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Introduction

Let K be a number field and E an elliptic curve over K. The Mordell-Weil

theorem asserts that the group E(K) of K-rational points on E is finitely generated;

in particular, the torsion subgroup E(K)tors of E(K) is finite. In the case where

K = Q, the group E(Q)tors is isomorphic to one of the following fifteen groups:

Z/NZ for N = 1, . . . , 10, 12,

Z/2Z⊕ Z/2NZ for N = 1, 2, 3, 4

(Mazur [13], [14]). For an arbitrary number field K, Merel ([15]) showed that the

order |E(K)tors| of E(K)tors is bounded above by a constant depending only on the

degree of K over Q.

We are interested in determining how E(K)tors varies as we replace K with an

extension L of K, or E with a K-isogenous curve E ′ to E. More precisely, we study

the following two problems on torsion of elliptic curves over a number field:

(1) Classify the torsion subgroup of an elliptic curve over Q in all elementary

abelian 2-extensions of Q, that is, in all number fields of type (2, . . . , 2).

(2) Examine the order of maximal torsion of an elliptic curve E over a number

field K in the K-isogeny class of E.

As to (1), let E be an elliptic curve over Q and F the maximal elementary

abelian 2-extension of Q, that is,

F := Q({√m ; m ∈ Z}).

Then it is known that one has at most thirty-one possibilities for the torsion subgroup

E(F )tors (Laska and Lorenz [10, Theorem]). However, it is not known whether each

type of these thirty-one groups occurs as E(F )tors. In the case where E(Q)tors is

non-cyclic, we may choose a Weierstrass model

E : y2 = x(x + M)(x + N),
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where M and N are non-zero integers. Then Kwon ([8, Theorem 1]) classified the

torsion subgroup of E over all quadratic extensions of Q; Qiu and Zhang ([20,

Theorems 3 and 4]) classified the torsion subgroup of E for a certain elliptic curve

E with E(Q)tors � Z/2Z ⊕ Z/2Z over all elementary abelian 2-extensions of Q;

Ohizumi ([17, Theorems 4.1 and 4.2]) classified the torsion subgroup of E for an

elliptic curve E with E(Q)tors � Z/2Z ⊕ Z/8Z or Z/2Z ⊕ Z/6Z over all bicyclic

biquadratic field, that is, over all number fields of type (2, 2). In this thesis, when

E(Q)tors is non-cyclic, we completely determine the torsion subgroup of E over F as

well as over all elementary abelian 2-extensions of Q (Theorems 1 and 2 in Chapter

2).

As to (2), let E be an elliptic curve over a number field K and C(E) the K-

isogeny class of E. Then there exists an elliptic curve E0 ∈ C(E) such that the

order |E0(K)tors| is maximal in C(E), that is,

|E0(K)tors| = max
E′∈C(E)

|E′(K)tors|,

since C(E) has at most finitely many K-isomorphism classes of elliptic curves over

K. Katz ([6]) described the order |E0(K)tors| in terms of the reduction Ẽ℘ of E

modulo each prime ℘ of K. However, his description depends on the class C(E)

(note that the order of minimal torsion in C(E) is bounded above by a constant

depending only on K in case EndK(E) � Z; see [22], [16]). For each prime l, we

here give a necessary and sufficient condition for the order of the l-primary part

E(K)(l) of E(K)tors being maximal in C(E) (Theorem 3 in Chapter 3). By making

use of it, we can find the order of maximal l-torsion of E over K in C(E). We

also give some sufficient conditions for the order of E(K)(l) being maximal in C(E)

(Proposition 3.1.6 in Chapter 3). Since in general the conditions given in Proposition

3.1.6 are easier to check than the ones in Theorem 3, this proposition is also useful

for finding the order of maximal l-torsion in C(E). Proposition 3.1.6 and Theorem 3

imply several properties concerning the torsion of elliptic curves in their K-isogeny

classes.
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Chapter 1

Elliptic curves

In this chapter, we briefly review some basic properties of elliptic curves, with

emphasis on those which are related to Chapter 2 or 3.

1.1 Basic definitions

An elliptic curve E is a smooth projective curve of genus one furnished with a

point O on E. The elliptic curve E is said to be defined over the field k if both the

curve E and the point O are defined over k. The points on E form an abelian group

with the identity element O. If E is defined over a field k, then the group E(k) of

k-rational points on E is a subgroup of E.

Every elliptic curve E, defined over a field k, has a plane cubic model of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

where the coefficients ai are in k. Such a model is called a Weierstrass model for E.

If further the characteristic char(k) of k differs from 2 or 3, then E has a Weierstrass

model of the form

E : y2 = x3 + Ax + B,

where A,B ∈ k. Given such a model for E, the discriminant ∆ and the j-invariant

j(E) are given respectively by

∆ = −16(4A3 + 27B2), j(E) = −1728(4A)3/∆.

The discriminant ∆ does not vanish because of the non-singularity of E. When E1

and E2 are elliptic curves defined over a field k, E1 is isomorphic to E2 over the

algebraic closure k of k if and only if j(E1) = j(E2).
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An isogeny is a non-constant morphism φ : E1 → E2 between elliptic curves

satisfying φ(O) = O, which is a group homomorphism. E1 and E2 are said to be

isogenous if there exists an isogeny φ between E1 and E2. If E1, E2 and φ are

defined over a field k, then φ is said to be a k-isogeny, and E1 and E2 are said to be

k-isogenous.

Let E be an elliptic curve over a field k. For a positive integer m, is associated the

multiplication-by-m map [m] : E → E, which is one of the most important isogenies.

Its kernel E[m] is isomorphic to Z/mZ⊕ Z/mZ if the characteristic char(k) of k is

prime to m or char(k) = 0; if char(k) = p > 0, then either E[pe] is isomorphic to

Z/peZ for all positive integers e or E[pe] = 0 for all positive integers e.

If φ : E1 → E2 is an isogeny of degree m > 0, then there exists an isogeny

φ̂ : E2 → E1 (called the dual isogeny to φ) such that φ̂ ◦ φ = [m]1 and φ ◦ φ̂ = [m]2,

where [m]i stands for the multiplication-by-m map on Ei for i = 1, 2. We denote

by Hom(E1, E2) the group of isogenies between elliptic curves E1 and E2 together

with the zero map. If E1 = E2 = E, then we let End(E) := Hom(E,E), which is

called the endomorphism ring of E. Since for any integer m �= 0 the multiplication-

by-m map [m] is non-constant, the group Hom(E1, E2) is a torsion-free Z-module.

Furthermore, the endomorphism ring End(E) is isomorphic to Z, to an order in an

imaginary quadratic field or to an order in a quaternion algebra ([28, Corollary 9.4,

p. 102]). Note that for an elliptic curve over a field k of char(k) = 0, the third

possibility can not happen. If End(E) is isomorphic to an order O in an imaginary

quadratic field, then we say that E has complex multiplication (by O). For a field

k, by Homk(E1, E2) (resp. Endk(E)) we mean the group (resp. the ring) of those

elements in Hom(E1, E2) (resp. End(E)) which are defined over k. If Endk(E) is

isomorphic to an order in an imaginary quadratic field, then we say that E has

complex multiplication over k.

1.2 The Tate module

Throughout this section, let k be a field and l a prime number distinct from

char(k). Let E be an elliptic curve over k. The (l-adic) Tate module Tl(E) of E is

defined as follows:

Tl(E) := lim←−E[ln].
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Since E[ln] is isomorphic to Z/lnZ⊕ Z/lnZ, it is easy to find that

Tl(E) � Zl ⊕ Zl

as Zl-modules. Let Gk denote the Galois group Gal(k/k). Since the action of Gk

on each E[ln] commutes with the multiplication-by-l map, Gk acts continuously on

Tl(E). Thus we obtain the l-adic representation (of Gk)

ρl : Gk → Aut(Tl(E)).

Note that if we choose a Zl-basis of Tl(E), then we have an isomorphism

Aut(Tl(E)) � GL2(Zl).

Let µln be the group of ln-th roots of unity. Since Gk also acts continuously on

Tl(µ) := lim←−µln , we obtain the l-adic cyclotomic character (of Gk)

χl : Gk → Aut(Tl(µ)).

Since the Weil pairing

el : Tl(E)× Tl(E)→ Tl(µ)

is Zl-bilinear, alternating, non-degenerate and Gk-invariant ([28, Proposition 8.3, p.

99]), we easily see that

det ρl = χl (1.2.1)

(cf. [32, Section 9]).

Let E1 and E2 be elliptic curves over k. Using the fact that Homk(E1, E2) is

torsion-free, we can show that the natural homomorphism

Homk(E1, E2)⊗ Zl → Homk(Tl(E1), Tl(E2))

is injective ([28, Theorem 7.4, p. 92]), where Homk(Tl(E1), Tl(E2)) denotes the group

of those elements in Hom(Tl(E1), Tl(E2)) which are defined over k.

Theorem 1.2.1. ([31], [2]) Let E1 and E2 are elliptic curves over k. If k is either

a finite field (Tate) or a number field (Faltings), then the map

Homk(E1, E2)⊗ Zl → Homk(Tl(E1), Tl(E2))

is an isomorphism.
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If E1 and E2 are k-isogenous, then it is easy to find that Tl(E1)⊗Ql � Tl(E2)⊗Ql

as Gk-modules. The converse holds if k is as in Theorem 1.2.1:

Corollary 1.2.2. Let E1 and E2 are elliptic curves over k. If k is either a finite

field or a number field, then the following are equivalent:

(a) E1 and E2 are k-isogenous.

(b) Tl(E1)⊗Ql � Tl(E2)⊗Ql as Gk-modules.

Corollary 1.2.2 follows immediately from Theorem 1.2.1. Note that Theorem

1.2.1 and Corollary 1.2.2 remain valid if we replace “elliptic curves” with “abelian

varieties”. Concerning the image Im ρl of ρl : Gk → Aut(Tl(E)), the following is

known:

Theorem 1.2.3. (Serre [23], [24]) Let E be an elliptic curve over a number field

without complex multiplication. Then Im ρl is of finite index in Aut(Tl(E)) for all

primes l.

1.3 Good reduction

Let K be a number field and R the ring of integers of K. Let v be a finite place of

K. By Kv, Rv, ℘v and kv, we mean the completion of K with respect to v, the ring

of integers of Kv, the maximal ideal of Rv and the residue field of Rv, respectively.

Let E be an elliptic curve over K. Regarding E as being defined over Kv, we denote

by Ẽv the reduction of E modulo ℘v. E is said to have good reduction at v if the

reduced curve Ẽv is non-singular; otherwise, E is said to have bad reduction at v.

If E has good reduction at v, then Ẽv is an elliptic curve over kv.

Theorem 1.3.1. (Shafarevich [28, Theorem 6.1, p. 263]) Let K be a number field.

Let S be a finite set of places of K containing the infinite places. Then the set of

K-isomorphism classes of elliptic curves over K having good reduction at all places

not in S is finite.

Since K-isogenous elliptic curves have the same set of primes of bad reduction

([25, Corollary 2]), Theorem 1.3.1 implies the following corollaries.

Corollary 1.3.2. For an elliptic curve E over a number field K, there exist only

finitely many K-isomorphism classes of elliptic curves over K which are K-isogenous

to E.
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Corollary 1.3.3. (Serre [23, THEOREM, p. IV-9]) Let E be an elliptic curve over

a number field K without complex multiplication over K. Put GK := Gal(K/K).

(a) Tl(E) is an irreducible GK-module for all primes l.

(b) E[l] is an irreducible GK-module for all but finitely many primes l.

Now let us examine the relationship between E(K)tors and Ẽv(kv). Fix a prime

number l. Let ρl : GK → Aut(Tl(E)) be the l-adic representation. For a finite place

v of K, let Fv denote the Frobenius conjugacy class of v. If l is indivisible by ℘v

and E has good reduction at v, then we have

det(1− ρl(Fv)) = N(℘v), (1.3.1)

where N(℘v) := |Ẽv(kv)| (cf. [23, p. IV-5]).

Theorem 1.3.4. (cf. [6, Appendix]) Let E be an elliptic curve over a number field

K and v a finite place of K. Let ev denote the absolute ramification index of ℘v and

pv the prime number divisible by ℘v. If ev < pv − 1, then the reduction map from

E(K)tors to Ẽv(kv) is an injective homomorphism.

This shows that

N(℘v) ≡ 0 mod |E(K)tors| (1.3.2)

for any place v of K at which E has good reduction and for which ev < pv − 1.

Remark 1.3.5. The relation (1.3.2) remains valid if we replace E with any K-

isogenous curve E ′ to E, since E and E ′ have the same primes of good reduction

and the same N(℘v)’s.

1.4 The Mordell-Weil theorem

Theorem 1.4.1 (Mordell-Weil Theorem). Let E be an elliptic curve over a

number field K. Then the group E(K) is finitely generated.

The proof of this theorem consists of two claims: (i) the weak Mordell-Weil

theorem and (ii) the descent.

The claim (i) asserts the following:

Theorem 1.4.2 (Weak Mordell-Weil Theorem). Let E be an elliptic curve

over a number field K. Then the quotient group E(K)/2E(K) is finite.
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This follows from the exact sequence

0→ E(K)/2E(K)→ S(2)(E/K)→X(E/K)[2]→ 0

together with the fact that S(2)(E/K) is finite, where S(2)(E/K) is the 2-Selmer

group of E over K and X(E/K)[2] is the kernel of the multiplication-by-2 map on

the Shafarevich-Tate group X(E/K) of E over K.

As to the claim (ii), the canonical height plays a crucial role.

Theorem 1.4.3. (cf. [28, Theorem 9.3, p. 229]) Let E be an elliptic curve over a

number field K. There exists a real-valued function ĥ on E(K) (called the canonical

height on E) which is a positive semi-definite quadratic form on E(K) with the

following properties:

(a) For P ∈ E(K), ĥ(P ) = 0 if and only if P is a torsion point on E.

(b) For any constant C, the set {P ∈ E(K) ; ĥ(P ) ≤ C} is finite.

By making use of Theorems 1.4.2 and 1.4.3, it is easy to prove the Mordell-Weil

theorem (see, e.g., [30, Section 18]).

1.5 The Uniform Boundedness Conjecture

Let E be an elliptic curve over a number field K. The Mordell-Weil theorem

assures us that the group E(K) is finitely generated; in particular, the torsion

subgroup E(K)tors is finite. As for the l-primary part E(K)(l) of E(K)tors, the

following result of Manin has been known.

Theorem 1.5.1. (Manin [11]) Let K be a number field and l a prime number.

There exists a constant CK,l depending only on K and l such that |E(K)(l)| divides
CK,l for all elliptic curves E over K.

In the case where K = Q or K is a quadratic number field, the possibilities for

E(K)tors are known:

Theorem 1.5.2. (Mazur [13], [14]) Let E be an elliptic curve over Q. Then the

torsion subgroup E(Q)tors is isomorphic to one of the following fifteen groups:

Z/NZ for N = 1, . . . , 10, 12,

Z/2Z⊕ Z/2NZ for N = 1, 2, 3, 4.
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Theorem 1.5.3. (Kamienny [4], see also Kenku and Momose [5] and Silverberg

[27]) Let E be an elliptic curve over a quadratic number field K. Then E(K)tors

is isomorphic to one of the following twenty-six groups:

Z/NZ for N = 1, . . . , 16, 18,

Z/2Z⊕ Z/2NZ for N = 1, . . . , 6,

Z/3Z⊕ Z/3NZ for N = 1, 2,

Z/4Z⊕ Z/4Z.

Over an arbitrary number field, Merel settled the so-called Uniform Boundedness

Conjecture:

Theorem 1.5.4. (Merel [15]) Let E be an elliptic curve over a number field K of

degree d over Q. Then |E(K)tors| is bounded above by a constant depending only on

d.

1.6 Complex multiplication

Let K be an imaginary quadratic field and OK the ring of integers of K (i.e., the

maximal order in K). Denote by hK the class number of K. Then the number of the

isomorphism classes of elliptic curves E over C with End(E) � OK equals hK ([26,

Proposition 4.10]). Let E be an elliptic curve over C with End(E) � OK . For any

field automorphism σ of C, it is clear that End(Eσ) = End(E) and j(Eσ) = j(E)σ.

Hence j(E) is an algebraic number and [Q(j(E)) : Q] ≤ hK . More precisely, we

have

Theorem 1.6.1. (cf. [1], [26] or [29]) Let K be an imaginary quadratic field and

O an order in K. Let E be an elliptic curve over C with complex multiplication by

O. Then the following hold.

(a) The j-invariant j(E) of E is an algebraic integer.

(b) If O = OK is the ring of integers of K, then the field K(j(E)) is the Hilbert

class field of K (i.e., the maximal unramified abelian extension of K) and [Q(j(E)) :

Q] = [K(j(E)) : K] = hK .

Recall that any elliptic curve E over C has a Weierstrass model

E : y2 = x3 + Ax + B,

7



where A,B ∈ C. Given such a model for E, we define the Weber function φE on E

as follows:

φE((x, y)) =


(AB/∆)x if AB �= 0,

(A2/∆)x2 if B = 0,

(B/∆)x3 if A = 0,

where ∆ = −16(4A3 + 27B2) �= 0 is the discriminant. Note that φE is independent

of the choice of Weierstrass model.

Theorem 1.6.2. (cf. [1], [26] or [29]) Let E be an elliptic curve over C with

complex multiplication by the ring of integers OK of the imaginary quadratic field

K. Let φE be the Weber function on E. Then the maximal abelian extension of K

is obtained by adjoining to K the j-invariant j(E) of E and the values φE(P ) for

all torsion points P on E.

8



Chapter 2

Torsion subgroups of elliptic

curves in elementary abelian

2-extensions of Q

Let E be an elliptic curve over Q and F the maximal elementary abelian 2-

extension of Q, that is,

F := Q({√m ; m ∈ Z}).
It is known that the torsion subgroup E(F )tors of E(F ) is finite (Ribet [21]). More

precisely, Laska and Lorenz ([10, Theorem]) showed that there exist at most thirty-

one possibilities for E(F )tors (see also Theorem 2.1.1 below). However, it is not

known whether all the groups listed in Theorem 2.1.1 occur as E(F )tors.

Now assume that E has non-cyclic torsion over Q. Then by Mazur’s theorem

(see Theorem 1.5.2), the group E(Q)tors is isomorphic to Z/2Z ⊕ Z/mZ, where

m = 2, 4, 6 or 8. Such an elliptic curve has a Weierstrass model

E : y2 = x(x + M)(x + N),

where M and N are non-zero integers with M > N . We may assume that the

greatest common divisor (M,N) of M and N is a square-free integer or (M,N) = 1,

since for any positive integer d, E is isomorphic over Q to an elliptic curve Ed2 given

by

Ed2 : y2 = x(x + d2M)(x + d2N),

by replacing x with x/d2 and y with y/d3, respectively. Then by making use of the

result of Ono ([18, Theorem 1], see also Theorem 2.1.2 below), Kwon ([8, Theorem

9



1]) classified the torsion subgroup of E over arbitrary quadratic extension of Q;

Qiu and Zhang ([20, Theorems 3 and 4]) classified the torsion subgroup of E for a

certain elliptic curve E with E(Q)tors � Z/2Z ⊕ Z/2Z over all elementary abelian

2-extensions of Q, that is, over all number fields of type (2, . . . , 2); Ohizumi ([17,

Theorems 4.1 and 4.2]) classified the torsion subgroup of E for an elliptic curve E

with E(Q)tors � Z/2Z⊕ Z/8Z or Z/2Z⊕ Z/6Z over all bicyclic biquadratic fields,

that is, over all number fields of type (2, 2).

In this chapter, first we completely determine the structure of the torsion sub-

group E(F )tors, when E(Q)tors is non-cyclic.

Theorem 1. Let E be an elliptic curve over Q given by E : y2 = x(x+M)(x+N),

where M and N are integers with M > N . Assume that (M,N) is a square-free

integer or (M,N) = 1. Let F := Q({√m ; m ∈ Z}) be the maximal elementary

abelian 2-extension of Q. Then E(F )tors can be classified as follows:

(a) If E(Q)tors � Z/2Z⊕ Z/8Z, then we have E(F )tors � Z/4Z⊕ Z/16Z.

(b) If E(Q)tors � Z/2Z⊕ Z/6Z, then we have E(F )tors � Z/4Z⊕ Z/12Z.

(c) If E(Q)tors � Z/2Z ⊕ Z/4Z, then we have E(F )tors � Z/4Z ⊕ Z/8Z or

Z/8Z ⊕ Z/8Z. Moreover, we may assume that both M and N are squares. Then

E(F )tors � Z/8Z⊕Z/8Z if and only if M −N is a square (this is equivalent to the

condition that E−1(Q)tors � Z/2Z⊕ Z/4Z).

(d) If E(Q)tors � Z/2Z ⊕ Z/2Z, then we have E(F )tors � Z/4Z ⊕ Z/4Z,

Z/4Z ⊕ Z/8Z, Z/8Z ⊕ Z/8Z, Z/4Z ⊕ Z/12Z or Z/4Z ⊕ Z/16Z. Furthermore,

E(F )tors � Z/4Z⊕Z/4Z if and only if ED(Q)tors � Z/2Z⊕Z/2Z for all square-free

integers D. Otherwise, E(F )tors can be determined depending only on the type(s)

of ED(Q)tors (and of E−D(Q)tors when ED(Q)tors � Z/2Z ⊕ Z/4Z) for D with

ED(Q)tors �� Z/2Z⊕ Z/2Z through the isomorphism E � ED over F .

Secondly, by making use of Theorem 1 we classify the torsion subgroup E(K)tors

for all elementary abelian 2-extensions K of Q (Theorem 2 in Section 2.4). This is

a generalization of a result of Kwon ([8, Theorem 1]).

The following notation is in use throughout this chapter. F denotes the maximal

elementary abelian 2-extension of Q. If k is an algebraic extension of Q, then we

denote by Ok the ring of algebraic integers in k. For integers M and N , we denote

by (M,N) the greatest common divisor of M and N . For a square-free integer D,

we define the D-quadratic twist ED of an elliptic curve E : y2 = x(x + M)(x + N)
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over Q by ED : y2 = x(x + DM)(x + DN). Given a Weierstrass model for E, we

often denote by x(P ) the x-coordinate of a point P on E. If A is an abelian group,

then we denote by A[n] the subgroup of A annihilated by n. For a prime number

l and an elliptic curve E over a field k, we denote by E(k)(l) the l-primary part of

E(k)tors. For a field k and an element a in k, we denote by
√

a an element α in the

algebraic closure of k satisfying α2 = a. If a is a positive real number, then we take

the positive one as
√

a and we define
√
− a =

√
− 1
√

a with the imaginary unit√−1 as usual.

2.1 Preliminary results

We begin by stating the result of Laska and Lorenz.

Theorem 2.1.1. ([10, Theorem]) Let E be an elliptic curve over Q. Then the

torsion subgroup E(F )tors is isomorphic to one of the following thirty-one groups:

Z/2a+bZ⊕ Z/2aZ (a = 1, 2, 3 and b = 0, 1, 2, 3),

Z/2a+bZ⊕ Z/2aZ⊕ Z/3Z (a = 1, 2, 3 and b = 0, 1),

Z/2aZ⊕ Z/2aZ⊕ Z/5Z (a = 1, 2, 3),

Z/2aZ⊕ Z/2aZ⊕ Z/3Z⊕ Z/3Z (a = 1, 2, 3)

or {O}, Z/3Z, Z/3Z⊕ Z/3Z, Z/5Z, Z/7Z, Z/9Z, Z/15Z.

As in [8] or [20], the following result of Ono is a basic tool in this chapter.

Theorem 2.1.2. ([18, Theorem 1]) Let E : y2 = x(x + M)(x + N) be an elliptic

curve over Q, where M and N are integers. Assume that (M,N) is a square-free

integer or (M,N) = 1. Then the torsion subgroup E(Q)tors can be classified as

follows:

(i) E(Q) ⊃ Z/2Z⊕ Z/4Z if and only if M and N are both squares, or −M and

−M + N are both squares, or −N and −N + M are both squares.

(ii) E(Q)tors � Z/2Z⊕Z/8Z if and only if M = u4 and N = v4, or −M = u4 and

−M + N = v4, or −N = u4 and −N + M = v4, where u and v are positive

integers with (u, v) = 1 and u2 + v2 = w2 for some integer w.

(iii) E(Q)tors � Z/2Z ⊕ Z/6Z if and only if M = a4 + 2a3b and N = b4 + 2b3a,

where a and b are integers with (a, b) = 1 and a/b �∈ {−2,−1,−1/2, 0, 1}.
(iv) In all other cases, we have E(Q)tors � Z/2Z⊕ Z/2Z.

11



If we write E = E(M,N), then we see that E(M,N) � E(−M,N − M) �
E(−N,M −N) over Q by replacing x with x−M and x−N , respectively. Hence

if E(Q) ⊃ Z/2Z⊕Z/4Z (resp. E(Q)tors � Z/2Z⊕Z/8Z), then we can assume that

M and N are both squares (resp. M = u4 and N = v4) by changing x-coordinates

suitably.

The following lemma is useful for examining whether a point in E over a field k

is divisible by 2 in E(k) (see [3, Theorem 4.1, p. 37] or [7, Theorem 4.2, p. 85], and

their proof).

Lemma 2.1.3. Let k be a field of characteristic not equal to 2 or 3 and E an

elliptic curve over k given by

E : y2 = (x− α)(x− β)(x− γ)

with α, β and γ in k. For P = (x, y) ∈ E(k), there exists a k-rational point Q =

(x′, y′) on E such that [2]Q = P if and only if x−α, x−β and x−γ are all squares

in k. Moreover, if we fix each sign of
√

x− α,
√

x− β and
√

x− γ, then x′ equals

one of the following:

√
x− α

√
x− β ±

√
x− α

√
x− γ ±

√
x− β

√
x− γ + x

or

−
√

x− α
√

x− β ±
√

x− α
√

x− γ ∓
√

x− β
√

x− γ + x,

where the signs are taken simultaneously.

2.2 Squares of algebraic integers in F

Let R := Z[{√m ; m ∈ Z}], which is a subring of OF , the ring of algebraic

integers in F .

Lemma 2.2.1. If a ∈ OF is of degree 2d over Q for some integer d ≥ 0, then we

have 2da ∈ R.

[Proof] We prove this lemma by induction on d. It is obvious that the lemma holds

for d = 0, 1.

Assume that d ≥ 2. Let Kd := Q(a). Then Kd is a number field of type (2, . . . , 2)

of degree 2d over Q. We may write

a =
1

b
(b0 + b1

√
θ1 + · · ·+ bm

√
θm )

12



with some integer m ≥ d, where b0 ∈ Z, b, b1, . . . , bm are non-zero integers and

θ1, . . . , θm are distinct square-free integers. For each i with 1 ≤ i ≤ m, we may

choose a basis
{
1,
√

θi1, . . . ,
√

θid

}
of Kd over Q such that θi1 = θi and

θi2, . . . , θid ∈ {θ1, . . . , θ̌i, . . . , θm}.

We define the subfield K
(i)
d of Kd of degree 2d−1 to be Q

(√
θi1,
√

θi3, . . . ,
√

θid

)
. Let

αi be the sum of the elements in the set{
1

b
b0,

1

b
b1

√
θ1, . . . ,

1

b
bm

√
θm

}
∩K

(i)
d .

Note that the terms (1/b)b0 and (1/b)bi

√
θi appear in the sum αi, since (1/b)b0,

(1/b)bi

√
θi ∈ K

(i)
d . Then we have αi ∈ K

(i)
d and we can write

a = αi + βi

√
θi2

with some βi ∈ K
(i)
d . Let σ be a generator of the Galois group Gal(Kd/K

(i)
d ). Then

we have

2αi = a + aσ ∈ K
(i)
d ∩ OF .

By the assumption of induction, we know that

2dαi = 2d−12αi ∈ R.

Since the terms in the sum 2dαi are linearly independent over Z, each term in 2dαi

is contained in R. In particular, we have

2d 1

b
b0, 2

d 1

b
bi

√
θi ∈ R.

Since this holds for each i with 1 ≤ i ≤ m, we obtain

2da = 2d 1

b
b0 + 2d 1

b
b1

√
θ1 + · · ·+ 2d 1

b
bm

√
θm ∈ R.

This completes the proof of the lemma.

We need the following lemmas in order to verify that a certain element in F is

not a square in F .

Lemma 2.2.2. For a ∈ OF , an odd prime l and an integer i ≥ 0, if li
√

l divides

a2 in OF , then so does li+1.
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[Proof] If li
√

l divides a2 in OF , then we have a/
√

li ∈ OF , since (a/
√

li )2 =

a2/li ∈ OF . By replacing a with a/
√

li, it suffices to prove this lemma for i = 0.

Let F ′ := Q({√m ; m is an integer indivisible by l}). Since Lemma 2.2.1 im-

plies that 2da ∈ R for some integer d ≥ 0, we may write 2da = α + β
√

l with

α, β ∈ R ∩ OF ′. Thus we have

22da2 = (α2 + β2l) + 2αβ
√

l. (2.2.1)

Assume that
√

l divides a2 in OF . The equation (2.2.1) implies that
√

l divides α2

in OF . Lemma 2.2.1 allows us to write

α2 =
1

2e

√
l (γ + δ

√
l)

with γ, δ ∈ R ∩ OF ′ and some integer e ≥ 0. Hence we have 2eα2 = γ
√

l + δl.

However, α2 ∈ OF ′ , together with the linear independence of 1 and
√

l over OF ′ ,

implies that γ = 0. Hence we have 2eα2 = δl. Since(√
2e

√
l

α

)2

= δ ∈ OF ,

we have (
√

2e/
√

l ) α ∈ OF . Therefore, it is easy to see that
√

l divides α in OF . It

follows from the equation (2.2.1) that l divides 22da2 in OF , that is, l divides a2 in

OF .

Remark 2.2.3. When l = 2, Lemma 2.2.2 does not hold in general. For example,

let a = 1 +
√
− 1 +

√
2. Then we have

a2 = 2 + 2
√
− 1 + 2

√
2 (1 +

√
− 1 )

= 2
√

2
1 +
√−1√
2

(1 +
√

2 ).

Since (1 +
√
− 1 )/

√
2 ∈ OF , it is obvious that 2

√
2 divides a2 in OF . Suppose that

4 divides a2 in OF . Then, since

1

4
a2 =

1 +
√−1

2
+

1 +
√−1√
2

,

we must have
1 +
√−1

2
∈ OF ∩Q(

√−1 ) = OQ(
√−1 ),

which contradicts the fact that OQ(
√−1 ) ⊂ R. It follows that a2 is divisible not by

4, but by 2
√

2 in OF .
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Lemma 2.2.4. ([20, Assertion, p. 166]) For any m ∈ Z,
√

m is a square in F if

and only if |m| is a square in Q.

[Proof] Suppose that
√

m is a square in F . Then it is not difficult to see that
√

m

can be expressed as follows:

√
m = c(a + b

√
m)2,

where c ∈ Q and a, b ∈ Z. If m is not a square in Q, then we have a2 + b2m = 0,

that is, m = −(a/b)2. The converse is obvious.

2.3 Proof of Theorem 1

We begin by examining the structure of E(F )(2), when E(Q)tors � Z/2Z⊕Z/8Z.

Proposition 2.3.1. Assume that E(Q)tors � Z/2Z ⊕ Z/8Z. Then we have

E(F )(2) � Z/4Z⊕ Z/16Z.

[Proof] We may assume that M = u4 and N = v4, where u and v are integers with

(u, v) = 1, u > v > 0 and u2 + v2 = w2 for some positive integer w.

First, we show that E(F ) �⊃ Z/8Z ⊕ Z/8Z. Let P = (x, y) ∈ E be a point of

order 4. Then by Lemma 2.1.3, we know that x equals

±u2v2,±u2w
√

u2 − v2 − u4 or ± v2w
√

u2 − v2 − v4.

Suppose that E(F ) ⊃ Z/8Z ⊕ Z/8Z. By Lemma 2.1.3, if x equals any of the

above six values, then x, x + u4 and x + v4 must be squares in F . In particular, if

x = u2w
√

u2 − v2 − u4, then

x + u4 = u2w
√

u2 − v2

must be a square in F . This means that
√

u2 − v2 is a square in F . It follows from

Lemma 2.2.4 that u2 − v2 is a square in Q. Thus we have

u4 − v4 = (u2 + v2)(u2 − v2) = (wn)2,

where n is an integer with u2 − v2 = n2. However, this has no integral solution

except u = v = wn = 0 (see, for example, Ono [19]). Hence x + u4 = u2w
√

u2 − v2

is not a square in F . Therefore, we have E(F ) �⊃ Z/8Z⊕ Z/8Z.
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Secondly, we show that E(F ) �⊃ Z/32Z. Let P3 = (uv(u + v)(v + w), uvw(u +

v)(v + w)(w + u)). Then P3 is a point of order 8 in E(Q) and [4]P3 = (0, 0). By

making use of Lemma 2.1.3, we can find a point P4 = (x4, y4) ∈ E(F ) of order 16

such that [2]P4 = P3 and

x4 =
√

ξ η,

where

η =
√

ξ +
√

η1 +
√

η2 + η3,

ξ = uv(u + w)(v + w), η1 = uw(u + v)(w + v),

η2 = vw(v + u)(w + u), η3 = w(u + v).

Note that ξ, η1, η2, η3 ∈ Z and η ∈ OF . Since u2 + v2 = w2, (u, v) = 1 and η is

symmetric with respect to u and v, we may assume that

u = 2mn, v = m2 − n2, w = m2 + n2,

where m and n are integers with (m, n) = 1, m > n > 0 and m �≡ n (mod 2). Then

we have

√
ξ = 2m(m + n)

√
mn(m2 − n2),

η1 = 4m3n(m2 + n2)(m2 + 2mn− n2),

η2 = (m + n)2(m4 − n4)(m2 + 2mn− n2),

η3 = (m2 + n2)(m2 + 2mn− n2).

We see that none of ξ, η1 and η2 is not a square in Q by making use of (u, v) = 1

and u2 + v2 = w2 (see [8, p. 157]). We need the following lemma.

Lemma 2.3.2. There exists an odd prime l and an integer i ≥ 0 such that x4 is

divisible not by li+1, but by li
√

l in OF .

[Proof of Lemma 2.3.2] Suppose that the square-free part of mn(m2 − n2) is 2.

Then both m + n and m − n are squares and either m = 2(m′)2, n = (n′)2 or

m = (m′)2, n = 2(n′)2 for some integers m′ and n′, since any two of m,n,m+n,m−n

are relatively prime. If m = 2(m′)2 and n = (n′)2, then both 2(m′)2 + (n′)2 and

2(m′)2 − (n′)2 must be squares, which does not occur, since either 2(m′)2 + (n′)2 or

2(m′)2− (n′)2 is congruent with 2 or 3 modulo 4. If m = (m′)2 and n = 2(n′)2, then

both (m′)2 + 2(n′)2 and (m′)2 − 2(n′)2 must be squares, which contradicts the fact
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that 2 is not a congruent number. Hence, there exists an odd prime l which divides

the square-free part of mn(m2 − n2). In order to prove Lemma 2.3.2, it suffices to

show that
√

l does not divide η in OF .

(i) Assume that l divides m. Since l divides η1, it follows from Lemma 2.2.1 that√
l divides η in OF if and only if l divides both η2 and η3 in Z. However, this implies

that l divides n, which contradicts (m, n) = 1. Hence
√

l does not divide η in OF .

(ii) Assume that l divides n. Since l divides η1, we see that
√

l does not divide

η in OF in the same way as (i).

(iii) Assume that l divides m−n. Since l divides η2, it follows from Lemma 2.2.1

that
√

l divides η in OF if and only if l divides both η1 and η3 in Z. Since

η3 = w(u + v) = {(m− n)2 + 2mn}{(m− n)(m + n) + 2mn},

we see that l divides η3 if and only if l divides 2mn. However, since l is odd and

(m, n) = (m− n,m) = (m− n, n) = 1, we know that l does not divide 2mn. Hence√
l does not divide η in OF .

(iv) Assume that l divides m + n. Since l divides η2, we see that
√

l does not

divide η in OF in the same way as (iii).

(i), (ii), (iii) and (iv) imply that
√

l does not divide η in OF . This completes the

proof of the lemma.

Now comparing Lemma 2.2.2 with Lemma 2.3.2, we easily see that x4 is not a

square in OF , that is, in F . It follows from Lemma 2.1.3 that P4 is not in 2E(F ).

By making use of Lemma 2.1.3, we can find a point P ′
4 = (x′

4, y
′
4) ∈ E(F ) of

order 16 such that [2]P ′
4 = P3 + Q1 = P ′

3 and

x′
4 =

√
uv(u + w)(v − w)

{√
uw(u− v)(w − v) +

√
vw(v − u)(w + u)

+
√

uv(u + w)(v − w) + w(u− v)
}
,

where P ′
3 = (uv(u+w)(v−w), uvw(u− v)(v−w)(w +u)) and Q1 = (−u4, 0). Since

x′
4 is obtained by substituting −v into v in x4, it is easy to see that x′

4 is not a square

in F . Hence we know by Lemma 2.1.3 that P ′
4 �∈ 2E(F ). Put Q2 := P ′

4−P4 ∈ E(F ).

Then we have [2]Q2 = P ′
3 − P3 = Q1. Suppose that there exists a point P ∈ E(F )

of order 32. Then we have

[2]P = [a]P4 + [b]Q2

for some integers a ∈ {1, 3, 5, 7, 9, 11, 13, 15} and b ∈ {0, 1, 2, 3}, since E(F ) �⊃
Z/8Z⊕ Z/8Z. Now we define a point Q ∈ 〈P4〉 ⊕ 〈Q2〉 as follows:
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Q :=

− [(a− 1)/2] P4 − [b/2] Q2 if b = 0, 2,

− [(a− 1)/2] P4 − [(b− 1)/2]Q2 if b = 1, 3.

Then we have

[2](P + Q) = P4 or P ′
4.

Since P + Q ∈ E(F ), we must have either P4 ∈ 2E(F ) or P ′
4 ∈ 2E(F ), which is a

contradiction. Therefore, we obtain E(F ) �⊃ Z/32Z.

Now we know that E(F ) ⊃ 〈Q2〉 ⊕ 〈P4〉 � Z/4Z ⊕ Z/16Z. Consequently, we

have E(F )(2) � Z/4Z⊕ Z/16Z.

When E(Q)tors � Z/2Z⊕ Z/6Z, we define E(F )(2′) as follows:

E(F )(2′) :=
⋃

n:odd

{P ∈ E(F ) ; [n]P = O}.

We can easily determine the structure of E(F )(2′) by making use of Theorem 2.1.1

and Theorem 1 (ii) in [8], which implies that E(Q(
√

D )) �⊃ Z/3Z ⊕ Z/3Z for all

square-free integers D.

Proposition 2.3.3. Assume that E(Q)tors � Z/2Z⊕Z/6Z. Then we have E(F )(2′) �
Z/3Z.

[Proof] It suffices to show that E(F ) �⊃ Z/3Z⊕Z/3Z, since Theorem 2.1.1 implies

that E(F ) �⊃ Z/6pZ for any prime p �= 2. Since (M,N) is a square-free integer or

(M,N) = 1, there exist integers a and b with (a, b) = 1 such that M = a4 + 2a3b

and N = b4 + 2b3a by Theorem 2.1.2 (iii). Let P0 = (x0, y0) be a point of order 3 in

E. By the triplication formula, x0 is a root of the equation

3x4 + 4(M + N)x3 + 6MNx2 −M 2N2 = 0.

Since there exists a point P1 = (a2b2, a2b2(a+b)2) ∈ E(Q) of order 3, by making use

of M = a4 + 2a3b and N = b4 + 2b3a we see that the left hand side of this equation

has the following decomposition:

3x4 + 4(M + N)x3 + 6MNx2 −M 2N2

= (x− a2b2){3x3 + (a + 2b)(b + 2a)(2a2 − ab + 2b2)x2

+ a2b2(a + 2b)2(b + 2a)2x + a4b4(a + 2b)2(b + 2a)2}.
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We denote by f(x) the expression in the brace in this decomposition. If E(F ) ⊃
Z/3Z⊕Z/3Z, then f(x) must be decomposed as a product of linear polynomials in

F . Since the Galois group Gal(F/Q) has no element of order 3, there exists α ∈ Q

such that f(α) = 0. Let D be the square-free part of α(α + M)(α + N) and let

β :=
√

α(α + M)(α + N). Then the point P2 = (α, β) is of order 3 in E(Q(
√

D ))

and P1 and P2 generate E[3]. Hence we have E(Q(
√

D )) ⊃ E[3], which contradicts

Theorem 1 (iii) in [8]. Therefore, we have E(F ) �⊃ Z/3Z⊕ Z/3Z.

In order to examine the structure of E(F )(2), we need the following elementary

lemma.

Lemma 2.3.4. Let α, β ∈ Q and let γ be a square-free integer. If α + β
√

γ is a

square in F , then α2 − β2γ is a square in Q.

[Proof] If α + β
√

γ is a square in F , then it can be expressed as follows:

α + β
√

γ = c(a + b
√

γ )2,

where c ∈ Q and a, b ∈ Z. This means that{
c(a2 + b2γ) = α,

2abc = β.

Then we see that 4(a2c)2 − 4α(a2c) + β2γ = 0. Hence we have

a2c =
α±√α2 − β2γ

2
∈ Q.

Therefore, we obtain
√

α2 − β2γ ∈ Q.

Since we have ED(Q)(2) � Z/2Z ⊕ Z/2Z for all square-free integers D by

Theorem 2 (ii) in [8], it suffices to show the following.

Proposition 2.3.5. Assume that E(Q)(2) � Z/2Z ⊕ Z/2Z and ED(Q)(2) �
Z/2Z⊕Z/2Z for all square-free integers D. Then we have E(F )(2) � Z/4Z⊕Z/4Z.

[Proof] By Lemma 2.1.3, the x-coordinate of a point P of order 4 on E equals one

of the following:

±
√

MN, −M ±
√

M(M −N), −N ±
√

N(N −M).

Suppose that E(F ) ⊃ Z/8Z. By Lemma 2.1.3, there exists a point P = (x, y) of

order 4 on E(F ) such that x, x + M and x + N are all squares in F .

19



Suppose that x = ±√MN . By Lemma 2.2.4, |MN | is a square in Q. Hence,

we may assume that M = d2
1D and N = ±d2

2D for some square-free integer D (or

D = 1) and some relatively prime integers d1 and d2. If M = d2
1D and N = d2

2D,

then the D-quadratic twist ED of E is given by

ED : y2 = x{x + (d1D)2}{x + (d2D)2}.

Hence we have ED(Q) ⊃ Z/2Z ⊕ Z/4Z, which contradicts the assumption. There-

fore, assume that M = d2
1D and N = −d2

2D. Then we have

x + M = ±d1d2D
√−1 + d2

1D.

By Lemma 2.3.4, if x+M is a square in F , then we have
√

(d2
1D)2 + (d1d2D)2 ∈ Q,

that is,
√

d2
1 + d2

2 ∈ Q. However, since the D-quadratic twist ED of E = E(M,N)

is isomorphic over Q to an elliptic curve E ′ = ED(−N,M −N) given by

E ′ : y2 = x{x + (d2D)2}{x + (d2
1 + d2

2)D
2},

we must have ED(Q) � E ′(Q) ⊃ Z/2Z⊕Z/4Z by Theorem 2.1.2 (i), which contra-

dicts the assumption.

If x = −M ± √M(M −N) (resp. x = −N ± √N(N −M) ), then we also

arrive at a contradiction by replacing respectively M,N and x with −M,N −M

and x + M (resp. with −N,M −N and x + N) in the above argument. Therefore,

we have E(F ) �⊃ Z/8Z. Since it is clear that E(F ) ⊃ Z/4Z⊕ Z/4Z, we obtain the

proposition.

When E(Q)tors � Z/2Z ⊕ Z/4Z, the structure of E(F )(2) depends on whether

E−1(Q)tors is isomorphic to Z/2Z ⊕ Z/2Z. Note that in this case E−1(Q)tors is

isomorphic to either Z/2Z⊕ Z/2Z or Z/2Z⊕ Z/4Z (see [8, Theorem 2 (iii)]).

Proposition 2.3.6. Assume that E(Q)tors � Z/2Z ⊕ Z/4Z. If E−1(Q)tors �
Z/2Z⊕Z/2Z, then we have E(F )(2) � Z/4Z⊕Z/8Z. Otherwise, we have E(F )(2) �
Z/8Z⊕ Z/8Z.

[Proof] We may assume that M = s2 and N = t2, where s and t are integers with

(s, t) = 1 and s > t > 0. Then we have

E(Q)tors = 〈P2〉 ⊕ 〈Q1〉 � Z/4Z⊕ Z/2Z,
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where P2 = (st, st(s + t)) and Q1 = (−s2, 0). Note that [2]P2 = (0, 0). By Lemma

2.1.3, we see that E(F ) ⊃ Z/4Z ⊕ Z/8Z and that there exist points P3 and Q2 of

order 8 and order 4, respectively, in E(F ) such that [2]P3 = P2, [2]Q2 = Q1 and

x(P3) = st + s
√

t(s + t) + t
√

s(s + t) + (s + t)
√

st,

x(Q2) = −s2 + s
√

s2 − t2.

Now we show that P3 �∈ 2E(F ). Suppose that P3 ∈ 2E(F ). Since

x(P3) =
√

st

{
1√
2
(
√

s +
√

t +
√

s + t )

}2

,

we see that x(P3) is a square in F if and only if
√

st is a square in F . Hence by

Lemma 2.2.4, st is a square in Q. This means that there exist positive integers u

and v such that s = u2 and t = v2 because of (s, t) = 1. Thus we have

x(P3) + M = u2v2 + u2v
√

u2 + v2 + uv2
√

u2 + v2 + (u2 + v2)uv + u4

= u(u + v)
√

u2 + v2(v +
√

u2 + v2 ).

Since (u, v) = 1, we have (v, u2 + v2) = 1. Note that by Theorem 2.1.2 (ii), u2 + v2

is not a square in Q, since E(Q)tors � Z/2Z⊕ Z/4Z. Suppose that the square-free

part of u2 + v2 is 2. If we write u2 + v2 = 2w2 with some integer w > 0, then we

have

x(P3) + M = uw(u + v)(2w + v
√

2 ).

Since x(P3) + M is a square in F , we can express 2w + v
√

2 as follows:

2w + v
√

2 = c(a + b
√

2 )2,

where c ∈ Q and a, b ∈ Z with (a, b) = 1. Then we have c(a2 + 2b2) = 2w

and 2abc = v, which mean that v(a2 + 2b2) = 4abw. Since v is odd because of

u2 + v2 = 2w2, we must have a2 + 2b2 ≡ 0 (mod 4), that is, a ≡ b ≡ 0 (mod 2),

which contradicts the assumption that (a, b) = 1. Therefore, there exists an odd

prime l which divides the square-free part of u2 + v2. However, for such a prime

l,
√

l does not divide v +
√

u2 + v2 in OF because of (v, u2 + v2) = 1 and Lemma

2.2.1. Hence, there exists an integer i such that x(P3) + M is divisible not by li+1,

but by li
√

l in OF , which contradicts Lemma 2.2.2. It follows that x(P3)+M is not

a square in F . Therefore, from Lemma 2.1.3 we obtain P3 �∈ 2E(F ).

Case 1. E−1(Q)tors � Z/2Z⊕ Z/2Z.
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In this case, by Theorem 2 (iii) in [8], s2 − t2 is not a square in Q. Suppose

that E(F ) ⊃ Z/8Z ⊕ Z/8Z, that is, Q2 ∈ 2E(F ). Then by Lemma 2.1.3, x(Q2),

x(Q2)+M and x(Q2)+N are all squares in F . Since x(Q2)+M = s
√

s2 − t2, Lemma

2.2.4 implies that x(Q2) + M is a square in F if and only if s2 − t2 is a square in

Q, which contradicts the assumption. Hence we obtain E(F ) �⊃ Z/8Z⊕ Z/8Z. By

making use of Lemma 2.1.3, we can find a point P ′
3 ∈ E(F ) of order 8 such that

[2]P ′
3 = P2 + Q1 = P ′

2 and

x(P ′
3) = −st + s

√
− t(s− t)− t

√
s(s− t) + (s− t)

√
− st,

where P ′
2 = (−st,−st(s − t)). Since x(P ′

3) is obtained by substituting −t into t in

the expression x(P3), it is easy to see that x(P ′
3) + M is not a square in F . Hence

we know by Lemma 2.1.3 that P ′
3 �∈ 2E(F ). Put Q′

2 := P ′
3 − P3 ∈ E(F ). Then we

have [2]Q′
2 = P ′

2 − P2 = Q1. Suppose that there exists a point P ∈ E(F ) of order

16. Then we have

[2]P = [a]P3 + [b]Q′
2

for some integers a ∈ {1, 3, 5, 7} and b ∈ {0, 1, 2, 3}, since E(F ) �⊃ Z/8Z ⊕ Z/8Z.

Now we define a point Q ∈ 〈P3〉 ⊕ 〈Q′
2〉 as follows:

Q :=

− [(a− 1)/2] P3 − [b/2] Q′
2 if b = 0, 2,

− [(a− 1)/2] P3 − [(b− 1)/2]Q′
2 if b = 1, 3.

Then we have

[2](P + Q) = P3 or P ′
3.

Since P + Q ∈ E(F ), we must have either P3 ∈ 2E(F ) or P ′
3 ∈ 2E(F ), which

is a contradiction. Therefore, we obtain E(F ) �⊃ Z/16Z. Consequently, we have

E(F )(2) � Z/4Z⊕ Z/8Z.

Case 2. E−1(Q)tors � Z/2Z⊕ Z/4Z.

In this case, by Theorem 2 (iii) in [8], s2 − t2 = r2 for some positive integer r.

Then we have x(Q2) = s(r− s). By Lemma 2.1.3, we know that there exists a point

Q3 of order 8 in E(F ) such that [2]Q3 = Q2 and

x(Q3) = s
√

r(r − s) + (s− r)
√
− rs + r

√
s(s− r) + s(r − s).
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Note that E(F ) ⊃ Z/8Z⊕ Z/8Z. Thus we have

x(Q3) + M = s
√

r(r − s) + (s− r)
√
− rs + r

√
s(s− r) + rs

=
√
− rs

{
1√
2
(
√

s−
√
− r +

√
s− r )

}2

.

If r = (r′)2 and s = (s′)2 for some integers r′ and s′, then we must have (s′)4−(r′)4 =

t2, which has no integral solution except s′ = r′ = t = 0. Hence rs is not a square

in Q because of (r, s) = 1. It follows from Lemma 2.2.4 that x(Q3) + M is not a

square in F . Therefore by Lemma 2.1.3, we have Q3 �∈ 2E(F ).

We show that E(F ) �⊃ Z/16Z. By making use of Lemma 2.1.3, we can find a

point R3 ∈ E(F ) of order 8 such that [2]R3 = R2 and

x(R3) =
√

rt
1 +
√−1√
2

{√
r + s +

√
r − s√

2

}2

+ t
√

r

{
1 +
√−1√
2

}2 √
r + s +

√
r − s√

2

+ r
√

t
1 +
√−1√
2

√
r + s +

√
r − s√

2
+ t(r

√−1− t),

where R2 = (t(r
√−1− t), rt(r

√−1− t)) and [2]R2 = (−t2, 0). Then we have

x(R3) + N =
√

rt
1 +
√−1√
2

{√
r + s +

√
r − s√

2
+
√

r

}
×
{√

r + s +
√

r − s√
2

+
√

t
1 +
√−1√
2

}
.

Put

A :=

√
r + s +

√
r − s√

2
+
√

r

and

B :=

√
r + s +

√
r − s√

2
+
√

t
1 +
√−1√
2

.

Note that A,B, x(R3) + N ∈ OF and that both A and B divide x(R3) + N in OF .

Suppose that x(R3) + N is a square in F , that is, a square in OF .

First, suppose that there exists an odd prime l which divides the square-free

part of t. Since r < s,
√

r + s and
√

r − s are linearly independent over Z, and

it is clear that l does not divide (r + s, r − s). Hence by Lemma 2.2.1,
√

l does

not divide
√

r + s +
√

r − s in OF , which means that
√

l does not divide B in OF .

If
√

r + s,
√

r − s and
√

2r are linearly indenpendent over Z, then it is clear that
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√
l does not divide A in OF because of (l, 2r) = 1 and Lemma 2.2.1. Otherwise,

the square-free part of r + s equals that of 2r, which is either 1 or 2, since either

r = 2mn, t = m2− n2, s = m2 + n2 or r = m2− n2, t = 2mn, s = m2 + n2 for some

relatively prime integers m and n. Then the square-free part of r − s is either −1

or −2. Thus A can be expressed as follows:

A = a0 + a1

√
− 1 + a2

√
2 + a3

√
− 2,

where a0, a1, a2 and a3 are integers. Hence by Lemma 2.2.1, there exists an integer i

such that A is divisible not by li
√

l, but by li in OF . Therefore, for some integer e,

x(R3) + N is divisible not by le+1, but by le
√

l in OF . It follows from Lemma 2.2.2

that x(R3)+N is not a square in OF , which contradicts the assumption. Therefore,

we see that either t = (t′)2 or t = 2(t′)2 for some integer t′.

Secondly, suppose that there exists an odd prime p which divides the square-free

part of r. We easily see that
√

p does not divide A in OF in the same way as above.

Since either t = (t′)2 or t = 2(t′)2 and either r = 2mn, t = m2 − n2, s = m2 + n2 or

r = m2 − n2, t = 2mn, s = m2 + n2 for some relatively prime integers m and n, we

can express B as follows:

B = a0 + a1

√
− 1 + a2

√
2 + a3

√
− 2,

where a0, a1, a2 and a3 are integers. Hence by Lemma 2.2.1, there exists an integer i

such that B is divisible not by pi√p, but by pi in OF . Therefore, for some integer e,

x(R3)+N is divisible not by pe+1, but by pe√p in OF . It follows from Lemma 2.2.2

that x(R3)+N is not a square in OF , which contradicts the assumption. Therefore,

we see that either r = (r′)2 or r = 2(r′)2 for some integer r′. Accordingly, there

exist three possibilities for r and t as follows:

(1) r = (r′)2, t = (t′)2;

(2) r = 2(r′)2, t = (t′)2;

(3) r = (r′)2, t = 2(t′)2.

If (1) occurred, then we would have (r′)4 + (t′)4 = s2, which has no integral

solution except r′ = t′ = s = 0. Hence (1) does not occur. If (2) occurred, then

r = 2mn, t = m2 − n2, s = m2 + n2

for some relatively prime integers m and n. Since r = 2(r′)2, there would exist

integers m′ and n′ such that m = (m′)2 and n = (n′)2. Hence (t′)2 = t = (m′)4−(n′)4,
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which has no integral solution except t′ = m′ = n′ = 0. Therefore, (2) does not

occur. By replacing r, r′ and t, t′ with t, t′ and r, r′, respectively, we easily see that

(3) does not occur. Consequently, x(R3)+N is not a square in F . By Lemma 2.1.3,

we see that R3 �∈ 2E(F ).

Now let P4, Q4, R4 be points of order 16 in E respectively such that

[2]P4 = P3, [2]Q4 = Q3, [2]R4 = R3,

and put

P := {P4 + P ; P ∈ E[8]},
Q := {Q4 + P ; P ∈ E[8]},
R := {R4 + P ; P ∈ E[8]}.

Then it is obvious that

E[16] = E[8] � P �Q �R.

Since P4, Q4, R4 can not be in E(F ), we obtain E(F ) �⊃ Z/16Z. It follows that

E(F )(2) � Z/8Z⊕ Z/8Z. This completes the proof of Proposition 2.3.6.

In order to prove Theorem 1, we need one more proposition due to Qiu and

Zhang.

Proposition 2.3.7. ([20, Theorem 2 and Remark 2]) Let E be an elliptic curve

over Q. Assume that E(Q)tors = E(Q)(2) and ED(Q)tors = ED(Q)(2) for all square-

free integers D. Then we have E(F )tors = E(F )(2).

Remark 2.3.8. Although Theorem 2 and Remark 2 in [20] are expressed in terms

of a number field K of type (2, . . . , 2) instead of F , it is clear that they are also

valid for F .

Now all we have to do is put the propositions together.

[Proof of Theorem 1] Since if E(Q)tors � Z/2Z⊕Z/8Z or Z/2Z⊕Z/4Z, then we

have ED(Q)tors = ED(Q)(2) for all square-free integers D ([8, Theorem 2]), (a) follows

from Propositions 2.3.1 and 2.3.7, and (c) follows from Propositions 2.3.6 and 2.3.7

(note that by Theorem 2 (iii) in [8], M −N is a square if and only if E−1(Q)tors �
Z/2Z⊕Z/4Z). We obtain (b) just by combining Propositions 2.3.5 and 2.3.3. As for

(d), if ED(Q)tors � Z/2Z⊕Z/2Z for all D, then we obtain E(F )tors � Z/4Z⊕Z/4Z

from Propositions 2.3.5 and 2.3.7; if ED(Q)tors � Z/2Z⊕Z/8Z (resp. Z/2Z⊕Z/6Z)
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for some D, then we know from (a) (resp. (b)) that E(F )tors � Z/4Z⊕Z/16Z (resp.

Z/4Z⊕Z/12Z), since E is isomorphic to ED over F for all square-free integers D; if

ED(Q)tors � Z/2Z⊕Z/4Z and E−D(Q)tors � Z/2Z⊕Z/2Z (resp. Z/2Z⊕Z/4Z) for

some D, then we know from (c) that E(F )tors � Z/4Z⊕Z/8Z (resp. Z/8Z⊕Z/8Z),

since E � ED over F . This completes the proof of Theorem 1.

2.4 Theorem 2: A result in number fields of type

(2, . . . , 2)

Let E : y2 = x(x + M)(x + N) be an elliptic curve over Q, where M and N are

integers with M > N such that (M,N) is a square-free integer or (M,N) = 1. Let

K be a number field of type (2, . . . , 2). It is not difficult to determine the structure

of E(K)tors because of Theorem 1.

Case 1. E(Q)tors � Z/2Z⊕ Z/8Z.

We may assume that M = u4 and N = v4, where u and v are integers with

(u, v) = 1, u > v > 0 and u2 + v2 = w2 for some positive integer w.

(I) By Lemma 2.1.3, E(K) ⊃ Z/4Z⊕Z/8Z if and only if
√
− 1,
√

u4 − v4 ∈ K.

Since u4− v4 = w2(u2− v2), we see that
√

u4 − v4 ∈ K if and only if
√

u2 − v2 ∈ K.

Therefore, E(K) ⊃ Z/4Z⊕ Z/8Z if and only if
√
− 1,
√

u2 − v2 ∈ K.

(II) We give a necessary and sufficient condition on which E(K)tors � Z/2Z⊕
Z/16Z. Let P3 = (uv(u + w)(v + w), uvw(u + v)(v + w)(w + u)) ∈ E(Q) and

P ′
3 = P3 + Q1 ∈ E(Q), where Q1 = (−u4, 0). Then P3 and P ′

3 are of order 8 and

x(P ′
3) = uv(u + w)(v − w). Assume that E(K)tors � Z/2Z ⊕ Z/16Z. Then it is

easy to see that either P3 or P ′
3 is contained in 2E(K). By Lemma 2.1.3, this is

equivalent to the condition that either
√

uv(u + w)(v + w),
√

uw(u + v)(w + v) ∈
K or

√
uv(u + w)(v − w),

√
uw(u− v)(w − v) ∈ K. On account of (I), we obtain

the following:

E(K)tors � Z/2Z⊕ Z/16Z if and only if either
√−1 �∈ K or

√
u2 − v2 �∈ K

and either
√

uv(u + w)(v + w),
√

uw(u + v)(w + v) ∈ K

or
√

uv(u + w)(v − w),
√

uw(u− v)(w − v) ∈ K.

(III) Assume that E(K)tors � Z/4Z ⊕ Z/16Z. By Theorem 1 (a), there exists

a point P4 ∈ E(F ) of order 16 such that [2]P4 = P3. Let P ′′
3 := P3 + Q2, where
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Q2 is a point of order 4 in E(K) such that [2]Q2 = Q1 = (−u4, 0). Suppose that

P4 �∈ E(K). Then it is not difficult to see that there exists a point P ′′
4 ∈ E(K)

(of order 16) such that [2]P ′′
4 = P ′′

3 . However, since [2](P ′′
4 − P4) = P ′′

3 − P3 = Q2,

we have Q2 ∈ 2E(F ). Hence we have E(F ) ⊃ Z/8Z ⊕ Z/8Z, which contradicts

Theorem 1 (a). Therefore, we must have P4 ∈ E(K). On account of (I) and (II),

we obtain the following:

E(K)tors � Z/4Z⊕ Z/16Z if and only if
√
− 1,

√
u2 − v2,

√
uv(u + w)(v + w),

√
uw(u + v)(w + v) ∈ K.

(IV) In all other cases, we obtain E(K)tors � Z/2Z⊕Z/8Z from Theorem 1 (a).

Case 2. E(Q)tors � Z/2Z⊕ Z/6Z.

By Theorem 1 (b), we may pay attention only to the 2-primary part of E(K)tors.

(I) By Lemma 2.1.3, E(K) ⊃ Z/4Z⊕Z/6Z if and only if
√

M,
√

N ∈ K,
√−M,√−M + N ∈ K or

√−N,
√−N + M ∈ K.

(II) By Lemma 2.1.3 and Theorem 1 (b), E(K)tors � Z/4Z⊕Z/12Z if and only

if
√
− 1,
√

M,
√

N,
√

M −N ∈ K.

(III) In all other cases, we obtain E(K)tors � Z/2Z ⊕ Z/6Z from Theorem 1

(b).

Case 3. E(Q)tors � Z/2Z⊕ Z/4Z.

We may assume that M = s2 and N = t2, where s and t are integers with

(s, t) = 1 and s > t > 0. Put r :=
√

s2 − t2.

(I) By Lemma 2.1.3, E(K) ⊃ Z/4Z⊕Z/4Z if and only if
√
− s2, r

√
− 1 ∈ K,

namely,
√−1, r ∈ K.

(II) Assume that E(K) �⊃ Z/4Z ⊕ Z/4Z. Let P1 = (0, 0), Q1 = (−s2, 0),

P2 = (st, st(s + t)) and P ′
2 = (−st, st(t − s)), where [2]P2 = P1 and P2 + Q1 = P ′

2.

Then E(K) ⊃ Z/8Z if and only if either P2 ∈ 2E(K) or P ′
2 ∈ 2E(K). By Lemma

2.1.3, this is equivalent to the condition that either
√

st,
√

s(s + t),
√

t(s + t) ∈
K or

√
− st,

√
s(s− t),

√
t(t− s) ∈ K, that is, either

√
st,
√

s(s + t) ∈ K or√
− st,

√
s(s− t) ∈ K. On account of (I), we obtain the following:

E(K)tors � Z/2Z⊕ Z/8Z if and only if either
√
− 1 �∈ K or r �∈ K

and either
√

st,
√

s(s + t) ∈ K or
√
− st,

√
s(s− t) ∈ K.

(III) We give a necessary and sufficient condition on which E(K) ⊃ Z/4Z⊕Z/8Z.

Assume that E(K) ⊃ Z/4Z⊕ Z/4Z.
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Let P2 = (st, st(s + t)), Q2 = (s(r − s), rs(r − s)
√−1 ) and R2 = (t(r

√−1 −
t), rt(r

√−1 − t)), where [2]P2 = P1 = (0, 0), [2]Q2 = Q1 = (−s2, 0) and [2]R2 =

R1 = (−t2, 0). Then it is obvious that E(K) ⊃ Z/8Z if and only if P2, Q2 or R2 is

contained in 2E(K). By Lemma 2.1.3, this is equivalent to the condition that

√
st,
√

s(s + t),
√

t(s + t) ∈ K,
√

s(r − s),
√

rs,
√

r(−r + s) ∈ K

or

√
t(−t + r

√−1 ),

√
r(r + t

√−1 ),

√
rt
√−1 ∈ K.

Since √
r(r + t

√−1 ) = ±
√

2r

2

(√
r + s +

√
r − s

)
,√

rt
√−1 = ±

√
2rt

2
(1 +

√−1 )

and t(−t + r
√−1 ) =

1

r2

{
r(r + t

√−1 )
}{

rt
√−1

}
,

the third condition can be replaced with the condition that

√
2rt,
√

2r(r + s),
√

2r(r − s) ∈ K

(note that
√−1 ∈ K because of the assumption that E(K) ⊃ Z/4Z ⊕ Z/4Z).

Furthermore, since √
2r(r − s) =

2rt
√−1√

2r(r + s)
,

we see that
√

2r(r − s) ∈ K if and only if
√

2r(r + s) ∈ K. Similarly, we see

that
√

s(r − s) ∈ K if and only if
√

s(r + s) ∈ K. Hence, E(K) ⊃ Z/8Z if and

only if
√

st,
√

s(s + t) ∈ K,
√

rs,
√

s(r + s) ∈ K or
√

2rt,
√

2r(r + s) ∈ K (on the

assumption that E(K) ⊃ Z/4Z⊕Z/4Z). On account of (I), we obtain the following:

E(K) ⊃ Z/4Z⊕ Z/8Z if and only if
√−1, r ∈ K and

√
st,
√

s(s + t) ∈ K,
√

rs,
√

s(r + s) ∈ K or
√

2rt,
√

2r(r + s) ∈ K.

(IV) We easily see that E(K)tors � Z/8Z⊕ Z/8Z if and only if

√
− 1, r,

√
st,
√

s(s + t),
√

rs,
√

s(r + s),
√

2rt,
√

2r(r + s) ∈ K,

that is, √
− 1, r,

√
rs,
√

st,
√

s(r + s),
√

s(s + t) ∈ K.
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Note that this case occurs only if r ∈ Q.

(V) In all other cases, we obtain E(K)tors � Z/2Z⊕Z/4Z from Theorem 1 (c).

Case 4. E(Q)tors � Z/2Z⊕ Z/2Z.

If ED(Q)tors � Z/2Z⊕Z/8Z (resp. Z/2Z⊕Z/6Z, Z/2Z⊕Z/4Z) and
√

D ∈ K

for some square-free integer D, then we may consider ourselves to be in Case 1 (resp.

Case 2, Case 3) through the isomorphism E � ED over F . Hence, in the case where

ED(Q)tors � Z/2Z⊕Z/8Z, Z/2Z⊕Z/6Z or Z/2Z⊕Z/4Z for some D, assume that√
D �∈ K; in the case where ED(Q)tors � E−D(Q)tors � Z/2Z ⊕ Z/4Z for some D,

assume that
√

D �∈ K and
√−D �∈ K.

Case 4.1. ED(Q)tors � Z/2Z⊕ Z/8Z for some square-free integer D.

We may assume that M = D(u′)4 and N = D(v′)4, where u′ and v′ are positive

integers with (u′, v′) = 1 such that (u′)2 + (v′)2 is a square. By Lemma 2.1.3, it is

clear that E(K) �⊃ Z/4Z⊕ Z/4Z because of
√

D �∈ K.

(I) By Lemma 2.1.3, E(K) ⊃ Z/2Z⊕ Z/4Z if and only if either
√−D,√−D{(u′)4 − (v′)4} ∈ K or

√
−D,

√
−D{(v′)4 − (u′)4} ∈ K, that is,

√−D ∈ K

and either
√

(u′)2 − (v′)2 ∈ K or
√

(v′)2 − (u′)2 ∈ K. Suppose that E(K) ⊃
Z/2Z ⊕ Z/8Z. Then, since P1 = (0, 0) �∈ 2E(K), either Q1 = (−D(u′)4, 0) or

R1 = (−D(v′)4, 0) is contained in 4E(K). Hence P1 ∈ 4E(F ) implies that E(F ) ⊃
Z/8Z⊕Z/8Z, which contradicts Theorem 1 (a). Therefore, we obtain the following:

E(K)tors � Z/2Z⊕ Z/4Z if and only if
√−D ∈ K and either

√
(u′)2 − (v′)2 ∈ K or

√
(v′)2 − (u′)2 ∈ K.

(II) In all other cases, we obtain E(K)tors � Z/2Z⊕ Z/2Z.

Case 4.2. ED(Q)tors � Z/2Z⊕ Z/4Z for some square-free integer D.

We may assume that M = D(s′)2 and N = D(t′)2, where s′ and t′ are positive

integers with (s′, t′) = 1. By Lemma 2.1.3, it is clear that E(K) �⊃ Z/4Z ⊕ Z/4Z

because of
√

D �∈ K.

(I) By Lemma 2.1.3, E(K) ⊃ Z/2Z⊕ Z/4Z if and only if either
√−D,√−D{(s′)2 − (t′)2} ∈ K or

√
−D,

√
−D{(t′)2 − (s′)2} ∈ K, that is,

√−D ∈ K

and either
√

(s′)2 − (t′)2 ∈ K or
√

(t′)2 − (s′)2 ∈ K. Suppose that E(K)tors �
Z/2Z ⊕ Z/8Z. Then, since P1 = (0, 0) �∈ 2E(K), either Q1 = (−D(s′)2, 0) or

R1 = (−D(t′)2, 0) is contained in 4E(K). Hence P1 ∈ 4E(F ) implies that E(F ) ⊃
Z/8Z ⊕ Z/8Z. It follows from Theorem 1 (c) that E−D(Q)tors � Z/2Z ⊕ Z/4Z.
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Hence by assumption we have
√−D �∈ K, which contradicts the assumption that

E(K)tors � Z/2Z⊕ Z/8Z ⊃ Z/2Z⊕ Z/4Z. Therefore, we obtain the following:

E(K)tors � Z/2Z⊕ Z/4Z if and only if
√−D ∈ K and either

√
(s′)2 − (t′)2 ∈ K or

√
(t′)2 − (s′)2 ∈ K.

(II) In all other cases, we obtain E(K)tors � Z/2Z⊕ Z/2Z.

Case 4.3. ED(Q)tors � Z/2Z⊕ Z/2Z or Z/2Z⊕ Z/6Z for all square-free integers

D.

Assume that ED(Q)tors � Z/2Z⊕Z/6Z for some D. Then by Theorem 1 (b) we

know that E(F )(2′) � ED(F )(2′) � Z/3Z, and by Theorem 2.1.2 (iii) we know that

the points of order 3 in E(F ) can be written as ( Da2b2,±D
√

Da2b2(a + b)2 ) with

some integers a and b. It follows from
√

D �∈ K that E(K)(2′) = {O}. Therefore,

this case can be treated just as the case where ED(Q)tors � Z/2Z ⊕ Z/2Z for all

square-free integers D. Thus from Lemma 2.1.3, we easily obtain the following:

(I) E(K) ⊃ Z/2Z⊕Z/4Z if and only if
√

M,
√

N ∈ K,
√
−M,

√
−M + N ∈ K

or
√
−N,

√
−N + M ∈ K.

(II) E(K)tors � Z/4Z⊕ Z/4Z if and only if
√
− 1,
√

M,
√

N,
√

M −N ∈ K.

(III) In all other cases, we obtain E(K)tors � Z/2Z⊕ Z/2Z.

To sum up, we obtain the following.

Theorem 2. Let E be an elliptic curve over Q given by y2 = x(x + M)(x + N),

where M and N are integers with M > N . Assume that (M,N) is a square-free

integer or (M,N) = 1. Let K be a number field of type (2, . . . , 2). Then E(K)tors

can be classified as follows:

Case 1. E(Q)tors � Z/2Z⊕ Z/8Z.

We may assume that M = u4 and N = v4, where u and v are integers with

(u, v) = 1, u > v > 0 and u2 + v2 = w2 for some positive integer w.

(I) E(K) ⊃ Z/4Z⊕ Z/8Z if and only if
√
− 1,
√

u2 − v2 ∈ K.

(II) E(K)tors � Z/2Z⊕Z/16Z if and only if either
√−1 �∈ K or

√
u2 − v2 �∈ K and

either
√

uv(u + w)(v + w),
√

uw(u + v)(w + v) ∈ K or
√

uv(u + w)(v − w),√
uw(u− v)(w − v) ∈ K.

(III) E(K)tors � Z/4Z⊕Z/16Z if and only if
√
− 1,
√

u2 − v2,
√

uv(u + w)(v + w),√
uw(u + v)(w + v) ∈ K.
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(IV) In all other cases, E(K)tors � Z/2Z⊕ Z/8Z.

Case 2. E(Q)tors � Z/2Z⊕ Z/6Z.

(I) E(K) ⊃ Z/4Z⊕ Z/6Z if and only if one of the following conditions holds:

(i)
√

M,
√

N ∈ K,

(ii)
√−M,

√−M + N ∈ K,

(iii)
√−N,

√−N + M ∈ K.

(II) E(K)tors � Z/4Z⊕ Z/12Z if and only if
√
− 1,
√

M,
√

N,
√

M −N ∈ K.

(III) In all other cases, E(K)tors � Z/2Z⊕ Z/6Z.

Case 3. E(Q)tors � Z/2Z⊕ Z/4Z.

We may assume that M = s2 and N = t2, where s and t are integers with

(s, t) = 1 and s > t > 0. Put r :=
√

s2 − t2.

(I) E(K) ⊃ Z/4Z⊕ Z/4Z if and only if
√−1, r ∈ K.

(II) E(K)tors � Z/2Z⊕ Z/8Z if and only if either
√−1 �∈ K or r �∈ K and either√

st,
√

s(s + t) ∈ K or
√
− st,

√
s(s− t) ∈ K.

(III) E(K) ⊃ Z/4Z ⊕ Z/8Z if and only if
√−1, r ∈ K and one of the following

conditions holds:

(i)
√

st,
√

s(s + t) ∈ K,

(ii)
√

rs,
√

s(r + s) ∈ K,

(iii)
√

2rt,
√

2r(r + s) ∈ K.

(IV) E(K)tors � Z/8Z⊕Z/8Z if and only if
√
− 1, r,

√
rs,
√

st,
√

s(r + s),
√

s(s + t)

∈ K.

Note that this case occurs only if r ∈ Q.

(V) In all other cases, E(K)tors � Z/2Z⊕ Z/4Z.

Case 4. E(Q)tors � Z/2Z⊕ Z/2Z.

If ED(Q)tors � Z/2Z⊕Z/8Z (resp. Z/2Z⊕Z/6Z, Z/2Z⊕Z/4Z) and
√

D ∈ K

for some square-free integer D, then we may consider ourselves to be in Case 1

(resp. Case 2, Case 3) through the isomorphism E � ED over F . Hence, in the case

where ED(Q)tors �� Z/2Z ⊕ Z/2Z for some D, assume that
√

D �∈ K (in the case

where ED(Q)tors � E−D(Q)tors � Z/2Z⊕ Z/4Z for some D, assume that
√

D �∈ K

and
√−D �∈ K).

Case 4.1. ED(Q)tors � Z/2Z⊕ Z/8Z for some square-free integer D.

We may assume that M = D(u′)4 and N = D(v′)4, where u′ and v′ are positive

integers with (u′, v′) = 1 such that (u′)2 + (v′)2 is a square.
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(I) E(K)tors � Z/2Z⊕Z/4Z if and only if
√−D ∈ K and either

√
(u′)2 − (v′)2 ∈

K or
√

(v′)2 − (u′)2 ∈ K.

(II) In all other cases, E(K)tors � Z/2Z⊕ Z/2Z.

Case 4.2. ED(Q)tors � Z/2Z⊕ Z/4Z for some square-free integer D.

We may assume that M = D(s′)2 and N = D(t′)2, where s′ and t′ are positive

integers with (s′, t′) = 1.

(I) E(K)tors � Z/2Z⊕Z/4Z if and only if
√−D ∈ K and either

√
(s′)2 − (t′)2 ∈

K or
√

(t′)2 − (s′)2 ∈ K.

(II) In all other cases, E(K)tors � Z/2Z⊕ Z/2Z.

Case 4.3. ED(Q)tors � Z/2Z ⊕ Z/2Z or Z/2Z ⊕ Z/6Z for all square-free integers

D.

(I) E(K) ⊃ Z/2Z⊕ Z/4Z if and only if one of the following conditions holds:

(i)
√

M,
√

N ∈ K,

(ii)
√
−M,

√
−M + N ∈ K,

(iii)
√
−N,

√
−N + M ∈ K.

(II) E(K)tors � Z/4Z⊕ Z/4Z if and only if
√
− 1,
√

M,
√

N,
√

M −N ∈ K.

(III) In all other cases, E(K)tors � Z/2Z⊕ Z/2Z.

Remark 2.4.1. The result of Qiu and Zhang ([20, Theorem 4]) is a part of Case

4.3 in Theorem 2. In fact, in Theorem 4 in [20], they classified E(K)tors on the

assumption that

M and N are square-free integers, not equal to ±1, with (M,N) = 1,

which implies that E(Q)tors � Z/2Z⊕Z/2Z and ED(Q)tors � Z/2Z⊕Z/2Z for all

square-free integers D ([20, Lemma 2]).

Let G be one of those groups which appear in Theorem 2. Let 2d denote the

minimal degree over Q of those number fields K of type (2, . . . , 2) for which there

exists an elliptic curve E over Q such that E(K)tors � G. Close examination of each

condition given in Theorem 2 showed the following:

• If G � Z/4Z⊕ Z/16Z, then we have d = 4.

• If G � Z/4Z⊕ Z/12Z, then we have d = 3.
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• If G � Z/8Z⊕ Z/8Z, then we have d = 4.

• In all other cases, we have d ≤ 2.

In particular, it is easy to see that Theorem 2 and the above imply Theorem 3 in

[20] and Theorems 4.1 and 4.2 in [17], which are stated for d = 2.
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Chapter 3

Maximal l-torsion of elliptic

curves in isogeny classes

Let K be a number field. Merel proved the Uniform Boundedness Conjecture,

which asserts that there exists a constant B, depending only on the degree of K over

Q, such that for any elliptic curve E over K the order |E(K)tors| of the torsion sub-

group of E(K) is less than B (see Theorem 1.5.4). Before that, Ross ([22, Theorem

1]) gave an upper bound for minE′∈C(E) |E′(K)tors| assuming EndK(E) � Z, where

C(E) denotes the K-isogeny class of E. More precisely, he showed that there exists

a constant C, divisible only by those primes dividing the number w(K) of roots of

unity in K, such that for any elliptic curve E over K with EndK(E) � Z there

exists an elliptic curve E ′ in C(E) such that |E′(K)tors| divides C (see also Naka-

mura [16, Theorem 1]). On the other hand, Katz ([6, Theorem 1(bis)]) described

maxE′∈C(E) |E′(K)tors| (without the extra assumption) in terms of the reduction Ẽ℘

of E modulo each prime ℘ of K, although his description depends on the K-isogeny

class under consideration.

Fix a prime number l. In this chapter, we give a necessary and sufficient condition

for the order of the l-primary part E(K)(l) of E(K)tors being maximal in C(E).

Theorem 3. Let K be a number field, E an elliptic curve over K and l a prime

number. Then we have |E(K)(l)| = maxE′∈C(E) |E′(K)(l)| if and only if for any K-

isogeny f of degree l from E to an elliptic curve E ′ over K, we have |E(K)(l)| ≥
|E′(K)(l)|.

Note that for any K-isogeny f : E → E ′ of degree l, we have

|E′(K)tors| = 1

l
|E(K)tors|, |E(K)tors| or l|E(K)tors|
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and that E has at most l + 1 K-isogenies of degree l up to K-isomorphisms. It

is also to be noted that even if we have |E(K)(l)| ≤ |E′(K)(l)| for any K-isogeny

f : E → E ′ of degree l, |E(K)(l)| does not necessarily equal minE′∈C(E) |E′(K)(l)| in
general (see Example 3.2.5).

Theorem 3 allows us to find lM := maxE′∈C(E) |E′(K)(l)| by composing K-

isogenies of degree l because of the finiteness of K-isomorphism classes of elliptic

curves in C(E). Before making use of Theorem 3, it is often a shorter way to find

lM that one checks conditions (sufficient for |E(K)(l)| being maximal in C(E)) given

in Proposition 3.1.6. We also make use of Proposition 3.1.6 in order to prove Theo-

rem 3. Furthermore, we show that Proposition 3.1.6 and Theorem 3 imply several

properties concerning the torsion of elliptic curves in their K-isogeny classes (see

Corollaries 3.1.8, 3.1.10, 3.1.11, 3.1.12 and 3.2.3).

We now fix notation. Let K be a number field and K the algebraic closure of K.

Denote by GK the Galois group Gal(K/K) of K over K. Let E be an elliptic curve

over K. Fix a prime number l. Denote by E(K)(l) the l-primary part of E(K)tors

and by Tl(E) the l-adic Tate module of E. Denote also by wl(K) the number

of l-power-th roots of unity in K and let n be an integer such that ln = wl(K).

Furthermore, let C(E) be the K-isogeny class of E, and let M and m be integers

such that lM = maxE′∈C(E) |E′(K)(l)| and lm = minE′∈C(E) |E′(K)(l)|, respectively.

3.1 Sufficient conditions for E having maximal l-

torsion

In this section, we give some sufficient conditions for |E(K)(l)| = lM . Note that

the section is also in a preparatory step of the proof of Theorem 3.

Throughout the section, we assume that E(K)(l) � Z/lsZ ⊕ Z/ltZ for some

integers s ≥ t ≥ 0. For all integers i > 0, we identify Tl(E)/liTl(E) with E[li]. Now

choose a basis {x, y} for Tl(E) such that x mod ls, y mod lt ∈ E(K); if t = 0 (resp.

s = 0), then take y (resp. x) arbitrarily as long as {x, y} is a basis for Tl(E). Let ρl

be the l-adic representation attached to {x, y}. Then we have

ρl(GK) ⊂
(

1 + lsZl ltZl

lsZl 1 + ltZl

)
.
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For σ ∈ GK , we put

ρl(σ) :=

(
1 + lsaσ ltbσ

lscσ 1 + ltdσ

)
with aσ, bσ, cσ and dσ in Zl. It occurs neither that aσ ≡ cσ ≡ 0 (mod l) for all

σ ∈ GK nor that bσ ≡ dσ ≡ 0 (mod l) for all σ ∈ GK , since E(K)(l) � Z/lsZ⊕Z/ltZ.

On account of the Tchebotarev density theorem ([9, Theorem 10, p. 169]), the

equations (1.3.1), (1.3.2) and Remark 1.3.5 in Chapter 1 imply that

det(1− ρl(σ)) ≡ 0 (mod lM ) for all σ ∈ GK (3.1.1)

(see [6, Introduction]). We separate the possibilities of ρl into four cases.

Case 1. Either aσ ≡ bσ ≡ 0 (mod l) for all σ ∈ GK or cσ ≡ dσ ≡ 0 (mod l) for all

σ ∈ GK .

In this case, it is obvious from the fact (3.1.1) that s + t < M . More precisely, if

cσ ≡ dσ ≡ 0 (mod l) for all σ ∈ GK , put E1 := E/〈x mod l〉. Then there exists a

K-isogeny f1 : E → E1 of degree l and |E1(K)(l)| = ls+t+1. Similarly, if aσ ≡ bσ ≡ 0

(mod l) for all σ ∈ GK , put E2 := E/〈y mod l〉. Then there exists a K-isogeny

f2 : E → E2 of degree l and |E2(K)(l)| = ls+t+1.

Case 2. Either aσ ≡ 0 (mod l) for all σ ∈ GK or dσ ≡ 0 (mod l) for all σ ∈ GK ,

and there exist τ, τ ′ ∈ GK such that bτ , cτ ′ ∈ Z×
l .

Lemma 3.1.1. In Case 2, we have s + t = M .

[Proof] Suppose that s + t < M . Then the fact (3.1.1) implies that

aτdτ − bτcτ ≡ aτ ′dτ ′ − bτ ′cτ ′ ≡ 0 (mod lM−(s+t)). (3.1.2)

If either cτ ∈ Z×
l or bτ ′ ∈ Z×

l , then the equation (3.1.2) would not hold. Thus we

may assume that cτ ≡ bτ ′ ≡ 0 (mod l). Now we have

ρl(ττ ′) =(
1 + ls(aτ + aτ ′ + ltbτcτ ′ + lsaτaτ ′) lt(bτ + bτ ′ + ltbτdτ ′ + lsaτbτ ′)

ls(cτ + cτ ′ + ltdτcτ ′ + lscτaτ ′) 1 + lt(dτ + dτ ′ + ltdτdτ ′ + lscτbτ ′)

)
.

If t > 0, then we have

det(1− ρl(ττ ′)) ≡ −ls+tbτcτ ′ (mod ls+t+1),
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since (aτ + aτ ′)(dτ + dτ ′) ≡ cτ ≡ bτ ′ ≡ 0 (mod l) by assumption. Hence bτ , cτ ′ ∈ Z×
l

implies that

det(1− ρl(ττ ′)) �≡ 0 (mod ls+t+1),

which contradicts the fact (3.1.1) and the assumption s + t < M . Therefore s + t =

M . If t = 0, then by assumption we have

det(1− ρl(ττ ′)) ≡ ls{bτcτ ′(dτ + dτ ′ + dτdτ ′)− bτcτ ′(1 + dτ )(1 + dτ ′)}
= −lsbτcτ ′ �≡ 0 (mod ls+1),

which contradicts the fact (3.1.1) and the assumption s = s + t < M . Therefore

s + t = M . This completes the proof of the lemma.

Case 3. Either bσ ≡ 0 (mod l) for all σ ∈ GK or cσ ≡ 0 (mod l) for all σ ∈ GK ,

and there exist τ, τ ′ ∈ GK such that aτ , dτ ′ ∈ Z×
l .

Lemma 3.1.2. In Case 3 we have s + t = M .

We omit the proof, since we can prove this lemma in a fashion similar to the

proof of Lemma 3.1.1.

Case 4. There exist τ1, τ2, τ3, τ4 ∈ GK such that aτ1 , bτ2, cτ3 , dτ4 ∈ Z×
l .

We examine this case more precisely.

(i) s < n.

In this case, we have s = t and for all σ ∈ GK

aσ + dσ + ls(aσdσ − bσcσ) ≡ 0 (mod ln−s), (3.1.3)

since det ρl(σ) ≡ 1 (mod ln) for all σ ∈ GK (see the equation (1.2.1)).

Lemma 3.1.3. In the case (i) of Case 4, we have s + t = M .

[Proof] Suppose that there exists an elliptic curve E ′ ∈ C(E) such that E ′(K)(l) �
Z/lvZ⊕ Z/lwZ, where v and w are integers with v + w = M > s + t = 2s and v ≥
w ≥ 0. Choose a basis {x′, y′} for Tl(E

′) such that x′ mod lv, y′ mod lw ∈ E ′(K);

if w = 0, then take y′ arbitrarily as long as {x′, y′} is a basis for Tl(E). Then the

l-adic representation ρ′
l attached to {x′, y′} has the form:

for all σ ∈ GK ,

ρ′
l(σ) =

(
1 + lva′

σ lwb′σ
lvc′σ 1 + lwd′

σ

)
∈
(

1 + lvZl lwZl

lvZl 1 + lwZl

)
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with a′
σ, b′σ, c′σ and d′

σ in Zl. Since Tl(E) ⊗ Ql � Tl(E
′) ⊗ Ql as GK-modules, we

may assume that there exists a matrix U =
(

α β
γ δ

)
in M2(Zl) ∩ GL2(Ql) such that

(x′ y′) = (x y)U and that at least one of the elements α, β, γ, δ is in Z×
l (note that

the matrix representation attached to {x′, y′} coincides with the one attached to

{lx′, ly′}). Now we have ρl(σ)U = Uρ′
l(σ) for all σ ∈ GK , that is, for all σ ∈ GK ,

(lsaσ − lva′
σ)α + lsbσγ − lvc′σβ = 0, (3.1.4a)

(lsaσ − lwd′
σ)β + lsbσδ − lwb′σα = 0, (3.1.4b)

(lsdσ − lva′
σ)γ + lscσα− lvc′σδ = 0, (3.1.4c)

(lsdσ − lwd′
σ)δ + lscσβ − lwb′σγ = 0. (3.1.4d)

Note that for all σ ∈ GK ,

lwd′
σ ≡ ls(aσ + dσ) + l2s(aσdσ − bσcσ)− lva′

σ (mod lM) (3.1.5)

because of det ρl(σ) = det ρ′
l(σ). Since v ≥ w, we have v > s. The equations (3.1.4a)

and (3.1.4c) imply that

aσα + bσγ ≡ cσα + dσγ ≡ 0 (mod lv−s)

for all σ ∈ GK . If α, γ ∈ Z×
l , then the point

x +
γ

α
y mod lv

of order lv would be in E(K), which contradicts the assumption. Hence either α or

γ is divisible by l, and both are divisible by l. Therefore we have

α ≡ γ ≡ 0 (mod lv−s).

Now by the assumption 2s < M , we have aσdσ − bσcσ ≡ 0 (mod l) for all σ ∈ GK ,

since det(1− ρl(σ)) = l2s(aσdσ − bσcσ) ≡ 0 (mod lM ) for all σ ∈ GK . Hence by the

equation (3.1.3) we have aσ + dσ ≡ 0 (mod l) for all σ ∈ GK . Since it follows from

the equation (3.1.5) that lwd′
σ ≡ 0 (mod ls+1) for all σ ∈ GK , the equations (3.1.4b),

(3.1.4d) and v + w − s > s imply that

aσβ + bσδ ≡ cσβ + dσδ ≡ 0 (mod l)

for all σ ∈ GK . For the same reason as above, we have β ≡ δ ≡ 0 (mod l), which

contradicts the assumption that at least one of α, β, γ, δ is in Z×
l . Therefore, we

have s + t = 2s = M .

(ii) s ≥ n.

In this case, we have (s ≥) t = n, since det ρl(σ) ≡ 1 (mod ln) for all σ ∈ GK .
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Lemma 3.1.4. In the case (ii) of Case 4, assume further that there exists u ∈ Z×
l

such that either

aσ + ubσ ≡ 0 (mod l) for all σ ∈ GK

or

cσ + udσ ≡ 0 (mod l) for all σ ∈ GK .

Then we have s + t = M .

[Proof] Let

U :=

(
1 0

ls−nu 1

)
.

Then for all σ ∈ GK ,

ρ′
l(σ) := U−1ρl(σ)U

=

(
1 + ls(aσ + ubσ) lnbσ

ls(cσ + udσ)− l2s−nu(aσ + ubσ) 1 + lndσ − lsubσ

)

Assume that aσ + ubσ ≡ 0 (mod l) for all σ ∈ GK . Since E(K)(l) � Z/lsZ⊕ Z/lnZ

and s ≥ n, there exists τ ∈ GK such that cτ + udτ ∈ Z×
l . Hence by the assumption

given in Case 4, we may write

ρ′
l(σ) =

(
1 + ls+1a′

σ lnb′σ
lsc′σ 1 + lnd′

σ

)
∈
(

1 + ls+1Zl lnZl

lsZl 1 + lnZl

)

for all σ ∈ GK , where there exist τ, τ ′ ∈ GK such that b′τ , c
′
τ ′ ∈ Z×

l . Therefore, it

follows from Lemma 3.1.1 that s + t = s + n = M .

We can also show that s + t = M when cσ + udσ ≡ 0 (mod l) for all σ ∈ GK in

the same way as above.

Remark 3.1.5. In the case (ii) of Case 4, if the assumption given in Lemma

3.1.4 is not satisfied, that is, if for each u ∈ Z×
l there exist τ, τ ′ ∈ GK such that

aτ + ubτ , cτ ′ + udτ ′ ∈ Z×
l , then s + t = M does not hold in general. We treat this

case in Section 3.2.

Recall that E(K)(l) � Z/lsZ ⊕ Z/ltZ with integers s ≥ t ≥ 0. We now define

two points P and Q in E depending on s and t as follows:

• s ≥ t > 0. P and Q are points of order ls and lt, respectively, satisfying

E(K)(l) = 〈P 〉 ⊕ 〈Q〉.
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• s > t = 0. P is a K-rational point of order ls, and if E has a K-rational

subgroup Γ of order l which is not contained in 〈P 〉, then Q is a point with

〈Q〉 = Γ; otherwise, Q is the identity element O.

• s = t = 0. Q is O, and if E has a K-rational subgroup Γ of order l, then P is

a point with 〈P 〉 = Γ; otherwise, P is O.

Putting s′ := max{s, 1} and t′ := max{t, 1}, we further define two elliptic curves

K-isogenous to E as follows:

E1 := E/〈[ls′−1]P 〉, E2 := E/〈[lt′−1]Q〉.

Note that the GK-stable subgroups 〈[ls′−1]P 〉 and 〈[lt′−1]Q〉 are of order l if P �= O

and Q �= O.

With the above notation, the lemmas sum up to the following.

Proposition 3.1.6.

(a) If s = t < n, then we have s + t = M .

(b) If t < n and |E1(K)(l)| = ls+t, then we have s + t = M .

(c) In the case where t = n, if |E1(K)(l)| = ls+t, then we have s + t = M ; if

|E2(K)(l)| = ls+t and Q �= O, then we have s + t = M .

[Proof] If P = Q = O, then it is easy to find that |E(K)(l)| = ls+t = 1, since E

has no K-isogeny of l-power-th degree. Hence we may assume that P �= O.

(a) Since s = t, there exists a basis {x, y} for Tl(E) such that the l-adic repre-

sentation ρl attached to {x, y} has the form:

for all σ ∈ GK ,

ρl(σ) =

(
1 + lsaσ lsbσ

lscσ 1 + lsdσ

)
∈
(

1 + lsZl lsZl

lsZl 1 + lsZl

)
.

Since s < n and det ρl(σ) ≡ 1 (mod ln) for all σ ∈ GK , this is in Case 2, in Case 3 or

in the case (i) of Case 4. Thus Lemma 3.1.1, 3.1.2 or 3.1.3 implies that s + t = M .

(b) Since t < n, there exists a basis {x, y} for Tl(E) such that the l-adic repre-

sentation ρl attached to {x, y} has the form:

for all σ ∈ GK ,

ρl(σ) =

(
1 + lsaσ ltbσ

lscσ 1 + lndσ

)
∈
(

1 + lsZl ltZl

lsZl 1 + lnZl

)
,
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where there exists τ ∈ GK such that bτ ∈ Z×
l . Then we may choose a basis {x1, y1}

for Tl(E1) such that (x1 y1) = (x y)U , where U =
(

1 0
0 l

)
, and the l-adic representation

ρ1,l attached to {x1, y1} has the form:

for all σ ∈ GK ,

ρ1,l(σ) = U−1ρl(σ)U =

(
1 + lsaσ lt+1bσ

ls−1cσ 1 + lndσ

)
.

Hence if |E1(K)(l)| = ls+t, then there exists τ ′ ∈ GK such that cτ ′ ∈ Z×
l . It follows

from t < n and Lemma 3.1.1 that s + t = M .

(c) We may take {x, y}, ρl and {x1, y1}, ρ1,l as in the proof of (b). First, assume

that |E1(K)(l)| = ls+t. Since t = n, it is easy to see that {x1 mod ls−1, y1 mod ln+1},
{x1 mod ls, y1 mod ln} or {x1 + ls−n−1uy1 mod ls, y1 mod ln} (for some u ∈ Z×

l )

is a basis for E1(K)(l) (note that the first possibility occurs only if s = n, since

det ρ1,l(σ) ≡ 1 mod ln for all σ ∈ GK), namely, that dσ ≡ 0 (mod l) for all σ ∈ GK ,

cσ ≡ 0 (mod l) for all σ ∈ GK or there exists u ∈ Z×
l such that cσ + udσ for all

σ ∈ GK . Hence it follows from Lemma 3.1.1, 3.1.2 or 3.1.4 that s+t = M . Secondly,

assume that |E2(K)(l)| = ls+t and Q �= O. In the same way as above, we can show

that aσ ≡ 0 (mod l) for all σ ∈ GK , bσ ≡ 0 (mod l) for all σ ∈ GK or there exists

u ∈ Z×
l such that aσ +ubσ ≡ 0 (mod l) for all σ ∈ GK . Hence it follows from Lemma

3.1.1, 3.1.2 or 3.1.4 that s + t = M .

Remark 3.1.7.

(i) In Case 1, we have either E1(K)(l) � Z/lsZ⊕Z/lt+1Z or E2(K)(l) � Z/ls+1Z

⊕Z/ltZ.

(ii) Proposition 3.1.6 (a) implies that if E(K)(l) = {O} and n > 0, then M = 0.

This is also deduced from the properties of the Weil pairing (see [22, Proposition

2]).

Corollary 3.1.8. Let

v := max{N ∈ Z |E ′(K) ⊃ Z/lNZ, E ′ ∈ C(E)}.

Then there exists an elliptic curve E ′ in C(E) such that

E ′(K)(l) � Z/lvZ⊕ Z/lM−vZ.

[Proof] We may assume that v > 0. Let

w := max{N ∈ Z |E ′(K) � Z/lvZ⊕ Z/lNZ, E ′ ∈ C(E)}.
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It suffices to show that v + w = M . If w = n, then it is obvious that v + w = M .

Assume that w < n. If v = w, then we have M = 2v = v + w by Proposition 3.1.6

(a). If v > w, let E0 be an elliptic curve in C(E) such that

E0(K)(l) � Z/lvZ⊕ Z/lwZ

and let P0 be a point in E0(K) of order lv. Putting E1 := E0/〈[lv−1]P0〉, we have

E1(K)(l) � Z/lv−1Z⊕ Z/lw+1Z

by the maximality of w and the assumption w < n. Therefore, we obtain v+w = M

from Proposition 3.1.6 (b).

Remark 3.1.9. Let Mtors := maxE′∈C(E) |E′(K)tors| and vtors := max{N ∈ Z |E ′(K)

⊃ Z/NZ, E ′ ∈ C(E)}. Applying Corollary 3.1.8 for each l, we see that there exists

E ′ ∈ C(E) such that

E ′(K)tors � Z/vtorsZ⊕ Z/wtorsZ,

where wtors := Mtors/vtors.

If s < n, then we obtain an upper bound for M .

Corollary 3.1.10. If s < n, then we have M ≤ 2s < 2n.

[Proof] If t = s, then we obtain M = 2s from Proposition 3.1.6 (a). Assume that

t < s. Let P ∈ E(K) be a point of order ls and let E1 := E/〈[ls−1]P 〉. Then we

have |E1(K)(l)| ≥ ls+t.

If |E1(K)(l)| = ls+t, then we obtain M = s + t < 2s from Proposition 3.1.6

(b). Suppose that |E1(K)(l)| > ls+t. Then we have E1(K)(l) � Z/lsZ⊕ Z/lt+1Z. If

t + 1 = s, then we obtain M = 2s from Proposition 3.1.6 (a). If t + 1 < s, let P ′ ∈
E ′(K) be a point of order ls and let E ′

1(K) := E1/〈[ls−1]P ′〉. If |E′
1(K)(l)| = ls+t+1,

then we obtain M = s+ t+1 < 2s from Proposition 3.1.6 (a). If |E′
1(K)(l)| > ls+t+1,

repeat this process, and we will eventually find E ′ ∈ C(E) such that E ′(K)(l) �
Z/lsZ⊕ Z/lt0Z with t ≤ t0 ≤ s and s + t0 = M .

Recall that m is an integer such that lm = minE′∈C(E) |E′(K)(l)|.

Corollary 3.1.11. Assume that Tl(E) is an irreducible GK-module and that

E(K) ⊃ Z/l2n+1Z. Then we have m = n.
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[Proof] It follows from Lemma 2 in [16] that m ≤ n. On the other hand, we have

m ≥ n by Corollary 3.1.10.

Note that if EndK(E) � Z, then Tl(E) is an irreducible GK-module for all

primes l (see Corollary 1.3.3 (a)).

Corollary 3.1.12. There exists an elliptic curve E ′ in C(E) such that E ′(K)(l) �
Z/lmZ.

[Proof] Suppose that there exists E0 ∈ C(E) such that

E0(K)(l) � Z/lsZ⊕ Z/ltZ

and

Tl(E) = Zl x⊕ Zl y,

where x mod ls, y mod lt ∈ E0(K) and s + t = m with s ≥ t > 0. Then the l-adic

representation ρl attached to {x, y} has the form:

for all σ ∈ GK ,

ρl(σ) =

(
1 + lsaσ ltbσ

lscσ 1 + ltdσ

)
∈
(

1 + lsZl ltZl

lsZl 1 + ltZl

)
.

If bσ ≡ cσ ≡ 0 (mod l) for all σ ∈ GK , then there exist τ, τ ′ ∈ GK such that

aτ , dτ ′ ∈ Z×
l . It follows from Proposition 3.1.6 (c) that m = s+t = M . Hence taking

any E ′ ∈ C(E) with E ′(K)(l) cyclic (see [16, Lemma 1]), we have E ′(K)(l) � Z/lmZ.

If there exists τ ∈ GK such that cτ (resp. bτ ) ∈ Z×
l , put E ′ := E0/Γ with Γ := 〈x

mod ls〉 (resp. 〈y mod lt〉). It is obvious that E ′(K)(l) is cyclic and |E′(K)(l)| ≤
ls+t = lm, that is, E ′(K)(l) � Z/lmZ.

Remark 3.1.13.

(i) If Tl(E) is an irreducible GK-module, then Corollary 3.1.12 is a part of Lemma

3 in [16].

(ii) Let mtors := minE′∈C(E) |E′(K)tors|. Applying Corollary 3.1.12 for each l, we

see that there exists E ′ ∈ C(E) such that E ′(K)tors � Z/mtorsZ.

3.2 Proof of Theorem 3

Assume still that E(K)(l) � Z/lsZ⊕Z/ltZ with integers s ≥ t ≥ 0. As in Section

3.1, choose a basis {x, y} for Tl(E) such that the l-adic representation ρl attached
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to {x, y} has the form:

for σ ∈ GK ,

ρl(σ) =

(
1 + lsaσ ltbσ

lscσ 1 + ltdσ

)
with aσ, bσ, cσ and dσ in Zl. In this section, we consider the case with which we

did not deal in Section 3.1 (note that it is contained in the case (ii) of Case 4). It

is easy to see that the case where s = 0 is either in Case 1 or in the case where the

assumption given in Proposition 3.1.6 (a) or (c) is satisfied. Hence, it remains to

consider the case satisfying the following conditions:

(1) s > 0 and t = n;

(2) There exist τ1, τ2, τ3, τ4 ∈ GK such that aτ1 , bτ2, cτ3 , dτ4 ∈ Z×
l ;

(3) For each u ∈ Z×
l , there exist τ, τ ′ ∈ GK such that aτ + ubτ , cτ ′ + udτ ′ ∈ Z×

l .

Lemma 3.2.1. Assume (1), (2) and (3). For u ∈ Z×
l , put

Eu := E/〈ux + y mod l〉.

Then we have s+ t < M if and only if there exists u ∈ Z×
l such that Eu ∈ C(E) and

|Eu(K)(l)| = ls+t+1. Note that the GK-stable subgroups 〈ux + y mod l〉 are of order

l.

[Proof] It suffices to prove that if s + t < M , then there exists u ∈ Z×
l such that

Eu ∈ C(E) and |Eu(K)(l)| = ls+t+1. Assume that s+t = s+n < M . Let v := M−n.

Suppose that there exists E ′ ∈ C(E) such that E ′(K)(l) � Z/lv
′
Z ⊕ Z/lw

′
Z, where

v′ and w′ are integers with v′ + w′ = M and v′ ≥ w′ ≥ 0. If w′ < n, put E ′′ := E ′/〈x
mod ln−w′〉. Then we have

E ′′(K)(l) � Z/lvZ⊕ Z/lnZ,

since v = M − n = v′ + w′ − n. Hence we may assume that v′ = v and w′ = n by

replacing E ′ with E ′′, if necessary. Let Γ be a cyclic GK-stable subgroup of E such

that E ′ = E/Γ.

Suppose that Γ = 〈x + liuy mod lr〉 with u ∈ Zl and some positive integers i

and r. We may choose a basis {x′, y′} for Tl(E
′) such that

(x′ y′) = (x y)U, where U =

(
1 0

liu lr

)
.
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Then the l-adic representation ρ′
l attached to {x′, y′} has the form:

for all σ ∈ GK ,

ρ′
l(σ) = U−1ρl(σ)U

=

(
1 + ln+iubσ + lsaσ ln+rbσ

ln+i−ru(dσ − liubσ) + ls−r(cσ − liuaσ) 1 + ln(dσ − liubσ)

)
.

Since y′ mod ln ∈ E ′(K) and E ′(K) ⊃ Z/lnZ ⊕ Z/lnZ, we must have x′ mod ln ∈
E ′(K), that is, for all σ ∈ GK the (2, 1)-component of the matrix ρ′

l(σ) must be

congruent with 0 modulo ln. However, E ′(K) ⊃ Z/ls+1Z implies that there exist

u0 ∈ Zl and an integer i0 ≥ 0 such that x′ + li0u0y
′ mod ls+1 ∈ E ′(K), which does

not occur, since for each u′ ∈ Zl there exists τ ∈ GK such that cτ + u′dτ ∈ Z×
l by

assumption.

Suppose that Γ = 〈liux + y mod lr〉 with u ∈ Zl and some positive integers i

and r. We may choose a basis {x′, y′} for Tl(E
′) such that

(x′ y′) = (x y)U, where U =

(
lr liu

0 1

)
.

Then the l-adic representation ρ′
l attached to {x′, y′} has the form:

for all σ ∈ GK ,

ρ′
l(σ) =

(
1 + ls(aσ − liucσ) ln−r(bσ − liudσ) + ls+i−ru(aσ − liucσ)

ls+rcσ 1 + ln(dσ + ls+i−nucσ)

)
.

Since x′ mod ln ∈ E ′(K) and E ′(K) ⊃ Z/lnZ ⊕ Z/lnZ, we must have y′ mod ln ∈
E ′(K), that is, for all σ ∈ GK the (1, 2)-component of ρ′

l(σ) must be congruent with

0 modulo ln, which contradicts the assumption that there exists τ ∈ GK such that

bτ ∈ Z×
l .

Therefore, we may assume that Γ = 〈ux + y mod lr〉 with u ∈ Z×
l and some

positive integer r. When we choose a basis {x′, y′} for Tl(E
′) such that

(x′ y′) = (x y)U, where U =

(
lr u

0 1

)
,

the l-adic representation attached to {x′, y′} has the form:

for all σ ∈ GK ,

ρ′
l(σ) =

(
1 + ls(aσ − ucσ) ln−r(bσ − udσ) + ls−ru(aσ − ucσ)

ls+rcσ 1 + ln(dσ + ls−nucσ)

)
.
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Note that the (1, 2)-component of ρ′
l(σ) is congruent with 0 modulo ln for all σ ∈ GK ,

and that there exists τ ∈ GK such that dτ + ls−nucτ ∈ Z×
l by assumption. If there

exists τ ′ ∈ GK such that aτ ′ − ucτ ′ ∈ Z×
l , then Lemma 3.1.2 and r > 0 imply that

s + n = M , which contradicts the assumption. Hence we have aσ − ucσ ≡ 0 (mod l)

for all σ ∈ GK . Therefore, when we put

Eu := E/Γu with Γu := 〈ux + y mod l〉,

we see that

Eu(K)(l) � Z/ls+1Z⊕ Z/lnZ.

It is clear that |Γu| = l. This completes the proof of the lemma.

Recall that s′ := max{s, 1} and t′ := max{t, 1}; P and Q are points, more or

less, of order ls and lt, respectively, satisfying E(K)(l) = 〈P 〉⊕〈Q〉 (see Section 3.1);

E1 := E/〈[ls′−1]P 〉 and E2 := E/〈[lt′−1]Q〉. We reformulate Lemma 3.2.1 in terms

of these symbols.

Proposition 3.2.2. Assume that t = n, |E1(K)(l)| < ls+t and either |E2(K)(l)| <
ls+t or Q = O. For an integer u with 1 ≤ u ≤ l − 1, put

Eu := E/〈[ls′−1u]P + [lt
′−1]Q〉.

Then we have s + t < M if and only if there exists u such that |Eu(K)(l)| = ls+t+1.

Note that the GK-stable subgroups 〈[ls′−1u]P + [lt
′−1]Q〉 are of order l.

[Proof] It is easy to find that the assumptions imply the conditions (1), (2) and

(3). It follows immediately from the definitions of s′, t′ and P , Q that

ux + y mod l = [ls
′−1u]P + [lt

′−1]Q.

Therefore, we obtain the proposition as a corollary of Lemma 3.2.1.

Now Theorem 3 follows from Propositions 3.1.6 and 3.2.2.

[Proof of Theorem 3] It suffices to show that if |E′(K)(l)| ≤ |E(K)(l)| for any

K-isogeny f of degree l from E to an elliptic curve E ′ in C(E), then |E(K)(l)| =

maxE∈C(E) |E′(K)(l)|. In Case 1, we have already seen that there exists a K-isogeny

f : E → E ′ of degree l such that |E′(K)(l)| = ls+t+1. Next, in the case where there

exist P,Q such that E and P,Q satisfy the assumption given in Proposition 3.1.6

(a), (b) or (c), E(K) already has maximal l-torsion in C(E). Hence we may only
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examine the case where the assumptions given in Proposition 3.2.2 are satisfied.

Therefore, Theorem 3 follows from Proposition 3.2.2.

The following corollary is obtained immediately from Theorem 3.

Corollary 3.2.3. Let |E(K)(l)| = lN for some integer N with N < M . Then there

exists a K-isogeny f from E to an elliptic curve E ′ in C(E) such that |E′(K)(l)| = lM

and Ker f = Z/lM−NZ.

[Proof] By Theorem 3, there exist E ′ ∈ C(E) and f : E → E ′ such that |E′(K)(l)| =
lM and deg f = lM−N . The cyclicity of Ker f follows from Lemma 6.2 in [12], which

asserts that any K-isogeny of minimal degree between elliptic curves over K has a

cyclic kernel.

Remark 3.2.4. Let Mtors := maxE′∈C(E) |E(K)tors|. Applying Corollary 3.2.3 for

each l, we see that if we put D := Mtors/|E(K)tors|, then there exist E ′ ∈ C(E) and

a K-isogeny f : E → E ′ such that |E′(K)tors| = Mtors and Ker f � Z/DZ.

The following example shows that even if we have |E(K)(l)| ≤ |E′(K)(l)| for any

K-isogeny f : E → E ′ of degree l, |E(K)(l)| does not necessarily equal minE′∈C(E)

|E′(K)(l)| in general.

Example 3.2.5. Let E be an elliptic curve given by

E : y2 = x(x2 + 4).

Then

E(Q)(2) = {O, (0, 0), (2,±4)} � Z/4Z.

Let K = Q and l = 2. Put E1 := E/〈(0, 0)〉. Then E1 ∈ C(E) and E1 is given by

E1 : y2 = x(x2 − 1).

Thus we have

E1(Q)(2) � Z/2Z⊕ Z/2Z

(which means that M = 2 by Proposition 3.1.6 (b)). Put E2 := E/〈(2, 4)〉. Then

E2 ∈ C(E) and E2 is given by

E2 : y2 = x(x2 − 6x + 1).

Since we see that

E2(Q)(2) � Z/2Z,
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we obtain m = 1 from Proposition 3.1.6 (a). On the other hand, it follows from

E[2] = {O, (0, 0), (±2
√−1, 0)}

that the only GQ-stable subgroup of order 2 of E is 〈(0, 0)〉. Therefore, for every

elliptic curve E ′ over Q which has a Q-isogeny of degree 2 to E, we have |E′(Q)(2)| =
4 > 2m = 2.

We conclude this chapter by taking some examples, in which we find “M” (and

“m”).

Example 3.2.6. Let l = 2, K = Q and

E : y2 = x(x− 2)(x− 8).

Then we have

E(Q)(2) = {O, (0, 0), (2, 0), (8, 0)} � Z/2Z⊕ Z/2Z.

Put E1 := E/〈(0, 0)〉. Then E1 is given by

E1 : y2 = x(x− 2)(x + 16).

Thus we have

E1(Q)(2) � Z/2Z⊕ Z/2Z.

Therefore, we obtain M = 2 from Proposition 3.1.6 (c). On the other hand, put

E2 := E/〈(2, 0)〉. Then E2 is given by

E2 : y2 = x(x2 + 2x + 4).

Thus we have

E2(Q) � Z/2Z.

Therefore, since n = 1 > 0, we obtain m = 1 from Proposition 3.1.6 (a).

Example 3.2.7. Let l = 3, K = Q and

E : y2 = x3 + 4.

Then we have

E(Q)(3) = {O, (0,±2)} � Z/3Z.
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Put E1 := E/〈(0, 2)〉. Then E1 is given by

E1 : y2 = x3 − 108.

Thus we have

E1(Q)(3) = {O},
which means that m = 0. Since

E[3] = {O, (0,±2), (θ,±2
√−3), (ωθ,±2

√−3), (ω2θ,±2
√−3)},

where θ := −2 3
√

2 and ω := (−1+
√−3)/2, we see that the only GQ-stable subgroup

of order 3 of E is 〈(0, 2)〉 = 〈(0,−2)〉. Therefore, we obtain M = 1 from Theorem 3.

Example 3.2.8. Let l = 2, K = Q(
√−1) and

E : y2 = x(x2 − 2
√−1x− 3).

Then we have

E(K)(2) = {O, (0, 0)} � Z/2Z.

Hence, since n = 2 > 0, we obtain m = 1 from Proposition 3.1.6 (a). Put E1 :=

E/〈(0, 0)〉. Then E1 is given by

E1 : y2 = x(x2 + 4
√−1x + 8).

Thus we have

E1(K)(2) � Z/2Z.

Therefore, we obtain M = 1 from Proposition 3.1.6 (b).
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