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Chapter 1

Introduction

This thesis concerns analysis and differential geometry on metric spaces. We shall gen-
eralize several analytic and geometric notions including totally geodesic maps, Sobolev
spaces, and harmonic maps. It is noted that the known facts for the finer objects (Rie-
mannian manifolds, functions etc.) do not always continue to hold in our general setting
(metric spaces, mappings etc.). Completely different phenomena may appear. In the
case where we actually find such a phenomenon, it is probably much more interesting to
investigate why such a difference occurs. We will also answer to this further question in
several cases. This work was first inspired by Margulis’ celebrated superrigidity theorem
([Mar1], see also [Mar2] and [Z]), a somewhat weakened version of which is described as
follows:
Let k be a local field. By an algebraic k-group, we mean a Zariski k-closed subgroup

of GL(n;K) for some n ≥ 1 and some algebraically closed field K containing k. We
denote by Gk a group which consists of the k-points of an algebraic k-group G, and by
G0k its identity component. Typical examples are K = C, k = R, G = SL(n;C), and
GR = G

0
R = SL(n;R).

Theorem 1.0.1 (Margulis’ superrigidity theorem) Let k and k0 be local fields, G and H
be connected algebraic k- and k0-groups, respectively. Let Γ ⊂ G be an irreducible lattice,
and ρ : Γ −→ Hk0 be a homomorphism. Suppose that G is semi-simple and its k-rank is
greater than one, and that G0k has no compact factor, H is k0-simple, and ρ(Γ) is Zariski
dense in H. Then either one of the following is true:

(i) The homomorphism ρ extends to a rational homomorphism ρ̄ : G −→ H.

(ii) The image ρ(Γ) is relatively compact in Hk0.

A differential geometric approach to proving Margulis’ superrigidity theorem, which
is established by Corlette [Co], is as follows:

(I) We first show the existence of a ρ-equivariant harmonic map u : X −→ Y .

(II) We next show that u is totally geodesic or constant.

(III) We finally show that u is homothetic or constant.

1



Here each ofX and Y is a symmetric space of noncompact type or a Euclidean building.
Indeed, in the case where X = G/K and Y = H/L are symmetric spaces and ρ : Γ −→ H
is a homomorphism from a lattice Γ ⊂ G = Isom(X), (III) above implies that ρ extends
to a homomorphism ρ̄ : G −→ H (g 7−→ u ◦ g ◦ u−1) or the closure of ρ(Γ) is compact.
Corlette [Co], Jost and Yau [JY], and Mok, Siu, and Yeung [MSY] each deal with the

case where X is a symmetric space of noncompact type and Y is a Riemannian manifold
of nonpositive sectional curvature. There they prove (I) by Eells and Sampson’s theorem
and need more concrete calculations to show (II). On the other hand, (III) is generally
obtained from the following well-known fact:

Fact 1.0.2 Any totally geodesic map from an irreducible Riemannian manifold into a
Riemannian manifold is homothetic or constant.

Gromov and Schoen [GS] treat the case where X is a symmetric space of noncompact
type and Y is a Euclidean building, and Wang [W] deals with the reverse case (under a
somewhat stronger assumption than that in Margulis’ theorem). The map u is always
a constant map in these cases. We emphasize that the results of Corlette and Gromov-
Schoen are in the rank-one case which is not covered by Margulis’ original proof.
In the case where both X and Y are Euclidean buildings, although u is expected to

be homothetic for some X and Y , even (III), i.e., the homothetic property of a totally
geodesic map, is unknown. Furthermore, there are only a few investigations on totally
geodesic maps for metric spaces. On the other hand, there are many works on the Sobolev
spaces for maps between metric spaces and harmonic maps in these spaces. Our purpose
in this thesis is to study totally geodesic maps, harmonic maps as well as Sobolev spaces
to which they belong, and the relation between them. The thesis is organized as follows:

In Chapter 2, we recall the precise definitions of CAT(K)-spaces and Alexandrov
spaces with an upper curvature bound. We also give the proofs, for completeness, of the
first variation formula (Theorem 2.2.3) and the 1-Lipschitz continuity of the foot-point
map (Proposition 2.3.2).

In Chapter 3, we consider totally geodesic maps between metric spaces. For a smooth
map u : M −→ N between Riemannian manifolds and for two vector fields V and W on
M , we define ∇(u∗)(V,W ) := 0∇V u∗(W )−u∗(∇VW ). Here u∗ : TM −→ TN denotes the
differential of u, and ∇ and 0∇ denote the Levi-Civita connection ofM and the connection
on u−1TN induced from the Levi-Civita connection of N , respectively. There the totally
geodesic property of u is defined by the differential equation ∇(u∗) = 0, or equivalently,
by the property that it maps any geodesic of M to a geodesic of N . The latter definition
makes sense for a map between metric spaces. Typical examples of totally geodesic maps
are an isometry, a homothety, a Riemannian covering and a projection from the product of
metric spaces to one of its factors, which are all continuous. An example of discontinuous
totally geodesic map is an unbounded linear map from a Hilbert space to a Banach space.
It is intuitively clear that the totally geodesic property is a very strong condition.

Indeed, as we mentioned above, any totally geodesic map from an irreducible Riemannian
manifold into a Riemannian manifold is homothetic or constant (Fact 1.0.2). However,

2



if we consider maps between arbitrary metric spaces, then we can derive almost nothing
from this property. This is because the behavior of geodesics varies depending on an
underlying metric space. For instance, in the case where (X, dX) is a metric space in
which any geodesic is constant, e.g., discrete metric spaces or fractals such as the von
Koch curve, any map from X is totally geodesic and, conversely, only constant maps are
totally geodesic maps from a metric space (which has sufficiently many geodesics) into
X . Therefore it is natural and necessary to put some restrictions on the source and the
target spaces.

In this chapter, we treat a totally geodesic map u : M −→ X from a Riemannian
manifold M to a metric space X whose convex radii are assumed to be positive. We first
prove thatM splits locally and isometrically into the vertical and the horizontal parts with
respect to u (Theorem 3.2.1). By using these horizontal parts, we next show that the image
of a sufficiently small open ball in M has a Finslerian structure (Corollary 3.4.4). This
will be globalized in Theorem 3.3.1, which asserts that, ifM is geodesically complete, then
u can be represented as the composite of a totally geodesic map from M to a Finslerian
manifold N and a locally isometric embedding from N to X. Intuitively, N is a space
constructed by resolving the singularities of u(M). If X is an Alexandrov space with local
curvature upper bound, then N is a Riemannian manifold. As a corollary, we prove the
homothetic property of a totally geodesic map from an irreducible Riemannian manifold
to an Alexandrov space with local curvature upper bound. This is a generalization of
Fact 1.0.2.

In Chapter 4, we treat the Sobolev spaces for maps between metric spaces. The theory
of Sobolev spaces for maps from or into metric spaces starts from Ambrosio [A] and is
making remarkable progress in these years. There are several definitions of such kind
of Sobolev spaces – for example, by Korevaar and Schoen [KS] (see also [J1], [J3], and
[Ra]), and by HajÃlasz [Ha] (see also [HaK], [He], and [K]). In [Ch], Cheeger also defines
the Sobolev spaces for real-valued functions on an arbitrary metric measure space (see also
[S] and [HKST]). He not only treats the usual topics of Sobolev spaces including Dirichlet
problem, but also proves many independently interesting theorems including generalized
Rademacher’s theorems. Moreover, such results are used in [CC] to study the structure of
the Gromov-Hausdorff limit of Riemannian manifolds whose Ricci curvatures are bounded
uniformly from below. For this reason, the author is most interested in Sobolev spaces
defined by Cheeger.

When one intends to generalize Sobolev spaces for functions to those for maps into
an arbitrary metric space, say X , considerably many difficulties arise. One of the most
critical one is that X has no linear structure. One way to bypass this difficulty is to
consider CAT(0)-spaces. There we can take the average of maps by using the center of
mass argument (cf. [KS] and [J3]). However, we do not have the additive operator for
them. The difference between them is not so serious if we treat only Lp spaces, but causes
some trouble in the case where we consider Sobolev spaces. Another way is to consider
Banach spaces (cf. [HKST]). This is a useful observation because every metric space can
be isometrically embedded in some Banach space. Nevertheless, it is not yet sufficient
only to consider Banach spaces. Indeed, Cheeger-type Sobolev spaces may change by such
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an embedding of the target space.

In this chapter, we generalize Cheeger’s definition of Sobolev spaces for functions to
that for maps into an arbitrary metric space X and, despite the difficulties above, we
obtain some interesting results.

In §4.1, we define the energy of a map and the Sobolev spaces. However, for completely
general metric spaces, we can prove only a few things.

In §4.2, we treat the case where (X, dX) is a geodesic length space such that dX is
convex, and show the analogues of the bulk of fundamental results proved in [Ch]. For
example, we prove the existence and the uniqueness of the minimal generalized upper
gradient (Theorem 4.2.2).

In §4.3, we deal with mappings into a CAT(0)-space and solve the Dirichlet problem
in accordance with the strategy in [J3] (Theorems 4.3.4 and 4.3.8).

In §4.4, we prove the minimality of the function Lipu (defined in §4.1) for any locally
Lipschitz continuous map u into a locally compact, locally geodesics extendable, and
separable Alexandrov space with local curvature upper bound (Theorem 4.4.8). This is a
generalization of [Ch, Theorem 6.1]. However, our proof is based on a new idea different
from the original one. The first variation formula (Theorem 2.2.3) is essential in our proof.

Finally, in §4.5, we consider what happens to the Sobolev spaces if we isometrically
embed X into a Banach space. By such an embedding, Cheeger-type Sobolev spaces may
change in general (Example 4.5.8). We will prove that this change does not occur in some
cases (Theorem 4.5.9) by studying the relation between several types of Sobolev spaces.

In Chapter 5, we consider the following problem: Are totally geodesic maps harmonic?
The harmonicity of a totally geodesic map is clear for a map between Riemannian man-
ifolds. This is because both the harmonicity and the totally geodesic property of a map
are defined by the differential equation and the one for the totally geodesic property
(∇(u∗) = 0) is stronger than that for the harmonicity (trace(∇(u∗)) = 0). However, for a
map between metric spaces, they are defined in the different categories and it is difficult
to compare them generally.

In this chapter, we consider mappings between a Riemannian manifold and a metric
space. Our theorems (Theorems 5.1.4 and 5.1.8) assert that any totally geodesic map into
an Alexandrov space of curvature ≤ 0 is harmonic with respect to both Korevaar-Schoen-
type and Cheeger-type energies. These theorems enable us to construct many examples
of harmonic maps whose images are not manifolds (Example 5.2.1). Namely, we can treat
a map which maps a non-singular point to a singular point. Examples of harmonic maps
of this kind have been scarcely known.

In this connection, we remark that Eells and Fuglede prove the harmonicity of totally
geodesic maps from a Riemannian polyhedron into a Riemannian manifold ([EF]). Their
proof is more differential geometric than ours. In that situation, it is difficult to construct
examples of totally geodesic map except for projections (from the product of a metric
space and a Riemannian manifold). In fact, we can easily prove that totally geodesic
maps from a tripod or a surface of circular cone into a Riemannian manifold must be
constant.

If the source space is not Riemannian, then a totally geodesic map is possibly not
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harmonic. In the last section, we will give an example of such map between CAT(0)-
spaces, or compact, geodesically complete Alexandrov spaces of curvature ≤ 0 (Example
5.2.3 and Claim 5.2.4). We also prove that there exists no continuous harmonic map
which is homotopic to that totally geodesic map. The non-uniformity of the dimension of
the source space is the essential cause of this phenomenon. We note that any Euclidean
building has a uniform dimension.
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Chapter 2

CAT(K )-spaces and Alexandrov
spaces

In this chapter, we briefly explain main geometric objects in this thesis, CAT(K)-spaces
and Alexandrov spaces of curvature bounded from above. These are metric spaces with
“curvature bounded from above” in some sense. We shall see some basic facts about them
which will be necessary for this thesis. General references of this chapter are [ABN], [Ba],
[BBI], [BH], and [OT].

2.1 Definitions

Let (X, dX) be a metric space. We denote the open (closed respectively) ball with center
x ∈ X and radius r > 0 by Br(x) or Br(x;X) (Br(x) or Br(x;X) respectively). For
a, b ∈ R, we define a ∨ b := max{a, b} and a ∧ b := min{a, b}. For a continuous path
γ : [0, l] −→ X , we define the length l(γ) of γ by

l(γ) := sup
0=t0<t1<···<tN=l

N−1X
i=0

dX(γ(ti), γ(ti+1)),

where the supremum is taken over all sequences {ti}Ni=0 as above and all N ∈ N. A
continuous path γ : [0, l] −→ X is called a geodesic if it has a constant speed and is
locally minimizing, that is, it satisfies

l(γ|[a,b]) = (|b− a|/l) · l(γ)

for every 0 ≤ a < b ≤ l and, for any a ∈ [0, l], there exists some ε > 0 such that
l(γ|[a0,a00]) = dX(γ(a0), γ(a00)) holds, where we put a0 := (a − ε) ∨ 0 and a00 := (a + ε) ∧ l.
Unlike those on a Riemannian manifold, geodesics on a metric space (e.g., a tree) may
branch.

Fix K ∈ R and let M2
K be a two-dimensional, complete, and simply connected space

form with constant sectional curvature K.

7



Definition 2.1.1 A metric space (X, dX) is called a CAT(K)-space if it satisfies the
following:

(i) For any two points x, y ∈ X (with dX(x, y) ≤ π/
√
K if K > 0), there exists a

minimal geodesic joining them, that is, a geodesic γ : [0, 1] −→ X which satisfies
γ(0) = x, γ(1) = y, and l(γ) = dX(x, y).

(ii) For any three points x, y, z ∈ X (with dX(x, y) + dX(y, z) + dX(z, x) < 2π/
√
K if

K > 0), any minimal geodesic γ : [0, 1] −→ X from x to y and λ ∈ [0, 1], we have

dX(z, γ(λ)) ≤ dM2
K
(z̃, γ̃(λ)).

Here we denote by 4x̃ỹz̃ a comparison triangle of 4xyz in M 2
K which is defined

as a geodesic triangle in M 2
K satisfying dX(x, y) = dM2

K
(x̃, ỹ), dX(y, z) = dM2

K
(ỹ, z̃),

and dX(z, x) = dM2
K
(z̃, x̃), and we denote by γ̃ : [0, 1] −→ M2

K the unique minimal
geodesic from x̃ to ỹ.

Any two points x and y in a CAT(K)-space (X, dX) (with dX(x, y) < π/
√
K if K > 0)

are connected by a unique minimal geodesic γ : [0, 1] −→ X from x to y. Indeed, the
existence is guaranteed by (i), and the uniqueness is derived from (ii) in Definition 2.1.1.
Then we set γxy := γ and we also use the notation (1− λ)x+ λy := γxy(λ) for λ ∈ [0, 1].
If K = 0, then the inequality dX(z, γ(λ)) ≤ dM2

K
(z̃, γ̃(λ)) in Definition 2.1.1(ii) is

equivalent to

dX(z, γ(λ))
2 ≤ (1− λ)dX(z, x)

2 + λdX(z, y)
2 − (1− λ)λdX(x, y)

2. (2.1)

We know that any CAT(0)-space is contractible. For example, Hadamard manifolds, trees,
Euclidean buildings, and Hilbert spaces are CAT(0)-spaces. Note that a Banach space
is a CAT(0)-space if and only if it is a Hilbert space, i.e., it satisfies the parallelogram
identity.

Definition 2.1.2 A metric space (X, dX) is called an Alexandrov space of curvature ≤ K
if, for any x ∈ X , there exists an open neighborhood D of x such that

(i) any minimal geodesic joining two points in D is contained in D;

(ii) (D, dX) is a CAT(K)-space.

We call a set D ⊂ X satisfying (i) and (ii) above an RK-domain.

In fact, any Riemannian manifold whose sectional curvature is not greater thanK is an
Alexandrov space of curvature ≤ K. We observe that an Alexandrov space of curvature
≤ 0 is not necessarily contractible, e.g., a flat torus is an Alexandrov space of curvature
≤ 0. We call a metric space (X, dX) an Alexandrov space with local curvature upper bound
if, for any x ∈ X , there exists an open neighborhood D of x which is an RK-domain
for some K = K(x) ∈ R. Any Riemannian manifold is an Alexandrov space with local
curvature upper bound.
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In the remainder of this section, let (X, dX) be an Alexandrov space of curvature ≤ K.
For two nonconstant geodesics γi : [0, li] −→ X (i = 1, 2) with a common starting point
x := γ1(0) = γ2(0), we define

∠x(γ1, γ2) := lim
s,t→0

∠̃γ1(s)xγ2(t).

Here we set ∠̃γ1(s)xγ2(t) := ∠γ1(s)̃ x̃γ2(t)̃, where4γ1(s)̃ x̃γ2(t)̃ is a comparison triangle of
4γ1(s)xγ2(t) inM2

K . It is not difficult to show that, from Definition 2.1.1(ii), the function
(s, t) 7−→ ∠̃γ1(s)xγ2(t) is monotone non-decreasing in both s and t if they are sufficiently
small. Hence the limit in the definition of ∠x(γ1, γ2) always exists. In particular, it holds
that

∠x(γ1, γ2) ≤ ∠̃γ1(s)xγ2(t)
for small s, t > 0. If one of γ1 and γ2 is a subarc of the other one, then clearly ∠x(γ1, γ2) = 0
holds. However, the converse is not true, that is, ∠x(γ1, γ2) = 0 does not imply that
γ1(s) = γ2(as) for some a, ε > 0 and all s ∈ [0, ε]. If x, y, z ∈ X are in an RK-domain
(and dX(y, x)∨ dX(y, z) < π/

√
K if K > 0), then we put ∠xyz := ∠y(γyx, γyz). We prove

some fundamental facts about the angle ∠ for the later use.

Proposition 2.1.3 (i) For three geodesics γi : [0, li] −→ X (i = 1, 2, 3) emanating
from a point x ∈ X, we have the triangle inequality

∠x(γ1, γ3) ≤ ∠x(γ1, γ2) + ∠x(γ2, γ3).

(ii) If xi, yi, zi tend to distinct points x, y, z ∈ X in an RK-domain (with dX(y, x) ∨
dX(y, z) < π/

√
K if K > 0) respectively as i→∞, then we have

∠xyz ≥ lim sup
i→∞

∠xiyizi.

(iii) For three distinct points x, y, z ∈ X in an RK-domain (with dX(y, x) ∨ dX(y, z) <
π/
√
K if K > 0), we have

∠xyz = lim
t→0
∠̃xyγyz(t).

Proof. (i) We may assume ∠x(γ1, γ2)+∠x(γ2, γ3) < π. Fix a sufficiently small ε > 0 and
take t1, t2, t3 > 0 which are small enough to satisfy

∠̃γ1(t1)xγ2(t2) ≤ ∠x(γ1, γ2) + ε, ∠̃γ2(t2)xγ3(t3) ≤ ∠x(γ2, γ3) + ε,

∠̃γ1(t1)xγ2(t2) + ∠̃γ2(t2)xγ3(t3) < π.

Put yi := γi(ti) for i = 1, 2, 3. Let 4ỹ1x̃ỹ2 and 4ỹ2x̃ỹ3 be comparison triangles of 4y1xy2
and 4y2xy3 in M 2

K respectively such that they share the edge γx̃ỹ2 and that ỹ1 and ỹ3 lie
on the opposite sides of this edge. Taking t1 and t3 much smaller than t2, we can assume
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that γx̃ỹ2 and γỹ1ỹ3 intersect, and we denote the intersection point by p = γx̃ỹ2(t). Then
we have

dX(y1, y3) ≤ dX(y1, γxy2(t)) + dX(γxy2(t), y3) ≤ dM2
K
(ỹ1, p) + dM2

K
(p, ỹ3)

= dM2
K
(ỹ1, ỹ3).

The second inequality follows from Definition 2.1.1(ii) for 4y1xy2 and 4y2xy3. This
implies ∠̃y1xy3 ≤ ∠ỹ1x̃ỹ3. Moreover, it follows from ∠ỹ1x̃ỹ2+∠ỹ2x̃ỹ3 < π that ∠ỹ1x̃ỹ3 =
∠ỹ1x̃ỹ2 + ∠ỹ2x̃ỹ3. Hence we obtain

∠x(γ1, γ3) ≤ ∠̃y1xy3 ≤ ∠ỹ1x̃ỹ3 = ∠ỹ1x̃ỹ2 + ∠ỹ2x̃ỹ3
≤ ∠x(γ1, γ2) + ∠x(γ2, γ3) + 2ε.

(ii) Given ε > 0, let x0 = γyx(s) and z
0 = γyz(t) (s, t > 0) satisfy ∠̃x0yz0 ≤ ∠xyz + ε.

If we take x0i = γyixi(si) and z
0
i = γyizi(ti) such that dX(yi, x

0
i) = dX(y, x

0) and dX(yi, z0i) =
dX(y, z

0), then it follows from Definition 2.1.1(ii) that x0i and z
0
i tend to x

0 and z0 respec-
tively as i→∞. This implies that

|∠̃x0yz0 − ∠̃x0iyiz0i| ≤ ε

holds for sufficiently large i. Thus we obtain

∠xyz ≥ ∠̃x0yz0 − ε ≥ ∠̃x0iyiz0i − 2ε ≥ ∠xiyizi − 2ε

for large i. Letting i tend to infinity, we have the required inequality.
(iii) Fix ε > 0. By (ii), for sufficiently small t > 0, it holds that ∠xyz ≥ ∠xγyz(t)z−ε.

Moreover, we also find
|∠̃xyγyz(t) + ∠̃xγyz(t)y − π| ≤ ε

for small t > 0. There we have

∠xyz ≤ ∠̃xyγyz(t) ≤ π − ∠̃xγyz(t)y + ε

≤ ∠yγyz(t)z − ∠xγyz(t)y + ε

≤ ∠xγyz(t)z + ε

≤ ∠xyz + 2ε.

Here we use the equality ∠yγyz(t)z = π, which holds since γyz is a geodesic, in the third
inequality. Therefore we obtain

∠xyz = lim
t→0
∠̃xyγyz(t).

For x ∈ X, we set

Σx := {geodesics emanating from x}/ ∼,
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where the equivalence relation ∼ is defined such that γ1 ∼ γ2 holds if ∠x(γ1, γ2) = 0.
Then (Σx,∠x) is a metric space by Proposition 2.1.3(i). Define the space of directions
(Σx, ρx) at x ∈ X as the inner metric space induced from (Σx,∠x), that is, for γ1, γ2 ∈ Σx,
we define

ρx(γ1, γ2) := inf{l(c) | c : [0, 1] −→ (Σx,∠x), continuous, c(0) = γ1, c(1) = γ2},

and we set ρx(γ1, γ2) := ∞ if there exists no such curve. It is not difficult to show
∠x(γ1, γ2) = ρx(γ1, γ2) ∧ π. We also define the tangent cone (Kx, dx) at x by Kx :=
Σx × [0,∞)/Σx × {0} and

dx((s, γ1), (t, γ2)) := {s2 + t2 − 2st cos∠x(γ1, γ2)}1/2.

If we consider a triangle in R2 such that two sides of it have lengths s and t and that the
angle between them is ∠x(γ1, γ2), then dx((s, γ1), (t, γ2)) is the length of the other side
(see Figure 1).

s

t

dx((s, γ1), (t, γ2))∠x(γ1, γ2)

Figure 1

The space of directions and the tangent cone coincide with the unit tangent sphere and
the tangent space for a Riemannian manifold. It is known that each connected component
of the completion of (Σx, ρx) is an Alexandrov space of curvature ≤ 1, and the completion
of (Kx, dx) is a CAT(0)-space.

2.2 First variation formula

A metric space (X, dX) is said to be locally geodesics extendable if, for each x ∈ X, there
exists δ = δ(x) > 0 such that any unit speed geodesic γ : [−ε, 0] −→ X with γ(0) = x
can be extended as a geodesic γ : [−δ, δ] −→ X satisfying γ = γ on [−ε, 0]. (We have
called this property locally geodesically complete in [O2].) In this section, let (X, dX) be
a locally compact, locally geodesics extendable Alexandrov space of curvature ≤ K.

Lemma 2.2.1 Let D ⊂ X be an RK-domain. Then any geodesic γ : [0, l] −→ X con-
tained in D (with l(γ) ≤ π/

√
K if K > 0) is minimal.
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Proof. Suppose that γ|[0,a] and γ|[a,a+ε] (0 < a < a + ε ≤ l) are minimal and γ|[0,a+ε] is
not minimal. Put x := γ(0), y := γ(a), and z := γ(a+ ε) and let 4x̃ỹz̃ be a comparison
triangle of 4xyz in M 2

K . We observe that, by assumption, it holds that

dX(x, y) + dX(y, z) + dX(z, x) < 2l(γ) ≤ 2π/
√
K

if K > 0. Since dX(x, y) + dX(y, z) > dX(x, z), we have π > ∠̃xyz ≥ ∠xyz = π. This is a
contradiction, so that γ is minimal on [0, l].

For a closed ball Bε(x) (with 0 < ε < π/2
√
K if K > 0) contained in an RK-domain,

we set

Sε(x) := {y ∈ X | dX(x, y) = ε}, ∠̃x(y, z) := ∠̃yxz for y, z ∈ Sε(x).

We note that ∠̃yxz depends only on ε and dX(y, z). We can show that (Sε(x), ∠̃x) is a
metric space as in the proof of Proposition 2.1.3(i).

Proposition 2.2.2 For any x ∈ X and a sufficiently small ε > 0, the metric space
(Sε(x), ∠̃x) is compact. Moreover, (Σx,∠x) is compact.

Proof. Let D be an RK-domain containing x, and choose ε ∈ (0, δ(x) ∧ π/2
√
K) such

that Bε(x) ⊂ D and Bε(x) is compact. Given a sequence {yi}∞i=1 ⊂ Sε(x), since Bε(x) is
compact, we can take a subsequence {yij} of {yi} which converges to some point y ∈ D.
Then clearly we have y ∈ Sε(x) and ∠̃x(yij , y) → 0 as j → ∞. Hence (Sε(x), ∠̃x) is
compact. By the geodesics extendable property of Bε(x), the map

Sε(x) 3 y 7−→ γxy ∈ (Σx,∠x)

is surjective and 1-Lipschitz continuous. Therefore (Σx,∠x) is also compact.

The symbols oα,β(ε) and θα,β(ε) denote functions depending only on α and β with
limε→0 oα,β(ε)/ε = 0 and limε→0 θα,β(ε) = 0. The first variation formula for length below
plays a crucial role in §4.4.

Theorem 2.2.3 ([OT], cf. [OS, Theorem 3.5]) Fix an RK-domain D ⊂ X and distinct
points x, y ∈ D. Then, for each z ∈ D, it holds that

dX(y, x)− dX(z, x) = dX(y, z) cos∠xyz + ox,y(dX(y, z)).

Proof. Fix a sufficiently small ε > 0. Since the metric space (Sε(y), ∠̃y) is compact, we
can take a finite set {zi}Ni=1 ⊂ Sε(y) satisfying Bε({zi}Ni=1;Sε(y)) = Sε(y). For each i, we
have limt→0 ∠̃xyγyzi(t) = ∠xyzi by Proposition 2.1.3(iii). Hence we find tε ∈ (0, ε) for
which

∠xyzi ≤ ∠̃xyγyzi(t) ≤ ∠xyzi + ε

12



holds for all i and t ∈ (0, tε/ε]. In particular, for every w ∈ Btε(y) \ {y}, by taking
w0 ∈ Sε(y) and i such that w = γyw0(s) for some s ∈ (0, tε/ε) and that ∠̃y(w0, zi) ≤ ε, we
have ∠wyzi = ∠w0yzi ≤ ∠̃y(w0, zi) ≤ ε and

∠xyw ≤ ∠̃xyw ≤ ∠̃xyγyw0(tε/ε)
≤ ∠̃xyγyzi(tε/ε) + ∠̃γyzi(tε/ε)yγyw0(tε/ε)
≤ ∠xyzi + ε+ ∠̃ziyw0

≤ ∠xyw + 3ε.

We may assume z ∈ Btε(y) \ {y}. In fact, then we have ε = θx,y(dX(y, z)), more precisely,
inf{ε > 0 | tε > r} = θx,y(r) since inf{ε > 0 | tε > tε0/2} ≤ ε0. Thus we obtain

|∠̃xyz − ∠xyz| = θx,y(dX(y, z)).

On the other hand, we know

cos ∠̃xyz = dX(x, y)− dX(x, z)
dX(y, z)

+ θ(dX(y, z)).

Consequently, we obtain

dX(x, y)− dX(x, z) = dX(y, z) cos ∠̃xyz + o(dX(y, z))
= dX(y, z) cos∠xyz + ox,y(dX(y, z)).

2.3 Foot-points

Throughout this section, let (X, dX) be a CAT(0)-space. A subset A ⊂ X is said to
be geodesically convex if any two points in A can be connected by a minimal geodesic
contained in A. For a complete, geodesically convex subset A ⊂ X, the foot-point (or the
nearest point projection) of a point x ∈ X to the set A is defined as a point in A which
is closest to x (see [KS, Proposition 2.5.4]). From (2.1), we can easily prove that such a
point exists and is unique, and hence we denote it by F [A](x). We shall obtain that this
map is distance non-increasing by the sub-embedding property due to Reshetnyak [Re]
(see also [KS, Theorem 2.1.1]). Here we only show a much restricted version of it.

Theorem 2.3.1 For any four points w, x, y, z ∈ X, there exists a convex quadrilateral
w̄x̄ȳz̄ ⊂ R2 (a sub-embedding of {w, x, y, z}) satisfying

dX(w, x) = |w̄ − x̄|, dX(x, y) = |x̄− ȳ|, dX(y, z) = |ȳ − z̄|, dX(z, x) = |z̄ − x̄|,
dX(w, y) ≤ |w̄ − ȳ|, dX(x, z) ≤ |x̄− z̄|.

13



Proof. As in the proof of Proposition 2.1.3(i), let 4x̃w̃ỹ and 4ỹw̃z̃ be comparison tri-
angles of 4xwy and 4ywz in R2 respectively such that they share the edge γw̃ỹ and
that x̃ and z̃ lie on the opposite sides of this edge. If ∠̃xyw + ∠̃wyz ≤ π, then we can
derive dX(x, z) ≤ |x̃ − z̃| as in the proof of Proposition 2.1.3(i), so that w̃x̃ỹz̃ itself is a
sub-embedding.
Next we consider the case where ∠̃xyw+ ∠̃wyz > π. We move ỹ and z̃ until ỹ lies on

γx̃z̃ while keeping w̃, x̃, |x̃ − ỹ|, |ỹ − z̃|, and |z̃ − w̃| fixed (see Figure 2). We denote the
resulting points by w̄ (= w̃), x̄ (= x̃), ȳ, and z̄.

x̃

ỹ

w̃

z̃

x̄

w̄

z̄

ȳ

Figure 2

◦ ◦
×

×

−

−

= =

Then we have dX(x, z) ≤ dX(x, y)+dX(y, z) = |x̄− z̄| and dX(w, y) = |w̃− ỹ| ≤ |w̄− ȳ|.
Therefore w̄x̄ȳz̄ is a sub-embedding of {w, x, y, z}.
If w̄x̄ȳz̄ ⊂ R2 is a sub-embedding of {w, x, y, z} ⊂ X , then we have

dX(w, (1− t)x+ ty)2 ≤ (1− t)dX(w, x)2 + tdX(w, y)2 − (1− t)tdX(x, y)2
≤ (1− t)|w̄ − x̄|2 + t|w̄ − ȳ|2 − (1− t)t|x̄− ȳ|2
= |w̄ − {(1− t)x̄+ tȳ}|2

for each t ∈ [0, 1].

Proposition 2.3.2 For any complete, geodesically convex set A ⊂ X, the map F [A] is
1-Lipschitz continuous.

Proof. For two points x, y ∈ X, put x0 := F [A](x) and y0 := F [A](y), and set zt :=
(1 − t)x0 + ty0 ∈ A for t ∈ [0, 1]. Let x̄x̄0ȳ0ȳ ⊂ R2 be a sub-embedding of {x, x0, y0, y}.
Then we have

dX(x, zt)
2 + dX(y, z1−t)

2

≤ |x̄− {(1− t)x̄0 + tȳ0}|2 + |ȳ − {tx̄0 + (1− t)ȳ0}|2
= |(x̄− x̄0) + t(x̄0 − ȳ0)|2 + |(ȳ − ȳ0) + t(ȳ0 − x̄0)|2
= |x̄− x̄0|2 + |ȳ − ȳ0|2 + 2t2|x̄0 − ȳ0|2 + 2th(x̄− x̄0)− (ȳ − ȳ0), x̄0 − ȳ0i.

Here we denote the canonical inner product on R2 by h·, ·i. It holds that
2th(x̄− x̄0)− (ȳ − ȳ0), x̄0 − ȳ0i = 2th(x̄− ȳ)− (x̄0 − ȳ0), x̄0 − ȳ0i

= t{|x̄− ȳ|2 − |(x̄− ȳ)− (x̄0 − ȳ0)|2 − |x̄0 − ȳ0|2}
≤ t{|x̄− ȳ|2 − |x̄0 − ȳ0|2}.
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Hence we obtain

dX(x, zt)
2 + dX(y, z1−t)

2

≤ dX(x, x0)2 + dX(y, y0)2 + 2t2dX(x0, y0)2 + t{dX(x, y)2 − dX(x0, y0)2}.

On the other hand, the definitions of x0 and y0 imply dX(x, x0) ≤ dX(x, zt) and dX(y, y0) ≤
dX(y, z1−t). Therefore we have

0 ≤ 2t2dX(x0, y0)2 + t{dX(x, y)2 − dX(x0, y0)2}.

Dividing this inequality by t and letting t tend to zero, we obtain dX(x
0, y0) ≤ dX(x, y).
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Chapter 3

Totally geodesic maps

In this chapter, we study totally geodesic maps from a Riemannian manifold to a metric
space, and will obtain a kind of rigidity. The main results of this chapter are Theorems
3.2.1 and 3.3.1, and Corollaries 3.4.4 and 3.4.5. This chapter is based on [O1].

3.1 Basic properties

Let (M, g) be an n-dimensional C∞-Riemannian manifold and (X, dX) be a metric space.
We denote by dM the distance function on M induced from g. We define ∂M :=M \M ,
where M is the completion of M with respect to dM . For p ∈M , the convexity radius at
p, denoted by rM(p), is defined by

sup

½
δ ≥ 0

¯̄̄̄
Any geodesic contained in Bδ(p) is minimal and
any ball Bτ (q) with dM(p, q) ≤ δ − τ is strongly convex

¾
,

where a subset U ⊂M is said to be strongly convex if, for any q, r ∈ U , a minimal geodesic
from q to r uniquely exists and is contained in U . The same definition makes sense for
x ∈ X and we denote it by rX(x). Note that rX(x) = 0 may happen (e.g., at a singular
point of an Alexandrov space of curvature bounded from below), while rM(p) > 0 holds
for any p ∈ M . For q, r ∈ BrM (p)(p), we denote the unique minimal geodesic from q to r
by γqr : [0, 1] −→ M as in the previous chapter, and denote the image of γqr by qr. For
y, z ∈ BrX(x)(x), we define γyz and yz in the same manner.
We assume, throughout this chapter, that there exists a totally geodesic map u :

M −→ X , that is, u maps any geodesic in M to a geodesic in X . For such u, we define a
function |du| : TM −→ R as, for v ∈ TpM ,

|du|(v) := the speed of the geodesic u ◦ γv

=
dX
¡
u(p), u(γv(t))

¢
t

for sufficiently small t > 0,

where γv(t) := expp tv.

Proposition 3.1.1 The map u is continuous on M .
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Proof. Take any p ∈ M and let {ei}ni=1 be an orthonormal basis of TpM . Then, for
ε ∈ (0, rM(p) ∧ dist(p, ∂M)), we set

aε±i := γei(±ε) for i = 1, 2, . . . , n,

V ε
0 := {ai | i = ±1,±2, . . . ,±n},
V ε
1 := {r ∈ aiaj | i < j, i 6= ±j},
V ε
2 := {r ∈ aiajak | i < j < k, i 6= ±j, j 6= ±k, k 6= ±i},

where aiajak := {aiq | q ∈ ajak},
...

V ε
n−1 :=

n
r ∈ ai0 · · · ain−1

¯̄̄
i0 < · · · < in−1,
{±i} 6⊂ {i0, . . . , in−1} for any i = 1, . . . , n

o
,

where we inductively define ai0 · · · ain−1 := {ai0q | q ∈ ai1 · · · ain−1}.

Then, for any r ∈ ai0q ⊂ ai0 · · · aim ⊂ V ε
m with 1 ≤ m ≤ n− 1, we have

dX(u(p), u(r)) ≤
1

2
{dX(u(p), u(ai0)) + dX(u(p), u(q)) + dX(u(q), u(ai0))}

≤ dX(u(p), u(ai0)) + dX(u(p), u(q))
≤ 2max{dX(u(p), u(ai0)), dX(u(p), u(q))}.

Therefore we obtain

sup{dX(u(p), u(r)) | r ∈ V ε
n−1} ≤ 2 sup{dX(u(p), u(r)) | r ∈ V ε

n−2}
≤ · · ·
≤ 2n−1max{dX(u(p), u(r)) | r ∈ V ε

0 }
<∞.

We put

aε := inf{dM(p, r) | r ∈ V ε
n−1} > 0, bε := 2

n−1max{dX(u(p), u(r)) | r ∈ V ε
0 }.

Then limε→0 aε/ε = 1/
√
n and

bε = 2
n−1εmax{|du|(ei) | i = 1, . . . , n}

for sufficiently small ε > 0. Since any geodesic emanating from p intersects V ε
n−1, we have

sup
v∈UpM

|du|(v) ≤ lim
ε→0

bε
aε
= 2n−1

√
nmax{|du|(ei) | i = 1, . . . , n} <∞,

where we define UpM := {v ∈ TpM | |v| = 1}. Hence u is continuous at p.
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If supUpM |du| = 0 at some p ∈ M , then u is a constant map. So without loss of
generality, we may assume that supUpM |du| > 0 for any p ∈M . Define

au(p) := sup
UpM

|du| (= the local dilatation of u at p),

ru(p) := rM(p) ∧
rX(u(p))

au(p)
,

σ(p) := ru(p) ∧ dist(p, ∂M).

The function ru has a useful property:

Bru(p)(p) ⊂ BrM (p)(p), u
¡
Bru(p)(p)

¢
⊂ BrX(u(p))(u(p)).

Fix p ∈ M and put x = u(p). We assume rX(x) > 0 in this and the next sections, so
that ru(p),σ(p) > 0. Then, by the property of ru(p) we noted above, the continuity of u
immediately implies that the function |du| is continuous on TBru(p)(p). Hence u is locally
Lipschitz continuous, and au, ru, and σ are continuous on Bru(p)(p).

Definition 3.1.2 We define Vp := {v ∈ TpM | |du|(v) = 0} and call it the vertical part at
p.

Lemma 3.1.3 The set Vp is a subspace of TpM .

Proof. It suffices to show that v+w ∈ Vp for any v, w ∈ Vp. We may assume |v|, |w| ≤ 1
and v + w 6= 0. For ε ∈ (0,σ(p)), we put

qε := γγv(ε)γw(ε)(1/2), vε := exp
−1
p qε/| exp−1p qε| ∈ UpM.

Since Bε(p) ⊂ BrM (p)(p) and u(Bε(p)) ⊂ BrX(x)(x), we have u(qε) = γu(γv(ε))u(γw(ε))(1/2)
= x. Hence vε ∈ Vp. On the other hand, limε→0 vε = (v+w)/|v+w|. Therefore v+w ∈ Vp
since Vp is closed.

Lemma 3.1.4 Each connected component of u−1(x) is a totally geodesic submanifold of
M whose tangent space coincides with the vertical part at each point.

Proof. For any p0 ∈ u−1(x), we have

Bru(p0)(p
0) ∩ u−1(x) = expp0

¡
Bru(p0)(0;Tp0M) ∩ Vp0

¢
.

Here we have ru(p
0) > 0 since rX(u(p0)) = rX(x) > 0. Hence the function q 7−→ dimVq is

constant on any connected component S of u−1(x), and S is a totally geodesic submanifold
of M which is coordinated by {(Uq,ϕq)}q∈S, where we set Uq := expq

¡
Bσ(q)(0;TqM)∩Vq

¢
and ϕq := (expq |Bσ(q)(0;TqM)∩Vq)

−1.

Definition 3.1.5 We define Hp := V
⊥
p and call it the horizontal part at p.
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For x ∈ X, we set

Σ0x := {unit speed geodesics emanating from x}/ ∼,

where the equivalence relation ∼ is defined such that γ1 ∼ γ2 holds if γ1 = γ2 on [0, ε] for
some ε > 0. This set is slightly different from the space of directions Σx defined in §2.1.
In fact, geodesics γ1 and γ2 emanating from the same point x can branch while satisfying
∠x(γ1, γ2) = 0 in the case where (X, dX) is an Alexandrov space of curvature bounded
from above. We define (du)p : UpM \ Vp −→ Σ0x as

(du)p(v) :=

∙
t 7−→ u ◦ γv

µ
t

|du|(v)

¶¸
,

where [·] indicates the equivalence class.

Lemma 3.1.6 The map (du)p|UpM∩Hp : UpM ∩Hp −→ (du)p(UpM \ Vp) is bijective.

Proof. We first show the surjectivity. Take any v ∈ UpM \ Vp. For sufficiently small
ε ∈ (0,σ(p)), we can choose two vectors w ∈ Vp and w0 ∈ Hp such that |w|, |w0| < σ(p)
and γv(ε) ∈ γw(1)γw0(1) because the set

{q ∈ γw(1)γw0(1) |w ∈ Vp, w0 ∈ Hp, |w| = |w0| = ε}

is connected and of (n − 1)-dimensional. Since u(γv(0)) = u(γw(1)) = u(γw0(0)) = x, we
have u(γv|[0,ε]) ⊂ u(γw(1)γw0(1)) = u(γw0|[0,1]). Hence (du)p(w0/|w0|) = (du)p(v).
Next, we show the injectivity. If there exist two distinct vectors v, w ∈ UpM ∩ Hp

satisfying (du)p(v) = (du)p(w), then u ◦ γv = u ◦ γw ◦ a on [0, δ] for some a > 0 and δ > 0
(where a is a multiplication function). We may assume 0 < a ≤ 1. For 0 < ε < δ ∧ σ(p),
we have u(γv(ε)γw(aε)) = {u(γv(ε))} = {u(γw(aε))}. Hence

|du|
µ
exp−1γw(aε)(γv(ε))

| exp−1γw(aε)(γv(ε))|

¶
= 0.

We notice that γv(ε) 6= γw(aε) since v 6= w. Letting ε tend to zero, we obtain |du|((v −
aw)/|v−aw|) = 0. Therefore v−aw ∈ Vp∩Hp, so that v−aw = 0, which is a contradiction.

Corollary 3.1.7 Any geodesic contained in u
¡
Bru(p)(p)

¢
does not branch. Namely, if two

geodesics γ1, γ2 : [−δ, δ] −→ u
¡
Bru(p)(p)

¢
satisfy γ1 = γ2 on [−δ, 0], then γ1 = γ2 holds on

[−δ, δ].

Proof. Assume that there exist two unit speed geodesics γ1, γ2 : [−δ, δ] −→ u
¡
Bru(p)(p)

¢
with δ > 0 such that γ1 = γ2 on [−δ, 0] and γ1(t) 6= γ2(t) for some t ∈ (0, δ]. Then, since
u
¡
Bru(p)(p)

¢
⊂ BrX(x)(x), we have γ1(s) 6= γ2(s) for any s ∈ (t, δ]. Hence, without loss of

generality, we may assume γ1(t) 6= γ2(t) for all t ∈ (0, δ].
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Choose a point p0 ∈ u−1(γ1(0)) ∩ Bru(p)(p) (= u−1(γ2(0)) ∩ Bru(p)(p)). Note that

rX(u(p
0)) ≥ rX(x)− dX(x, u(p0)) > rX(x)− au(p)ru(p) ≥ 0.

By Lemma 3.1.6, there exist three vectors w1, w2, v ∈ Up0M ∩Hp0 satisfying

(du)p0(wi) = [γi|[0,δ]] for i = 1, 2,

(du)p0(v) = [(γ1 ◦ (−1))|[0,δ]] ( = [(γ2 ◦ (−1))|[0,δ]]).

Since γ1(t) 6= γ2(t) for any t ∈ (0, δ], we obtain [γ1|[0,δ]] 6= [γ2|[0,δ]], so that w1 6= w2. Hence
we may assume v 6= −w1. However, for sufficiently small ε > 0, we have

u(γγv(ε/|du|(v))γw1(ε/|du|(w1))(1/2)) = γγ1(−ε)γ1(ε)(1/2) = γ1(0) = u(p
0).

Hence exp−1p0 [γγv(ε/|du|(v))γw1 (ε/|du|(w1))(1/2)] is contained in Vp0 \{0}, and we denote it by vε.
Letting ε tend to zero, we have vε/ε → (v/|du|(v) + w1/|du|(w1))/2 ∈ Vp0 , which implies
v/|du|(v) + w1/|du|(w1) = 0. This contradicts the hypothesis v 6= −w1.

3.2 Local isometric splitting

This section is devoted to proving a local isometric splitting property of M . The precise
statement of our result is as follows:

Theorem 3.2.1 For any p ∈ M with rX(u(p)) > 0, there exists a natural isometric
embedding

Bru(p)(p) ,→M1 ×M2.

Here we define

M1 := Bru(p)(p)/ ∼, where q ∼ r holds if exp−1q r ∈ Hq,

M2 := Bru(p)(p)/ ∼, where q ∼ r holds if exp−1q r ∈ Vq.

It is sufficient to show that the vertical parts, and hence also the horizontal parts, are
invariant under the parallel translation along any geodesic whose initial vector belongs
to the vertical or horizontal part. The invariance along a geodesic whose initial vector is
contained in the vertical part is easily obtained by Lemma 3.1.4. Thus it suffices to show
the invariance along the horizontal parts.
We first show the following:

Lemma 3.2.2 If w is the projection to Hp of w
0 ∈ TpM , then u(γw0(t)) = u(γw(t)) for

any t ∈ [−σ(p)/|w0|, σ(p)/|w0|].

Proof. Take any w0 ∈ Bσ(p)(0;TpM) and let v ∈ Vp and w ∈ Hp be the vertical and
horizontal projections of w0 respectively. For any ε ∈ (0, 1), we put (see Figure 3)

qε := γγv(ε)γw(ε)(1/2), wε :=
|w0|

| exp−1p qε|
exp−1p qε.
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By Corollary 3.1.7, we have

u(qε) = u

µ
γw

³ε
2

´¶
, u(expp wε) = u

µ
γw

³ |w0|
| exp−1p qε|

ε

2

´¶
.

On the other hand, we find that wε → w0 and | exp−1p qε|/ε → |w0|/2 as ε → 0, so that
u(γw0(1)) = u(γw(1)). Moreover, we have u(γw0(t)) = u(γw(t)) for any t ∈ [−1, 1]. This
completes the proof.

(σ(p)/|w|)w

εv

v w0
wε ⊂ exp−1p (u−1[u(γw(1))])

Hp

Vp

0

exp−1p (qε)

Figure 3

(σ(p)/|v|)v

wεw

Corollary 3.2.3 Let w0, w be as in Lemma 3.2.2. Then

(i) (du)p(w
0/|w0|) = (du)p(w/|w|) if w 6= 0,

(ii) |du|(w0) = |du|(w) cos∠(w0, w).

In particular, for any w ∈ UpM ∩ Hp, the geodesic γw is perpendicular to u−1[u(γw(t))]
for each t ∈ (−σ(p), σ(p)).
Take any v ∈ UpM ∩ Vp and w ∈ UpM ∩ Hp. For each s ∈ (0,σ(p)), we put qs :=

γv(s). Since u ◦ γqsγw(σ(p)/2)(t) = u ◦ γw(σ(p)t/2) for any t ∈ [0, 1], we have (du)p(w) ∈
(du)qs(UqsM \ Vqs). Hence, by Lemma 3.1.6 and its corollary, there exist a unique unit
vector ws ∈ UqsM ∩ Hqs and a number cs > 0 such that u(γw(t)) = u(γws(cst)) for any
t ∈ [0, ts] (see Figure 4), where we put

ts := sup{t > 0 | γw([0, t]) ∪ γws([0, cst]) ⊂ Bσ(p)(p)}.

By Lemma 3.1.4, we have γw(t)γws(cst) ⊂ u−1[u(γw(t))], so that this geodesic is perpen-
dicular to both γw and γws . It follows from the first variation formula that

d(γw(t), γws(cst)) = s for 0 ≤ t ≤ ts.
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Similarly, for any 0 < s1 < s2 < σ(p), we have

d(γws1 (cs1t), γws2 (cs2t)) = s2 − s1 for 0 ≤ t ≤ ts1 ∧ ts2.

It implies that

d(γw(t), γws1 (cs1t)) + d(γws1 (cs1t), γws2 (cs2t)) = s1 + (s2 − s1) = s2
= d(γw(t), γws2 (cs2t)),

so that γws1 (cs1t) ∈ γw(t)γws2 (cs2t). Therefore, by the first variation formula, it holds

that cs = 1 for s ∈ (0,σ(p)). Consequently, we obtain ts ≥
p
σ(p)2 − s2 and the surface

S := {γws(t) |
√
s2 + t2 < σ(p)} is flat with respect to the metric induced from g.

γw(t)

qs2

qs1

p

γws1 (cs1t)

ws2

p γw(tε)

w0ε

rws
qs

γw0(ε)

w0

γ̇ws(t)/|γ̇ws(t)|

Figure 4 Figure 5

◦

◦

◦

× ×

γws2 (cs2t)

γw(σ(p))

γv(σ(p))

Furthermore, we shall prove that S is totally geodesic in M . Choose r = γws(t) ∈ S
and put w0 = exp−1p r (see Figure 5). Since S is flat with respect to the induced metric,
we obtain

|w0| ≤
√
s2 + t2. (3.1)

On the other hand, since (du)p(w
0/|w0|) = (du)qs(ws) = (du)p(w) and u(γw0(1)) = u(r) =

u(γw(t)), together with Lemma 3.2.2 and Lemma 3.1.6, we have w
0 = v0 + tw for some

v0 ∈ Vp. For each 0 < ε < 1, let w0ε ∈ Uγw0 (ε)M ∩ Hγw0 (ε) be the unique unit vector
satisfying (du)γw0 (ε)(w

0
ε) = (du)γw0 (ε)(γ̇w0(ε)/|γ̇w0(ε)|) = (du)γw(tε)(γ̇w(tε)). Note that we

do not know whether γw0(ε) ∈ S or not. By Corollary 3.2.3(ii) and the discussion in the
previous paragraph, we have

|du|(w0ε) cos∠(γ̇w0(ε), w0ε) = |du|(w0/|w0|) = |du|(w) cos∠(w0, w)

and |du|(w0ε) = |du|(γ̇w(tε)) = |du|(w). Hence we have ∠(γ̇w0(ε), w0ε) = ∠(w0, w). There-
fore we obtain

∠(γ̇w0(ε),− exp−1γw0 (ε) γw(tε)) ≥
π

2
− ∠(γ̇w0(ε), wε) =

π

2
− ∠(w0, w)
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for any 0 < ε < 1. By the first variation formula, it holds that

s = d(r, γw(t))

≤
Z 1

0

g

µ
γ̇w0(ε),−

exp−1γw0 (ε) γw(tε)

| exp−1γw0 (ε) γw(tε)|

¶
dε

≤ |w0| sin∠(w0, w)
=
p
|w0|2 − t2.

The last equality is easily derived from g(w0, w) = g(v0 + tw, w) = t. Thus we obtain
|w0| ≥

√
s2 + t2. Combining this with (3.1), we have |w0| =

√
s2 + t2 and hence S is totally

geodesic. Therefore S is flat also with respect to the original metric g. In particular, the
vector field ξ(t) := exp−1γw(t)(γws(t)) is parallel along γw on (−

p
σ(p)2 − s2,

p
σ(p)2 − s2).

Consequently, we obtain that the vertical parts are invariant under the parallel translation
along γw|(−σ(p),σ(p)).
This argument is also true for any ball Bδ(p

0) ⊂ Bru(p)(p) with 0 < δ ≤ σ(p0). Recall
that au(q) = supUqM |du|, and define bu(q) := infUqM∩Hq |du| (> 0) for q ∈ M . As a
consequence, we obtain the following lemma and Theorem 3.2.1.

Lemma 3.2.4 (i) dimVq and dimHq are independent of the choice of q ∈ Bru(p)(p).

(ii) The functions au and bu are constant on u
−1(y)∩Bru(p)(p) for each y ∈ u

¡
Bru(p)(p)

¢
.

3.3 Differentiable structure

In the last two sections of the present chapter, we shall prove the following.

Theorem 3.3.1 Let (M, g) be a geodesically complete Riemannian manifold and (X, dX)
be a metric space. Suppose that there exists a totally geodesic map u :M −→ X and that
the convexity radius at any point of u(M) is positive. Then we have the following:

(i) There exist a C∞-differentiable and C0-Finslerian manifold (N, | · |) and maps u1 :
M −→ N and u2 : N −→ X satisfying that

(a) u = u2 ◦ u1,
(b) u1 is C

∞ and totally geodesic (as a map between metric spaces),

(c) u2 is a locally isometric embedding.

(ii) If, in addition, (X, dX) is an Alexandrov space with local curvature upper bound,
then N is a C∞-Riemannian manifold, and then u1 is totally geodesic as a map
between Riemannian manifolds.

Namely, u1 has all data of the “metric part” of u with no singularity, and u2 has all
data of the “singular part” (or “branching part”) of u. The assumption, the positivity of
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the convexity radius at any point of u(M), is not a strong one. In fact, any Alexandrov
space with local curvature upper bound satisfies this condition.
If (M, g) is not geodesically complete, then, in general, we can not construct N satis-

fying the condition above. In fact, we see a counter-example in the following:

Example 3.3.2 Let M := R2 \ {(0, q) | q ≥ 0} with the standard metric, and X be a
tripod with the infinite length. In other words, X is the union of three copies of the
half-line [0,∞) identified at 0, and the distance is defined as the length distance. We
denote the half-lines of X by l1, l2, and l3 (see Figure 6).

u

Figure 6

l1

l3 l2

× ×

◦
◦

Define the map u :M −→ X as follows:

• For (p, 0) ∈M with p 6= 0, u(p, 0) := 0.

• For (p, q) ∈M with q < 0, we define u(p, q) as the point on l1 whose distance from
0 is |q|.

• For (p, q) ∈ M with p > 0 (p < 0 respectively) and q > 0, we define u(p, q) as the
point on l2 (l3 respectively) whose distance from 0 is |q|.

Clearly u is totally geodesic. If a Finslerian manifold N with the property stated in
Theorem 3.3.1 exists, then, since N is of one-dimensional, it is a line segment or a circle.
However, there exists no surjective, locally isometric embedding u2 : N −→ X for such
N .

We assume that (M, g) is geodesically complete and that rX(x) > 0 for any x ∈ u(M)
in this and the next sections. Hence we have σ(p) = ru(p). Then |du| is continuous on
TM , so that au, bu, and ru are continuous on M . Moreover, by Lemma 3.2.4, dim Vp
and dimHp are independent of p ∈ M , and au and bu are constant on each connected
component of u−1(x) for any x ∈ u(M). So that we put m = dimHp.

Definition 3.3.3 (i) Define N :=M/ ∼, where p ∼ q holds if

inf{l(u ◦ γ) | γ is a path from p to q} = 0.
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(ii) For any P,Q ∈ N , we define

dN(P,Q) := inf{l(u ◦ γ) | γ is a path from p to q},

where p ∈ P and q ∈ Q.
The function dN is independent of the choice of p ∈ P and q ∈ Q, and defines a

distance function on N . By definition, we have

dN (P,Q) ≥ dX(u(p), u(q)) for any p ∈ P and q ∈ Q. (3.2)

Define u1 : M −→ N as the projection and u2 : N −→ X by u2(P ) := u(p) for p ∈ P ,
which is well-defined by the inequality (3.2). Clearly u = u2 ◦ u1.
From now on, for convenience, we put P = u1(p), Q = u1(q), and R = u1(r) respec-

tively, and x = u2(P ), y = u2(Q), and z = u2(R) respectively.

Lemma 3.3.4 The map u1 is totally geodesic. Moreover, we have

dN(P,Q) = |du|
µ
exp−1p q

| exp−1p q|

¶
dM(p, q)

for any q ∈ Bru(p)(p) \ {p}.

Proof. For any q ∈ Bru(p)(p) \ {p}, we have

dX(x, y) ≤ dN(P,Q) ≤ l(u ◦ γpq) = dX(x, y).

Hence

dN (P,Q) = dX(x, y) = |du|
µ
exp−1p q

| exp−1p q|

¶
dM(p, q),

and u1 ◦ γpq is a minimal geodesic from P to Q.

The following lemma and proposition are the keys to showing that N is a C∞-
differentiable manifold.

Lemma 3.3.5 Let γ : [0, 1] −→ M be a path contained in u−1(x) for some x ∈ u(M),
and put rγ := inft∈[0,1] ru(γ(t)) > 0. Then the set Brγ (γ) ∩ u−1(y) is connected for each
y ∈ u(Brγ (γ)).

Proof. By splitting Brγ (γ) along γ, there exists a linear isometry Ft : Hγ(0) −→ Hγ(t)

such that
u ◦ expγ(t) ◦Ft = u ◦ expγ(0) on Brγ (0;Tγ(0)M) ∩Hγ(0)

for any t ∈ [0, 1], and that Ft is continuous in t. Fix a point y ∈ u(Brγ (γ)) and put

v := exp−1γ(0)[expγ(0)(Brγ (0) ∩Hγ(0)) ∩ u−1(y)] ∈ Brγ (0) ∩Hγ(0).

For any q1 ∈ Brγ (γ(s)) ∩ u−1(y) and q2 ∈ Brγ (γ(t)) ∩ u−1(y) with s ≤ t, we put

q01 := expγ(s)(Fs(v)), q02 := expγ(t)(Ft(v)).
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Then q01 and q
0
2 are connected by the path γ

0(τ) := expγ(τ) ◦Fτ (v), τ ∈ [s, t], which is a
translation of γ|[s,t] by F . Indeed, if v = 0, then we find γ0 = γ. Therefore q1 and q2 are
connected by the path which consists of γq1q01, γ

0, and γq02q2 . This path is clearly contained
in Brγ (γ) ∩ u−1(y), and hence Brγ (γ) ∩ u−1(y) is connected.

We observe that γ0 in the proof above can be defined by the assumption that (M, g)
is geodesically complete.

Proposition 3.3.6 For any two points p, p0 ∈ P ∈ N , p and p0 can be connected by
a path contained in P . In particular, N coincides with the set of all arcwise connected
components of u−1(x) for all x ∈ u(M) as sets.

Proof. Put ε := ru(p) infBru(p)(p) bu > 0. Since p, p0 ∈ P , there exists a unit speed
curve γ : [0, l(γ)] −→ M satisfying γ(0) = p, γ(l(γ)) = p0, and l(u ◦ γ) < ε. Set qt :=
u−1[u(γ(t))]∩ expp

¡
Bru(p)(0;TpM)∩Hp

¢
for t ∈ [0, l(γ)]. Note that this set consists of at

most a single point. Let I ⊂ [0, l(γ)] be the set of all t’s which satisfies the following:

(*) γ(t) and qt can be connected by a path ξt which is contained in u
−1[u(γ(t))] and

satisfies l(ξt) ≤ t.

It suffices to show I = [0, l(γ)]. By the local isometric splitting property for u around p,
sufficiently small t ≥ 0 belongs to I. Applying Lemma 3.3.5 to ξt for any t ∈ I, we obtain
that t+ δ ∈ I holds for any δ ∈ (0, infξt ru)∩ (0, l(γ)− t]. In fact, qt+δ is not empty since,
if it is, then we have

l(u ◦ γ) ≥ ru(p) inf
Bru(p)(p)

bu = ε,

which is a contradiction. We also note that the curve ξt+δ which is obtained from ξt
as in the proof of Lemma 3.3.5 satisfies l(ξt+δ) ≤ t + δ. Indeed, then we find q1 = q01,
l(γ0) = l(γ|[s,t]) = l(ξt) ≤ t, and dM(q2, q

0
2) ≤ δ. Since the closure of Bru(p)+l(γ)(p) is

compact, we have infS
0<t<l(γ) ξt

ru > 0. Thus we obtain I = [0, l(γ)], which completes the
proof.

By the proposition above, au and bu are constant on each P ∈ N . We denote them by
au(P ) and bu(P ) respectively, and put ru(P ) := supP ru ∈ (0, rX(x)/au(P )].

Corollary 3.3.7 (i) If Q ∈ Bbu(P )ru(p)(P ;N), then Bru(p)(p;M) ∩Q 6= ∅.

(ii) The map u2 is a locally isometric embedding.

(iii) The convexity radius rN(P ) is positive at any point P ∈ N . Moreover, we have
rN(P ) ≥ bu(P )ru(P ).

Proof. (i) Take any p0 ∈ P . By Proposition 3.3.6 and the local isometric splitting prop-
erty for u, there exists a linear isometry F : Hp −→ Hp0 satisfying that

u1 ◦ expp0 ◦F = u1 ◦ expp on Bε(0;TpM) ∩Hp
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for sufficiently small ε > 0. For any v ∈ UpM ∩Hp, we put

Iv := {t ∈ R |u1(expp0 ◦F (tv)) = u1(expp(tv))}.

Clearly the set Iv is closed and not empty. On the other hand, by applying Proposition
3.3.6 to expp0(F (tv)) and expp(tv) for t ∈ Iv, there exists a path joining them contained
in u−1[u(expp(tv))]. Splitting the neighborhood of this path like in the proof of Lemma
3.3.5, we obtain that Iv is open. Hence Iv = R, i.e., u1 ◦ expp0 ◦F = u1 ◦ expp holds
on Hp. Therefore Bru(p)(p;M) ∩ Q = ∅ implies Bru(p)(P ;M) ∩ Q = ∅, and then we find
dN(P,Q) ≥ bu(P )ru(p).
(ii) By (i), for any Q,R ∈ Bbu(P )ru(P )(P ;N), there exists a point p ∈ P such that

Bru(p)(p;M) ∩Q 6= ∅ and Bru(p)(p;M) ∩ R 6= ∅.

Take q ∈ Bru(p)(p;M) ∩Q and r ∈ Bru(p)(p;M) ∩R. Then

dX(y, z) ≤ dN(Q,R) ≤ l(u ◦ γqr) = dX(y, z).

Hence u2|Bbu(P )ru(P )(P ;N) preserves the distance.
(iii) Since

u2
¡
Bbu(P )ru(P )(P ;N)

¢
⊂ Bbu(P )ru(P )(x;X) ⊂ BrX(x)(x;X),

for any geodesic γ contained in Bbu(P )ru(P )(P ;N), u2 ◦ γ is minimal. Combining this
with the isometric property of u2|Bbu(P )ru(P )(P ;N), we obtain that γ is minimal. We next
show the strong convexity of the ball Bδ(S;N) with dN (P, S) ≤ bu(P )ru(P )− δ. For any
Q,R ∈ Bδ(S;N), by virtue of the proof of (ii), a minimal geodesic γ from Q to R exists.
Then l(u2 ◦ γ) = l(γ) = dN (Q,R) = dX(y, z), i.e., u2 ◦ γ is a minimal geodesic from y to
z. On the other hand, since y, z ∈ u2(Bδ(S;N)) ⊂ Bδ(u2(S);X) and

dX(x, u2(S)) = dN(P, S) ≤ bu(P )ru(P )− δ ≤ rX(x)− δ,

we obtain that u2 ◦ γ is a unique minimal geodesic from y to z, and is contained in
Bδ(u2(S);X). Therefore γ is a unique minimal geodesic from Q to R, and is contained in
Bδ(S;N) since Bδ(S;N) is a connected component of u

−1
2 [Bδ(u2(S);X)]. Consequently,

Bδ(S;N) is strongly convex, and hence rN (P ) ≥ bu(P )ru(P ).
By Lemma 3.3.4 and Corollary 3.3.7(iii), we can apply all the discussions for u also to

u1. In particular, we have the following:

• u1 and |du1| are continuous, |du1| = |du|, au1 = au, and bu1 = bu.

• Hp and Vp with respect to u1 coincide with Hp and Vp with respect to u respectively.

• (du1)p|UpM∩Hp : UpM ∩Hp −→ Σ0P is injective (see Lemma 3.1.6).

• Any geodesic in N does not branch (see Corollary 3.1.7).
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Corollary 3.3.8 (i) The map (du1)p|UpM∩Hp : UpM ∩ Hp −→ Σ0P is surjective (and
hence bijective). Moreover, u1 is an open map.

(ii) The map u1 ◦ expp : Bρ(p)(0;TpM)∩Hp −→ u1 ◦ expp
¡
Bρ(p)(0;TpM)∩Hp

¢
is home-

omorphic, where ρ(p) := bu(p)ru(p)/au(p).

Proof. (i) For any Q ∈ Bbu(P )ru(P )(P ;N), by Corollary 3.3.7(i), there exists a point p ∈ P
satisfying

Bru(p)(p) ∩Q ∩ expp
¡
Bru(p)(0) ∩Hp

¢
6= ∅.

Take a point q in this set. Then γPQ = u1 ◦γpq ∈ (du1)p(UpM ∩Hp). Hence (du1)p|UpM∩Hp
is surjective. Moreover, combining this with the continuity of |du1| and infUpM∩Hp |du1| =
bu(p) > 0, we obtain that u1 is open.
(ii) The bijectivity is clear by (i), ρ(p) ≤ rM(p),

u1 ◦ expp
¡
Bρ(p)(0) ∩Hp

¢
⊂ Bbu(p)ru(p)(P ;N) ⊂ BrN (P )(P ;N),

and by the fact that any geodesic in N does not branch. The continuity of the inverse
map is clear since u1 is open.

For each p ∈M , we set
Up := u1 ◦ expp

¡
Bρ(p)(0;TpM) ∩Hp

¢
⊂ N,

ϕp := (u1 ◦ expp |Bρ(p)(0;TpM)∩Hp)−1 : Up −→ Bρ(p)(0;Rm).

Then {(Up,ϕp)}p∈M gives a C∞-differentiable structure on N . Indeed, if Up ∩ Uq 6= ∅,
then Proposition 3.3.6 shows that, for any R ∈ Up ∩ Uq, the points r1 := expp ◦ϕp(R)
and r2 := expq ◦ϕq(R) can be connected by a path γ contained in (u1)−1(R). By splitting
the neighborhood of γ along γ, the map ϕq ◦ ϕ−1p is C∞ in a neighborhood of ϕp(R).
Therefore ϕq ◦ϕ−1p : ϕp(Up ∩Uq) −→ ϕq(Up ∩Uq) is C∞. Clearly u1 is C∞ with respect to
this structure.

Remark 3.3.9 By Theorem 3.2.1, the distribution V obtained from {Vp}p∈M is regular.
Hence the set of all leaves of V , say M/V , with the quotient topology is a differentiable
manifold ([P, Theorem VIII]). However, it is not a Hausdorff space in general. On the
other hand, N is always Hausdorff but does not always coincide with M/V (see Example
3.3.2). Proposition 3.3.6 implies M/V = N as sets, and the continuity and the open
property of u1 together imply that they are homeomorphic.

3.4 Finslerian and Riemannian structures

Next, we define a Finslerian structure on N . For any vector ξ ∈ TPN (P ∈ N), we define
|ξ| := |du1|(v) = |du|(v),

where v ∈ Hp such that (u1)∗(v) = ξ and (u1)∗ is the differential of u1 (such v exists
uniquely for each p ∈ P ). Namely, |ξ| is the speed of the geodesic of direction ξ. This is
independent of the choice of p ∈ P by virtue of the proof of Corollary 3.3.7(i).
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Proposition 3.4.1 (i) | · | satisfies the triangle inequality on each TPN .

(ii) If (X, dX) is an Alexandrov space with local curvature upper bound, then | · | satisfies
the parallelogram identity on each TPN .

Proof. (i) By the continuity of |du1|, we obtain that limε→0(Bε(P ;N), dN/ε) is isometric
to (B1(0;TPN), | · |). Therefore the triangle inequality for | · | is shown by that for dN .
(ii) If (X, dX) is an Alexandrov space with local curvature upper bound, then so is

(N, dN ) since u2 is a locally isometric embedding. Combining this with the isometric
property between (B1(0;TPN), | · |) and limε→0(Bε(P ;N), dN/ε), we prove that (TPN, | · |)
is a CAT(0)-space. On the other hand, since (TPN, | · |) is a Banach space, it is a Hilbert
space.

By this proposition, (N, | · |) is a Finslerian manifold. Moreover, if (X, dX) is an
Alexandrov space with local curvature upper bound, then (N, h) is a Riemannian mani-
fold, where we set

h(ξ, η) :=
1

2
{|ξ + η|2 − |ξ|2 − |η|2} for ξ, η ∈ TPN.

Clearly these Finslerian and Riemannian structures are C0 and compatible with dN . Thus
we have Theorem 3.3.1 except the smoothness of the Riemannian structure. There exists
an example of u for which N is not a Riemannian but a Finslerian manifold.

Example 3.4.2 Fix a norm k·k on Rn and let k·keucl be the standard norm on Rn. Since
any line segment in (Rn, k·k) is a (not necessarily unique) minimal path, the identity map
u : (Rn, k · keucl) −→ (Rn, k · k) is totally geodesic. Then (N, dN ) coincides with (Rn, k · k)
and, needless to say, there exist many norms not satisfying the parallelogram identity.

By the example above, since there exist many norms on Rn which are not C1, we can
also say that C0 is sharp in the Finslerian case even if u is a diffeomorphism. However, we
shall prove that h is C∞ in the Riemannian case. Before beginning the proof, we define a
map which will be proved to coincide with the exponential map. We define e : TN −→ N
as, for ξ ∈ TPN ,

e(ξ) := u1 ◦ expp ◦((u1)∗|Hp)−1(ξ),
where p ∈ P . The map e is C∞ and independent of the choice of p ∈ P by virtue of the
proof of Corollary 3.3.7(i).

Proposition 3.4.3 Assume that (X, dX) is an Alexandrov space with local curvature up-
per bound. Then the Riemannian manifold (N, h) satisfies the following:

(i) Two definitions of a geodesic in N (i.e., as a curve in a metric space and as a curve
in a Riemannian manifold) coincide, equivalently, e = exp holds.

(ii) The map u1 is totally geodesic as a map between Riemannian manifolds.

(iii) The metric h is C∞.
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Proof. (i) We first show that h is at least C1. It is sufficient to show this locally, so that
we consider sufficiently small neighborhoods U of P ∈ N and D of 0 ∈ TPN respectively
instead of N and TN . It follows from dN(Q,R) = |(e|TQN )−1(R)| and the smoothness of
e that the function R 7−→ dN (Q,R)

2 is C∞ on U for an arbitrarily fixed Q ∈ U . This
implies that d2N is C

1 on U × U , and hence the function Q 7−→ dN(Q, f(Q))
2 is C1 for

any C1-map f : U −→ U . For a C1-vector field V ⊂ D, by putting f(Q) := e(V (Q)),
we find that h(V, V ) is C1. Thus h is C1. In particular, the Christoffel symbols and the
exponential map of (N, h) can be defined and C0.
Let γ be any geodesic in N as a curve in a metric space. Then, since γ is locally the

image of a geodesic in M , γ is C∞ and ∇tγ̇ is a C0-vector field along γ. For small ε > 0,
let Vε be a C

∞-vector field along γ with sup |Vε − ∇tγ̇| < ε. Define f(t, s) := e(sVε(t)).
Then f is C∞ and

∂f

∂s
(t, 0) = (u1)∗ ◦ ((u1)∗|Hp)−1(Vε(t)) = Vε(t) for any t.

By the first variation formula for energy and the minimality of γ, we have

0 =
∂

∂s

¯̄̄
s=0

µ
1

2

Z ¯̄̄̄
∂f

∂t
(t, s)

¯̄̄̄2
dt

¶
= −

Z
h(Vε(t),∇tγ̇(t)) dt

= −
Z
{|∇tγ̇(t)|2 + h(Vε(t)−∇tγ̇(t),∇tγ̇(t))} dt.

Hence Z
|∇tγ̇(t)|2dt =

Z
h(∇tγ̇(t)− Vε(t),∇tγ̇(t)) dt

≤
Z
|∇tγ̇(t)− Vε(t)| |∇tγ̇(t)| dt

→ 0 as ε→ 0.

Thus ∇tγ̇ ≡ 0, and hence γ is a geodesic as a curve in a Riemannian manifold. The
converse is clear by the definition of a geodesic in a metric space.
(ii) Easily obtained from (i).
(iii) By (ii), 0∇W1(u1)∗(W2) = (u1)∗(∇W1W2) for any C

∞-vector fields W1 and W2 on
N . In particular, the Christoffel symbols of (N, h) are C∞, and hence h is C∞.

Thus we complete the proof of Theorem 3.3.1. By applying this theorem locally, we
obtain two corollaries below. We notice that, since the geodesically completeness of (M, g)
is necessary only for Lemma 3.3.5 and Proposition 3.3.6, Theorem 3.3.1 is applicable to
u|Bσ(p)(p). The following local version of Theorem 3.3.1 will be used in the final chapter of
this thesis as a key tool.

Corollary 3.4.4 Let (M, g) be a Riemannian manifold, (X, dX) be an Alexandrov space
with local curvature upper bound, and u : M −→ X be a totally geodesic map. Then,
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for any p ∈ M , the set u(Bρ(p)(p)) has a C
∞-Riemannian structure compatible with dX.

Moreover, u|Bρ(p)(p) is C∞ and totally geodesic with respect to this structure.

Corollary 3.4.5 Let (M, g), (X, dX), and u be as in Corollary 3.4.4. If (M, g) is irre-
ducible, then u is a locally homothetic embedding as a map between metric spaces or a
constant map. If, in addition, u is injective, then u(M) is a C∞-Riemannian manifold
and u is homothetic as a map between Riemannian manifolds.

Proof. Fix a parallel vector field ζ along a unit speed curve c : [0, l] −→ M , and put
p = c(0). By applying Theorem 3.3.1(ii) to u|Bσ(p)(p), the map u1 derived from u|Bσ(p)(p)
is totally geodesic as a map between Riemannian manifolds, so that ((u1)∗ζ)|[0,σ(p)] is a
parallel vector field. In particular, |(u1)∗(ζ(t))| = |(u1)∗(ζ(0))| for any t ∈ [0,σ(p)]. Hence
|du|(ζ(t)) = |du|(ζ(0)) for t ∈ [0, σ(p)]. Consequently, we have |du|(ζ(0)) = |du|(ζ(l)).
Since (M, g) is irreducible, |du| is a constant function on UM . This is equivalent to the
local homothetic property of u. The second part is clear since N = u(M) if u is injective.

This is a generalization of a well-known fact (Fact 1.0.2) for a totally geodesic map
between Riemannian manifolds, which is needed in the proof of Margulis’ superrigidity
theorem by using a harmonic map. See (III) in Chapter 1.

Remark 3.4.6 Note that the local homothetic property as a map between metric spaces
is equivalent to the homothetic property as a map between Riemannian (or Finslerian)
manifolds.
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Chapter 4

Sobolev spaces

The theory of Sobolev spaces for maps from or into metric spaces is making remarkable
progress in these years. There are several definitions of such kind of Sobolev spaces.
Among them, we study Cheeger’s definition [Ch] most deeply. Although he treats only
a Sobolev space for functions, we can naturally generalize his definition to that for maps
into an arbitrary metric space. In the first four sections, we treat several topics, including
Dirichlet problem, of this type of Sobolev space. In the last section, we recall some other
definitions of Sobolev spaces and, by studying the relation between them, will prove some
results on what happens to a Sobolev space if we embed its target space into a Banach
space isometrically. This chapter is based on [O2].

4.1 Upper gradients

Throughout this chapter, without otherwise indicated, let (Z, dZ) and (X, dX) be met-
ric spaces, U ⊂ Z be an open set, and µ be a Borel regular measure on Z such that
any ball with finite positive radius is of finite positive measure. We define Uε := {z ∈
U | dist(z, ∂U) ≥ ε} for ε > 0.

Definition 4.1.1 A Borel measurable function g : U −→ [0,∞] is called an upper gradi-
ent for a map u : U −→ X if, for any unit speed curve c : [0, l] −→ U , we have

dX
¡
u(c(0)), u(c(l))

¢
≤
Z l

0

g(c(s)) ds.

Remark 4.1.2 (i) The function g ≡ ∞ is an upper gradient for any u.

(ii) If (Z, dZ) and (X, dX) are Riemannian manifolds and if u is smooth, then the function

z 7−→ the operator norm of the differential (u∗)z : TzZ → Tu(z)X

on U is an upper gradient for u.

(iii) If
R l
0
g(c(s)) ds <∞, then u ◦ c is uniformly continuous on [0, l].
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Lemma 4.1.3 (cf. [Ch, Proposition 1.6]) Let U1 and U2 be open sets in Z, u : U1∪U2 −→
X be a map, and gi : Ui −→ [0,∞] be an upper gradient for u|Ui for i = 1, 2. Then g1∨ g2
is an upper gradient for u, where each gi is extended to U1 ∪ U2 by 0.

Proof. Fix a unit speed curve c : [0, l] −→ U1 ∪ U2. Since U1 and U2 are open and [0, l]
is compact, there exists a sequence {lj}Nj=0 ⊂ [0, l] (1 ≤ N <∞) such that l0 = 0, lN = l
and, for any 0 ≤ j < N , there exists ij ∈ {1, 2} satisfying c([lj, lj+1]) ⊂ Uij . Therefore we
obtain

dX
¡
u(c(0)), u(c(l))

¢
≤

N−1X
j=0

dX
¡
u(c(lj)), u(c(lj+1))

¢
≤

N−1X
j=0

Z lj+1

lj

gij(c(s)) ds

≤
Z l

0

(g1 ∨ g2)(c(s)) ds.

For a continuous map u : U −→ X and a point z ∈ U , we define

Lip u(z) := lim
r→0

sup
0<dZ(z,w)<r

dX(u(z), u(w))

dZ(z, w)
,

and we put Lip u(z) = 0 if z is an isolated point. If u is Lipschitz continuous, then this
function is not greater than the Lipschitz constant of u.

Lemma 4.1.4 For any continuous map u : U −→ X, the function Lipu is Borel mea-
surable.

Proof. For fixed r > 0, the continuity of u implies that the function

z 7−→ sup
0<dZ(z,w)<r

dX(u(z), u(w))

dZ(z, w)

is lower semi-continuous. Moreover, this function is monotone non-increasing as r tends
to 0 for fixed z ∈ U . Thus the limit function Lipu is Borel measurable.

By using Rademacher’s theorem, Cheeger proved the following.

Proposition 4.1.5 ([Ch, Proposition 1.11]) If a function f : U −→ R is locally Lipschitz
continuous, then Lip f is an upper gradient for f .

Proof. Fix a unit speed curve c : [0, l] −→ U . Since f ◦ c is Lipschitz continuous, f ◦ c is
differentiable a.e. on [0, l] by Rademacher’s theorem, and it satisfies

¯̄
f(c(0))− f(c(l))

¯̄
≤
Z l

0

|(f ◦ c)0(s)| ds.
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Thus it suffices to show that |(f ◦ c)0(s)| ≤ (Lip f)(c(s)) holds for any s ∈ (0, l) for which
(f ◦ c)0(s) exists. At such s, since c has the unit speed, we have

|(f ◦ c)0(s)| = lim
δ→0

¯̄
f(c(s+ δ))− f(c(s))

¯̄
δ

≤ lim inf
δ→0

¯̄
f(c(s+ δ))− f(c(s))

¯̄
dZ(c(s+ δ), c(s))

≤ (Lip f)(c(s)).
This completes the proof.

We next define the Cheeger-type Sobolev spaces. Take any point x0 ∈ X and fix it as
a base point. In the remainder of this section, let 1 ≤ p <∞. For two measurable maps
u, v : U −→ X, we define dLp(u, v) :=

¡ R
U
dX(u, v)

p dµ
¢1/p

. We also define

Lp(U ;X) := {u : U −→ X |measurable, dLp(u, x0) <∞}/ ∼,
where x0 denotes the constant map to x0, and u1 ∼ u2 holds if u1 = u2 a.e. on U . The
function dLp defines a distance on L

p(U ;X). We remark that, if µ(U) <∞, then the set
Lp(U ;X) is independent of the choice of the base point x0.

Definition 4.1.6 For u ∈ Lp(U ;X), we define the Cheeger-type p-energy of u as
ECp (u) := inf

{(ui,gi)}∞i=1
lim inf
i→∞

|gi|pLp(U),

where the infimum is taken over all sequences {(ui, gi)}∞i=1 such that ui → u in Lp(U ;X)
as i → ∞ and gi is an upper gradient for ui for each i. We next define the Cheeger-type
(1, p)-Sobolev space by

H1,p(U ;X) := {u ∈ Lp(U ;X) |ECp (u) <∞}.
Since we consider only the Cheeger-type energy in this and following three sections,

we write this energy Ep(u) for simplicity. By definition, if u = v a.e. on U , then we have
Ep(u) = Ep(v). Hence H

1,p(U ;X) is naturally embedded in Lp(U ;X). We also note that
the p-energy Ep(u) is independent of the choice of the base point x0.

Remark 4.1.7 If (Z, g) and (X, h) are Riemannian manifolds and u : U −→ X is smooth,
then the energy Ep(u) does not necessarily coincide with the usually defined one (see also
Chapter 5 of this thesis). This is caused by the difference between the operator norm of
(u∗)z and the Hilbert-Schmidt norm |u∗|(z), which is defined by

|u∗|(z)2 :=
nX

i,j=1

mX
α,β=1

gij(z)hαβ(u(z))
∂(yα ◦ u)

∂xi
(z)

∂(yβ ◦ u)
∂xj

(z),

where n = dimZ, m = dimX, (x1, . . . , xn) and (y1, . . . , ym) are local coordinate systems
on some neighborhoods of z and u(z) respectively,

gij := g

µ
∂

∂xi
,
∂

∂xj

¶
, hαβ := h

µ
∂

∂yα
,
∂

∂yβ

¶
,

and (gij) denotes the inverse matrix of (gij).
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Theorem 4.1.8 (cf. [Ch, Theorem 2.5]) If a sequence {ui}∞i=1 converges to u in Lp(U ;X),
then we have Ep(u) ≤ lim infi→∞Ep(ui).

Proof. Easily derived from the diagonal processes.

We end this section with two more definitions.

Definition 4.1.9 A function g ∈ Lp(U) is called a generalized upper gradient for u ∈
H1,p(U ;X) if there exists a sequence {(ui, gi)}∞i=1 such that gi is an upper gradient for ui,
and ui → u in Lp(U ;X) and gi → g in Lp(U) respectively as i→∞.
By the definition of the p-energy, it holds that |g|pLp ≥ Ep(u) for any generalized upper
gradient g for u.

Definition 4.1.10 A generalized upper gradient g ∈ Lp(U) for a map u ∈ H1,p(U ;X) is
said to be minimal if it satisfies |g|pLp = Ep(u).

4.2 Minimal generalized upper gradients

In this section, let (X, dX) be a geodesic length space such that dX is convex, that is,
any two points in X can be connected by a minimal geodesic and, for any two minimal
geodesics γ1, γ2 : [0, 1] −→ X, the function t 7−→ dX(γ1(t), γ2(t)) is convex. In particular,
every minimal geodesic is unique. Note that all CAT(0)-spaces satisfy this property. On
the other hand, there are some metric spaces which is not a CAT(0)-space, but whose
distance function is convex, e.g., Lp(U) with p ∈ (1,∞) \ {2}. By definition, for any
x, y, x0, y0 ∈ X and 0 ≤ λ ≤ 1, it holds that

dX
¡
(1− λ)x+ λy, (1− λ)x0 + λy0

¢
≤ (1− λ)dX(x, x

0) + λdX(y, y
0). (4.1)

Lemma 4.2.1 Let u1, u2 : U −→ X be maps. For any upper gradients g1 for u1 and g2
for u2, and for 0 ≤ λ ≤ 1, the function g := (1− λ)g1 + λg2 is an upper gradient for the
map v := (1−λ)u1+λu2. In particular, for any u1, u2 ∈ H1,p(U ;X) with 1 ≤ p <∞ and
for any 0 ≤ λ ≤ 1, we have

Ep
¡
(1− λ)u1 + λu2

¢ 1
p ≤ (1− λ)Ep(u1)

1
p + λEp(u2)

1
p .

Namely, Ep
1/p (and hence also Ep) is a convex function on H

1,p(U ;X).

Proof. Fix a unit speed curve c : [0, l] −→ U . By (4.1), we obtain

dX
¡
v(c(0)), v(c(l))

¢
≤ (1− λ)dX

¡
u1(c(0)), u1(c(l))

¢
+ λdX

¡
u2(c(0)), u2(c(l))

¢
≤
Z l

0

g(c(s)) ds.

Hence g is an upper gradient for v. The second part is clear since, by (4.1), if u1,i → u1
and u2,i → u2 in L

p(U ;X) respectively as i→∞, then (1−λ)u1,i+λu2,i → v in Lp(U ;X)
as i→∞.
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Theorem 4.2.2 (cf. [Ch, Theorem 2.10]) Let 1 < p <∞. Then, for any u ∈ H1,p(U ;X),
there exists a unique minimal generalized upper gradient gu for u.

Proof. Take a minimizing sequence {(ui, gi)}∞i=1, i.e., it satisfies that ui → u in Lp(U ;X)
as i → ∞, gi is an upper gradient for ui, and that limi→∞ |gi|pLp = Ep(u). We shall
show that {gi} is a Cauchy sequence in Lp(U). If {gi} is not a Cauchy sequence, then
Ep(u) > 0 and there exist ε > 0 and sequences {in}∞n=1 and {jn}∞n=1 such that limn→∞ in =
limn→∞ jn = ∞ and |gin − gjn|Lp > ε for any n. By the uniform convexity of Lp(U), it
implies

lim
n→∞

¯̄̄̄
1

2
(gin + gjn)

¯̄̄̄
Lp
< lim

n→∞
1

2
(|gin|Lp + |gjn|Lp) = Ep(u)

1
p .

On the other hand, since (1/2)uin + (1/2)ujn → u in Lp(U ;X), we have

Ep(u) ≤ lim inf
n→∞

Ep

µ
1

2
uin +

1

2
ujn

¶
≤ lim inf

n→∞

¯̄̄̄
1

2
(gin + gjn)

¯̄̄̄p
Lp

by Theorem 4.1.8 and Lemma 4.2.1. This is a contradiction. Hence {gi} is a Cauchy
sequence, so that it converges to some minimal generalized upper gradient g ∈ Lp(U) for
u. The uniqueness also follows from the uniform convexity of Lp(U).

Lemma 4.2.3 (cf. [Ch, Lemma 1.7]) Let u1, u2 : U −→ X be maps and φ : U −→ R be a
function. For any upper gradients g1, g2, and g3 for u1, u2, and φ respectively and for any
ε > 0, the function

g := g3 · (dX(u1, u2) + ε) + (1− φ+ ε)g1 + (φ+ ε)g2

is an upper gradient for the map v := (1 − φ)u1 + φu2, where dX(u1, u2) denotes the
function defined by dX(u1, u2)(z) := dX(u1(z), u2(z)).

If, in addition, φ is Lipschitz continuous, then, for any generalized upper gradients
g1, g2 ∈ Lp(U) for u1, u2 ∈ H1,p(U ;X) respectively and ε > 0, the function

g0 := (Lipφ) · dX(u1, u2) + (1− φ+ ε)g1 + (φ+ ε)g2

is a generalized upper gradient for v.

Proof. Fix a unit speed curve c : [0, l] −→ U . If
R l
0
gi ◦ c ds = ∞ for some i, thenR l

0
g ◦ c ds =∞. Hence we may assume

R l
0
gi ◦ c ds <∞ for all i, and then u1 ◦ c, u2 ◦ c, and

φ ◦ c are uniformly continuous (see Remark 4.1.2). Take a sufficiently large n ≥ 1 such
that we have

¯̄
φ(c(s)) − φ(c(t))

¯̄
< ε and dX

¡
ui(c(s)), ui(c(t))

¢
< ε/2 for any s, t ∈ [0, l]

with |s− t| < l/n and for i = 1, 2. Put zj := c(lj), where we set lj := (j/n)l for 0 ≤ j ≤ n.
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Then, by (4.1), we have

dX
¡
v(c(0)), v(c(l))

¢
≤

n−1X
j=0

dX(v(zj), v(zj+1))

≤
n−1X
j=0

©
dX
¡
v(zj), (1− φ(zj+1))u1(zj) + φ(zj+1)u2(zj)

¢
+ dX

¡
(1− φ(zj+1))u1(zj) + φ(zj+1)u2(zj), v(zj+1)

¢ª
≤

n−1X
j=0

©
|φ(zj)− φ(zj+1)| dX(u1(zj), u2(zj))

+ (1− φ(zj+1))dX(u1(zj), u1(zj+1)) + φ(zj+1)dX(u2(zj), u2(zj+1))
ª

≤
n−1X
j=0

½µZ lj+1

lj

g3 ◦ c ds
¶
dX(u1(zj), u2(zj))

+ (1− φ(zj+1))

Z lj+1

lj

g1 ◦ c ds+ φ(zj+1)

Z lj+1

lj

g2 ◦ c ds
¾

≤
n−1X
j=0

Z lj+1

lj

©
g3 · (dX(u1, u2) + ε) + (1− φ+ ε)g1 + (φ+ ε)g2

ª
◦ c ds

=

Z l

0

g ◦ c ds.

Therefore g is an upper gradient for v.

Let φ be Lipschitz continuous, and g1 and g2 be generalized upper gradients for
u1 and u2 respectively. Then, by definition, there exist sequences {(u1,j, g1,j)}∞j=1 and
{(u2,j, g2,j)}∞j=1 such that ui,j → ui in L

p(U ;X) and gi,j → gi in L
p(U) respectively as

j → ∞, and that gi,j is an upper gradient for ui,j for any j and i = 1, 2. Let L be the
Lipschitz constant of φ. By (4.1), we obtain vj := (1 − φ) u1,j + φu2,j → v in Lp(U ;X)
as j →∞. Moreover, by Proposition 4.1.5 and the first part of this lemma,

g0j := (Lipφ) · dX(u1,j, u2,j) + (1− φ+ ε)g1,j + (φ+ ε)g2,j

is an upper gradient for vj. Note that, since
R l
0
(Lipφ) ◦ c ds <∞, we can let ε→ 0 in the

term (Lipφ) · (dX(u1,j, u2.j) + ε). Then we have

|g0j − g0|Lp ≤ L |dX(u1,j, u1) + dX(u2,j, u2)|Lp
+ (1 + ε)|g1,j − g1|Lp + (1 + ε)|g2,j − g2|Lp

→ 0 as j →∞.

Hence g0 is a generalized upper gradient for v.
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Proposition 4.2.4 (cf. [Ch, Proposition 2.17]) Let 1 ≤ p < ∞, W ⊂ U be an open
set, and u ∈ H1,p(U ;X). If gU and gW are generalized upper gradients for u|U and u|W
respectively, then the function g defined by g := gU on U \W and g := gW on W is a
generalized upper gradient for u. In particular, if 1 < p < ∞, then we have gu|W = gu|W
a.e. on W .

Proof. We may assume that the set W is bounded. Take two sequences {uU,i, gU,i}∞i=1
and {uW,i, gW,i}∞i=1 such that uU,i → u|U in Lp(U ;X), uW,i → u|W in Lp(W ;X), gU,i → gU
in Lp(U), and gW,i → gW in Lp(W ) respectively as i → ∞, and that gU,i and gW,i are
upper gradients for uU,i and uW,i respectively. Take any η > 0 and let φ : U −→ [0, 1] be
a Lipschitz continuous function such that φ ≡ 1 on Wη, φ ≡ 0 on U \W , and its Lipschitz
constant is not greater than η−1. Recall that Wη = {z ∈ W | dist(z, ∂W ) ≥ η}. Put
ui := (1− φ)uU,i + φ uW,i for each i. Then, by (4.1), we have

dX(u, ui) ≤ (1− φ)dX(u, uU,i) + φ dX(u, uW,i)→ 0

in Lp(U) as i→∞. Fix ε > 0 and put
Gi := χW ·

©
(Lipφ) · dX(uU,i, uW,i) + (1− φ+ ε)gU,i + (φ+ ε)gW,i

ª
,

where χW denotes the characteristic function on W . By Lemma 4.2.3, Gi|W is an upper
gradient for ui|W . On the other hand, gU,i|U\suppφ is an upper gradient for ui|U\suppφ. Put
g0U,i := χU\suppφ · gU,i. By Lemma 4.1.3, gi := Gi ∨ g0U,i is an upper gradient for ui, and

|g0U,i − gU |Lp(U\W ) = |gU,i − gU |Lp(U\W ) → 0 as i→∞,
|g0U,i − gW |Lp(W\suppφ) = |gU,i − gW |Lp(W\suppφ) → 0 as η → 0,

|Gi − gW |Lp(W ) ≤ |(Lipφ) · dX(uU,i, uW,i)|Lp(W ) + |(1− φ+ ε)gU,i|Lp(W )

+ |(φ+ ε)(gW,i − gW )|Lp(W ) + |(φ+ ε− 1)gW |Lp(W )

≤ η−1|dX(uU,i, uW,i)|Lp(W\Wη) + ε(|gU,i|Lp(Wη) + |gW |Lp(Wη))

+ (1 + ε)(|gU,i|Lp(W\Wη) + |gW |Lp(W\Wη) + |gW,i − gW |Lp(W ))

→ 0 as i→∞, ε→ 0, η → 0 in this order.

Hence gi → g in Lp(U) as i→∞, ε→ 0 and then η → 0.

Corollary 4.2.5 (cf. [Ch, Theorem 2.18]) Let 1 < p <∞. If g ∈ Lp(U) is a generalized
upper gradient for u ∈ H1,p(U ;X), then gu ≤ g holds a.e. on U .

Proof. Assume that there exists a bounded measurable set A ⊂ U such that µ(A) > 0
and, for some ε > 0, we have g(z)p < gu(z)

p − ε for any z ∈ A. Take a sequence of open
sets {Wi}∞i=1 such that Wi ⊃ A for all i and limi→∞ µ(Wi \A) = 0. By Proposition 4.2.4,
for each i, the function gi defined by gi := g on Wi and gi := gu on U \Wi is a generalized
upper gradient for u. Then, by assumption, we obtain

lim
i→∞

|gi|pLp(U) = |gu|
p
Lp(U\A) + |g|

p
Lp(A) ≤ |gu|

p
Lp(U) − εµ(A).

Hence there exists i satisfying |gi|Lp < |gu|Lp , which contradicts the minimality of gu.
Thus we have gu ≤ g a.e. on U .
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Corollary 4.2.6 (cf. [Ch, Corollary 2.25]) Let 1 < p < ∞. For u, v ∈ H1,p(U ;X), if
u = v a.e. on an open set W ⊂ U , then we have gu = gv a.e. on W .

Proof. Similar to the proof of Corollary 4.2.5. We remark that we can let Wi ⊂ W since
W is open.

Lemma 4.2.7 Fix three points x, y1, y2 ∈ X and ε > 0, put di := dX(x, yi), and set

y0i :=

½
x if di ≤ ε,
(ε/di)x+

¡
1− (ε/di)

¢
yi if di > ε

for each i = 1, 2. Then we have dX(y
0
1, y

0
2) ≤ dX(y1, y2).

Proof. (a) If d1 ≤ ε and d2 ≤ ε, then clearly dX(y
0
1, y

0
2) = dX(x, x) = 0.

(b) If d1 ≤ ε and d2 > ε, then we have

dX(y
0
1, y

0
2) = dX(x, y

0
2) = d2 − ε ≤ d2 − d1 ≤ dX(y1, y2).

(c) If d1 ≥ d2 > ε, then we put x0 := (d2/d1)x +
¡
1 − (d2/d1)

¢
y1. There we have

dX(x, x
0) = d1 − d2 ≤ dX(y1, y2). Combining this with (4.1), we obtain

dX(y
0
1, y

0
2) ≤ dX(x0, x) ∨ dX(y1, y2) = dX(y1, y2),

for y01 = (ε/d2)x
0 +
¡
1− (ε/d2)

¢
y1.

Proposition 4.2.8 (cf. [Ch, Proposition 2.22]) Let 1 ≤ p < ∞ and g ∈ Lp(U) be a
generalized upper gradient for u ∈ H1,p(U ;X). Take any x ∈ X and put A := u−1(x).
Then the function g0 defined by g0 := g on U \ A and g0 := 0 on A is a generalized upper
gradient for u. In particular, if 1 < p <∞, then gu = 0 holds a.e. on A.

Proof. We may suppose µ(A) > 0. Furthermore, by Proposition 4.2.4, we can also
assume that U is bounded. Take a sequence {(ui, gi)}∞i=1 such that ui → u in Lp(U ;X)
and gi → g in Lp(U) respectively as i→∞, and that gi is an upper gradient for ui. For
each ε > 0 and z ∈ U , we set

ui,ε(z) :=

(
x if dX(ui(z), x) ≤ ε,¡
ε/dX(ui(z), x)

¢
x+

¡
1−

¡
ε/dX(ui(z), x)

¢¢
ui(z) if dX(ui(z), x) > ε.

Then, since dX(ui,ε(z), ui(z)) ≤ ε for any z ∈ U , we have

dLp(ui,ε, u) ≤ dLp(ui,ε, ui) + dLp(ui, u) ≤ εµ(U)
1
p + dLp(ui, u)

→ 0 as i→∞, ε→ 0.

Since µ is Borel regular, we can take a sequence of closed sets {Cε
i,j}∞j=1 such that Cε

i,j ⊂
u−1i,ε (x) and limj→∞ µ(Cε

i,j) = µ(u
−1
i,ε (x)) for each i and ε. Put g

ε
i,j := χU\Cεi,j · gi. We shall
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show that gεi,j is an upper gradient for ui,ε. Fix a unit speed curve c : [0, l] −→ U . If
c−1(Cε

i,j) = ∅, then we have gεi,j ◦ c = gi ◦ c. If c−1(Cε
i,j) 6= ∅, then we put

t0 := inf{t ∈ [0, l] | c(t) ∈ Cε
i,j}, t1 := sup{t ∈ [0, l] | c(t) ∈ Cε

i,j}.

Since Cε
i,j is closed, we have t0, t1 ∈ c−1(Cε

i,j), so that ui,ε(c(t0)) = ui,ε(c(t1)) = x. Hence
we obtain

dX
¡
ui,ε(c(0)), ui,ε(c(l))

¢
≤ dX

¡
ui,ε(c(0)), ui,ε(c(t0))

¢
+
¡
ui,ε(c(t1)), ui,ε(c(l))

¢
.

Thus it suffices to show that gi is an upper gradient for ui,ε. For any z1, z2 ∈ U , we know
dX(ui,ε(z1), ui,ε(z2)) ≤ dX(ui(z1), ui(z2)) by Lemma 4.2.7, so that gεi,j is an upper gradient
for ui,ε for any j.
For each ε > 0, it holds that

µ(A \ u−1i,ε (x)) = µ({z ∈ U | u(z) = x, dX(ui(z), x) > ε})
≤ dLp(ui, u)p/εp
→ 0 as i→∞.

Moreover, we have

lim sup
i→∞

µ(u−1i,ε (x) \ A) = lim sup
i→∞

µ({z ∈ U | dX(ui(z), x) ≤ ε} \ A)

≤ µ({z ∈ U | dX(u(z), x) ≤ 2ε} \ A)
→ 0 as ε→ 0.

Therefore we obtain

|gεi,j − g|pLp(U\A) ≤ |gi − g|
p
Lp(U) + |g|

p

Lp(u−1i,ε (x)\A)

→ 0 as i→∞, ε→ 0 in this order,

|gεi,j|Lp(A) = |gi|Lp(A\Cεi,j) → 0 as j →∞, i→∞ in this order.

Hence gεi,j → g0 in Lp(U) as j →∞, i→∞ and then ε→ 0.

We finally observe that all the discussions in this section are applicable to the case
where X is a convex subset of a Banach space. For the later convenience, we only state
the following:

Theorem 4.2.9 Let 1 < p <∞ and X be a convex subset of some Banach space. Then,
for any u ∈ H1,p(U ;X), there exists a unique minimal generalized upper gradient gu for
u.

We remark that a convex subset of a Banach space is not always a CAT(0)-space, and
vice versa. Indeed, minimal geodesics are not unique in some Banach spaces, and even a
tripod, which is a typical example of CAT(0)-space, can not be isometrically embedded
in any Banach space with a convex image.
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4.3 Dirichlet problem

In this section, let (X, dX) be a complete CAT(0)-space. Then L
p(U ;X) is complete for

any 1 ≤ p <∞ and, in particular, L2(U ;X) is a complete CAT(0)-space.
For 1 < p <∞, we define the distance dH1,p on H1,p(U ;X) by

dH1,p(u, v) := dLp(u, v) + |gu − gv|Lp

for u, v ∈ H1,p(U ;X). There, for v ∈ H1,p(U ;X), we defineH1,p
v (U ;X) as the dH1,p-closure

of the set {u ∈ H1,p(U ;X) | supp dX(u, v) ⊂ U}. Note that H1,p
v (U ;X) is a convex subset

in H1,p(U ;X) and that

inf{Ep(u) | u ∈ H1,p(U ;X), supp dX(u, v) ⊂ U} = inf
u∈H1,p

v (U ;X)
Ep(u).

Definition 4.3.1 A map v ∈ H1,2(U ;X) is said to be EC-harmonic if it satisfies

EC2 (v) = inf
u∈H1,2

v (U ;X)
EC2 (u).

If ∂U = ∅, thenH1,2
v (U ;X) = H

1,2(U ;X) and hence any constant map isEC-harmonic.
In the remainder of this section, we assume ∂U 6= ∅ and fix a map v ∈ H1,2(U ;X). For
λ > 0, we put

Eλ := inf{λE2(u) + dL2(u, x0)2 | u ∈ H1,2
v (U ;X)}.

Lemma 4.3.2 For any λ > 0, there exists a unique map uλ ∈ H1,2
v (U ;X) which satisfies

Eλ = λE2(uλ) + dL2(uλ, x0)
2.

Proof. Take a sequence {ui}∞i=1 ⊂ H1,2
v (U ;X) such that λE2(ui) + dL2(ui, x0)

2 → Eλ as
i→∞. By the uniform convexity of L2(U), as in the proof of Theorem 4.2.2, we obtain
that {gui} is a Cauchy sequence, so that it converges to some g ∈ L2(U). On the other
hand, it follows from (2.1), Lemma 4.2.1, and the convexity of the set H1,2

v (U ;X) that

1

4
dL2(ui, uj)

2 ≤ 1
2
dL2(ui, x0)

2 +
1

2
dL2(uj, x0)

2 − dL2
µ
1

2
ui +

1

2
uj, x0

¶2
≤ 1
2
dL2(ui, x0)

2 +
1

2
dL2(uj, x0)

2 − dL2
µ
1

2
ui +

1

2
uj, x0

¶2
+ λ

½
1

2
E2(ui) +

1

2
E2(uj)− E2

³1
2
ui +

1

2
uj

´¾
≤ 1
2
{λE2(ui) + dL2(ui, x0)2}+

1

2
{λE2(uj) + dL2(uj, x0)2}− Eλ

→ 0 as i, j →∞.

Hence {ui} is also a Cauchy sequence in L2(U ;X), so that it converges to some u ∈
L2(U ;X).
Note that g is a generalized upper gradient for u. Therefore we have u ∈ H1,2(U ;X)

and E2(u) ≤ |g|2L2. If E2(u) = |g|2L2 , then g = gu a.e. on U by Theorem 4.2.2, and
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hence ui → u as i → ∞ with respect to dH1,2 , so that u ∈ H1,2
v (U ;X). Assume E2(u) <

|g|2L2 and take a sequence {(u0i, gi)}∞i=1 such that u0i → u in L2(U ;X) and gi → gu in
L2(U) respectively as i → ∞, and that gi is an upper gradient for u0i. We may assume
dL2(ui, u) < i

−2 and dL2(u
0
i, u) < i

−2 for all i. Let φi be a Lipschitz continuous function on
U such that φi ≡ 1 on U2i−1 , φi ≡ 0 on U \ Ui−1, and its Lipschitz constant is not greater
than i. Put u00i := (1− φi)ui + φiu

0
i. Since u

00
i = ui on U \ Ui−1 , we have u00i ∈ H1,2

v (U ;X).
Moreover,

dL2(u
00
i , u) ≤ |dX(ui, u) ∨ dX(u0i, u)|L2 → 0 as i→∞.

By Lemma 4.2.3, for any ε > 0, we have

|gu00i |L2 ≤ |(Lipφi) · dX(ui, u
0
i) + (1− φi + ε)gui + (φi + ε)gi|L2

≤ i · dL2(ui, u0i) + ε(|gui|L2 + |gi|L2) + |gui|L2(U\U2i−1 ) + |gi|L2(Ui−1 ).

Letting ε tend to zero, we obtain

|gu00i |L2 ≤ 2i
−1 + |gui|L2(U\U2i−1 ) + |gi|L2(Ui−1) → |gu|L2(U) as i→∞.

Since |gu|2L2 = E2(u) < |g|2L2 , for sufficiently large i, it holds that

λE2(u
00
i ) + dL2(u

00
i , x0)

2 < λ|g|2L2 + dL2(u, x0)2 = Eλ.

This contradicts u00i ∈ H1,2
v (U ;X). Therefore u ∈ H1,2

v (U ;X) and it attains E
λ. The

uniqueness is easily proved by the strong convexity of dL2(·, x0)2 together with the con-
vexity of E2.

Theorem 4.3.3 If there exists a sequence {λn}∞n=1 satisfying that limn→∞ λn = ∞ and
that {dL2(uλn, x0)}∞n=1 is bounded, then uλn converges to a minimizer of E2 in H1,2

v (U ;X)
with respect to dH1,2 as n→∞.

Proof. By limn→∞ λn = ∞ and the boundedness of {dL2(uλn, x0)}, the sequence {uλn}
minimizes E2 in H

1,2
v (U ;X). By the proof of [J3, Theorem 3.1.1], the sequence {uλn} is

a Cauchy sequence. Hence it converges to some u ∈ L2(U ;X) and satisfies

E2(u) ≤ lim inf
n→∞

E2(uλn) = inf
H1,2
v (U ;X)

E2.

By a discussion similar to the proof of Lemma 4.3.2, we see that {guλn} is a Cauchy
sequence and guλn → gu in L

2(U), and hence uλn → u with respect to dH1,2 . Consequently,
we have u ∈ H1,2

v (U ;X).

We do not know whether the assumption of Theorem 4.3.3 holds or not in general.
We see two cases where it holds. Compare these with [Ch, §7] and [KS, §2.2].

Theorem 4.3.4 If there exists a constant C > 0 such that, for any f ∈ H1,2
0 (U), it holds

that µZ
U

|f |2 dµ
¶ 1

2

≤ C
µZ

U

|gf |2 dµ
¶ 1

2

,

then there exists an EC-harmonic map in H1,2
v (U ;X).
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Proof. Fix λ > 0 and take a sequence of maps {ui}∞i=1 ⊂ H1,2(U ;X) satisfying that
supp dX(ui, v) ⊂ U and ui → uλ with respect to dH1,2 as i → ∞. It follows from the
triangle inequality that the function gui + gv is a generalized upper gradient for dX(ui, v),
so that gdX(ui,v) ≤ gui + gv holds a.e. on U by Corollary 4.2.5. Since dX(ui, v) ∈ H1,2

0 (U),
by assumption, we have

dL2(ui, v) ≤ C|gdX(ui,v)|L2 ≤ C(|gui|L2 + |gv|L2).
Letting i tend to infinity, we obtain dL2(uλ, v) ≤ C(|guλ|L2 + |gv|L2). Thus we have

dL2(uλ, x0)
2

≤ {dL2(uλ, v) + dL2(v, x0)}2
≤ 2C2(|guλ|L2 + |gv|L2)2 + 2dL2(v, x0)2
≤ 4C2(|guλ|2L2 + |gv|2L2) + 2dL2(v, x0)2

= 4C2λ−1
£
{λE2(uλ) + dL2(uλ, x0)2}− dL2(uλ, x0)2

¤
+ 4C2E2(v) + 2dL2(v, x0)

2

≤ 4C2λ−1
£
{λE2(v) + dL2(v, x0)2}− dL2(uλ, x0)2

¤
+ 4C2E2(v) + 2dL2(v, x0)

2

≤ 8C2E2(v) + (4C2λ−1 + 2) dL2(v, x0)2.
Hence the theorem follows from Theorem 4.3.3.

The inequality assumed in the theorem above is a type of Poincaré inequality which
is actually used in the proof of [KS, Theorem 2.2].

Remark 4.3.5 If (Z, dZ , µ) is complete and satisfies the doubling condition and the weak
Poincaré inequality of type (2, 2) (see Definitions 4.4.5 and 4.4.6 below), then, for R ∈
(0, (1/3) diamZ), there exists a constant C = C(κ, CP , R) ≥ 1 such that, for any ball
B = Br(z) ⊂ Z with 0 < r ≤ R and any function f ∈ H1,2

0 (B), we haveµZ
B

|f |2 dµ
¶ 1

2

≤ Cr
µZ

B

|gf |2 dµ
¶ 1

2

(see [KiSh] and [Bj, Proposition 3.1]). Hence the assumption in Theorem 4.3.4 is satisfied
in this case.

Lemma 4.3.6 Fix three points x, y1, y2 ∈ X and R > 0, put di := dX(x, yi), and set

Ryi :=

½
yi if di ≤ R,¡
1− (R/di)

¢
x+ (R/di)yi if di > R

for each i = 1, 2. Then we have dX(Ry1, Ry2) ≤ dX(y1, y2).

Proof. (a) If d1 ≤ R and d2 ≤ R, then Ryi = yi for i = 1, 2.
(b) If d1 ≤ R and d2 > R, then, by Ry1 = y1 and (2.1), we have

dX(Ry1, Ry2)
2 ≤

µ
1− R

d2

¶
d21 +

R

d2
dX(y1, y2)

2 −
µ
1− R

d2

¶
R

d2
d22

=

µ
1− R

d2

¶
(d21 − Rd2) +

R

d2
dX(y1, y2)

2

≤ dX(y1, y2)2.
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(c) If d1 ≥ d2 > R, then we put x0 := d2y1 =
¡
1 − (d2/d1)

¢
x + (d2/d1)y1. By a

discussion similar to (b), we know dX(x
0, y2) ≤ dX(y1, y2). Thus we obtain dX(Ry1, Ry2) ≤

dX(x
0, y2) ≤ dX(y1, y2) by (4.1), for Ry1 =

¡
1− (R/d2)

¢
x+ (R/d2)x

0.

Lemma 4.3.7 (cf. [Ch, Proposition 2.20]) Let 1 ≤ p < ∞. For u ∈ H1,p(U ;X) and
R > 0, if we define u0 := Ru as in Lemma 4.3.6 with x = x0, then Ep(u0) ≤ Ep(u) and,
in particular, u0 ∈ H1,p(U ;X). Moreover, if 1 < p <∞, then we have gu0 ≤ gu a.e. on U .

Proof. Take any sequence {(ui, gi)}∞i=1 such that ui → u in Lp(U ;X) as i → ∞ and gi
is an upper gradient for ui. Set u

0
i := Rui as in Lemma 4.3.6 with x = x0. Then, for

any z ∈ U , we have dX(u0i(z), u0(z)) ≤ dX(ui(z), u(z)) by Lemma 4.3.6. Hence we have
u0i → u0 in Lp(U ;X). Similarly, it holds that dX(u0i(z1), u

0
i(z2)) ≤ dX(ui(z1), ui(z2)) for any

z1, z2 ∈ U . Hence gi is also an upper gradient for u0i, so that we obtain Ep(u0) ≤ Ep(u).
The second part follows from Corollary 4.2.5.

Theorem 4.3.8 If µ(U) <∞ and if there exists a constant ε > 0 such that dX(v, x0) is
essentially bounded on U \ Uε, then there exists an EC-harmonic map in H1,2

v (U ;X).

Proof. Put R := |dX(v, x0)|L∞(U\Uε) < ∞. Take any λ > 0 and a sequence {ui}∞i=1 such
that supp dX(ui, v) ⊂ U and ui → uλ with respect to dH1,2 as i → ∞. Set u0i := Rui as
in Lemma 4.3.6 with x = x0 for each i. Then supp dX(u

0
i, v) ⊂ U and, by Lemmas 4.3.6

and 4.3.7, we obtain that dX(u
0
i(z), x0) ≤ dX(ui(z), x0) for any z ∈ U and E(u0i) ≤ E(ui).

If |dX(uλ, x0)|L∞ ≥ R + δ for some δ > 0, then, since

lim inf
i→∞

µ({z ∈ U | dX(ui(z), x0) ≥ R + δ/2}) ≥ µ({z ∈ U | dX(uλ(z), x0) ≥ R + δ}) > 0,

we have λE2(u
0
i) + dL2(u

0
i, x0)

2 < λE2(uλ) + dL2(uλ, x0)
2 for sufficiently large i. This is

a contradiction. Thus we obtain |dX(uλ, x0)|L∞ ≤ R, so that dL2(uλ, x0) ≤ Rµ(U)1/2.
Hence the theorem follows from Theorem 4.3.3.

4.4 Minimality of Lipu

In this section, we show that Lip u is a minimal generalized upper gradient for any locally
Lipschitz continuous map u ∈ H1,p(U ;X) with 1 < p < ∞. We first prove that Lip u
is at least an upper gradient for u. In the case of X = R, we have already seen this in
Proposition 4.1.5. In that proof, we used Rademacher’s theorem, so that we can not use
the same technique in the general case. However, by the following easily proved lemma
(which is a special version of [HKST, Theorem 3.17]), we can directly apply Proposition
4.1.5 to the general case.

Lemma 4.4.1 A function g : U −→ [0,∞] is an upper gradient for a map u : U −→ X
if and only if g is an upper gradient for the function dX(u, x) for any x ∈ X.
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Proof. The only if part is clear by the triangle inequality. If g is an upper gradient for
dX(u, x) for any x ∈ X , then, for any unit speed curve c : [0, l] −→ U , we have

dX
¡
u(c(0)), u(c(l))

¢
=
¯̄
dX
¡
u(c(0)), u(c(l))

¢
− dX

¡
u(c(l)), u(c(l))

¢¯̄
≤
Z l

0

g(c(s)) ds.

Hence g is an upper gradient for u.

Proposition 4.4.2 If u : U −→ X is locally Lipschitz continuous, then Lip u is an upper
gradient for u.

Proof. For any x ∈ X , since dX(u, x) is locally Lipschitz continuous, Lip dX(u, x) is an
upper gradient for dX(u, x) by Proposition 4.1.5. It follows from Lipu ≥ Lip dX(u, x) that
Lip u is an upper gradient for dX(u, x) for any x ∈ X . Hence Lipu is an upper gradient
for u by Lemma 4.4.1.

Let (X, dX) be a locally compact, locally geodesics extendable Alexandrov space with
local curvature upper bound. Recall that the space Σx at any x ∈ X is compact with
respect to the angle metric ∠x in this situation by Proposition 2.2.2.
For a constant map u : U −→ X , it is clear that Lipu ≡ 0 and is a minimal generalized

upper gradient for u. Take any nonconstant locally Lipschitz continuous map u : U −→ X
and fix it.

Lemma 4.4.3 For any z ∈ U , there exists a point x ∈ X \ {u(z)} in an RK-domain
containing u(z) which satisfies

Lip u(z) = Lip dX(u, x)(z).

Proof. If Lip u(z) = 0, then Lip dX(u, x)(z) = 0 for any x ∈ X . So without loss of
generality, we can assume Lipu(z) > 0, in particular, z is not an isolated point. Take a
sequence {zi}∞i=1 ⊂ U \ {z} such that zi → z as i→∞ and

lim
i→∞

dX(u(z), u(zi))

dZ(z, zi)
= Lip u(z).

Since the metric space (Σu(z),∠u(z)) is compact and Lipu(z) > 0, there exist a nonconstant
geodesic γ : [0, ε] −→ X with γ(0) = u(z) and a subsequence {zn} of {zi} satisfying
limn→∞∠u(z)(γ, γu(z)u(zn)) = 0. Since X is locally geodesics extendable, there exists a
geodesic γ : [−t, ε] −→ X such that γ = γ on [0, ε] for sufficiently small t > 0. Put
x := γ(−t). Note that

π ≥ ∠xu(z)u(zn) ≥ ∠γ(−t)u(z)γ(ε)− ∠γ(ε)u(z)u(zn) = π − ∠u(z)(γ, γu(z)u(zn)).

46



Combining this with Theorem 2.2.3 and the local Lipschitz continuity of u, we have

|dX(u(z), x)− dX(u(zn), x)|
dZ(z, zn)

=
dX(u(z), u(zn))| cos∠xu(z)u(zn)|+ ox,u(z)

¡
dX(u(z), u(zn))

¢
dZ(z, zn)

≥ dX(u(z), u(zn))
dZ(z, zn)

cos∠u(z)(γ, γu(z)u(zn)) + θx,u(z)(dZ(z, zn))

→ Lipu(z) as n→∞.
This implies Lip dX(u, x)(z) ≥ Lipu(z), so that we obtain Lip u(z) = Lip dX(u, x)(z).

Lemma 4.4.4 Let z and x be as in Lemma 4.4.3. Then, for each y ∈ X near x, it holds
that

Lip dX(u, y)(z) = Lip u(z) + θx,u(z)(dX(x, y)).

Proof. By a discussion similar to the proof of Lemma 4.4.3, we find

Lip dX(u, y)(z) = Lip u(z) + θx,u(z)(∠xu(z)y).

Since x 6= u(z), it follows from ∠̃xu(z)y ≥ ∠xu(z)y that ∠xu(z)y = θdX(x,u(z))(dX(x, y))
holds.

To recall Cheeger’s theorem for locally Lipschitz continuous functions, we need two
terminologies.

Definition 4.4.5 A metric measure space (Z, dZ , µ) is said to satisfy the doubling con-
dition if, for any r > 0, there exists κ = κ(r) ≥ 0 such that

µ(Br0(z)) ≤ 2κµ(Br0/2(z))
holds for any z ∈ Z and 0 < r0 ≤ r.
If a metric measure space (Z, dZ , µ) satisfies the doubling condition, then it satisfies

the Vitali and the Besicovitch covering theorems and then, moreover, the set of Lebesgue
points of f is dense in Z for any function f ∈ L1(Z). See, for example, [F, §2.8], [EG],
[Mat, §2], and [He, §1]. In particular, by the Besicovitch covering theorem, any bounded
subset of Z is totally bounded. Hence Z is separable, and is complete if and only if it is
proper, i.e., any bounded closed subset is compact.

Definition 4.4.6 Let 1 ≤ p, q <∞. A metric measure space (Z, dZ , µ) is said to satisfy
the weak Poincaré inequality of type (q, p) if, for any r > 0, there exist constants CP =
CP (p, q, r) ≥ 1 and Λ = Λ(p, q, r) ≥ 1 such that, for any open ball Br0(z) with 0 < r0 ≤ r,
any function f ∈ Lq(BΛr0(z)) and upper gradient g : BΛr0(z) −→ [0,∞] for f , it holds
that µZ

−
Br0 (z)

|f − fBr0 (z)|q dµ
¶ 1

q

≤ CP r0
µZ
−
BΛr0 (z)

gp dµ

¶ 1
p

, (4.2)

where we set fBr0 (z) :=
R
—
Br0 (z)

f dµ = µ(Br0(z))
−1 R

Br0 (z)
f dµ.
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There are some works on the relationship between the doubling condition, the (weak)
Poincaré inequality, and the other inequalities. See, for instance, [BM1], [BM2], [BM3],
and [HaK].

Theorem 4.4.7 ([Ch, Theorem 6.1]) Let (Z, dZ , µ) be a complete metric measure space
satisfying the doubling condition and the weak Poincaré inequality of type (1, p) for some
1 < p <∞. Then, for any locally Lipschitz continuous function f ∈ H1,p(U), Lip f is the
unique minimal generalized upper gradient for f .

The existence and the uniqueness of the minimal generalized upper gradient for f follows
from Theorem 4.2.2 since R is a CAT(0)-space.

Theorem 4.4.8 Let (Z, dZ , µ) and p be as in Theorem 4.4.7 and (X, dX) be a locally
compact, locally geodesics extendable, and separable Alexandrov space with local curvature
upper bound. Then, for any locally Lipschitz continuous map u ∈ H1,p(U ;X), Lipu is a
minimal generalized upper gradient for u.

Proof. Take a countable dense set {xi}∞i=1 ⊂ X . By Lemmas 4.4.3, 4.4.4, and Theorem
4.4.7, we know that

Lipu = sup
x∈X

Lip dX(u, x) = sup
i
Lip dX(u, xi) = sup

i
gdX(u,xi)

a.e. on U . Thus we obtain Ep(u) ≤ |Lip u|pLp = | supi gdX(u,xi)|pLp .
Fix a sequence {(uk, gk)}∞k=1 such that uk → u in Lp(U ;X) as k → ∞ and gk is an

upper gradient for uk for each k. By Corollary 4.2.5, it holds that gk ≥ gdX(uk,xi) a.e. on
U for any i and k, and hence we have

lim inf
k→∞

|gk|Lp ≥ lim inf
k→∞

¯̄
sup
i
gdX(uk,xi)

¯̄
Lp
.

It suffices to show | supi gdX(u,xi)|Lp ≤ lim infk→∞ | supi gdX(uk,xi)|Lp.
Fix a point z0 ∈ U and a number n ≥ 1. For each j ≥ 1, we let Bj be the family of

closed balls Br(z) ⊂ U ∩ Bn(z0) which satisfiesZ
Br(z)

gpdX(u,xj) dµ ≥
Z
Br(z)

sup
i
gpdX(u,xi) dµ−

n−1µ(Br(z))

µ(U ∩ Bn(z0))
,

and B := Sj Bj. Then we have inf{r > 0 |Br(z) ∈ B} = 0 for a.e. z ∈ U ∩Bn(z0). Hence,
by the Vitali covering theorem, there exists a subfamily {Bl}Nl=1 ⊂ B (1 ≤ N ≤ ∞) with
Bl ∈ Bjl which consists of mutually disjoint closed balls such that µ

¡
(U∩Bn(z0))\

S
lBl
¢
=

0. For each l, by applying Theorem 4.1.8 to {dX(uk, xjl)|Bl}∞k=1, we have

|gdX(u,xjl )|Lp(Bl) ≤ lim infk→∞
|gdX(uk,xjl )|Lp(Bl) ≤ lim infk→∞

¯̄
sup
i
gdX(uk,xi)

¯̄
Lp(Bl)

.
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We notice that gdX(u,xjl )|Bl = gdX(u,xjl )|Bl holds a.e. on Bl by Proposition 4.2.4. Therefore
we obtain

lim inf
k→∞

¯̄
sup
i
gdX(uk,xi)

¯̄p
Lp(U)

≥ lim inf
k→∞

¯̄
sup
i
gdX(uk,xi)

¯̄p
Lp(U∩Bn(z0))

≥
NX
l=1

lim inf
k→∞

¯̄
sup
i
gdX(uk,xi)

¯̄p
Lp(Bl)

≥
NX
l=1

Z
Bl

gpdX(u,xjl)
dµ

≥
NX
l=1

½Z
Bl

sup
i
gpdX(u,xi) dµ−

n−1µ(Bl)

µ(U ∩ Bn(z0))

¾
=

Z
U∩Bn(z0)

sup
i
gpdX(u,xi) dµ− n

−1.

Letting n tend to infinity, we have

lim inf
k→∞

¯̄
sup
i
gdX(uk,xi)

¯̄
Lp
≥
¯̄
sup
i
gdX(u,xi)

¯̄
Lp
.

Consequently, we obtain

Ep(u) ≤ |Lip u|pLp =
¯̄
sup
i
gdX(u,xi)

¯̄p
Lp
≤ lim inf

k→∞

¯̄
sup
i
gdX(uk,xi)

¯̄p
Lp
≤ lim inf

k→∞
|gk|pLp.

Taking the infimum over all such sequences {(uk, gk)}, we have Ep(u) = |Lipu|pLp, so that
Lip u is a minimal generalized upper gradient for u.

Combining this theorem with Theorem 4.2.2, we immediately have the following:

Corollary 4.4.9 Let (Z, dZ , µ) and p be as in Theorem 4.4.7 and (X, dX) be a locally
compact, locally geodesics extendable, and separable CAT(0)-space. Then, for any locally
Lipschitz continuous map u ∈ H1,p(U ;X), it holds that gu = Lip u a.e. on U .

4.5 Comparison of Sobolev spaces and its application

In this final section of the present chapter, we consider the relation between the Cheeger-
type Sobolev space for maps into a Banach space V and that for maps into a subset of V .
We first recall the several types of Sobolev spaces (cf. [KS] and [Ra]; [Ha] and [K]; [KM]).

Definition 4.5.1 For 1 ≤ p <∞, u ∈ Lp(U ;X), ε > 0, and z ∈ Uε, we define

eup,ε(z) :=

Z
−
Bε(z)

dX(u(z), u(w))
p

εp
dµ(w).
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The Korevaar-Schoen-type p-energy of u and the (1, p)-Sobolev space are defined by

EKSp (u) := sup
f∈Cc(U), 0≤f≤1

lim sup
ε→0

Z
U

feup,ε dµ,

KS1,p(U ;X) := {u ∈ Lp(U ;X) |EKSp (u) <∞},

where Cc(U) denotes the set of all continuous functions on U with compact support. We
also define EKSp (u) by replacing Cc(U) in E

KS
p (u) with the set

{f ∈ C(U) | supp f ⊂ Uη for some η > 0}.

Clearly, EKSp (u) ≤ EKSp (u) holds for any u ∈ Lp(U ;X) and they coincide if Z is
proper. As we mentioned in the paragraph after Definition 4.4.5, the proper property of
Z is equivalent to the completeness if (Z, dZ , µ) satisfies the doubling condition.
We should remark the relation between KS1,1(U ;X) and BV (U ;X) defined in [A] in

the case where Z is a Euclidean space. It is easily proved by the definition of BV (U ;X)
and [KS, Theorem 1.6.2] that KS1,1(U ;X) ⊂ BV (U ;X) holds.

Definition 4.5.2 Let 1 ≤ p <∞. For u ∈ Lp(U ;X), we define the HajÃlasz-type p-energy
of u by infg |g|Lp , where the infimum is taken over all functions g ∈ Lp(U) such that there
exist an open covering {Ui}∞i=1 of U and a full measure subset A ⊂ U (i.e., µ(U \A) = 0)
satisfying that

dX(u(z), u(w)) ≤ dZ(z, w)
¡
g(z) + g(w)

¢
(4.3)

holds for any i and z, w ∈ Ui ∩ A. We define the HajÃlasz-type (1, p)-Sobolev space
M1,p(U ;X) as the set of all maps in Lp(U ;X) with finite HajÃlasz-type p-energy.

We define one more type of Sobolev space for maps into a Banach space.

Definition 4.5.3 Let 1 ≤ p < ∞ and V be a Banach space. We define P 1,p(U ;V ) as
the set of all maps u ∈ Lp(U ;V ) such that there exist an open covering {Ui}∞i=1 of U , a
function g ∈ Lp(U), and constants CP ≥ 1 and Λ ≥ 1 satisfying (4.2) with q = 1 for any
ball Br(z) with BΛr(z) ⊂ Ui for some i.
Let (Z, dZ , µ) be a complete metric measure space satisfying the doubling condition,

and V be a Banach space. Then, for the relation between the Sobolev spaces above, it
has been already known that

M 1,p(U ;V ) ⊂ P 1,p(U ;V ) ⊂ KS1,p(U ;V ) ⊂ H1,p(U ;V )

holds for any 1 < p < ∞. Note that M 1,p(U ;V ) ⊂ P 1,p(U ;V ) is clear by definition.
Indeed, if (u, g) satisfies (4.3), then it satisfies (4.2) with q = 1, Λ = 1, and CP = 4.
The second inclusion P 1,p(U ;V ) ⊂ KS1,p(U ;V ) follows from [KM, Theorem 4.1]. The
third implication KS1,p(U ;V ) ⊂ H1,p(U ;V ) is essentially proved in a discussion in [KM,
Theorem 4.5]. We give a precise proof of this implication for completeness. We need
to recall a well-known covering lemma (see, for example, [He, Theorem 1.2]). For a ball
B = Br(z) and a > 0, we denote Bar(z) by aB.
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Lemma 4.5.4 Every family B of open balls of uniformly bounded diameter in a separable
metric space contains an at most countable, mutually disjoint subfamily {Bi}Ni=1 (1 ≤ N ≤
∞) satisfying

[
B∈B

B ⊂
N[
i=1

5Bi.

From now on, we denote by C(α, β) a constant depending only on α and β.

Theorem 4.5.5 Let 1 < p < ∞, (Z, dZ , µ) be a metric measure space satisfying the
doubling condition, and X be a convex subset of a Banach space V . Then, for any u ∈
KS1,p(U ;X) with EKSp (u) <∞, we have

ECp (u) ≤ C(κ, p)EKSp (u).

In particular, if Z is complete, then KS1,p(U ;X) ⊂ H1,p(U ;X).

Proof. For each δ > 0, by Lemma 4.5.4 together with the separability of Z, there exists
a family of open balls {Bδ(zk)}Nk=1 (1 ≤ N ≤ ∞) such that zk ∈ U , U ⊂

S
k Bδ/2(zk), and

that {Bδ/10(zk)}Nk=1 is disjoint. Put Bk := Bδ(zk). For any z ∈ U , we have

µ
³
B 11

10
δ(z)

´
≥
X
k:z∈Bk

µ
³
B 1

10
δ(zk)

´
≥ c(κ)

X
k:z∈Bk

µ
³
B 21

10
δ(zk)

´
≥ c(κ) ]{k | z ∈ Bk}µ

³
B 11

10
δ(z)

´
.

Thus we obtain ]{k | z ∈ Bk} ≤ c(κ)−1. PutM := c(κ)−1. We can take a partition of unity
{φk}Nk=1 of U which is subordinate to {Bk}Nk=1 such that every φk is C1Mδ−1-Lipschitz
continuous, where C1 is a universal constant.

Fix a map u ∈ KS1,p(U ;X) satisfying EKSp (u) < ∞ and define uδ :=
PN

k=1 φkuBk .
Since uBk ∈ X for any k, the image of uδ is contained in X .

Claim 4.5.6 uδ → u in Lp(Uη;X) as δ → 0 for any η > 0. In particular, uδ|Uη ∈
Lp(Uη;X).

Proof. Take any z ∈ Uη and δ ≤ η/2. For any k with φk(z) > 0, since dZ(z, zk) < δ, we
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have Bk ⊂ B2δ(z) ⊂ B3δ(zk). Hence it follows from the doubling condition that

|u(z)− uBk | ≤
Z
−
Bk

|u(z)− u(w)| dµ(w)

≤ 1

µ(Bk)

Z
B2δ(z)

|u(z)− u(w)| dµ(w)

≤ C(κ)

µ(B3δ(zk))

Z
B2δ(z)

|u(z)− u(w)| dµ(w)

≤ C
Z
−
B2δ(z)

|u(z)− u(w)| dµ(w)

≤ 2δC
µZ
−
B2δ(z)

|u(z)− u(w)|p
(2δ)p

dµ(w)

¶ 1
p

= 2δCeup,2δ(z)
1
p .

Since the cardinality of the set of all such k’s is not greater than M , we obtain

|u− uδ|pLp(Uη) =
¯̄̄ NX
k=1

φk · (u− uBk)
¯̄̄p
Lp(Uη)

≤
¯̄
M(2δC)(eup,2δ)

1
p

¯̄p
Lp(Uη)

= (2MCδ)p
Z
Uη

eup,2δ dµ.

Therefore, since EKSp (u) <∞, we have

lim sup
δ→0

|u− uδ|pLp(Uη) ≤ (2MC)
p lim sup

δ→0
δp
Z
Uη

eup,2δ dµ = 0.

Claim 4.5.7 (cf. [KM, Lemma 4.6]) For z ∈ U7δ and z0 ∈ Bδ(z), it holds that

|uδ(z)− uδ(z0)| ≤ C2(κ)dZ(z, z0)
µZ
−
B2δ(z)

eup,5δ dµ

¶ 1
p

.

In particular, the map uδ is locally Lipschitz continuous on U7δ and, for any z ∈ U7δ, we
have

Lip uδ(z) ≤ C2
µZ
−
B2δ(z)

eup,5δ dµ

¶ 1
p

.

Proof. Let z ∈ Bk0 . For k with φk(z) 6= φk(z
0), we have {z, z0} ∩ Bk 6= ∅. Then, since

Bk0 ⊂ B2δ(z) ⊂ B3δ(zk0) and

Bk ⊂ B2δ(z) ∪ B2δ(z0) ⊂ B3δ(z) ⊂ B5δ(w) ⊂ B7δ(z) ⊂ B9δ(zk)
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for any w ∈ B2δ(z), we have

|uBk0 − uBk | ≤
Z
−
Bk0

Z
−
Bk

|u(w)− u(w0)| dµ(w0) dµ(w)

≤ C(κ)
Z
−
B2δ(z)

Z
−
B5δ(w)

|u(w)− u(w0)| dµ(w0) dµ(w)

≤ 5Cδ
µZ
−
B2δ(z)

Z
−
B5δ(w)

|u(w)− u(w0)|p
(5δ)p

dµ(w0) dµ(w)

¶ 1
p

= 5Cδ

µZ
−
B2δ(z)

eup,5δ dµ

¶ 1
p

.

Hence we obtain

|uδ(z)− uδ(z0)| =
¯̄̄ NX
k=1

(φk(z)− φk(z
0))(uBk − uBk0 )

¯̄̄
≤

NX
k=1

|φk(z)− φk(z
0)| |uBk − uBk0 |

≤ 2M ·
¡
C1Mδ−1dZ(z, z

0)
¢
· 5Cδ

µZ
−
B2δ(z)

eup,5δ dµ

¶ 1
p

.

Combining the claims above with Theorems 4.1.8, 4.2.9, and Fubini’s theorem, we
obtain Z

Uη

gpu dµ ≤ lim inf
δ→0

Z
Uη

gpuδ dµ

≤ lim inf
δ→0

Z
Uη

(Lipuδ)
p dµ

≤ lim inf
δ→0

Z
Uη

µ
Cp2

Z
−
B2δ(z)

eup,5δ dµ

¶
dµ(z)

≤ Cp2 lim inf
δ→0

Z
Uη

µ
C(κ)

µ(B4δ(z))

Z
B2δ(z)

eup,5δ dµ

¶
dµ(z)

≤ Cp2C lim inf
δ→0

Z
Uη

µZ
B2δ(z)

eup,5δ(w)

µ(B2δ(w))
dµ(w)

¶
dµ(z)

≤ Cp2C lim inf
δ→0

Z
U(η−2δ)

µZ
B2δ(w)∩Uη

eup,5δ(w)

µ(B2δ(w))
dµ(z)

¶
dµ(w)

≤ Cp2C lim inf
δ→0

Z
U(η−2δ)

eup,5δ dµ

≤ Cp2CEKSp (u)

for any η > 0. Letting η tend to zero, we have ECp (u) ≤ C(κ, p)EKSp (u).
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If, in addition, (Z, dZ , µ) satisfies the weak Poincaré inequality of type (1, p) for some
1 < p <∞ (in the sense of Definition 4.4.6), then we have H1,p(U ;V ) ⊂ P 1,p(U ;V ) by the
existence of a generalized upper gradient for every u ∈ H1,p(U ;V ) together with [HKST,
Theorem 4.3]. Hence it holds that

M 1,p(U ;V ) ⊂ P 1,p(U ;V ) = KS1,p(U ;V ) = H1,p(U ;V ).

If, moreover, (Z, dZ , µ) satisfies the weak Poincaré inequality of type (1, q) for some 1 ≤
q < p, then we have KS1,p(U ;V ) ⊂ M1,p(U ;V ) by [KM, Theorem 4.5]. Thus these four
spaces coincide for such (Z, dZ , µ).
We next consider the case where a metric space (X, dX) is isometrically embedded in

a Banach space V and the base point x0 ∈ X corresponds to the origin 0 ∈ V , e.g., the
Kuratowski embedding:

X 3 x 7−→ {y 7−→ dX(x0, y)− dX(x, y)} ∈ L∞(X)
(see [He, p. 99]). Then we have H1,p(U ;X) ⊂ H1,p(U ;V ) ∩ Lp(U ;X) while it is clear
that KS1,p(U ;X) = KS1,p(U ;V ) ∩ Lp(U ;X) and M 1,p(U ;X) = M 1,p(U ;V ) ∩ Lp(U ;X)
hold (and even energies coincide) by definition. Indeed, if we denote by i : X −→ V an
isometric embedding and u ∈ Lp(U ;X), then, since a generalized upper gradient for i ◦ u
is not always one for u, we know only ECp (i ◦ u) ≤ ECp (u) in general.

Example 4.5.8 Let Z = [−1, 1] with the standard metric and measure, V = R with the
standard metric, and X = {0, 1} ⊂ V . We define a map u : Z −→ X by u(t) := 0 for
t ∈ [−1, 0] and u(t) := 1 for t ∈ (0, 1]. It is easily proved that u is in H1,1(Z;V ) (and
KS1,1(Z;V )), but not in H1,1(Z;X) (nor M 1,1(Z;V )).

This is, so to speak, the “p = n” case, where p is of H1,p(U ;X) and n is the dimension
of U . We can prove that H1,p(U ;X) = H1,p(U ;V ) ∩ Lp(U ;X) holds (as sets) in the
“p > n” case.

Theorem 4.5.9 Let (X, dX) be a metric space isometrically embedded in a Banach space
V , and the point x0 ∈ X corresponding to the origin 0 ∈ V be the base point of X. Assume
that there exist constants Cb ≥ 1, s ≥ 1, and R > 0 such that

µ(Br0(z))

µ(Br(z))
≤ Cb

µ
r0

r

¶s
(4.4)

holds for any z ∈ Z and 0 < r ≤ r0 ≤ R. If (Z, dZ , µ) is complete and satisfies the
doubling condition and the weak Poincaré inequality of type (1, s), then H1,p(U ;X) =
H1,p(U ;V ) ∩ Lp(U ;X) holds for any p ∈ (s,∞).

Proof. We already know that

H1,p(U ;X) ⊂ H1,p(U ;V ) ∩ Lp(U ;X) =M1,p(U ;V ) ∩ Lp(U ;X) =M 1,p(U ;X).

By [HaK, Theorem 5.1] and [HKST, Theorem 6.2], any u ∈ P 1,p(U ;V ) has a continuous
representative, and hence so does any u ∈ M 1,p(U ;X). Then we have u ∈ H1,p(U ;X) as
in the proof of [S, Lemma 4.7].
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We observe that the inequality (4.4) holds with s = κ(R) and Cb = 2s if (Z, dZ , µ)
satisfies the doubling condition. We can apply the strategy of proving M 1,p(U ;X) ⊂
H1,p(U ;X) to the case of p = s = 1, although H1,1(U ;V ) ⊂ M 1,1(U ;V ) does not hold in
general as we saw in Example 4.5.8.

Theorem 4.5.10 Let (Z, dZ , µ) be a geodesic length space satisfying (4.4) with s = 1,
and (V, | · |) be a Banach space. Then, for any (u, g) ∈ P 1,1(U ;V )×L1(U) satisfying (4.2)
with p = q = 1 and any ball Br0(z0) with Λr0 ≤ R and with BΛr0(z0) ⊂ Ui for some i, we
have

|u(z)− uBr(z0)| ≤ C(Cb, CP ,Λ) r0
Z
−
BΛr0(z0)

g dµ

for any Lebesgue point z ∈ Br0(z0) of u.

Proof. We first assume that Λ = 1. Put r := dZ(z, z0) and let γ : [0, 1] −→ U be
a minimal geodesic from z to z0. We set B0 := Br/4(γ(1)) (= Br/4(z0)) and B4k+l :=
B2−(k+3)r

¡
γ
¡
(8 − l)2−(k+3)

¢¢
for each k ≥ 0 and 1 ≤ l ≤ 4. Since z is a Lebesgue

point of u, it follows from the doubling condition and B4k+l ⊂ B2−kr(z) ⊂ 16B4k+l that
limn→∞ uBn = u(z). Hence we have

|u(z)− uBr(z0)| = lim
n→∞

|uBn − uBr(z0)|

≤
∞X
k=0

(
3X
l=1

|uB4k+l − uB4k+l+1|+ |uB4k − uB4k+1|
)
+ |uB0 − uBr(z0)|.

Fix any k ≥ 0 and 1 ≤ l ≤ 3, and put

B := B2−(k+4)r
¡
γ
¡
{(15/2)− l}2−(k+3)

¢¢
.

Then we have

|uB4k+l − uB4k+l+1| ≤
Z
−
B4k+l

|u− u3B| dµ+
Z
−
B4k+l+1

|u− u3B| dµ

≤ 2

µ(B)

Z
3B

|u− u3B| dµ

≤ 6Cb
Z
−
3B

|u− u3B| dµ

≤ 6CbCP · (3 · 2−(k+4)r)
Z
−
3B

g dµ

≤ 9 · 2−(k+3)C2bCP r
2k+5/3

µ(2k+5B)

Z
2B4k+l

g dµ

≤ 12C2bCP r

µ(Br(z0))

Z
2B4k+l

g dµ.
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Similarly, we obtain that

|uB4k − uB4k+1| ≤
Z
−
B4k+1

|u− uB4k | dµ

≤ 3Cb
Z
−
B4k

|u− uB4k | dµ

≤ 3CbCP · (2−(k+2)r)
Z
−
B4k

g dµ

≤ 3 · 2−(k+2)C2bCP r
2k+3

µ(2k+3B4k)

Z
B4k

g dµ

≤ 6C2bCP r

µ(Br(z0))

Z
B4k

g dµ

for any k ≥ 0, and that

|uB0 − uBr(z0)| ≤
Z
−
B0

|u− uBr(z0)| dµ ≤ 4Cb
Z
−
Br(z0)

|u− uBr(z0)| dµ

≤ 4CbCP r
Z
−
Br(z0)

g dµ.

Therefore we have

|u(z)− uBr(z0)|

≤ C(Cb, CP )r
µ(Br(z0))

" ∞X
k=0

½ 3X
l=1

Z
2B4k+l

g dµ+

Z
B4k

g dµ

¾
+

Z
Br(z0)

g dµ

#
.

Since the multiplicity of the family {2B4k+l}k≥0,1≤l≤3 ∪ {B4k}k≥0 is at most nine, we
consequently obtain

|u(z)− uBr(z0)| ≤ 10Cr
Z
−
Br(z0)

g dµ ≤ 10CCbr0
Z
−
Br0(z0)

g dµ,

where C = C(Cb, CP ).
A proof in the case of Λ > 1 is done by a discussion similar to that above by setting

B4km+l := B2−(k+3)m−1r
¡
γ
¡
(8− l/m)2−(k+3)

¢¢
for k ≥ 0 and 1 ≤ l ≤ 4m, where m denotes the smallest integer not smaller than Λ.

Corollary 4.5.11 Let (Z, dZ , µ) be as in Theorem 4.5.10. If (X, dX) is complete and can
be isometrically embedded in some Banach space V such that (U ;V ) has the Lipschitz
extension property in the sense of [HKST], then any u ∈ M1,1(U ;X) has a continuous
representative. In particular, we have M 1,1(U ;X) ⊂ H1,1(U ;X).
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Proof. Take any u ∈ M 1,1(U ;X). Since (U ;V ) has the Lipschitz extension property,
the set of continuous maps is dense in M1,1(U ;V ) (see [Ha, Theorem 5]). Let {ui}∞i=1 ⊂
M 1,1(U ;V ) be a sequence of continuous maps which converges to u in M1,1(U ;V ). By
Theorem 4.5.10, we obtain that ui converges to u uniformly on any compact set, so that
its limit is a continuous representative of u.

Remark 4.5.12 The Newtonian spaceN1,p(U ;V ) defined in [S] coincides withH1,p(U ;V )
for any 1 < p <∞ and any Banach space V ([S, Theorem 4.10]). The Newtonian space for
maps into an arbitrary metric space X is also defined in [HKST] through the Kuratowski
embedding of X , but we do not know whether H1,p(U ;X) = N1,p(U ;X) or not any more.
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Chapter 5

Harmonicity of totally geodesic maps

In this last chapter, by using the results proved in the preceding chapters, we shall obtain
results on the relationship between the harmonicity and the totally geodesic property of
maps, that is, the harmonicity of totally geodesic maps. This chapter is based on [O3].

5.1 Harmonicity

Let (M, g) be a Riemannian manifold such that M is compact, µg be its volume element,
and (X, dX) be a connected, complete Alexandrov space of curvature ≤ 0. We write
EKS = EKS2 and EC = EC2 in this chapter for short.

Definition 5.1.1 A continuous map u : M −→ X is said to be EKS-continuously har-
monic if EKS(u) ≤ EKS(α1) holds for any continuous variation α : M × [0, 1] −→ X
which satisfies the following boundary condition:

(i) α0 = u,

(ii) there exists ε > 0 such that αt|M\Mε = u|M\Mε for any t ∈ [0, 1],
where we denote α(·, t) by αt. We define the E

C-continuous harmonicity in the same
manner.

If ∂M (=M \M) = ∅, i.e., if M itself is compact, then (ii) above places no restriction
on α.

Remark 5.1.2 It is not so unnatural that we assume the continuity of u in Definition
5.1.1. In fact, Korevaar and Schoen prove (the existence and) the local Lipschitz continuity
of an energy minimizing map in the class

{u ∈ KS1,2(M ;X) | dX(u, u0) ∈ W 1,2
0 (M)}

for an arbitrarily fixed u0 ∈ KS1,2(M ;X) in the case where (M, g) is a Lipschitz Rieman-
nian domain and (X, dX) is a complete CAT(0)-space ([KS, Theorem 2.4.6]). Here, as
usual, W 1,2

0 (M) denotes the closure of C∞0 (M) with respect to the Sobolev norm. There
are also some works on the Hölder continuity of harmonic maps (e.g., [BM2], [J2], and
[KiSh]).
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For x ∈ X, we define

rA(x) := sup{r > 0 | (Br(x), dX) is an RK-domain}.

By definition, it clearly holds that rA(x) ≤ rX(x). Recall that rX(x) is the convex radius
at x. We also note that both functions are 1-Lipschitz continuous.
We first consider the harmonicity for the Korevaar-Schoen-type energy. Note that, if

(X, dX) is a Riemannian manifold and u is smooth, then

EKS(u) = (dimM + 2)−1
Z
M

|u∗|2 dµg.

The following lemma allows us to consider only the variations which are close to u.

Lemma 5.1.3 Fix a continuous variation α :M × [0, 1] −→ X which satisfies αt|M\Mε =
α0|M\Mε for any t ∈ [0, 1]. Then there exists a continuous variation β :M × [0, 1] −→ X
such that β0 = α0, β1 = α1, βt|M\Mε = α0|M\Mε holds for any t ∈ [0, 1], and that the
function [0, 1] 3 t 7−→ EKS(βt) is convex.

Proof. This lemma is easily deduced from the fact that a universal covering space ( eX, d eX)
of (X, dX) with the induced length metric is a complete CAT(0)-space (cf. [BH, Chapter
II.4]). We give a proof for completeness.

Let (fM, g̃) be a Riemannian universal covering space of (M, g) and α̃ : fM×[0, 1] −→ eX
be a ξ-equivariant lift of α. Here ξ : π1(M) −→ π1(X) denotes the homomorphism induced
from α0. Set

β̃t := (1− t)α̃0 + tα̃1
for t ∈ [0, 1] and let βt : M −→ X be its projection. It is clear that β satisfies β0 = α0,
β1 = α1, and βt|M\Mε = α0|M\Mε for any t ∈ [0, 1]. Take any t0, t1,λ ∈ [0, 1] with t0 ≤ t1,
and put tλ := (1 − λ)t0 + λt1. Since M × [0, 1] is compact and β and rA are uniformly
continuous, for sufficiently small δ > 0, we have

dX(βtλ(p),βtλ(q)) = d eX(β̃tλ(p), β̃tλ(q))
≤ (1− λ)d eX(β̃t0(p), β̃t0(q)) + λd eX(β̃t1(p), β̃t1(q))
= (1− λ)dX(βt0(p),βt0(q)) + λdX(βt1(p), βt1(q))

for every p, q ∈M with dM(p, q) < δ. Therefore we obtain EKS(βtλ) ≤ (1−λ)EKS(βt0)+
λEKS(βt1).

Before giving the proof of the harmonicity of a totally geodesic map, we recall some
facts for totally geodesic maps (see Chapter 3 of this thesis). For a totally geodesic map
u :M −→ X , we put

a := sup
UpM

|du|, b := inf
UpM∩Hp

|du|.

By Corollary 3.4.4, they are independent of the choice of p ∈ M . In particular, u is
a-Lipschitz continuous. If a = 0, then u is a constant map. So that, without loss of
generality, we assume a > 0 from now on, and then b > 0.

60



Theorem 5.1.4 Any totally geodesic map u :M −→ X is EKS-continuously harmonic.

Proof. Let α : M × [0, 1] −→ X be a continuous variation as in Definition 5.1.1. If
EKS(α1) < EKS(u), and if we denote by β the continuous variation constructed from
α by Lemma 5.1.3, then we have EKS(βt) < EKS(u) for all t ∈ (0, 1]. Thus we need
only to show that, for every α as in Definition 5.1.1, there exists some t > 0 satisfying
EKS(u) ≤ EKS(αt).
Since u is a-Lipschitz continuous and Mε is compact, α is uniformly continuous on

M × [0, 1]. Hence we can take δ > 0 such that dX(αt(p), u(p)) < rA(u(p)) holds for any
p ∈ Mε and t ∈ [0, δ]. We remark that, by assumption, we know αt(p) = u(p) for all
p ∈M \Mε and t ∈ [0, 1]. Put

ρ0(p) :=
b

a

½
rM(p) ∧

rA(u(p))

a

¾
, r(p) :=

1

3

©
ρ0(p) ∧ dist(p, ∂M)

ª
for p ∈ M . Note that r is (1/3)-Lipschitz continuous. For each t ∈ [0, δ] and p ∈ M ,
we define βt(p) := F [u(Br(p)(p))](αt(p)), where the foot-point is taken as an element in
BrA(u(p))(u(p)). This makes sense. Indeed, we have αt(p) ∈ BrA(u(p))(u(p)),

u(Br(p)(p)) ⊂ u(Bρ0(p)(p)) ⊂ Baρ0(p)(u(p)) ⊂ BrA(u(p))(u(p)),
and u(Br(p)(p)) is compact and geodesically convex since u is totally geodesic.
For each η > 0, we can take δη ∈ (0, δ ∧ infMη r] such that dX(αt(p), u(p)) < br(p)

holds for any p ∈Mη and t ∈ [0, δη].

Claim 5.1.5 For every t ∈ [0, δη] and p, q ∈Mη with dM(p, q) < δη/2, we have

dX(βt(p),βt(q)) ≤ dX(αt(p),αt(q)).
Proof. By assumption, we know

u(Br(p)(p)) ⊂ u(Br(p)+δη/2(q)) ⊂ u(B2r(q)(q)) ⊂ BrA(u(q))(u(q)).
Here the second inclusion is derived from

r(p) + δη/2 < {r(q) + δη/6}+ δη/2 < 2r(q).

Moreover, we have

αt(p) ∈ Bbr(p)(u(p)) ⊂ Bbr(p)+aδη/2(u(q)) ⊂ BrA(u(q))(u(q))
since

br(p) + aδη/2 < b{r(q) + δη/6}+ aδη/2 < 2ar(q) < rA(u(q)).
By Lemma 3.2.2, for any v ∈ B3r(p)(0) ⊂ TpM and its projection to Hp, say v

0 ∈ Hp,
we find u(expp v) = u(expp v

0). It follows from B2r(q)(q) ⊂ B3r(p)(p) that
dist

¡
u(B2r(q)(q)) \ u(Br(p)(p)), u(p)

¢
≥ dist

¡
u(B3r(p)(p)) \ u(Br(p)(p)), u(p)

¢
= dist

¡
u ◦ expp({B3r(p)(0;TpM) \Br(p)(0;TpM)} ∩Hp), u(p)

¢
≥ br(p) > dX(αt(p), u(p))
≥ dX

¡
F [u(B2r(q)(q))](αt(p)), u(p)

¢
,
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where the foot-point is taken as an element in BrA(u(q))(u(q)). This implies that

F [u(B2r(q)(q))](αt(p)) ∈ u(Br(p)(p)),

so that it coincides with βt(p). Putting p = q, we also have F [u(B2r(q)(q))](αt(q)) = βt(q).
Consequently, we obtain

dX(βt(p),βt(q)) = dX
¡
F [u(B2r(q)(q))](αt(p)), F [u(B2r(q)(q))](αt(q))

¢
≤ dX(αt(p),αt(q))

by Proposition 2.3.2 with A = u(B2r(q)(q)).

Combining this claim with (ii) in Definition 5.1.1, we have EKS(βt) ≤ EKS(αt) for
any t ∈ [0, δε0 ] with ε0 ∈ (0, ε). Fix ε0 ∈ (0, ε) and put δ0 := δε0 . Note that

βδ0(q) ∈ u(Br(q)(q)) ⊂ u(B2r(p)(p)) ⊂ u(Bρ(p)(p))

holds for every p ∈Mε0 and q ∈ Bδ0/2(p). Hence we may assume that

βδ0|Bδ0/2(p) : Bδ0/2(p) −→ u(Bρ(p)(p))

is smooth for all p ∈M with respect to the Riemannian structure derived from Corollary
3.4.4. We know that u is smooth with respect to that structure, and hence so is βδ0|M\Mε .
Put

β0t :=

µ
1− t

δ0

¶
u+

t

δ0
βδ0

for t ∈ [0, δ0]. Then β0t is smooth and the function [0, δ
0] 3 t 7−→ EKS(β0t) is convex.

Applying the first variation formula for energy (cf., for example, [N, §3.3]), by the totally
geodesic property of u and the boundary condition, we immediately obtain

d

dt

¯̄̄
t=0+

EKS(β0t) = 0.

Here we denote by (d/dt)|t=0+ f the right derivative of a function f at t = 0. Therefore
we have EKS(u) ≤ EKS(β0δ0) = EKS(βδ0) ≤ EKS(αδ0). This completes the proof.
Almost all discussions above for the Korevaar-Schoen-type energy are also valid if we

consider the Cheeger-type energy. The only one obstruction is that we do not have the
first variation formula for this energy. We will overcome this difficulty by considering a
representation of EC(u) for a map u between Riemannian manifolds.
Let (N, h) be a Riemannian manifold and u :M −→ N be a smooth map. For p ∈M ,

we denote the operator norm of the differential operator at p, (u∗)p : TpM −→ Tu(p)N , by
|u∗|op(p). Clearly Lip u = |u∗|op holds. By Theorem 4.4.8, we findZ

U

|u∗|2op dµg = EC(u|U) ≤ EC(u) ≤
Z
M

|u∗|2op dµg

for any relatively compact domain U ⊂ M with smooth boundary. Letting U → M , we
obtain EC(u) =

R
M
|u∗|2op dµg.
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Lemma 5.1.6 For a smooth map u :M −→ N , we have

EC(u) = sup
W

Z
M

|u∗(W )|2 dµg,

where the supremum is taken over all smooth vector fields W on M satisfying |W (p)| ≤ 1
for every p ∈M .

Proof. Note that

EC(u) =

Z
M

|u∗|2op dµg ≥ sup
W

Z
M

|u∗(W )|2 dµg.

We prove the reverse inequality.
For each p ∈ M , we can take a smooth vector field Wp on M such that |Wp(q)| ≤ 1

holds for all q ∈M and that |u∗|op(p) = |u∗(Wp(p))|. Take any ε > 0. Since

lim
r→0

Z
−
Br(p)

|u∗(Wp)|2 dµg = |u∗|op(p)2 = lim
r→0

Z
−
Br(p)

|u∗|2op dµg,

the Vitali covering theorem yields a family of at most countably many mutually disjoint
balls {Bri(pi)}i ⊂ M which satisfies µg(M \SiBri(pi)) = 0 andZ

−
Bri (pi)

|u∗(Wpi)|2 dµg ≥
Z
−
Bri (pi)

|u∗|2op dµg − ε.

For each i, we take r0i ∈ (0, ri) such that

1

µg(Bri(pi))

Z
Br0

i
(pi)

|u∗(Wpi)|2 dµg ≥
Z
−
Bri (pi)

|u∗|2op dµg − 2ε.

Let Wε be a smooth vector field satisfying |Wε(p)| ≤ 1 for all p ∈ M and Wε = Wpi on
Br0i(pi) for all i. Then we haveZ

M

|u∗(Wε)|2 dµg ≥
X
i

Z
Br0

i
(pi)

|u∗(Wpi)|2 dµg

≥
X
i

½Z
Bri (pi)

|u∗|2op dµg − 2εµg(Bri(pi))
¾

=

Z
M

|u∗|2op dµg − 2εµg(M)

= EC(u)− 2εµg(M).

Since ε > 0 is arbitrary, this completes the proof.

Proposition 5.1.7 If N is an Alexandrov space of curvature ≤ 0, then any harmonic
map u :M −→ N (in the classical sense) with finite energy is EC-continuously harmonic.
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Proof. Fix a continuous variation α satisfying the condition in Definition 5.1.1 and take
β as in the proof of Lemma 5.1.3. We may assume that β : M × [0, 1] −→ N is smooth.
It is easily proved that the function [0, 1] 3 t 7−→

R
M
|(βt)∗(W )|2 dµg is convex for any

smooth vector field W on M . Moreover, by the same calculation as that deriving the
usual first variation formula, we obtain

d

dt

¯̄̄
t=0+

Z
M

|(βt)∗(W )|2 dµg = 0.

Hence we have
R
M
|u∗(W )|2 dµg ≤

R
M
|(β1)∗(W )|2 dµg. By Lemma 5.1.6, this implies

EC(u) ≤ EC(β1) = EC(α1). Therefore u is EC-continuously harmonic.
We remark that the nonpositivity of the sectional curvature of N does not always

imply that N is an Alexandrov space of curvature ≤ 0. For instance, the completion of
R2 \ B1(0) is not an Alexandrov space of curvature ≤ 0. Now we show the latter half
of our main theorem in this chapter. Recall that we consider a Riemannian manifold
(M, g) such that M is compact, and a connected, complete Alexandrov space (X, dX) of
curvature ≤ 0.

Theorem 5.1.8 Any totally geodesic map u :M −→ X is EC-continuously harmonic.

Proof. All discussions in the proof of Theorem 5.1.4 before using the first variation
formula are also applicable to this case. Using Proposition 5.1.7 in place of that formula,
we have EC(u) ≤ EC(β 0δ0), which completes the proof.

5.2 Examples

We can construct many examples of harmonic maps whose images are not manifolds by
applying Theorems 5.1.4 and 5.1.8.

Example 5.2.1 Let (M, g) be a Riemannian manifold with nonpositive sectional curva-
ture such that M is an Alexandrov space of curvature ≤ 0. Take two totally geodesic
submanifolds S1 and S2 of M with dist(S1, S2) > 0 such that there exists an isometry
i : S1 −→ S2 between them. Let ī : S1 −→ S2 be the canonical extension and set
X := M/̄i. Then X is a complete Alexandrov space of curvature ≤ 0 by Reshetnyak’s
gluing theorem ([Re], see also [BBI, Theorem 9.1.21]), and the projection P : M −→ X
is totally geodesic. Thus P is EKS- and EC-continuously harmonic.

We finally give two examples of totally geodesic maps which are not harmonic.

Example 5.2.2 Let (X, dX) = (R2, k · k), where we set, for (x1, y1), (x2, y2) ∈ R2,

k(x1, y1)− (x2, y2)k := |x1 − x2|+ |y1 − y2|.

This is not a CAT(0)-space, but the conclusion of Lemma 5.1.3 remains true by setting
βt = (1−t)α0+tα1. However, there exist nonconstant closed geodesics in X (e.g., squares)
and they are not minimal.
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Example 5.2.3 Let Br(p0;R2) and Br(p1;R2) be open disks in R2 and set

X := Br(p0;R2) ∪ [0, 1] ∪ Br(p1;R2)/ ∼,

where 0 ∼ p0 and 1 ∼ p1. Intuitively, X is in the shape of a barbell. Let dX be the induced
length metric on X , then (X, dX) is a CAT(0)-space. Define a measure µ on X by µ = L2
on Br(p0;R2) ∪ Br(p1;R2) and µ = L1 on [0, 1], where Ln denotes the n-dimensional
Lebesgue measure. We shall prove that the identity map idX : (X, dX , µ) −→ (X, dX) is
not EKS- nor EC-continuously harmonic although idX is clearly totally geodesic. Here
we consider ∂X = ∂Br(p0;R2) ∪ ∂Br(p1;R2).

Claim 5.2.4 The map idX is not EKS- nor EC-continuously harmonic. Furthermore,
there exists no EKS- nor EC-continuous harmonic map in the homotopy class fixing
boundary values to which idX belongs.

Proof. Fix a small ε ∈ (0, r) and set

X 0 := Bε(p0;R2) ∪ [0, 1] ∪ Bε(p1;R2)/ ∼ ⊂ X.

For (a, b) ∈ [0, 1)× (0, 1) ∪ {1} × [0, 1), we define a map ua,b : X −→ X by (see Figure 7)

(i) ua,b(t) := at+
1− a
2
∈ [0, 1] for t ∈ [0, 1];

(ii) ua,b(p0 + v) :=
1− a
2
− 1− a

2bε
|v| ∈ [0, 1] for v ∈ Bbε(0;R2);

ua,b(p1 + v) :=
1 + a

2
+
1− a
2bε

|v| ∈ [0, 1] for v ∈ Bbε(0;R2);

(iii-1) ua,b(pj + v) := pj +

½
ε − ε− |v|

1− b

¾
v

|v| ∈ Bε(pj;R2) for v ∈ Bε(0;R2) \ Bbε(0;R2),
j = 0, 1;

(iii-2) ua,b := idX on X \X 0.

ua,b

× ×

ε

bε

ε

Figure 7

1− a
2
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Note that u1,0 = idX and the map [0, 1] 3 s 7−→ u1−(1−a)s,bs gives a homotopy between
idX and ua,b fixing boundary values. It holds that

EKS(idX |X0) =
1

3
+
1

4
· 2 · 2πε2 = 1

3
+ πε2

and EC(idX |X0) = 1 + 2πε2. On the other hand,

EKS(ua,b|X0) ≤ 1
3
a2 +

1

4

µ
1− a
2bε

¶2
· 2π(bε)2 + 1

4

½µ
1

1− b

¶2
+ 1

¾
· 2πε2(1− b2)

=
1

3
a2 +

π

8
(1− a)2 + πε2

2

½
1 + b

1− b + (1− b
2)

¾
,

EC(ua,b|X0) = a2 +

µ
1− a
2bε

¶2
· 2π(bε)2 +

µ
1

1− b

¶2
· 2πε2(1− b2)

= a2 +
π

2
(1− a)2 + 2πε2 1 + b

1− b.

Putting u = u1/2,1/2, we have, for sufficiently small ε > 0,

EKS(u|X0) ≤ 1

12
+

π

32
+
15

8
πε2 <

1

3
, EC(u|X0) =

1

4
+
π

8
+ 6πε2 < 1.

Thus idX is not E
KS- nor EC-continuously harmonic.

We suppose that there exists a continuous harmonic map u : X −→ X which is
homotopic to idX fixing boundary values, and will derive a contradiction. The following
discussion is common to both EKS and EC , so that we write E simply. By the harmonicity
of idBr(pj ;R2) (and Proposition 5.1.7), E(u|Br(pj ;R2)) takes its minimum if u|Br(pj ;R2) =
idBr(pj ;R2). This implies that u([0, 1]) ⊂ [0, 1]. Let Aj := u−1([0, 1]) ∩ Br(pj;R2) for
j = 0, 1 and divide u into five parts:

u1 : (0, 1) −→ (0, 1), u2,j : Aj −→ [0, 1], u3,j : Br(pj;R2) \ Aj −→ Br(pj;R2).

Note that u1, u2,j, and u3,j correspond to (i), (ii), and (iii) respectively in the first part
of this proof. For b ∈ (0, 1), we set bAj := {pj + bv | pj + v ∈ Aj}, and ub2,j(pj + v) :=
u2,j(pj + v/b) for pj + v ∈ bAj. Then we have E(u2,j |Aj) = E(ub2,j|bAj ). (Recall that
E(ua,b|Bbε(pj ;R2)) is independent of b.) On the other hand, if we put

u03,j :=

½
u3,j on Br(pj;R2) \Aj,
pj on Aj,

then we find E(u03,j) = E(u3,j). Hence E(u3,j) is minimal if Aj = {pj} and u3,j =
idBr(pj ;R2)\{pj}. (Recall that E(ua,b|Bε(pj ;R2)\Bbε(pj ;R2)) is minimal at b = 0.) Combining
this with E(u2,j|Aj) = E(ub2,j|bAj ), we conclude that Aj = {pj} and u3,j = idBr(pj ;R2)\{pj}.
However, then u must be idX . This is a contradiction.

The second part of the claim above asserts that a harmonic map in a class containing
idX does not have a continuous representation. This should be compared to the works on
the regularity of harmonic maps (see Remark 5.1.2). If we consider Br(pj;R2) as an open
ball in a flat torus, then (X, dX) is a compact, geodesically complete Alexandrov space of
curvature ≤ 0.
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Basel, 1995.

[BM1] M. Biroli and U. Mosco, Sobolev and isoperimetric inequalities for Dirichlet forms
on homogeneous spaces, Atti Accad. Naz. Lincei Cl. Fis. Mat. Natur. Rend. Lincei
(9) Mat. Appl. 6 (1995), 37—44.

[BM2] M. Biroli and U. Mosco, A Saint-Venant type principle for Dirichlet forms on
discontinuous media, Ann. Mat. Pura Appl. 169 (1995), 125—181.

[BM3] M. Biroli and U. Mosco, Sobolev inequalities on homogeneous spaces, Potential
Anal. 4 (1995), 311—324.

[Bj] J. Björn, Boundary continuity for quasiminimizers on metric spaces, Illinois J.
Math. 46 (2002), 383—403.

[BH] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature,
Springer-Verlag, Berlin, 1999.

[BBI] D. Burago, Y. Burago and S. Ivanov, A course in metric geometry, American
Mathematical Society, Providence, RI, 2001.

[Ch] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces,
Geom. Funct. Anal. 9 (1999), 428—517.

[CC] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature
bounded below. III, J. Differential Geom. 54 (2000), 37—74.

[Co] K. Corlette, Archimedian superrigidity and hyperbolic geometry, Ann. of Math.
135 (1992), 165—182.

[EF] J. Eells and B. Fuglede, Harmonic maps between Riemannian polyhedra, Cam-
bridge University Press, Cambridge, 2001.

67



[EG] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions,
CRC press, Boca Raton, FL, 1992.

[F] H. Federer, Geometric measure theory, Springer-Verlag, New York, 1969.

[GS] M. Gromov and R. Schoen, Harmonic maps into singular spaces and p-adic
superrigidity for lattices in groups of rank one, Inst. Hautes Étedes Sci. Publ.
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