) € Uy(00), then we have
165 L= Q)] < A,

where A = A(T, || (w1, uz,6y); Ui(00)]]), and for (ug,u1,6y) € Us it holds that
les Wt (Qr)l < A,

where A = A(T, || (ug,ug, 6y); Us]).
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Proof. The same operation as in the proof of Lemma 3.3.3 yields
1d

H. Tmm - m—2 2
N85 L+ 1)/99 V6[2dz

(3.4.13)
= / G (0)0,F(¢)dx + V/@m_lAet s ed.
0

Here we recall that G,,(0) = 0™G'(0) — G (0), Go(t) =m foe s™1G"(s)ds and

Since || F1e(€); L=(Qr)|| = A < oo from (3.4.3), we have

<o LN s L=l e L= Frele); L=(Q)l]

/ G (0)0,Fy(¢)dx

< A0 L™ 0 HX( Q) es L¥(Q)]]-

Therefore, we conclude from (3.4.13) that

1d -
Lo @l < Al LR@I0: H @05 )] o

+Clle; L=QIP(10; L™()[I™
Here note that 26; L™(Q)[|™ = m| 0; L™(Q)|™ L[ §; L™(Q)|| and that from the
Sobolev embedding and Lemma 3.4.4

o 42
ler; LEL®| < Al e; L?FW110/3H < Affu; W10/3

165 LRH?| < 116 Wy (Qr)l| < A,

Q)] <A,

where A is independent of m. Thus, integrating (3.4.14) with respect to time variable, we

obtain
16 L < 1180; L7+ Allees LELI 63 L) + Al e LRLP
<A+ [6; L™(Q)||

Since we have 6y < 6y (1 + mMA)"™, the desired result can be obtained. For the Wt

norm of €, we have

le; Wyl < Cl (o, 1, 0) 5 U
+ A0 L=(Qr)["]| Fre(e) s L7(Qr)]| + All Fzee) ; L2(€)]
< A([l (uo, u1,0); Usf)

for p € (1,00), by virtue of the maximal regularity (3.2.3). This completes the proof. [
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Using again Lemma 3.3.4, we can also prove the Holder continuity of #. The Holder
continuity of € is assured on account of Lemma 3.1.1. Hence from Lemma 3.3.7 we can

obtain the bounds in higher Sobolev norms, i.e., for 5 < p,q¢ < o
| (w0 Vel a)l| = s WE2@p)| + [ 6: W2 Q) A=K, (34.15)

where A is independent of L.
This a priori estimate says that if there exists a solution to the problem (3.0.1)—(3.0.4)
such that # > 0 then this solution satisfies estimate (3.4.15). Let us consider now problem

(3.3.1) from Section 3.3 assuming that the truncation size L is sufficiently large such that
IV [GO)Fre(e) + Fae(e)]] < ARt p AR

In this case we may regard I';, as the identity operator because the internal part of I'j,
in (3.3.1) is smaller than L. Therefore the unique solution (ur,#;) to (3.3.1) satisfies
(3.4.15) for large L. In other words, Vz(p, ¢)-norm bound for (ur,fr) does not depend on
L. Hence (ur,0y) satisfies also the original system (3.0.1)—(3.0.4).

A positivity of @ follows by the same argument as the proof of Lemma 3.3.2 in [38].
This completes the proof of Theorem 3.1.

3.5 Uniqueness

For the sake of completeness of this thesis, we give the proof of Theorem 3.3, although
this was established by Pawtow and Zajaczkowski in [38].

Proof of Theorem 3.3. Let (u,0) and (1, #) be two solutions of (3.0.1)—(3.0.4) correspond-

ing to the same data. We denote

To simplify notation, we set

€= E(u)7 € = E(Ut), EE - Ee(ea 0)7 E@E - E0€<67 0)
Co = C0(67 9)7 Yo = 70(67 9)

and respectively €, €, ﬁe, ﬁ 9¢, Co and 7y for the functions of (u, 5)

Further, it is convenient to rewrite the equation (3.0.2) in the form

0r — A0 = 10G (0)F1c(€) : € + vy e : €, (3.5.1)

81



where
1 1

co(e.0) 1+ 0G"(0)Fi(e)

We note also that
— <y <1, (3.5.2)

where ¢, = sup co(€, ). Subtracting the corresponding equations, we see that w, 1 satisfy

the following problems:

wy + Q*w —vQw, =V - (F. - F.), (3.5.3)
M — "}/oA?] = R1 + R2 + Rg in QT7 (354)
w=Qw=Vn-n=0 on Sr, (3.5.5)
w(0,-) =w(0,-) =7(0,-) =0 on €2, (3.5.6)
where we put
Ry = v0Fgc : €, — %éf,ee D€,
Ry = v(yoAe; 1 6o — VoA 1 &),
Rg = (’70 — AWJO)AQ
Multiplying (3.5.3) by w; and integrating over €, yields
1 2 1 2
— [ |we|*de+ = [ |Qw]dz+v [ Ae(w) : e(w)dzds
2 Jq 2 Jq o
(3.5.7)

_ _/ (Fo— F.) : e(wy)dzds
o

Next, adding to (3.5.7) the identity

1
—/ le(w)[Pdx = / e(w) : e(wy)dxds
2 Jo o
valid thanks to the initial condition (3.5.6), and recalling (1.3.2), we obtain

1
5/ ([wel*+|e(w)? + |Qw[*)dz + va, [ |e(w,)][*dzds
Q Q

<6 [ |e(wy)|Pdzds + 0(5)/ <|F,e — }776|2 + |e(w)|2> dxds
Qt Qt

Hence, using the estimate
|Fle = Fe| < C(le(w)] + [nl)
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which follows due to uniform bounds on € and € in 27, and choosing d appropriately, we

obtain

/Q ([we* + [e(W))? + |QW]?) dz + | |e(wy)|Pdads < C’/ (le(w) [ + |n|?) dads.

Qt Qt

Consequently, with the help of the Gronwall inequality, we arrive at the estimate
IWillLeore + le(W)llLso e + |QW || Leo 2 + le(We) ([ 2207y < ClInllz2(ar)- (3.5.8)
By virtue of the strong ellipticity of @, it follows from (3.5.8) that
Wl 2oz < Clnllz2y)- (3.5.9)

Now we multiply (3.5.4) by n and integrate over €2; to get, after integration by parts,

3

1

5/772dx+/ Y| Vn|?drds = —/ nVn - Vyodrds + E / Rindxds.
0 Y Qt — Jo,

Hence, by (3.5.2), we have

3
1 1
—/77de—|—— |Vn|?dwds < —/ nVn - Vydzds + E / Rindxds. (3.5.10)
2 Q Cx Oy Oy i=1 7%

We proceed now to estimate the terms on the right hand side of (3.5.10). Note that by

virtue of the Holder estimates on ¢, 8, Ve and V6 in Q, we have
1
Vol < =5 (eo.cl Vel + [cosl[VO])
0

in Q7. Consequently, the first term on the right hand side of (3.5.10) is, with the help of
the Young inequality, estimated by

In|Vn||Vyoldzds §51/ |Vn|2dxds+0(51)/ n*dxds. (3.5.11)
Q o o

Further, thanks to the uniform bounds on €, 6, ¢, ¥, €, 5, €, Yo in Qp, we have
170 — 7ol < C(le(w)| + [n]) (3.5.12)

and
|Ra| + [Re| < C(le(w)[ + [n] + |e(w:)]).

Hence, by virtue of (3.5.8), we obtain

2
Z i |Ri|\n\dxds§6’/g n*dxdt (3.5.13)
i=1 /S

T
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The Rs-term is first integrated by part

/ nRsdxds = / (o0 — %)Vg- Vndzds + / nveo - V(v — Yo)dzds
Q¢ Q Q

(3.5.14)
= R41 + R42.
Utilizing (3.5.11), the uniform bound on V@ and (3.5.8) yield
Ry < 52/ |V7]|2d:z:ds+c((52)/ n*dxds. (3.5.15)
Q Qe

Similarly, in view of the bounds

Y0.c = Fo.el + 1700 = Yool < Clle(w)] + |n]),

which follow thanks to the assumption F' € C*, utilizing the uniform bounds on €, , Ve,

VO, v, and 709, we see that

V(70 —75)| < [Vellrvo,e — Yol + V070,60 —Y0.0| + (Yo, [Ve(W)] + [Fo,0l V)
< C(le(w)| + [Ve(w)] + |n] + [Vn]).

Consequently, we obtain

Rys < 53/ (le(w)]? + |[Ve(w)[> + n° + | Vn|?)dzds + 0(53)/ n*dxds

v o (3.5.16)

<6 [ + Vo )dads + O [ qPdsds,
Q Q4

where in the last inequality we have applied (3.5.9). Finally, combining estimates (3.5.10),
(3.5.12)—(3.5.15) in (3.5.2), and choosing constants J; appropriately, we arrive at

/772d:(:+/ \Vn|2dzds < C | n*dxds
Q Qt Qt

for t < T'. Hence, by the Gronwall inequality, we have n = 0 in (7. Simultaneously, from
the inequality (3.5.9) it follows that w = 0 in Q7. This completes the proof.
m

3.6 Two-Dimensional Case

In this section, we consider the solvability of the two-dimensional system (3.0.1)-
(3.0.4).
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Proof of Theorem 3.2. With the exception of a priori bounds the result follows by the
same procedure as in the proof of the three-dimensional case. Thus, it remains to check
the bounds corresponding to Lemmas 3.4.1, 3.4.2 and 3.4.3 under (3.0.7).

Lemma 3.6.1 (Energy Conservation Law). Assume that @ > 0 a.e. in Qp and that
(3.0.6) holds. Then for any t € [0,T] the smooth solution of the two-dimensional system
(3.0.1)—(3.0.4) satisfies

10(t) s LN + [l we(t) s L) + | Qu(t) s L2 ()] < C(| (o, i, 6p) s H* x L* x L'}).

Proof. The same operation as in the proof of Lemma 3.4.1 yields
d (1 2 2 1 2 2 ral
— | =lw; L2 ()| + | Qu; LA(Q)||*+ [ 0de + | Fa(e)dz + | G(O)Fi(e)dz | =0,

where G(0) = G(0) — 0G’(f). Here we recall that § > 0, H(¢) > 0 and G(#) > 0.

Consequently, it follows from (N3) in the structure of the nonlinearity that
1 a2, L 2)2 1
Sl LELAP 4 Sws B 4 6 L
< Slhuos HXQ)I? + w2 + 160 £(©)]
+ [ {1Ffeo)l + (G0 Fi )]} do +Calgl,
where ¢y = €(up). From the Sobolev embedding it holds that
leos L () < Cllug; H*(Q)] (3.6.1)
for any s € [1,00). Then we have
/Q|5(00>F1(€0)|dx < )5 LN eos L ()15
< Cll6o; LN uo s H[*
for r <1 and K; < oo, and
| Futeayd < fleo; L
< Ol ug; H?||*>

for Ky < 0co. This completes the proof. O
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Lemma 3.6.2. Let p € [2,4). Assume that (3.0.6) holds. Then for any (ug,us,0y) €
B3P 5 Byy?P x L2, the solution (u,0) to the two-dimensional system (3.0.1)~(3.0.4)
satisfies

les W Q)| + 1V L2 (Qr)l| + [ 05 LFL?| < A, (3.6.2)
where A depends on T and || (wo,uy,6o) ; Bap ™ x Bpp'® x L2||. Moreover we have
le: @)+ 16: PP < A (363

Proof. We first show (3.6.2) for p such that p < 3. From the Sobolev inequality (3.6.1)
and Lemma 3.6.1, it follows that

les L*(Qr)|| < Aus LFH?|| < A
for every s < oo, and hence we obtain
| Fre(e); L3(Q)|| + || Faele) ;s L*(Qp)]| < A (3.6.4)
for any K, Ky < 0co. Moreover, by using the Holder inequality, we have
165 LPQr)[| < C || 6; LYI"27(16; L2CPP7

< Cllo; LRLY|' 27| 0; L2H' | (3.6.5)
< A5 LR

ez

for p € [2,3).
We fix p such that r +2 < p < 3. From (3.6.4), (3.6.5) and the maximal regularity
(3.2.3) it follows that

le: W2 Q)| < C (o, w, 60); Uy(D)| + CII G(O) Free) s L7 ()]
+ C|l Fae(e); LP(Qr )
<A+C) 05 LPQ)|'|| Frele)s LT (Qr)] (3.6.6)
+C|| Faele)s L()
<A+ A6 L2HY|>/P.

Next, the same operation as in the proof of Lemma 3.4.2 yields

1 1 _
LK LEL*|?+ 1 VO; L (Qr)|? < L LX) + 1| G2(0)8:Fi(e) ; L' Q)|
LU 0Ae : e: LX) + M sup / (Fy(e(t)]da
Qr

t€[0,T)

+ /Q |G2(90)F1 (Eo)ldJT
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By (3.6.4), (3.6.5) and (3.6.6) we have
|00 Fi(e) s L' Q)| < All6; LPQo) [ [ e W Qo] Frle) s Lt Q)|

2(r+1)

<A|6; LZHY| "7 (A+|6; L2HY|7)

for p > r + 2,
_ 25
104, e LNQ)] < Al0: Pl e s L Q)2
< A|0; LZHYF|[(A+]|0; L2HY| ),
/ Fi(e(t)|de < Cllu(t); Q)] < A
Q
and

2K,
105+ Fi(eo) s LN < Cll 005 L)) e L1 ()™
< Cll0os L2(Q)]I™ [l wo s HA()] ™
Consequently we arrive at
. 2(2r41)
105 LEL2? + [ V05 L Q) < A(l] (w0, wi,00) s Us(p)l) + Al LEH| 7.
Since 2r + 1 < r + 2 < p, by using the Young inequality we have
16; LEL?|| + | VO; L* ()| < A(]| (o, us,60) s BE2P x B *P x L*|)).  (3.6.7)

Substituting (3.6.7) into (3.6.6), we obtain (3.6.2) for p < 3.
We shall show the rest of proof. Taking p € [2,4), from the same operation as (3.6.5)

we have
165 LP(Q)|| < Ol 03 LEL?|2/7)| 65 L3HY|]*P < A

for p < 4 thanks to (3.6.7). Then from the maximal regularity (3.2.3) we conclude that

les W2 < A+ 165 I | Ficle)s LT || + || Fole); 7]
< A.

This completes the proof. n

Lemma 3.6.3. Assume that (3.0.6) holds. Then for any (ug,uy,0y) € Bi/f X Bi/f x H1
the following estimate holds

le; W Qo)+ [1V8; LEL2| + (165 Wy (Qr)| < A,
where constant A depends on T and || (ug, uy, 6p); Bi/f X Bi/f x H|. Moreover, we have
VO LYQr)I + 1165 L(Q2) || + | Ve L*(Qr)ll < A

for any s < 0.
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Proof. 1t follows from Lemma 3.6.2 and (3.2.3) that

le: Wit Q) < € (o, wi, o) ; BYY x B x HY|
+ 0|65 LTI Fie(e) s L2(Qu)ll + Cl Focle) s L¥(Q0)]| - (3.6.8)
< Al (wo, wi, 6) 3 By x Byl x H'|),

thanks to r < 1. The same operation as in the proof of Lemma 3.4.3 yields
6 20| + 5 V6: L)
< %H Oo; H'(Q)” + Cll 65 L* ()|l e s L Q)]
+ 0 L2(Qo) |1 6" Fre(e) s LM Q) [l e Q)]

< At g6 22O

on account of (3.6.3) and (3.6.8). Therefore, we arrive at the estimate

les W Q)|+ 1165 L2(Q0)|| + || V05 LF L] < A(]| (uo, w1, 60); BYY x By x H'|)).
Moreover, applying the same argument as in the proof of Lemma 3.4.3, we get
1A L*(Qr)]| < A.

This completes the proof of the first assertion. With the help of Lemma 3.1.1 we obtain

the second assertion. We have thus proved the Lemma 3.6.3. O

From a modification similar to that presented in three-dimensional case we can derive

the estimate
1 (w,0); Ve(p, @)l = lu; W,2(Qp)[| + [0 W2 Q)| < A

Hence the proof of Theorem 3.2 are completed. O
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Appendix:

Two-Dimensional Semilinear System

This appendix is concerned with the unique global existence theorem for the two-

dimensional thermoelastic system:

w; + Q*a — vQuy = V- (0F, (e) + Fa.(e)), (A.0.1)
0y — A0 = 00, F(e) + v(Ae) : & in Q, (A.0.2)
u=Qu=Ve-n=0 on Sy, (A.0.3)
u(0,) =ug, w(0,:)=uy, 0(0,:)=60,>0 in ©, (A.0.4)

where 2 C R? is a bounded domain with smooth boundary 9. Let u := (u1,us) € R?
denote the displacement vector of shape memory alloys and 6 the temperature.

This system corresponds to the two-dimensional system (3.0.1)—(3.0.4) with r = 1.
The nonlinear functions F; and F3 take the same structure in Chapter 3, and we restate

it.
(N2) F; € C3¥(Sym(n,R),R) satisfies that F(e) > 0.
(N3) Fy € C3(Sym(n,R),R) satisfies that Fy(¢) > —Cj3, where C3 is some real constant.

(N4) Fi(e) and Fy(e) satisfy the following growth conditions:

[FLe(l < Clel™ ' Rl < Clel™ 7 [Free(e)] < Cle[™ 72
(Bl S Clel™ 7 Rl S Clel™ 7%, [Foeee(e)] < Cle|™7

for large |¢| > €.. Here €, is a positive constant.

We show the unique global existence of the solution for two-dimensional system (A.0.1)—

(A.0.4) under the assumption

K, €[0,1], K, € [0,00), C3 =0, Fy(e) < Cle|™ (A.0.5)
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and the smallness assumption of the energy norm of the data. Here we recall that

||(U, g, 9)||E = ||(117 Uy, 9)||H2xL2><L1

is the energy norm of (u,uy,0).

We restate our main result in this appendix. This is based on the result in [49].

Theorem A.1 (Small Energy Global Existence). Assume that p > 4 and that F
satisfies the condmon (A 0. 5) Then there exists n > 0 such that for any (ug,uy,6y) €

Ur .= Bpp X Bpp X de 5 satisfying ||(ug, uy,00)||g < n there exists a unique global
solution (u,0) of the problem (A.0.1)—(A.0.4) satisfying

(0, 0) € Wyige x W3\,

loc

Furthermore, there exists the monotone increasing function K(x) > 0 such that K(0) =0

and
[(u(t), w(t),0(1))|[z < K(|| (a0, ur,60)| x)

for any t € [0,00).

A.1 Local Existence

In this section, we show the unique local existence result which can be obtained by
using Banach’s fixed point principle. The proof of Theorem A.1.1 below is the same as

that of [48, Theorem 3.2]. For the sake of completeness, we give the proof of this theorem.

Theorem A.1.1 (Unique Local Existence). We denote by U(p, q) the space Bﬁf/p X
Bgfpz/p X Bi;wq. Assume that F' satisfies the condition (N2)—(N4) with (A.0.5) and that
p>4/3 and q > 1 are arbitrary numbers satisfying

2 1 1 1 1
o< < 4o (A.1.1)
p 27 q p 4

Then for any (ug,w,6y) € Ul(p,q) there exists T = T(||(ug, u1,60)||lupq) > 0 such
that the problem (A.0.1)~(A.0.4) has a unique solution (u, @) on the time interval [0,T],
satisfying (u,0) € W,2(Qr) x W (Qr) = Vr(p, q).

Remarks. (i) In the proof of Theorem A.1.1, we does not need the assumption 6, > 0.

(17) Of course, this result is also true in the case of r =1, K € [0,00) and K € [0, 00).

We give several preliminary results which are used in the proof of Theorem A.1.1. Since

the operators aQ and @Q have the maximal regularity property, these operators generate
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analytic semigroups, where we recall that the linear operator Q is the differential operator
@ with the homogeneous Dirichlet boundary condition, defined by (3.2.7) in Chapter 3.

Therefore, we also obtain the following LP-L9 estimates.

Lemma A.1.2. Forany j € Z7, 1 < p < o0, and p < q < oo, there exists constant
C > 0 such that

) L C 1
| DIT(@)v: L2l + | DIT(t)vs L2 < & ( n 1) Ivs L2, (A12)

J 1_1
t2 P q

where T(t) = €' and T(t) = €2 for a = —% + i\/—i”f.
Proof. By the general theory of analytic semigroups, for any 1 < p < co and 3 > 0, we
have o

1=y Tt)v; L] < 5llv; LEll

From the Sobolev embedding and this inequality, it also follows that

1
1 T@vs L]l < O (| (~QPT()v; 2] + | T(t)v; Z2]) < C (5 " 1) Iv: 2]l

where % = i — 7. An interpolation ([26, Theorem 5|) between these inequalities yields

that for any p € (0,1)
C 1
_O)Pr . T4 = (- . TP
-1 220 < 1 (g +1) Ivs 20,
where é = }Dp + 1(1 — p). Taking 8p = j/2, we obtain the desired result since Q7/% ~
DI, O

Remark. In this paper, since this estimate is used only under time local setting (for

example T' < 1), we may regard this estimate as the following well-known inequality:

, - C
| DIT()v; L] + | DyT(t)v; Lif| < w——llv; LE]].
t27p 4
Proposition A.1.3. Assume that 1 < p,q <2, v >0 and T < 1. Denote the solution of
(3.2.1) and (3.2.19) by u and 0, respectively. Set € = (e;;) such that e;; = 5(d;u; + diu;).
Then the following inequalities hold

le: L@ < CI V- 1 Q)] + O (wow): By x B[ (AL3)
IV - L% @) < OI V- 71 @) + Ol (o) By x Bry? ||, (AL
165 L2530 < Cllg: L)+ | 60: By, (A15)

IV -85 L% (@) < Cllg: LY@ +C||bo: Bra*| (A.L6)
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Proof. We define the operator R(t) by

T(t) —T(t)
Q

For the linear term, it follows from Lemma 3.2.1 that for any T > 0

R(t) =

I R(Jexs ()|l + 11 R(Deo s L(2m)|
<11 = Q2RI - Q) 2er; L*(r)
+11(I = Q2 R()I = Q) 203 L*()
< AT (I RO - @) Hers W)
RO - @ heo: W)
_1 2-2 1 4-2
S AT (I = Q) 2er; Bpp" |+ (I = Q) 205 Bpp” 1)
922 4—2
< ATo) (s Bpp” || + [[wo; Bpp” ),
where € := €(ug) and € := ¢(uy). By a cut off argument we obtain for any 7' < Tj,
I R(eo; L)l + || R(er; L=(Qr)]|
4—2 2_2
< C(llug; Bpp” | + luss Bpp” ),
where C' depends on Tj. Similarly, we have
IV - R(eo: LT3 (Q)l| + | V - R(Jer; L5 ()]
4—2 22
< C(l[ao; Bpp” || + [ ar; Bpp”|),

We shall give the estimate for the following integral equations:
t
ult) = / T(t — s)w(s)ds, (A7)
0

w(t) = /OtT(t —s)V - f(s)ds, (A.1.8)

which are associated with the equations (3.2.8) and (3.2.9) with zero data, respectively.

By using Lemma A.1.2 we have

Iw: L35 )] :c\

<c|

/0 T(t — )V - f(s)ds; L2 ()

t 1 2p
/ IV - f(s); L2 |lds; L2
0o (t—s)2
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From the Hardy-Littlewood-Sobolev inequality it follows that

t 1 2p
/ IV - f(s); L2|lds: LE7
0

T <CI V- f5 (@)

By Lemma A.1.2 and the Hélder inequality, we have for any ¢ € (1, 2)

le; L=(Qr)]| <C

t C 2p
/ wis); 27 |ds; L
0o (t—s)2

3p—2

t C 2p 2p
/ Y s wi LS @) L
o (t—s)%w—2

2p
< Aoffws Lr (Qr)].

Combining these inequalities, we have proved the first assertion (A.1.3).
Similarly, from Lemma A.1.2 and the Hardy-Littlewood-Sobolev inequality it follows
that

4p t— 4p
| D,w; L»(Qr)]| = C H Dx/ T(t—s)V- f(s)ds; LT™r ()
0

(t =)
<OV - f(s); L)l

t 1 4p
< cH/ 1V 7(s); I2lds: L7
0

By the same calculation as above, we have
2p 4p
| Dae; L2 (Qr)|| < || Dow ; LT (Q7)]].

We have thus proved the inequality (A.1.4). The third assertion (A.1.5) and the fourth

assertion (A.1.6) follow in a similar fashion, which completes the proof. ]

Proof of Theorem A.1.1. We denote W,"*(Qr) x W2 (Qr) by Vr(p, q). We introduce the
map ®(u,d) := (4, 6), where

(T + Q0 — QT = V - (BF L. (€) + Fy.(e)),
0, — A§ = OF (€) : er + v(Ae) @ €& in Qrp,
U=Qu=Vl-n=0 on St,
u(0,-) =ug, w(0,-)=uy, 6(0,-) =6 in €.

c

\
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For some § > 0 and M > 0, we define the subset VM (p, q) of Vr(p,q) by VX (p,q) :=
{(u,0) € Vr(p,q); [[(w,0)llvypq) < M}, where

10w, ) lvr(p.a)
= [lw; W) + [l €5 L2(Qr) || + || Ve; L™P(Qr)[| + |l e; L(Qr)]] (AL9)
+T0([16; WEH Q)|+ | V8 L™ D Q)| + [ 65 L™ (Qr)]]).

Here we have denoted

4r
4—jr

for 4 — jr > 0,
my(r) = _
00 for 4 — jr <0.

We shall show that the map ®(u, 0) is a contraction from VX (p, q) into V¥ (p, q), where
positive numbers ¢ and M are determined later. We only prove the case of ¢ < 2 and
p < 2, hence, my(p) = ;Tpp, mi(q) = 447"(1 and may(q) = 22_—qq. The proofs in the other cases
follow from the easy modifications. Without loss of generality, we may assume 7" < 1.

From the Holder inequality it follows that

1
p
|F e - V9|pdxdt>

|V F, s 120 < C ( | R Ve!pdxdt)p e ( /
Q Q

T

+C ( / By ec(e) : ve\pdxdt> ’
Qr
<C (/ \0\p|e|P<K1—2>yveypda:dt> e (/ ye|p<K1—1>\veypdxdt> ’
QT QT

+C ( / |e|p(K2_2)|Ve|pdxdt) ’
Qp
< CT 4| e; ()| %172 Ve; L5 Q)] 65 L275 (Q7)]]

+Trata le; L=(Qr) "1V - 6; L%(QT)”
+OTH 65 L=(@a)|%2) Ve; L5 Q)|

T

and
| Fe; L22(Qq)|| < CTY2 1 C|| /17205 L2(Qg) || + C|| e L29(Qq)]|
< 7" 4+ o070 || e Lo(Qp) 17165 L5 ()|
+ CTl/QqH €; L(Qqp)||2

Notice that all the exponents of power of T are positive from the assumptions (A.1.1).

ol (- 4G4 e
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Then we obtain

|V Fe; 22(Qq)]| < CTU-0)7| v e L@ e; L5272 (10 0, L))
+ 0T 7 (1) Vo5 L O@p) | e; L)
+CT3 || e; L®(Qr)|[ 7Y V - e; L™ ()]
< Aol (| (w,0); Ve(p. ) )] (w,6): V(. q)|

and

| Fe; L2(Qq)|| < CTY? 4 13007 ¢ 12o(Qp) [~ (T2 0 L™ (4))
+ CT1/2q|| €; L°‘°(QT)||K2‘1
< CTY?1 4 Aoha (|| (w,8); Vo(p, @)D (0, 8); Vo(p, q)|,

where Ay (y) := y% 11 + 4%2=2 and A, = CTC for some constant C.
By the maximal regularity (3.2.2) we have

[a; W2 Q)| < C(ll (uo, uy,0)5 U(p, )| + 1)
+ Aohy (|| (0, 0); Ve(p, )| (0,0) 5 Ve(p, g)|.

By Proposition A.1.3 we also obtain

€5 L=(Qr)[| < C|l (uo,u1,0); Ulp,g)|| + C||V - Fes LP(Qr)||
< O([| (ao,u1,0); Up, )l + 1)
+ Moha (|| (w,0); Vr(p, @)Dl (w0, 0) s Vir(p, g,
|V -&; L™W(Qg)|| < Cf (wo, w1, 0); Ulp, @)l + C|| V - Fe; LP(Q27)]|
< O([| (ao,u1,0); U(p, 9l + 1)
+ Moha (|| (w,0); Vr(p, ) DIl (w,0) s Vir(p, g)|-

It follows from the embedding Bap** — Ba /7 for % —

<
2q,2q —
(3.2.3) that

é 5 and the maximal regularity

1& 5 L2(Qr)|| < O|| (o, wa) 5 By, 3l® x Baold|| + C|| Fe; L)
S C(“ (uOvuhO) ; U(p, Q)H + 1)
+ Aol €; L= (Qp)|| (T(SH 0; Lm2(q)(QT)H)

+ Aol €; L°°(QT)HK2*1.
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On the other hand, by the maximal regularity (3.2.20) for the heat equation, we have
1165 Wy Q)] < CT°||(0,0,60); Ulp,q)
+CT| €5 L*(Qr)|[ || 1] 710 ;5 L*4(Qr)]|
+CT° | &5 L*(Qr)|?
< C[(0,0,60); U(p, gl
+ Asha (|| (w,0); Vr(p, g)l) || (w,6) 5 Vr(p, g)ll,
where hy(y) := y*¥1~' + 4. In the same way as above, it follows from (A.1.5) and (A.1.6)
that
T°1165 L™ (Qq)|| < C(1[ (0,0,60); Up, q)ll)
+ Asha (|| (w,0); Vr(p, ) )]l (w, 6) 5 Vr(p, g)ll,
T°( V85 L™ @ Q)] < C(1[(0,0,60); U(p, q))
+ Aohs (|| (w,0); Vr(p, @) D] (w,0); Vr(p, q)|l

Consequently, combining these inequalities, we arrive at

1(@,6); Ve, @)l < C(l (wo, w1, 60) 5 U(p, 9)])
+ Noh(|| (,6): Vr(p. @)Dl (w,8); Ve(p, )l
where h(y) := hy(y) + ha(y).
Similarly, for (u,8) and (u,f) € V¥ (p, q) we have

| @(u0) — @(W,0); Vr(p, q)ll
< Ao[h(]| (w,0); Vr(p, )l) + 2(]| (@, 0); Vr(p. 9]
x || (w,0) — (@,0); Vr(p, a)ll.
Indeed, it holds that
[Fe(€,0) = Fo(€0)] < (|P1e(€)0 — F1(8)0] + |1 (€)0 — F1()])
+ [Fae(€) = F2.c(€)]
< C10](Jel 7% + [e]**7)]e — & + Clel™ 10 — 9]
+ (1€l + [e17) e — 2,

where € = €(). In order to obtain the above inequality, we have used the following

inequality:

1
FLu(e) — Fu(d)] < |€—E|/ Foo(s(e —7) +7)|ds
0

< Cle —e([e* 7% + e 7%),
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since supyc(o 1) Flec(s(e — €) +€) < C(|e]*1 7% + [€[*172) holds.
We put 2M = C(]| (ug,uy,00); U(p,q)|| +1), and choose the time 7" sufficiently small
such that .

We note that limp_,g Ay = 0. Then we obtain the unique existence of the solution for
(A.0.1)~(A.0.4) in V¥ (p,q). To prove the uniqueness in the whole space Vr(p,q), it is
enough to take T sufficiently small. By the embedding (Lemma 3.1.1) we have Vr(p, q) =
Vr(p,q). For the other case of p, we can prove the result in the same way. Then the

desired result is obtained.

]

A.2 Small Energy Global Existence

Our main purpose of this section is to obtain the global estimate of the above solution

class. At the first step we state the energy conservation law.

Lemma A.2.1 (Energy Conservation Law). Assume that F' satisfies the conditions
(N2)—(N4) with (A.0.5). Then for any t € [0,00) the smooth solution of (A.0.1)—(A.0.4)

satisfies

1021 @) + [we ()l 220y + (@) 2(@) < K (][ (w0, ur, 60) | ), (A.2.1)
where K (x) is the monotone increasing function such that K(0) = 0.

Proof. Multiplying (A.0.1) by u; and integrating the resulting equation with respect to

the space variable, we have

d (1 1
pr <—|| w,; L2)? + || Qu; L?||* + / Fg((—:)dx> + V/(Aet) cedr = —/QFLE(E) :edr.
¢ \2 2 o o

Q

Integrating (A.0.2) with respect to x, we obtain

d

— [ Odx = u/(Aet) cedr + /GFle(e) ;e d.
dt Q Q ’

Combining these equalities, we deduce

d (1 1
— (—Hut; L*|I” + || Qu; L2H2+/F2(e)dx—|—/6d:c) = 0.
dt \ 2 2 0 0
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Then from Fy(e) > 0 and the Sobolev embedding H' — L52 for any Ky < oo it follows
that

1 1
s 2+ S Quins 2P + [ ofeyds
2 2 o
1 1
< gl PP+ 5 Quos L2+ [ udo + Cle(0); L
Q
1 1
< Sl L2+ Sluos B2+ [ f: LY+ Cllmo: B2

By the maximum principle (Lemma 3.3.2), if 6y > 0, then we obtain 6(¢) > 0 for
sufficiently smooth solution (u,6) (e.g. (u,0) € W*(Qr) x LFL? for p > 4). We have
completed the proof of Lemma A.2.1. O

Using this energy bound, we can obtain the following global bound.

Theorem A.2.2. Let T < oo be arbitrarily fived. Assume that F satisfies the conditions
(N2)—~(N4) with (A.0.5). Let (u, @) be the solution of (A.0.1)~(A.0.4) for (ug,us,6y) € UP.
There exists n > 0 independent of T such that if (ug,uy,6y) € UP satisfies

[ (g, a1, 00)|| 2 < m,

then we have

[ws W2(@Qe) | + 1105 W3 ()l < A,
where A depends on p, T, n, M, and ||(ug, uy,0)||ve-
Proof. We first note that the following Gagliardo-Nirenberg type estimates hold
16; L% (Q0)ll < Cll65 LFELL 2165 Wiy ()],
| V0: L(Q)]| < Ol 6 LELY 21 6; W3 ()]
s L2(Qq)|| < Cllues LEL2|F | us WE2(Q0)|]5,
|V - e5 L¥@Q0)| < Cllu; LEHZIS | w; Wy (Qo)])5,
lees L@l < Cllugs ZEL23 [ us Wy (@)
and that from the Sobolev inequality it follows that
les LFL| < Cllus LFHZ||

for any a < oo, where C' is independent of T
Since I} € C*(Sym(2,R),R), we have

sup (|F1.e(6)] + |Fi6)]) < C.

le[<ec
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For K; € [0, 1] it holds that

sup (|Frec(€)| + [Fre(e)]) < C sup ([e[ 7%+ [e[71) < C.

le|>ec le]>ec

Therefore we have
|F1,ee| + |F1,e‘ S M;

where M is a positive constant depending only on Fj.
By the energy conservation law (A.2.1) and the Young inequality, we have
|V Fe; Qo) < Cll Frees L¥Q)I1V - e5 L¥@0)IlI105 L (Q0)]
+ Ol Fres L) VO; L7 ()]
+ O Faee; LEQ)|| V- €5 L¥(Qr))|
< CME (@3] w; Wy(Qo)[5]) 6 W' ()=
+ CMK(n)%]|6; W ()¢

2 1
+ CT% K ()75 | w; W2(Qr)||5

—_

< S+ 2\ 2eaxmio wien)

(\V]

1 2 2 2 2
+ CMEm)H|0: Wi @)t + 3\@OT3PK<77>K2+3.

From the maximal regularity estimates (3.2.2) and (3.2.20) it follows that

4 /2 2 2
[u; W,A(Qr)|| < Cf[(ug, uy, 0)]Jpe + g\ﬁCT?’pK(n)Km

(A2.2)
( \fK )5 4 2K( )i) CM||6; W2 Q)]
and
16; W“(QT)H < C(0,0,00)lo» + C|l e ; L7 ()]
+Clle; LE Q)10 L7 ()| Fre; L)) (A.2.3)

< C)/(0,0,00)|[» + CK ()5 || w; WH(Qq)||5
+CMK ()72 u; WEQ)||5]16; W2 Q)| 2.

Substituting (A.2.2) into (A.2.3), we have

16 W 2 () < C(l(uo, wr, 8o)llow, T, M, K () + C(M, K (n))]| 6 W%ZI(QT)H-
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Here we note that lim C'(M, K(n)) = 0. Therefore, taking 7 sufficiently small such that

n—0

C(M, K(n)) <

Y

N | —

we obtain

16 W%I(QT)H < C([[(ao, ay, o) llow, T, M, K(n)). (A.2.4)
Substituting (A.2.4) into (A.2.2) yields

las W2(Qa)|l < C(ll(uo, wy, 0)llow, T, M, K (n)),

which completes the proof. O

Theorem A.1 immediately follows from Theorems A.1.1 and A.2.2.
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