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CHAPTER 1

Introduction

In this thesis, we study the following nonlinear Schrödinger equations:

i∂tu = −∆u+ V (x)u+ g(u), (t, x) ∈ R
1+n, (1.1)

where V (x) is a real valued function and g(0) = 0, g(eiθz) = eiθg(z) for z ∈ C and

θ ∈ R.

When V (x) ≡ 0, (1.1) arises in various physical contexts such as nonlinear optics

and plasma physics (see, e.g., [11, 52, 56]). The nonlinearity g(u) enters due to the

effect of changes in the field intensity on the wave propagation characteristics of the

medium. When V (x) ≡ 0 and g(u) = −|u|2u + |u|4u with n = 3, (1.1) appears in

boson gas interaction, and so on (see, e.g., [2] and its references). The potential V (x)

can be thought of as modeling inhomogeneities in the medium. In [48], Equation

(1.1) with a bounded potential V (x) is studied as a model proposed to describe

the local dynamics at a nucleation site. Equation (1.1) with a harmonic potential

V (x) = |x|2, g(u) = −|u|2u and n = 3 is known as a model for describing the Bose-

Einstein condensate with attractive inter-particle interactions under a magnetic trap

(see, e.g., [3, 27, 53]).

By a standing wave, we mean a solution of (1.1) of the form

uω(t, x) = eiωtφω(x),

where ω ∈ R, and φω(x) is a ground state of the following stationary problem


−∆φ+ V (x)φ+ ωφ+ g(φ) = 0, x ∈ Rn,

φ ∈ X, φ �≡ 0.
(1.2)
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For the terminology “ground state”, see Definition I below. Here, X is a real Hilbert

space defined by

X := {v ∈ H1(Rn,C) ;V (x)|v(x)|2 ∈ L1(Rn)}

with the inner product

(v, w)X := Re

∫
�n

(v(x)w(x) + ∇v(x) · ∇w(x) + V (x)v(x)w(x))dx.

The norm of X is denoted by ‖ · ‖X , and from now on, ‖ · ‖r stands for the norm of

Lr(Rn).

In this thesis, we consider the stability and instability of standing wave solutions

of (1.1). We first recall relevant known results. Many authors have been studying

the problem of stability and instability of standing waves for nonlinear Schrödinger

equations (see, e.g., [4, 8, 9, 13, 16, 18, 25, 28, 29, 31, 39, 40, 41, 42, 43, 44,

48, 50, 54, 55, 57, 58]). First, we consider the case V (x) ≡ 0 and g(u) = −|u|p−1u,

namely,

i∂tu = −∆u− |u|p−1u, (t, x) ∈ R
1+n, (1.3)

where 1 < p < 2∗ − 1. Here, we put 2∗ = ∞ if n = 1, 2, and 2∗ = 2n/(n − 2) if

n ≥ 3.

For ω > 0, there exists a unique positive radial solution ψω(x) of
−∆ψ + ωψ − |ψ|p−1ψ = 0, x ∈ R

n,

ψ ∈ H1(Rn), ψ �≡ 0
(1.4)

(see Strauss [51] and Berestycki and Lions [5] for the existence, and Kwong [34] for

the uniqueness). It is known that a positive solution of (1.4) is a ground state. In

[9] Cazenave and Lions proved that if p < 1 + 4/n, then the standing wave solution

eiωtψω(x) is stable for any ω > 0. On the other hand, it is shown that if p ≥ 1+4/n,

then the standing wave solution eiωtψω(x) is unstable for any ω > 0 (see Berestycki

and Cazenave [4] for p > 1 + 4/n, and Weinstein [54] for p = 1 + 4/n).

Regarding nonlinear Schrödinger equations with other nonlinearities, or other

nonlinear evolution equations such as nonlinear Klein–Gordon equations, Grillakis,

Shatah and Strauss [28, 29] gave a virtually necessary and sufficient condition for
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the stability and instability of stationary states for the Hamiltonian systems under

certain assumptions. By virtue of the abstract theory in Grillakis, Shatah and

Strauss [28, 29], under some assumptions on the spectrum of linearized operators,

eiω1tφω1(x) is stable (resp. unstable) if the function ‖φω‖2
2 is strictly increasing (resp.

decreasing) at ω = ω1. In the case where V (x) ≡ 0 and g(u) = −|u|p−1u, by means

of the scaling ψω(x) = ω1/(p−1)ψ1(
√
ωx), it is easily checked if ‖ψω‖2

2 increases or

decreases. However, it seems difficult to check this property of ‖φω‖2
2 for general

V (x) and g(u).

When −∆ + V (x) has the first eigenvalue λ1, Rose and Weinstein [48] claimed

that the standing wave solution eiωtφω(x) of (1.1) is stable for ω such that ω > −λ1

and sufficiently close to −λ1. To verify the stability condition of Grillakis, Shatah

and Strauss, they investigated the behavior of the function ‖φω‖2
2 of ω near −λ1

using the standard bifurcation theory. However, it seems likely that there remains

a possibility of oscillations of ‖φω‖2
2 and that the extraction of a sequence {ωk} is

required. For the case of V (x) = |x|2 and g(u) = −|u|p−1u, the author [18] proved

that there exists a sequence {ωk} approaching −λ1, for which eiωktφωk
(x) is stable. If

we prove the stability for any ω > −λ1 near −λ1 without choosing a sequence {ωk},
the standard bifurcation theory would require nonlinearity to be regular enough, for

example, p ≥ 3 (see, Remark 4.4 of [18]).

Also, there have been several papers on the stability properties of standing waves

for a nonlinear Schrödinger equation with a potential which has a small parameter

h > 0 (see, Oh [39], Example C of Section 6 in Grillakis, Shatah and Strauss [28]).

However, the argument in [28] and [39] could not be applied to our present case.

Indeed, their perturbation methods require the potential to be bounded at infinity,

because they use the convergence of linearized operators in the strong resolvent

sense.

When V (x) ≡ 0, g(u) = −|u|p−1u − b|u|q−1u with b ∈ R and n = 1, Ohta [40]

proved that if 1 < p < 5 < q < ∞, the standing wave solution of (1.1) is stable for

sufficiently small ω > 0. For the case of n = 1, Equation (1.2) has explicit solutions

and we could analyse ground states easily. For the case where b > 0 and n ≥ 2,
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under the assumption that ω 	→ φω is a C1 mapping, Ohta (Remark 1.7 of [41])

showed that if p < 1 + 4/n, then there exists a sequence {ωk} approaching 0, for

which eiωktφωk
is stable.

Before we state our theorems, we give several precise definitions.

Definition I. We define the action functional on X by

Sω(v) :=
1

2
‖∇v‖2

2 +
ω

2
‖v‖2

2 +

∫
�n

V (x)|v(x)|2dx+

∫
�n

G(v(x))dx,

where G(z) =
∫ |z|

0
g(s)ds for z ∈ C. We will impose suitable conditions on g(u) in

each chapter in order for the last integral of Sω(v) to be well-defined.

We denote the set of solutions for (1.2) by

Xω = {v ∈ H1(Rn) ; S ′
ω(v) = 0, v �= 0}

and the set of the ground states for (1.2) by

Gω = {φ ∈ Xω ; Sω(φ) ≤ Sω(v) for all v ∈ Xω}.

The stability and instability of standing wave solutions are formulated as follows.

Definition II. Let TV be the maximal linear subspace of Rn contained in {y ∈
Rn ; V (x+ y) = V (x), x ∈ Rn}, and for φω ∈ Gω, we put

U δ(φω) :=
{
v ∈ X ; inf{‖v − eiθφω(· + y)‖X ; θ ∈ R, y ∈ TV } < δ

}
.

We say that a standing wave solution eiωtφω(x) of (1.1) is stable in X if for any

ε > 0 there exists δ > 0 such that for each u0 ∈ Uδ(φω), the solution u(t) of (1.1)

with u(0) = u0 satisfies u(t) ∈ Uε(φω) for all t ≥ 0. Otherwise, eiωtφω(x) is said to

be unstable in X.

In Chapters 2 and 3, we study (1.1) with g(u) = −|u|p−1u. For simplicity,

here we state our results only in the case of V (x) = |x|2. In this case, TV = {0} in

Definition II. For the case where V (x) is more general, see Theorems 2.1, 3.1 and 3.2

in Chapters 2 and 3. For the case where V (x) = |x|2, the time local well-posedness

for the Cauchy problem to (1.1) in X, the conservation of energy and L2(Rn)-norm,
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and the virial identity hold (see Oh [38] and Section 6.4, Theorem 9.2.5 and Remark

9.2.9 of Cazenave [7]). Namely, we have the following proposition.

Proposition I. For any u0 ∈ X, there exist T = T (‖u0‖X) > 0 and a unique

solution u(t) ∈ C([0, T ], X) of (1.1) with u(0) = u0 satisfying

E(u(t)) = E(u0), Q(u(t)) = Q(u0), t ∈ [0, T ],

where

E(v) :=
1

2
‖∇v‖2

2 +
1

2
‖xv‖2

2 −
1

p+ 1
‖v‖p+1

p+1,

Q(v) :=
1

2
‖v‖2

2.

In addition, if u0 ∈ X satisfies |x|u0 ∈ L2(Rn), then the virial identity

d2

dt2
‖xu(t)‖2

2 = 8P (u(t)) (1.5)

holds for t ∈ [0, T ], where

P (v) := ‖∇v‖2
2 − ‖xv‖2

2 −
n(p− 1)

2(p+ 1)
‖v‖p+1

p+1.

The existence of ground states is proved by the standard variational argument,

since the embedding X ⊂ L2(Rn) is compact (see the author [17], Kavian and

Weissler [33]).

Proposition II. Let

λ1 := inf
{‖∇v‖2

2 + ‖xv‖2
2 ; v ∈ X, ‖v‖2 = 1

}
. (1.6)

Then Gω is not empty for any ω ∈ (−λ1,∞).

The following three theorems are our main results in Chapters 2 and 3.

Theorem I. Assume 1 < p < 1 + 4/n. Let φω ∈ Gω. Then there exists ω∗ =

ω∗(n, p) > 0 such that the standing wave solution eiωtφω(x) of (1.1) is stable in Xrad

for any ω ∈ (ω∗,∞), where Xrad := {v ∈ X ; v(|x|) = v(x), x ∈ Rn}.

Theorem II. Assume 1 < p < 2∗ − 1. Let φω ∈ Gω. Then there exists ω∗ =

ω∗(n, p) > −λ1 such that the standing wave solution eiωtφω(x) of (1.1) is stable in

X for any ω ∈ (−λ1, ω
∗).
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Theorem III. Assume 1 + 4/n < p < 2∗ − 1. Let φω ∈ Gω. Then there exists

ω� = ω�(n, p) > 0 such that the standing wave solution eiωtφω(x) of (1.1) is unstable

in X for any ω ∈ (ω�,∞).

For a bounded potential V (x), Rose and Weinstein [48] studied by numerical

simulations that if ω is sufficiently large and p > 1+4/n, then ‖φω‖2
2 would decrease,

while if p < 1 + 4/n, then ‖φω‖2
2 would increase for large ω. From Theorems I

and III we can affirm with mathematical precision that this numerical result is

true. Furthermore, Theorem II gives an improvement of the results by Rose and

Weinstein [48] and by the author [18], since we do not need to extract a sequence

{ωk}. Moreover, for the nonlinear Schrödinger equation (2.24) with a constant

magnetic field, Gonçalves Ribeiro [25] showed that if ω > 0 and p0(3) := 1 +

4/3 + (4
√

10 − 8)/9 ≤ p < 5, then the standing wave solution eiωtφω(x) of (2.24)

is unstable in H1
A,0(R

3) (see Chapter 2, Section 4). In [18], the author proved for

the case V (x) = |x|2 that if ω > 0 and p ≥ p0(n) := (n2 + 4 + 4
√
n2 + 1)/n2,

then the standing wave solution eiωtφω(x) of (1.1) is unstable. Here, we note that

1 + 4/n < p0(n) < 2∗ − 1, so that Theorem III also gives an improvement of the

results in [18] and [25].

In Chapter 4, we consider (1.1) with V (x) ≡ 0. For simplicity, here we state the

result only in the case of g(u) = −|u|p−1u−b|u|q−1u and b ∈ R. For the case of more

general g(u), see Theorem 4.1 in Chapter 4. In the present case, TV = Rn. The time

local well-posedness for the Cauchy problem to (1.1) in X has been established by

Kato [32] (see also, [10, 24]) and we have the conservation of energy and L2(Rn)-

norm. Namely, the following proposition holds.

Proposition III. For any u0 ∈ X, there exist T = T (‖u0‖X) > 0 and a unique

solution u(t) ∈ C([0, T ], X) of (1.1) with u(0) = u0 satisfying

E(u(t)) = E(u0), Q(u(t)) = Q(u0), t ∈ [0, T ],

where

E(v) :=
1

2
‖∇v‖2

2 −
1

p+ 1
‖v‖p+1

p+1 −
b

q + 1
‖v‖q+1

q+1,

Q(v) :=
1

2
‖v‖2

2.
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The existence of ground states follows from the result by Berestycki and Lions

[5].

Proposition IV. Let

ω0 := sup

{
ω > 0 ;

ω

2
s2 − 1

p+ 1
sp+1 − b

q + 1
sq+1 < 0 for some s > 0

}
.

Then Gω is not empty for any ω ∈ (0, ω0).

Our main result in Chapter 4 is the following

Theorem IV. Assume n ≥ 3 and 1 < p < q < 2∗−1. Let φω ∈ Gω and p < 1+4/n.

Then there exists ω� = ω�(n, p, q, b) ∈ (0, ω0) such that the standing wave solution

eiωtφω(x) of (1.1) is stable in H1(Rn) for any ω ∈ (0, ω�).

By Theorem IV, we extend the result of Ohta [40] to higher spatial dimensions

n ≥ 3. We can also prove the same result for the generalized Davey-Stewartson

system, namely g(u) = −|u|p−1u − E1(|u|2)u with n = 3, where E1 is a singular

integral operator with symbol σ1(ξ) = ξ2
1/|ξ|2 for ξ ∈ Rn, although such nonlinearity

is nonlocal. Concerning the Davey-Stewartson system, under the assumption that

ω 	→ φω is a C1 mapping, Ohta [41] showed that if p < 1 + 4/n, then there exists

a sequence {ωk} approaching 0, for which eiωktφωk
is stable. Our proof gives an

improvement of this result in the sense that we have no need to extract a sequence

{ωk} and do not assume the regularity of φω with respect to ω. In Section 5 of

Chapter 4, we state briefly the result for the generalized Davey-Stewartson system.

For the proof of Theorem III, we use the virial identity (1.5) and the following

sufficient condition for instability, which is a modification of Theorem 3 in Ohta [42]

(see also [18, 25, 50]).

Proposition V. Let 1 < p < 2∗ − 1 and φω ∈ Gω. If ∂2
λE(φλ

ω)|λ=1 < 0, then the

standing wave solution eiωtφω(x) of (1.1) is unstable in X. Here, vλ(x) := λn/2v(λx)

for λ > 0.
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Since ‖vλ‖2
2 = ‖v‖2

2, the assumption ∂2
λE(φλ

ω)|λ=1 < 0 means that φω(x) is not a

local minimizer on {v ∈ X ; ‖v‖2 = ‖φω‖2}.
For proving Theorems I, II and IV, we use the following sufficient condition.

We emphasize that it suffices to prove the coerciveness of the linearized operators

and there is no need to study the spectra of linearized operators, for example, the

simpleness of zero and negative eigenvalues.

Proposition VI. Assume 1 < p < 2∗ − 1 and φω ∈ Gω. If there exists δ > 0 such

that

〈S ′′
ω(φω)v, v〉 ≥ δ‖v‖2

X (1.7)

for any v ∈ X satisfying Re(φω, v)L2 = 0 and Re(iφω, v)L2 = 0, (for Theorem IV, in

addition, Re(∂lφω, v)L2 = 0, l = 1, · · · , n), then the standing wave solution eiωtφω(x)

of (1.1) is stable in X.

In Proposition VI, the condition Re(φω, v)L2 = 0 is related to the conservation

of the charge Q. Indeed, we have 〈Q′(φω), v〉 = Re(φω, v)L2 . Moreover, it follows

from S ′
ω(eiθφω) = 0 for θ ∈ R and S ′

ω(φω(· + y)) = 0 for y ∈ Rn that S ′′
ω(φω)iφω = 0

and S ′′
ω(φω)∂lφω = 0 for l = 1, · · · , n. Accordingly, the condition (1.7) does not hold

if we do not restrict v ∈ X to satisfy Re(iφω, v)L2 = 0 and Re(∂lφω, v)L2 = 0 for

l = 1, · · · , n.

Proposition VI means that if the action Sω(v) is minimized at v = φω on the

hypersurface {v ∈ X ; ‖v‖2 = ‖φω‖2}, then the standing wave solution eiωtφω(x) is

stable.

By applying this sufficient condition, we may avoid such delicate difficulty that

we have to choose a sequence {ωk}. Nevertheless, it is not easy to verify the condition

(1.7) directly. Therefore, we first study a limiting problem. We investigate the

rescaling limit of φω(x) as ω → ∞ or ω → −λ1, which is based on the spirit of

the analysis in Esteban and Strauss [16]. They treated the equation (1.1) with

V (x) ≡ 0 and g(u) = −|u|p−1u for |x| > R > 0 with a Neumann boundary condition

on |x| = R. Among others, they proved that the instability range of p in the

case of the whole space is still valid for the exterior domains when R is sufficiently
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large or small. We show that as ω → ∞, the rescaled function φ̃ω(x) defined by

φω(x) = ω1/(p−1)φ̃ω(
√
ωx) tends to a unique positive radial solution ψ1(x) of (1.4)

with ω = 1. While, as ω → −λ1, φω(x)/‖φω‖2
2 converges to the first eigenfunction

Φ corresponding to the firsteigenvalue λ1 of (1.6). From known stability properties

of ψ1(x) and Φ, we are able to prove (1.7) as the limit case. Here, we remark that

if we let ω → ∞ for the case V (x) = |x|2 and g(u) = −|u|p−1u, we lose control of

the nullspace of the linearized operator S ′′
ω(φω), since (1.1) with V (x) ≡ 0 has the

invariance of translations, although (1.1) does not have the corresponding invariance

in general. This is the reason why we assume the functional space to be radial space

Xrad in Theorem I. The assumption on the space Xrad can be somewhat weakened

(see Chapter 3 for details).

The assumptions in Proposition VI are slightly different from those in Lemma

4.5 of [29] or Theorem 3.4 of [28]. Indeed, applying Lemma 4.5 of [29] directly to

our case, Re(iφω, v)L2 = 0 and Re(∂lφω, v)L2 = 0 for l = 1, · · · , n are replaced by

(iφω, v)X = 0 and (∂lφω, v)X = 0 for l = 1, · · · , n in Proposition VI. If we apply

Proposition VI with (iφω, v)X = 0 and (∂lφω, v)X = 0 for l = 1, · · · , n, we need

more detailed convergence property of φω(x) to ψ1(x) than those of Lemma 3.3 in

Chapter 3 and Lemma 4.2 in Chapter 4. That is why such weaker restrictions to

v ∈ X as in Proposition VI is more convenient for us.

Lastly, in Appendix, we consider the case where V (x) ≡ 0 and g(u) = −|u|p−1u+

|u|q−1u. In this case, there exists a ground state for any ω ∈ (0, ω0) by Proposition

IV. We note that ω0 < ∞. Anderson [1] and Shatah [51] showed that there are

stable standing waves for ω close to ω0 with p = 3, q = 5 and n = 3. However, it

is not apparent from their proof that the standing wave solution is stable for any

ω close to ω0. In that point, Ohta [40] proved in one dimensional case that for

1 < p < q <∞, the standing wave solution is stable for any ω close to ω0. However,

the case n ≥ 2 remains open. We consider the limiting problem corresponding

to this case and prove that φω(x) converges to a constant solution of the limiting

problem in a certain sense. We hope that this will be helpful for future study of this

problem.
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CHAPTER 2

Instability of standing waves for nonlinear

Schrödinger equations with potentials

§ 2.1. Introduction

This chapter is devoted to a joint work with Masahito Ohta. In this chapter, we

consider the case g(u) = −|u|p−1u in (1.1), namely,

i∂tu = −∆u+ V (x)u− |u|p−1u, (t, x) ∈ R
1+n, (2.1)

where 1 < p < 2∗ − 1. Here, we put 2∗ = ∞ if n = 1, 2, and 2∗ = 2n/(n − 2) if

n ≥ 3. For potential V (x), we assume the following conditions (V0)–(V2).

(V0) There exist real valued functions V1(x) and V2(x) such that V (x) = V1(x) +

V2(x).

(V1.1) V1(x) ∈ C2(Rn) and there exist positive constants m and C such that

0 ≤ V1(x) ≤ C(1 + |x|m) on R
n.

(V1.2) There exists Cα > 0 such that |xα∂α
xV1(x)| ≤ Cα(1 + V1(x)) on Rn for

|α| ≤ 2.

(V2) There exists q such that q ≥ 1, q > n/2 and xα∂α
xV2(x) ∈ Lq(Rn) + L∞(Rn)

for |α| ≤ 2.

Examples.

(i) (Harmonic potentials) For c1, · · · , cn ∈ R,
n∑

j=1

c2jx
2
j satisfies (V1.1) and (V1.2).

(ii) For c ∈ R and 0 < a < min{2, n}, c|x|−a satisfies (V2).

(iii) (V2) is satisfied if U(x) ∈ C2(Rn) satisfies |∂α
xU(x)| ≤ Cα〈x〉−|α| for |α| ≤ 2.

(iv) 1 + sinx1 satisfies (V1.1), but does not satisfy (V1.2) nor (V2).

We define a real Hilbert space X by

X := {v ∈ H1(Rn,C) ;V1(x)|v(x)|2 ∈ L1(Rn)}

11



with the inner product

(v, w)X := Re

∫
�n

(v(x)w(x) + ∇v(x) · ∇w(x) + V1(x)v(x)w(x))dx.

The norm of X is denoted by ‖ · ‖X . Let G be a closed subgroup of O(n) such that

V1(x) and V2(x) are invariant under G, i.e., Vj(gx) = Vj(x) for g ∈ G, x ∈ Rn and

j = 1, 2. We define a closed subspace XG of X by

XG := {v ∈ X ; v(gx) = v(x), g ∈ G, x ∈ R
n}.

We note that XG = X if G = {Id (identity matrix)}, and XG = Xrad if G = O(n),

where

Xrad = {v ∈ X ; v(x) = v(|x|), x ∈ R
n}.

Moreover, we define the energy functional E on XG by

E(v) :=
1

2
‖∇v‖2

2 +
1

2

∫
�n

V (x)|v(x)|2dx− 1

p+ 1
‖v‖p+1

p+1.

We remark that by the assumptions (V2) and 1 < p < 2∗ − 1, the functional E is

well-defined on XG. We assume that the time local well-posedness for the Cauchy

problem to (2.1) in XG, the conservation of energy and L2(Rn)-norm, and the virial

identity hold.

Assumption (A1). For any u0 ∈ XG, there exist T = T (‖u0‖X) > 0 and a

unique solution u(t) ∈ C([0, T ], XG) of (2.1) with u(0) = u0 satisfying

E(u(t)) = E(u0), ‖u(t)‖2
2 = ‖u0‖2

2, t ∈ [0, T ].

In addition, if u0 ∈ XG satisfies |x|u0 ∈ L2(Rn), then the virial identity

d2

dt2
‖xu(t)‖2

2 = 8P (u(t)) (2.2)

holds for t ∈ [0, T ], where

P (v) := ‖∇v‖2
2 −

1

2

∫
�n

x · ∇V (x)|v(x)|2dx− n(p− 1)

2(p+ 1)
‖v‖p+1

p+1. (2.3)

Remark 2.1. The assumption (A1) is verified, if V (x) satisfies the following

conditions (A1.1)–(A1.2) with (V0) (see Section 6.4, Theorem 9.2.5 and Remark

9.2.9 of [7]).
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(A1.1) V1(x) ∈ C∞(Rn), V1(x) ≥ 0 in R
n, ∂α

xV1(x) ∈ L∞(Rn) for |α| ≥ 2, and there

exists

C > 0 such that |x · ∇V1(x)| ≤ C(|x|2 + V1(x)) in Rn.

(A1.2) V2(x) ∈ Lq0(Rn) + L∞(Rn) for some q0 ≥ 1, q0 > n/2 and

x · ∇V2(x) ∈ Lq1(Rn) + L∞(Rn) for some q1 ≥ 1, q1 > n/2.

Next, we consider the stationary problem (1.2) with g(u) = −|u|p−1u,
−∆φ+ V (x)φ+ ωφ− |φ|p−1φ = 0, x ∈ Rn,

φ ∈ XG, φ �≡ 0.
(2.4)

Definition 1. We define two functionals on XG:

Sω(v) := E(v) +
ω

2
‖v‖2

2 (action),

Iω(v) := ‖∇v‖2
2 + ω‖v‖2

2 +

∫
�n

V (x)|v(x)|2dx− ‖v‖p+1
p+1.

Let MG
ω be the set of all minimizers for

inf{Sω(v) ; v ∈ XG \ {0}, Iω(v) = 0}. (2.5)

Remark 2.2. (i) We note that

P (v) = ∂λSω(vλ)|λ=1, Iω(v) = ∂λSω(λv)|λ=1,

where vλ(x) := λn/2v(λx) for λ > 0.

(ii) Let φω ∈ MG
ω . There exists a Lagrange multiplier Λ ∈ R such that S ′

ω(φω) =

ΛI ′ω(φω). Taking the pairing of this equation with φω, we obtain 〈S ′
ω(φω), φω〉 =

Λ〈I ′ω(φω), φω〉. Since 〈S ′
ω(φω), φω〉 = Iω(φω) = 0 and 〈I ′ω(φω), φω〉 = −(p−1)‖φω‖p+1

p+1

< 0, we have Λ = 0. Namely, φω satisfies (2.4). Moreover, for any v ∈ XG \ {0}
satisfying S ′

ω(v) = 0, we have Iω(v) = 0. Thus, by the definition of MG
ω , we have

Sω(φω) ≤ Sω(v). That is, φω ∈ MG
ω is a minimal action solution of (2.4) (see more

detailed remark in Remark 3.2 (ii)).

We also assume the existence of minimal action solutions of (2.4) for large ω.

Assumption (A2). There exists ω0 ∈ (0,∞) such that MG
ω is not empty and

MG
ω ⊂ {v ∈ XG ; |x|v(x) ∈ L2(Rn)} for any ω ∈ (ω0,∞).
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Remark 2.3. Some examples of V (x) such that MG
ω is not empty are remarked

in Chapter 3, Remark 3.3. The assumption MG
ω ⊂ {v ∈ XG ; |x|v(x) ∈ L2(Rn)}

is required to make use of the virial identity (2.2) in the proof of Proposition 1.1

below.

Definition 2. Let TV be the maximal linear subspace of R
n contained in {y ∈

Rn ; V (x+ y) = V (x), x ∈ Rn}, and for φω ∈ MG
ω , we put

Nδ(φω) :=
{
v ∈ XG ; inf{‖v − eiθφω(· + y)‖X ; θ ∈ R, y ∈ TV } < δ

}
.

We say that a standing wave solution eiωtφω(x) of (2.1) is stable in XG if for any

ε > 0 there exists δ > 0 such that for any u0 ∈ Nδ(φω), the solution u(t) of (2.1)

with u(0) = u0 satisfies u(t) ∈ Nε(φω) for any t ≥ 0. Otherwise, eiωtφω(x) is said to

be unstable in XG.

Remark 2.4. Let n = 3, c > 0 and V (x) = c(x2
1 + x2

2). In this case, we have

TV = {(0, 0, z) ∈ R3 ; z ∈ R}. This example will be used in Section 4.

Our main result in this chapter is the following.

Theorem 2.1. Assume (V 0)–(V 2), (A1) and (A2). Let 1 + 4/n < p < 2∗ − 1

and φω(x) ∈ MG
ω . Then there exists ω∗ = ω∗(n, p) ∈ (ω0,∞) such that the standing

wave solution eiωtφω(x) of (2.1) is unstable in XG for any ω ∈ (ω∗,∞).

For the proof of Theorem 2.1, the following sufficient condition for instability is

employed, which is a modification of Theorem 3 in [42] (see also [18, 25, 50]).

Proposition 2.1. Assume (V 0)–(V 2), (A1) and (A2). Let 1 < p < 2∗ − 1 and

φω(x) ∈ MG
ω . If ∂2

λE(φλ
ω)|λ=1 < 0, then the standing wave solution eiωtφω(x) of (2.1)

is unstable in XG. Here, vλ(x) := λn/2v(λx) for λ > 0.

This chapter is organized as follows. In Section 2.2, we prove Theorem 2.1

using Proposition 2.1. The variational characterization of φω(x) ∈ MG
ω and the

rescaled function φ̃ω(x) defined by φω(x) = ω1/(p−1)φ̃ω(
√
ωx) play an important role

in the proof of Theorem 2.1 (see Lemma 2.1). In Section 2.3, we give the proof of

Proposition 2.1 following that of Theorem 3 in [42]. In Section 2.4, as an application
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of Theorem 2.1, we study the nonlinear Schrödinger equation (2.24) with a constant

magnetic field, and improve the result in Gonçalves Ribeiro [25].

§ 2.2. Proof of Theorem 2.1

In this section, we prove Theorem 2.1 using Proposition 2.1, which will be proved

in Section 3. By simple computations, we have

E(vλ) =
λ2

2
‖∇v‖2

2 +
1

2

∫
�n

V
(x
λ

)
|v(x)|2dx− λn(p−1)/2

p+ 1
‖v‖p+1

p+1,

∂2
λE(vλ)|λ=1 = ‖∇v‖2

2 +
1

2

∫
�n

{
2x · ∇V (x) +

n∑
j,k=1

xjxk∂j∂kV (x)

}
|v(x)|2dx

−n(p− 1)

2(p+ 1)

{
n(p− 1)

2
− 1

}
‖v‖p+1

p+1.

Since P (φω) = ∂λSω(φλ
ω)|λ=1 = 0 (see (2.3) and Remark 1.2), if we put

V ∗(x) = 3x · ∇V (x) +
n∑

j,k=1

xjxk∂j∂kV (x), (2.6)

then we have

∂2
λE(φλ

ω)|λ=1 =
1

2

∫
�n

V ∗(x)|φω(x)|2dx− n(p− 1)

2(p+ 1)

{
n(p− 1)

2
− 2

}
‖φω‖p+1

p+1.

Thus, we see that the condition ∂2
λE(φλ

ω)|λ=1 < 0 is equivalent to∫
�n

V ∗(x)|φω(x)|2dx
‖φω‖p+1

p+1

<
n(p− 1){n(p− 1) − 4}

2(p+ 1)
. (2.7)

We remark that the right hand side of (2.7) is a positive constant by the assumption

p > 1 + 4/n in Theorem 2.1. In what follows, we will show that the left hand side

of (2.7) converges to 0 as ω → ∞. To this end, we rescale φω(x) ∈ MG
ω as follows:

φω(x) = ω1/(p−1)φ̃ω(
√
ωx), ω ∈ (ω0,∞). (2.8)

Then, the rescaled function φ̃ω(x) satisfies

−∆φ+ φ+ ω−1V

(
x√
ω

)
φ− |φ|p−1φ = 0, x ∈ R

n. (2.9)

Moreover, since we have∫
�n

V ∗(x)|φω(x)|2dx
‖φω‖p+1

p+1

=

ω−1

∫
�n

V ∗(x/
√
ω)|φ̃ω(x)|2dx

‖φ̃ω‖p+1
p+1

,
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it suffices to prove

lim
ω→∞

ω−1

∫
�n

V ∗(x/
√
ω)|φ̃ω(x)|2dx

‖φ̃ω‖p+1
p+1

= 0. (2.10)

When ω → ∞, the term ω−1V (x/
√
ω)φ in (2.9) disappears formally, and we expect

that φ̃ω(x) may converge to the unique positive radial solution ψ1(x) of (1.4) with

ω = 1 in some sense. Since the standing wave solution eitψ1(x) of (2.1) with V (x) ≡ 0

is unstable in H1(Rn) when p > 1 + 4/n, we expect that the standing wave solution

eiωtφω(x) of (2.1) may be also unstable in XG when p > 1+4/n and ω is sufficiently

large. This is the reason why we introduce the rescaled function φ̃ω(x) to prove

(2.10). In what follows, we justify this formal argument. First, we put

Ĩω(v) := ‖∇v‖2
2 + ‖v‖2

2 + ω−1

∫
�n

V

(
x√
ω

)
|v(x)|2dx− ‖v‖p+1

p+1,

I0
1 (v) := ‖∇v‖2

2 + ‖v‖2
2 − ‖v‖p+1

p+1.

The following Lemma 2.1 is a key to show (2.10).

Lemma 2.1. Let 1 < p < 2∗ − 1 and φω ∈ MG
ω for large ω. Assume (V 0),

(V 1.1) and V2(x) ∈ Lq(Rn) + L∞(Rn) for some q such that q > n/2 and q ≥ 1.

Let φ̃ω(x) be the rescaled function defined by (2.8), and ψ1(x) be the unique positive

radial solution of (1.4) with ω = 1 in H1(Rn). Then, we have

(i) lim
ω→∞

‖φ̃ω‖p+1
p+1 = ‖ψ1‖p+1

p+1, (ii) lim
ω→∞

I0
1 (φ̃ω) = 0,

(iii) lim
ω→∞

‖φ̃ω‖2
H1 = ‖ψ1‖2

H1, (iv) lim
ω→∞

ω−1

∫
�n

V

(
x√
ω

)
|φ̃ω(x)|2dx = 0.

We prepare one lemma to prove Lemma 2.1.

Lemma 2.2. Let U(x) ∈ Lq(Rn) + L∞(Rn) for some q such that q > n/2 and

q ≥ 1. Then, there exists a constant C > 0 such that∣∣∣∣
∫
�n

U(x)|v(x)|2dx
∣∣∣∣ ≤ C‖U‖Lq+L∞‖v‖2

H1, v ∈ H1(Rn).

Lemma 2.2 is easily proved by the Hölder and the Gagliardo-Nirenberg inequal-

ities. So, we omit the proof.
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Proof of Lemma 2.1. First of all, we note that φ̃ω(x) is a minimizer of

inf
{
‖v‖p+1

p+1 ; v ∈ XG \ {0}, Ĩω(v) ≤ 0
}
, (2.11)

and ψ1(x) is a minimizer of

inf
{‖v‖p+1

p+1 ; v ∈ H1(Rn) \ {0}, I0
1 (v) ≤ 0

}
,

(see Lemma 2.3). In order to prove (i), we show that for any µ > 1 there exists

ω(µ) ∈ (ω0,∞) such that Ĩω(µψ1) < 0 and I0
1 (µφ̃ω) < 0 hold for any ω ∈ (ω(µ),∞).

If this is true, then the above variational characterizations of φ̃ω(x) and ψ1(x) yield

that

1

µp+1
‖ψ1‖p+1

p+1 ≤ ‖φ̃ω‖p+1
p+1 ≤ µp+1‖ψ1‖p+1

p+1, ω ∈ (ω(µ),∞).

Since µ > 1 is arbitrary, we conclude (i). First, from I0
1 (ψ1) = 0, we have

µ−2Ĩω(µψ1) = −(µp−1 − 1)‖ψ1‖p+1
p+1 + ω−1

∫
�n

V

(
x√
ω

)
|ψ1(x)|2dx.

Since ψ1(x) has an exponential decay at infinity (see, e.g., [5, Lemma 2]), we have

lim
ω→∞

ω−1

∫
�n

V

(
x√
ω

)
|ψ1(x)|2dx = 0. (2.12)

Indeed, from (V1.1) and Lemma 2.2, we have∣∣∣∣ω−1

∫
�n

V

(
x√
ω

)
|ψ1(x)|2dx

∣∣∣∣
≤ ω−1

∫
�n

V1

(
x√
ω

)
|ψ1(x)|2dx+

∣∣∣∣ω−1

∫
�n

V2

(
x√
ω

)
|ψ1(x)|2dx

∣∣∣∣
≤ ω−1C

∫
�n

(1 + ω−m/2|x|m)|ψ1(x)|2dx+ C(ω−θ(q) + ω−1)‖V2‖Lq+L∞‖ψ1‖2
H1,

where θ(q) := 1−n/2q. Therefore we obtain (2.12) since |x|m|ψ1(x)|2 ∈ L1(Rn) and

q > n/2. Thus, for any µ > 1, there exists ω1(µ) ∈ (ω0,∞) such that Ĩω(µψ1) < 0

for any ω ∈ (ω1(µ),∞). Next, from Ĩω(φ̃ω) = 0, we have

µ−2I0
1 (µφ̃ω) = −(µp−1 − 1)‖φ̃ω‖p+1

p+1 − ω−1

∫
�n

V

(
x√
ω

)
|φ̃ω(x)|2dx

≤ −(µp−1 − 1)‖φ̃ω‖p+1
p+1 + ω−1

∫
�n

V−

(
x√
ω

)
|φ̃ω(x)|2dx,
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where V−(x) = max{−V (x), 0}. From the assumptions (V0) and (V1.1), we have

V− ∈ Lq(Rn) + L∞(Rn) with q ≥ 1 and q > n/2. Thus, by Lemma 2.2, there exists

C > 0 such that

ω−1

∫
�n

V−

(
x√
ω

)
|φ̃ω(x)|2dx ≤ C(ω−θ(q) + ω−1)‖V−‖Lq+L∞‖φ̃ω‖2

H1 .

Note that θ(q) ∈ (0, 1] since q > n/2. Moreover, from Ĩω(φ̃ω) = 0, we have

‖φ̃ω‖2
H1 ≤ ‖φ̃ω‖p+1

p+1 + ω−1

∫
�n

V−

(
x√
ω

)
|φ̃ω(x)|2dx

≤ ‖φ̃ω‖p+1
p+1 + C(ω−θ(q) + ω−1)‖V−‖Lq+L∞‖φ̃ω‖2

H1 ,

which implies

(
1 − C(ω−θ(q) + ω−1)‖V−‖Lq+L∞

) ‖φ̃ω‖2
H1 ≤ ‖φ̃ω‖p+1

p+1.

Thus, we have

µ−2I0
1 (µφ̃ω) ≤ −

(
µp−1 − 1 − C(ω−θ(q) + ω−1)‖V−‖Lq+L∞

1 − C(ω−θ(q) + ω−1)‖V−‖Lq+L∞

)
‖φ̃ω‖p+1

p+1. (2.13)

Therefore, for any µ > 1, there exists ω2(µ) ∈ (ω0,∞) such that I0
1 (µφ̃ω) < 0 for

any ω ∈ (ω2(µ),∞). Hence, we conclude (i).

Secondly, we show (ii). By (4.20) with µ = 1 and (i), we have

lim sup
ω→∞

I0
1 (φ̃ω) ≤ 0.

Moreover, for any ω ∈ (ω0,∞) there exists µ(ω) > 0 such that I0
1 (µ(ω)φ̃ω) = 0.

Thus, we have

‖ψ1‖p+1
p+1 ≤ ‖µ(ω)φ̃ω‖p+1

p+1 = µ(ω)p+1‖φ̃ω‖p+1
p+1,

which together with (i) implies that

lim inf
ω→∞

µ(ω) ≥ lim inf
ω→∞

‖ψ1‖p+1/‖φ̃ω‖p+1 = 1.

From I0
1 (µ(ω)φ̃ω) = 0 and (i), we have

lim inf
ω→∞

I0
1 (φ̃ω) = lim inf

ω→∞
(µ(ω)p−1 − 1)‖φ̃ω‖p+1

p+1 ≥ 0.

Hence, we conclude (ii).

Next, from (i), (ii) and I0
1 (ψ1) = 0, we have

lim
ω→∞

‖φ̃ω‖2
H1 = lim

ω→∞
‖φ̃ω‖p+1

p+1 = ‖ψ1‖p+1
p+1 = ‖ψ1‖2

H1,
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which shows (iii).

Finally, from (ii) and Ĩω(φ̃ω) = 0, we have

lim
ω→∞

ω−1

∫
�n

V

(
x√
ω

)
|φ̃ω(x)|2dx = 0,

which shows (iv).

We are now in a position to give the proof of Theorem 2.1.

Proof of Theorem 2.1. As stated above, we have only to show (2.10). Recall

that V ∗(x) is defined by (2.6), and we put

V ∗
l (x) := 3x · ∇Vl(x) +

n∑
j,k=1

xjxk∂j∂kVl(x), (l = 1, 2).

By the assumption (V2) and Lemma 2.2, we have

ω−1

∫
�n

∣∣∣∣V ∗
2

(
x√
ω

)∣∣∣∣ |φ̃ω(x)|2dx ≤ C(ω−1 + ω−θ(q))‖V ∗
2 ‖Lq+L∞‖φ̃ω‖2

H1 ,(2.14)

ω−1

∫
�n

∣∣∣∣V2

(
x√
ω

)∣∣∣∣ |φ̃ω(x)|2dx ≤ C(ω−1 + ω−θ(q))‖V2‖Lq+L∞‖φ̃ω‖2
H1. (2.15)

From Lemma 2.1 (iii), (iv) and (2.15), we have

lim
ω→∞

ω−1

∫
�n

V1

(
x√
ω

)
|φ̃ω(x)|2dx = 0. (2.16)

Now, from the assumption (V1.2), we have

ω−1

∫
�n

∣∣∣∣V ∗
1

(
x√
ω

)∣∣∣∣ |φ̃ω(x)|2dx ≤ Cω−1

∫
�n

(
1 + V1

(
x√
ω

))
|φ̃ω(x)|2dx.

Thus, from (2.16) and Lemma 2.1 (iii), we have

lim
ω→∞

ω−1

∫
�n

∣∣∣∣V ∗
1

(
x√
ω

)∣∣∣∣ |φ̃ω(x)|2dx = 0. (2.17)

Since V ∗(x) = V ∗
1 (x) + V ∗

2 (x), it follows from (2.14) and (2.17) that

lim
ω→∞

ω−1

∫
�n

∣∣∣∣V ∗
(

x√
ω

)∣∣∣∣ |φ̃ω(x)|2dx = 0.

Hence, by lemma 2.1 (i), we obtain (2.10).

Remark 2.5. Let φω(x) ∈ MG
ω . Without loss of generality, we may assume that

φω(x) is positive in R
n. By Lemma 2.1 and the concentration compactness principle,
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we see that for any sequence {ωj} with ωj → ∞, there exist a subsequence { ˜φωjk
(x)}

of {φ̃ωj
(x)} and a sequence {yk} ⊂ Rn such that

lim
k→∞

‖ ˜φωjk
− ψ1(· + yk)‖H1 = 0 (2.18)

(see Theorem III.1 in [37]). Although (2.18) may give some information on the

asymptotic behavior of φω(x) ∈ MG
ω as ω → ∞, we do not use (2.18) in the

proof of Theorem 2.1 directly. We also note that Lemma 2.1 holds for any p ∈
(1, 2∗ − 1). Finally, we remark that, in the case p = 1 + 4/n, it follows from (2.18)

that limω→∞ ‖φω‖2
2 = ‖ψ1‖2

2.

§ 2.3. Proof of Proposition 2.1

In this section we give the proof of Proposition 2.1 following that of Theorem 3

in [42].

Lemma 2.3. Let φω ∈ MG
ω . Then, we have

(i) ‖φω‖p+1
p+1 = inf{‖v‖p+1

p+1 ; v ∈ XG \ {0}, Iω(v) = 0}

= inf{‖v‖p+1
p+1 ; v ∈ XG \ {0}, Iω(v) ≤ 0},

(ii) Sω(φω) = inf{Sω(v) ; v ∈ XG, ‖v‖p+1
p+1 = ‖φω‖p+1

p+1}.

Proof. (i). Since we have

Sω(v) =
1

2
Iω(v) +

p− 1

2(p+ 1)
‖v‖p+1

p+1, v ∈ XG,

we see that

d1(ω) := inf{Sω(v) ; v ∈ XG \ {0}, Iω(v) = 0}

= inf

{
p− 1

2(p+ 1)
‖v‖p+1

p+1 ; v ∈ XG \ {0}, Iω(v) = 0

}
,

and d1(ω) = Sω(φω) = [(p− 1)/2(p+ 1)]‖φω‖p+1
p+1. We put

d2(ω) := inf

{
p− 1

2(p+ 1)
‖v‖p+1

p+1 ; v ∈ XG \ {0}, Iω(v) ≤ 0

}
.

Since it is clear that d2(ω) ≤ d1(ω), we show d1(ω) ≤ d2(ω). For any v ∈ XG \ {0}
satisfying Iω(v) < 0, there exists λ0 ∈ (0, 1) such that Iω(λ0v) = 0. Thus, we have

d1(ω) ≤ p− 1

2(p+ 1)
‖λ0v‖p+1

p+1 =
(p− 1)

2(p+ 1)
λ0

p+1‖v‖p+1
p+1 <

p− 1

2(p+ 1)
‖v‖p+1

p+1.
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Hence, we have d1(ω) ≤ d2(ω).

(ii). We put

d3(ω) := inf{Sω(v) ; v ∈ XG, ‖v‖p+1
p+1 = ‖φω‖p+1

p+1}.

Since d3(ω) ≤ Sω(φω), it suffices to prove Sω(φω) ≤ d3(ω). By (i), for any v ∈ XG

satisfying ‖v‖p+1
p+1 = ‖φω‖p+1

p+1, we have Iω(v) ≥ 0. Thus, we have

Sω(v) ≥ p− 1

2(p+ 1)
‖v‖p+1

p+1 =
p− 1

2(p+ 1)
‖φω‖p+1

p+1 = Sω(φω).

Therefore, we obtain Sω(φω) ≤ d3(ω).

Lemma 2.4. If ∂2
λE(φλ

ω)|λ=1 < 0, then there exist positive constants ε1 and δ1

with the following property: for any v ∈ Nδ1(φω) satisfying ‖v‖2
2 = ‖φω‖2

2, there exists

λ(v) ∈ (1 − ε1, 1 + ε1) such that E(φω) ≤ E(v) + (λ(v) − 1)P (v), where Nδ1(φω) is

the set defined in Definition 2.

Proof. From the assumption ∂2
λE(φλ

ω)|λ=1 < 0 and the continuity of ∂2
λE(vλ) in λ

and v, there exist ε1, δ1 > 0 such that ∂2
λE(vλ) < 0 for any λ ∈ (1 − ε1, 1 + ε1) and

v ∈ Nδ1(φω). Since ∂λE(vλ)|λ=1 = P (v), the Taylor expansion at λ = 1 gives

E(vλ) ≤ E(v) + (λ− 1)P (v), λ ∈ (1 − ε1, 1 + ε1), v ∈ Nδ1(φω). (2.19)

For any v ∈ Nδ1(φω), we put λ(v) := (‖φω‖p+1
p+1/‖v‖p+1

p+1)
2/n(p−1). Then, we have

‖vλ(v)‖p+1
p+1 = ‖φω‖p+1

p+1, and we can take δ1 small enough to have λ(v) ∈ (1−ε1, 1+ε1).

Furthermore, from Lemma 2.3 (ii), if ‖v‖2
2 = ‖φω‖2

2, we have

E(vλ(v)) = Sω(vλ(v)) − ω

2
‖vλ(v)‖2

2 ≥ Sω(φω) − ω

2
‖φω‖2

2 = E(φω). (2.20)

Therefore, from (2.19) and (2.20), we have E(φω) ≤ E(v) + (λ(v) − 1)P (v) for any

v ∈ Nδ1(φω) satisfying ‖v‖2
2 = ‖φω‖2

2.

Definition 3. Let δ1 be the positive constant in Lemma 2.4. We put

A := {v ∈ Nδ1(φω) ; E(v) < E(φω), ‖v‖2
2 = ‖φω‖2

2, P (v) < 0},

and for any u0 ∈ Nδ1(φω), we define the exit time from Nδ1(φω) by

T (u0) = sup{T > 0 ; u(t) ∈ Nε1(φω), 0 ≤ t ≤ T},

where u(t) is a solution of (2.1) with u(0) = u0.
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Lemma 2.5. If ∂2
λE(φλ

ω)|λ=1 < 0, then for any u0 ∈ A, there exists ε0 = ε0(u0) >

0 such that P (u(t)) ≤ −ε0 for 0 ≤ t < T (u0).

Proof. Take u0 ∈ A and put ε2 = E(φω) − E(u0) > 0. From Lemma 2.4 and the

conservation laws in the assumption (A1), we have

ε2 ≤ (λ(u(t)) − 1)P (u(t)), 0 ≤ t < T (u0). (2.21)

Thus, we see that P (u(t)) �= 0 for 0 ≤ t < T (u0). Since the function t 	→ P (u(t)) is

continuous and P (u0) < 0, we have P (u(t)) < 0 for 0 ≤ t < T (u0). Therefore, from

Lemma 2.4 and (2.21), we have

−P (u(t)) ≥ ε2

1 − λ(u(t))
≥ ε2

ε1
, 0 ≤ t < T (u0).

Hence, putting ε0 = ε2/ε1, we have P (u(t)) ≤ −ε0 for 0 ≤ t < T (u0).

Proof of Proposition 2.1. Since ∂λE(φω
λ)|λ=1 = 0, ∂2

λE(φω
λ)|λ=1 < 0 and

P (φω
λ) = λ∂λE(φω

λ), we have E(φω
λ) < E(φω) and P (φω

λ) < 0 for λ > 1 suffi-

ciently close to 1. Furthermore, since ‖φω
λ‖2

2 = ‖φω‖2
2 and lim

λ→1
‖φω

λ − φω‖X = 0, we

have φω
λ ∈ A for λ > 1 sufficiently close to 1. Since we assume |x|φω

λ(x) ∈ L2(Rn)

in the assumption (A2), it follows from the virial identity (2.2) in the assumption

(A1) that

d2

dt2
‖xuλ(t)‖2

2 = 8P (uλ(t)), 0 ≤ t < T (φω
λ), (2.22)

where uλ(t) is the solution of (2.1) with uλ(0) = φω
λ. From Lemma 2.5, there exists

ελ > 0 such that

P (uλ(t)) ≤ −ελ, 0 ≤ t < T (φλ
ω). (2.23)

Hence, from (2.22) and (2.23), we can conclude that T (φλ
ω) < ∞. Since lim

λ→1
‖φω

λ −
φω‖X = 0, the proof is completed.

§ 2.4. NLS with a constant magnetic field

In this section, we consider the nonlinear Schrödinger equation with a constant

magnetic field B = (0, 0, b):

i∂tu = −(∇ + iA(x))2u− |u|p−1u, (t, x) ∈ R
1+3, (2.24)
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where 1 < p < 5 and

A(x1, x2, x3) =
b

2
(−x2, x1, 0), b ∈ R \ {0}.

Here, we note that B = rotA(x) = (0, 0, b), divA(x) = 0 and

−(∇ + iA(x))2u = −∆u− 2iA(x) · ∇u+ |A(x)|2u = −∆u− bi
∂u

∂θ
+
b2

4
ρ2u,

where we used the cylindrical coordinates (ρ, θ, z) in R3:

x1 = ρ cos θ, x2 = ρ sin θ, x3 = z.

As in [25], we consider (2.24) in the closed subspace

H1
A,0(R

3) = {v ∈ H1(R3) ; ρv ∈ L2(R3), v = v(ρ, z) does not depend on θ}

of the energy space H1
A(R3) = {v ∈ L2(R3) ; (∇+ iA(x))v ∈ L2(R3)}. We note that

in H1
A,0(R

3), equation (2.24) is equivalent to

i∂tu = −∆u+
b2

4
ρ2u− |u|p−1u, (t, x) ∈ R

1+3. (2.25)

Let V1(x) = (b2/4)(x2
1 + x2

2) = (b2/4)ρ2, V2(x) ≡ 0, and let G be the group of

rotations around the x3-axis in R3. Then, V (x) = V1(x) + V2(x) = (b2/4)ρ2 satisfies

the assumptions (V0)–(V2) in Section 2.1, and we have XG = H1
A,0(R

3). For V (x) =

(b2/4)ρ2, the functionals E, Sω and Iω on H1
A,0(R

3) are defined as in Section 2.1.

The assumption (A1) is verified by [8, 26]. For the assumption (A2), the existence

of minimal action solution φω(ρ, z) of the stationary problem:

−∆φ+ ωφ+
b2

4
ρ2φ− |φ|p−1φ = 0, x ∈ R

3 (2.26)

in H1
A,0(R

3) was proved by Esteban and Lions [15] for ω ∈ (−|b|,∞). More precisely,

we have

Lemma 2.6. Let 1 < p < 5 and ω ∈ (−|b|,∞). Then, the set MG
ω is not empty,

i.e., there exists a minimizer φω(ρ, z) of

inf{Sω(v) ; v ∈ H1
A,0(R

3) \ {0}, Iω(v) = 0}.
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Proof. Esteban and Lions [15] proved that for any ω ∈ (−|b|,∞), there exists a

minimizer ϕω(x) for

αω := inf{Wω(v) ; v ∈ H1
A,0(R

3), ‖v‖p+1
p+1 = 1},

where

Wω(v) = Iω(v) + ‖v‖p+1
p+1 = ‖∇v‖2

2 + ω‖v‖2
2 +

b2

4

∫
�3

ρ2|v(x)|2dx.

Here, we put φω(x) = α
1/(p−1)
ω ϕω(x). Then, we have φω ∈ H1

A,0(R
3) \ {0} and

Iω(φω) = 0. Moreover, for any v ∈ H1
A,0(R

3) \ {0} satisfying Iω(v) = 0, we have

Sω(φω) =
p− 1

2(p+ 1)
α(p+1)/(p−1)

ω

≤ p− 1

2(p+ 1)
Wω

(
v

‖v‖p+1

)(p+1)/(p−1)

=
p− 1

2(p+ 1)
‖v‖p+1

p+1 = Sω(v).

Hence, we conclude that φω ∈ MG
ω .

The stability of standing wave solutions of (2.24) was studied by Cazenave and

Esteban [8] for the case 1 < p < 1 + 4/3. For φω(ρ, z) ∈ MG
ω in Lemma 2.6,

Gonçalves Ribeiro [25] proved that if 1 + 4/3 + (4
√

10− 8)/9 ≤ p < 5, the standing

wave solution eiωtφω(ρ, z) of (2.24) is unstable in H1
A,0(R

3) for any ω > 0. Here, we

remark that φω(ρ, z) exists for ω ∈ (−|b|,∞). Applying Theorem 2.1 to (2.25), we

obtain the following theorem, which covers the case 1+4/3 < p < 1+4/3+(4
√

10−
8)/9 and gives an improvement of the above result by Gonçalves Ribeiro [25].

Theorem 2.2. Let 1 + 4/3 < p < 5 and φω(ρ, z) ∈ MG
ω . Then there exists

ω∗ = ω∗(p, b) ∈ (0,∞) such that the standing wave solution eiωtφω(ρ, z) of (2.24) is

unstable in H1
A,0(R

3) for any ω ∈ (ω∗,∞).

Proof. We apply Theorem 2.1 to (2.25). As stated above, V (x) = V1(x)+V2(x) =

(b2/4)ρ2 satisfies (V0)–(V2) and (A1). For (A2), by Lemma 2.6, the set MG
ω is not

empty for ω ∈ (−|b|,∞). Thus, we have only to show that

MG
ω ⊂ {v ∈ H1

A,0(R
3) ; |x|v(x) ∈ L2(R3)}, ω ∈ (0,∞). (2.27)

For any ω > 0, it follows from [45, Theorem 2.5] that the operator −∆+(b2/4)ρ2+ω

is m-accretive in Lr(Rn) for 1 < r <∞. By following the argument of Cazenave [7,
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Theorem 8.1.1], we see that all v ∈ MG
ω decay exponentially. Therefore, we have

(2.27). This completes the proof.
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CHAPTER 3

Stability of standing waves for nonlinear

Schrödinger equations with potentials

§ 3.1. Introduction

This chapter is a joint work with Masahito Ohta. We consider the same case as

Chapter 2,

i∂tu = −∆u+ V (x)u− |u|p−1u, (t, x) ∈ R
1+n, (3.1)

where 1 < p < 2∗ − 1. Here, we put 2∗ = ∞ if n = 1, 2, and 2∗ = 2n/(n − 2) if

n ≥ 3. In this chaper, for potential V (x), we assume the following (I).

(I) There exist real valued functions V1(x) and V2(x) such that V (x) = V1(x) +

V2(x), and the following (V1) and (V2) hold.

(V1) V1(x) ∈ C∞(Rn), V1(x) ≥ 0 in Rn and ∂α
xV1(x) ∈ L∞(Rn) for |α| ≥ 2.

(V2) There exists q such that q > n/2, q ≥ 1 and V2(x) ∈ Lq(Rn) + L∞(Rn).

Here, we define a function space X by

X := {v ∈ H1(Rn,C) ; V1(x)|v(x)|2 ∈ L1(Rn)}.

We regard X as a real Hilbert space with the inner product

(v, w)X := Re

∫
�n

(v(x)w(x) + ∇v(x) · ∇w(x) + V1(x)v(x)w(x))dx.

Moreover, we define an operator H : X → X∗ by

〈Hv,w〉 = Re

∫
�n

(∇v(x) · ∇w(x) + V (x)v(x)w(x))dx, v, w ∈ X. (3.2)

By (I), H is well-defined. In fact, by (V2) and the Hölder and Sobolev inequalities,

for any ε > 0 there exists Cε > 0 such that∣∣∣∣
∫
�n

V2(x)|v(x)|2 dx
∣∣∣∣ ≤ ‖V2‖Lq+L∞

(
Cε‖v‖2

L2 + ε‖∇v‖2
L2

)
, v ∈ H1(Rn). (3.3)
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Furthermore, for a subgroup G of O(n) such that V1(x) and V2(x) are G-invariant,

we define a closed subspace XG of X by

XG := {v ∈ X ; v(gx) = v(x), g ∈ G, x ∈ R
n}.

We say that a function v(x) is G-invariant if v(gx) = v(x) holds for any g ∈ G and

x ∈ Rn. Note that X{Id} = X, XO(n) = Xrad := {v ∈ X ; v(x) = v(|x|), x ∈ Rn},
and XG2 ⊂ XG1 if G1 ⊂ G2. Similarly, we define a closed subspace H1

G(Rn) of

H1(Rn). In Theorem 3.1, we assume that V (x) is GR-invariant, where

GR = {(ajk) ∈ O(n) ; a11, · · · , ann ∈ {1,−1}, ajk = 0 if j �= k}. (3.4)

In Theorem 3.2, we also assume the following (II).

(II) There exists a subgroup G of O(n) such that V1(x) and V2(x) are G-invariant,

and the following (V3) holds.

(V3) All minimizing sequences for

λG
1 = inf {〈Hv, v〉 ; v ∈ XG, ‖v‖L2 = 1} (3.5)

are relatively compact in L2(Rn).

Remark 3.1. By (I), we see that λG
1 is finite, and it follows from (II) that

there exists a non-negative minimizer Φ of (3.5) (see Proof of Lemma 3.6 below).

Moreover, by (I) and (II), we see that Φ is positive in Rn, and we have

λG
2 := inf {〈Hv, v〉 ; v ∈ XG, ‖v‖L2 = 1, Re(Φ, v)L2 = 0} > λG

1 . (3.6)

In particular, λG
1 is simple, and Φ is the unique positive minimizer of (3.5) (see

Chapter 8 of [23]).

For ω > −λG
1 , we define

(v, w)X(ω) = 〈Hv,w〉 + ωRe(v, w)L2 , ‖v‖X(ω) = (v, v)
1/2
X(ω), v, w ∈ XG. (3.7)

Then, we see that ‖ · ‖X(ω) is an equivalent norm on XG to ‖ · ‖X .

Examples. (i) (Harmonic potentials) For c1, · · · , cn ∈ R,
∑n

j=1 c
2
jx

2
j satisfies

(V1) and is GR-invariant. Moreover, if cj > 0 for 1 ≤ j ≤ n, it satisfies (II) with

G = {Id}.
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(ii) For 0 < a < min{2, n} and c ∈ R, c|x|−a satisfies (V2) and is GR-invariant.

Moreover, if c < 0, it satisfies (II) with G = {Id}.

We define the energy E and the charge Q on X by

E(v) :=
1

2
〈Hv, v〉 − 1

p+ 1
‖v‖p+1

p+1, Q(v) :=
1

2
‖v‖2

2.

We remark that by (I) and 1 < p < 2∗ − 1, the functional E is well-defined on

X. The following well-posedness of the Cauchy problem for (3.1) in X is already

established in Section 6.4 and Theorem 9.2.5 of [7].

Proposition 3.1. Assume 1 < p < 2∗ − 1 and (I). For any u0 ∈ X, there exist

T = T (‖u0‖X) > 0 and a unique solution u(t) ∈ C([0, T ], X) of (3.1) with u(0) = u0

satisfying

E(u(t)) = E(u0), Q(u(t)) = Q(u0), t ∈ [0, T ].

Next, we consider the stationary problem (1.2) with g(u) = −|u|p−1u.

Definition 4. For ω > −λG
1 , we define two functionals Sω and Iω on XG by

Sω(v) := E(v) + ωQ(v) =
1

2
‖v‖2

X(ω) −
1

p+ 1
‖v‖p+1

p+1 (action),

Iω(v) := ‖v‖2
X(ω) − ‖v‖p+1

p+1.

Let MG
ω be the set of all non-negative minimizers for

inf{Sω(v) ; v ∈ XG \ {0}, Iω(v) = 0}. (3.8)

Remark 3.2. (i) Note that Iω(v) = ∂λSω(λv)|λ=1 = 〈S ′
ω(v), v〉.

(ii) Let φω ∈ MG
ω . Then, there exists a Lagrange multiplier Λ ∈ R such that

S ′
ω(φω) = ΛI ′ω(φω). Thus, we have 〈S ′

ω(φω), φω〉 = Λ〈I ′ω(φω), φω〉. Since 〈S ′
ω(φω), φω〉

= Iω(φω) = 0 and 〈I ′ω(φω), φω〉 = −(p − 1)‖φω‖p+1
p+1 < 0, we have Λ = 0. Namely,

φω satisfies (1.2). Moreover, for any v ∈ XG \ {0} satisfying S ′
ω(v) = 0, we have

Iω(v) = 0. Thus, by the definition of MG
ω , we have Sω(φω) ≤ Sω(v). Namely,

φω ∈ MG
ω is a ground state (minimal action solution) of (1.2) in XG. It is easy to

see that a ground state of (1.2) in XG is a minimizer of (3.8).
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Remark 3.3. If V (x) ∈ C(Rn) satisfies lim
|x|→∞

V (x) = +∞, it is easy to see that

MG
ω is not empty for ω > −λG

1 , since the embedding XG ⊂ Lr(Rn) is compact

for 2 ≤ r < 2∗. Thus, MG
ω is not empty for ω > −λG

1 in the case where V (x) =∑n
j=1 c

2
jx

2
j with c1, · · · , cn ∈ R. Moreover, noting the proof of Lemma 4.1 of [20]

(Lemma 2.6 of Chapter 2), it follows from Theorem I.2 of [37] that MG
ω is not empty

for ω > −λG
1 in the case where V (x) = c|x|−a with 0 < a < min{2, n} and c < 0.

However, as a general rule, in addition to (I), we may need some more assumptions

related to the concentration compactness principle (see, e.g., [36, 37, 47]).

Definition 5. For φω ∈ MG
ω and δ > 0, we put

UG
δ (φω) :=

{
v ∈ XG ; inf

θ∈�
‖v − eiθφω‖X < δ

}
.

We say that a standing wave solution eiωtφω(x) of (3.1) is stable in XG if for any

ε > 0 there exists δ > 0 such that for any u0 ∈ UG
δ (φω), the solution u(t) of (3.1)

with u(0) = u0 satisfies u(t) ∈ UG
ε (φω) for any t ≥ 0. Otherwise, eiωtφω(x) is said

to be unstable in XG.

Our main results in this chapter are the followings.

Theorem 3.1. Assume 1 < p < 1 + 4/n and (I). Let G be a subgroup of

O(n) such that GR ⊂ G and that V1(x) and V2(x) are G-invariant. Here, GR is

the subgroup of O(n) defined by (3.4). Assume that there exists ω0 > 0 such that

MG
ω is not empty for any ω ∈ (ω0,∞). Let φω(x) ∈ MG

ω . Then, there exists

ω∗ ∈ (ω0,∞) such that the standing wave solution eiωtφω(x) of (3.1) is stable in XG

for any ω ∈ (ω∗,∞).

Theorem 3.2. Assume 1 < p < 2∗−1, (I), (II) and that there exists ω0 > −λG
1

such that MG
ω is not empty for any ω ∈ (−λG

1 , ω
0). Let φω(x) ∈ MG

ω . Then, there

exists ω∗ ∈ (−λG
1 , ω

0) such that the standing wave solution eiωtφω(x) of (3.1) is stable

in XG for any ω ∈ (−λG
1 , ω

∗).

For the proofs of Theorems 3.1 and 3.2, we use the following sufficient condition

for stability in XG.
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Proposition 3.2. Assume 1 < p < 2∗−1 and (I). Let G be a subgroup of O(n)

such that V1(x) and V2(x) are G-invariant, and φω ∈ MG
ω . If there exists δ > 0 such

that

〈S ′′
ω(φω)v, v〉 ≥ δ‖v‖2

X (3.9)

for any v ∈ XG satisfying Re(φω, v)L2 = 0 and Re(iφω, v)L2 = 0, then the standing

wave solution eiωtφω(x) of (3.1) is stable in XG.

By applying this sufficient condition, we may avoid such delicate difficulty that

we have to choose a sequence {ωk}. However still, it is not easy to verify condition

(3.9) directly. In Section 3.3 and Section 3.4, we first study a limiting problem. We

investigate the rescaling limit of φω(x) as ω → ∞ or ω → −λG
1 , which is based on

the spirit of the analysis in Esteban and Strauss [16]. We show that as ω → ∞, the

rescaled function φ̃ω(x) defined by φω(x) = ω1/(p−1)φ̃ω(
√
ωx) tends to the unique

positive radial solution ψ1(x) of (1.4) with ω = 1. While, as ω → −λG
1 , φω(x)/‖φω‖2

2

converges to Φ, which is the first eigenfunction of the linear eigenvalue problem

(3.5). From known stability properties of ψ1(x) and Φ, we are able to prove (3.9) in

the limit. Here, we remark that if we let ω → ∞, we lose control of the nullspace

of the linearized operator S ′′
ω(φω), since (3.1) with V (x) ≡ 0 has the invariance of

translations, although (3.1) may not have the corresponding invariance (see Lemmas

3.2 and 3.4). This is the reason why we need to assume that G contains GR in

Theorem 3.1.

Remark 3.4. The assumptions in Proposition 3.2 are slightly different from

those in Theorems 3.4 and 3.5 of [28]. In fact, applying Theorems 3.4 and 3.5 of

[28] directly to our case, Re(iφω, v)L2 = 0 is replaced by (iφω, v)X = 0 in Proposition

3.2. For the sake of completeness, we give the proof of Proposition 3.2 in Section

3.2.

In Proposition 3.2, the condition Re(φω, v)L2 = 0 is related to the conservation

of charge Q. In fact, we have 〈Q′(φω), v〉 = Re(φω, v)L2 . Moreover, since it follows

from S ′
ω(eiθφω) = 0 for θ ∈ R that S ′′

ω(φω)iφω = 0, (3.9) does not hold if we do not

restrict v ∈ XG to satisfy Re(iφω, v)L2 = 0. For v ∈ XG with v1(x) = Re v(x) and
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v2(x) = Im v(x), we have

〈S ′′
ω(φω)v, v〉 = 〈L1,ωv1, v1〉 + 〈L2,ωv2, v2〉, (3.10)

〈L1,ωv1, v1〉 = ‖v1‖2
X(ω) − p

∫
�n

φp−1
ω (x)|v1(x)|2 dx, (3.11)

〈L2,ωv2, v2〉 = ‖v2‖2
X(ω) −

∫
�n

φp−1
ω (x)|v2(x)|2 dx, (3.12)

Re(φω, v)L2 = (φω, v1)L2, Re(iφω, v)L2 = (φω, v2)L2. (3.13)

This chapter is organized as follows. In Section 3.2, following Grillakis, Shatah

and Strauss [28], we give the proof of Proposition 3.2. In Section 3.3, using a

convergence lemma (see Lemma 3.3) proved in [20] and some properties of the

standing wave solution eiωtψω(x) of (3.1) with V (x) ≡ 0 proved in Weinstein [55],

we prove Theorem 3.1. For a bounded potential V (x), Rose and Weinstein [48]

studied by numerical simulations that if p < 1+4/n, ‖φω‖2
2 would increase for large

ω, so that eiωtφω(x) would be stable. We can affirm that this numerical result is

correct by Theorem 3.1. In Section 3.4, we prove Theorem 3.2.

§ 3.2. Proof of Proposition 3.2

In this section, we prove Proposition 3.2. First, following Grillakis, Shatah and

Strauss [28, Theorem 3.4], we prove the following lemma (see also Iliev and Kirchev

[31, Proposition 1]).

Lemma 3.1. Under the assumptions in Proposition 3.2, there exist C > 0 and

ε > 0 such that

E(u) − E(φω) ≥ C inf
θ∈�

‖u− eiθφω‖2
X

for u ∈ UG
ε (φω) with Q(u) = Q(φω).

Proof. Let u ∈ UG
ε (φω) with Q(u) = Q(φω). By the implicit function theorem, if

ε > 0 is small, there exists θ(u) ∈ R such that

‖u− eiθ(u)φω‖2
X = min

θ∈�
‖u− eiθφω‖2

X . (3.14)

Let v := e−iθ(u)u− φω. Taylor expansion gives

Sω(u) = Sω(e−iθ(u)u) = Sω(φω) + 〈S ′
ω(φω), v〉 +

1

2
〈S ′′

ω(φω)v, v〉 + o(‖v‖2
X).
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Since S ′
ω(φω) = 0 and Q(φω) = Q(u), we have

E(u) − E(φω) =
1

2
〈S ′′

ω(φω)v, v〉 + o(‖v‖2
X). (3.15)

We decompose v as v = aφω + biφω + w with a, b ∈ R, w ∈ XG satisfying

Re(w, φω)L2 = 0 and Re(w, iφω)L2 = 0. Another expansion gives

Q(φω) = Q(u) = Q(e−iθ(u)u) = Q(φω) + 〈Q′(φω), v〉 +O(‖v‖2
X),

〈Q′(φω), v〉 = Re(φω, v)L2 = Re(φω, aφω + biφω + w)L2 = a‖φω‖2
2.

Thus, we have a = O(‖v‖2
X). Moreover, by (3.14) and (φω, iφω)X = 0, we have

0 = (v, iφω)X = b‖φω‖2
X + (w, iφω)X . Thus, we have |b|‖φω‖X ≤ ‖w‖X and ‖v‖X ≤

(|a| + |b|)‖φω‖X + ‖w‖X ≤ 2‖w‖X +O(‖v‖2
X). Therefore, we have

‖w‖2
X ≥ 1

4
‖v‖2

X +O(‖v‖3
X). (3.16)

Furthermore, since S ′′
ω(φω)iφω = 0, we have

〈S ′′
ω(φω)w,w〉 = 〈S ′′

ω(φω)v, v〉 − 2a〈S ′′
ω(φω)φω, v〉 + a2〈S ′′

ω(φω)φω, φω〉

= 〈S ′′
ω(φω)v, v〉 +O(‖v‖3

X). (3.17)

Since w ∈ XG satisfies Re(w, φω)L2 = 0 and Re(w, iφω)L2 = 0, by (3.9) in Proposition

3.2, there exists δ > 0 such that

〈S ′′
ω(φω)w,w〉 ≥ δ‖w‖2

X . (3.18)

By (3.15)–(3.18), we have

E(u) − E(φω) ≥ δ

2
‖w‖2

X + o(‖v‖2
X) ≥ δ

8
‖v‖2

X + o(‖v‖2
X).

Finally, since u ∈ UG
ε (φω) and ‖v‖X = ‖u−eiθ(u)φω‖X < ε, we can take ε = ε(δ) > 0

such that

E(u) − E(φω) ≥ δ

9
‖u− eiθ(u)φω‖2

X .

This completes the proof.

Proposition 3.2 follows from Lemma 3.1 and the proof of Theorem 3.5 in [28].

§ 3.3. Proof of Theorem 3.1
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In this section, following the idea of Esteban and Strauss [16], we prove the

following Lemma 3.2 to show Theorem 3.1.

Lemma 3.2. Assume (I). Let G be as in Theorem 3.1 and φω ∈ MG
ω .

(i) Let 1 < p < 1 + 4/n. There exists ω1 > 0 with the following property: for any

ω ∈ (ω1,∞), there exists δ1 > 0 such that

〈L1,ωv, v〉 ≥ δ1‖v‖2
X(ω)

for any v ∈ XG(Rn,R) satisfying (v, φω)L2 = 0.

(ii) Let 1 < p < 2∗ − 1. There exists ω2 > 0 with the following property: for any

ω ∈ (ω2,∞), there exists δ2 > 0 such that

〈L2,ωv, v〉 ≥ δ2‖v‖2
X(ω)

for any v ∈ XG(Rn,R) satisfying (v, φω)L2 = 0.

Proof of Theorem 3.1. Since ‖ · ‖X(ω) is equivalent to ‖ · ‖X , by (3.10) and

Lemma 3.2, there exists δ > 0 such that (3.9) holds for any v ∈ XG satisfying

Re(φω, v)L2 = 0 and Re(iφω, v)L2 = 0. Hence, Theorem 3.1 follows from Proposition

3.2.

To prove Lemma 3.2, we rescale φω(x) ∈ MG
ω as follows:

φω(x) = ω1/(p−1)φ̃ω(
√
ωx), ω ∈ (ω0,∞). (3.19)

The rescaled function φ̃ω(x) satisfies

−∆φ+ ω−1V

(
x√
ω

)
φ+ φ− |φ|p−1φ = 0, x ∈ R

n. (3.20)

When ω → ∞, the term ω−1V (x/
√
ω)φ in (3.20) disappears formally, and we

expect that φ̃ω(x) may converge to the unique positive radial solution ψ1(x) of (1.4)

with ω = 1 in some sense. Since the standing wave solution eitψ1(x) of (3.1) with

V (x) ≡ 0 is stable in H1(Rn) when p < 1 + 4/n, we expect that the standing wave

solution eiωtφω(x) of (3.1) may be also stable in XG when p < 1 + 4/n and ω is

sufficiently large. This is the reason why we introduce the rescaled function φ̃ω(x).

In fact, we justified this conjecture in [20].
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Lemma 3.3. Assume 1 < p < 2∗ − 1 and (I). Let G be as in Theorem 3.1,

φω(x) ∈ MG
ω and ψ1 be the unique positive radial solution of (1.4) with ω = 1. Then,

for φ̃ω(x) defined by (3.19), we have

lim
ω→∞

‖φ̃ω − ψ1‖H1 = 0. (3.21)

Proof. By Lemma 2.1 of [20] and the concentration compactness principle, for

any sequence {ωj} with ωj → ∞, there exist a subsequence of {φ̃ωj
(x)} (still denoted

by the same letter) and a sequence {yj} ⊂ Rn such that

lim
j→∞

‖φ̃ωj
(· + yj) − ψ1‖H1 = 0 (3.22)

(see Theorem III.1 in [37]). Since φ̃ωj
∈ XG ⊂ XGR

and ψ1 ∈ H1
rad(R

n) ⊂ H1
GR

(Rn),

we see that yj = 0 in (3.22), which implies (3.21).

For ω > −λG
1 , we define the rescaled norm ‖ · ‖X̃(ω) by

‖v‖2
X̃(ω)

= ‖v‖2
H1 +

∫
�n

ω−1V

(
x√
ω

)
|v(x)|2 dx, v ∈ XG,

and we define the rescaled operators L̃1,ω and L̃2,ω by

〈L̃1,ωv, v〉 = ‖v‖2
X̃(ω)

− p

∫
�n

φ̃p−1
ω (x)|v(x)|2 dx,

〈L̃2,ωv, v〉 = ‖v‖2
X̃(ω)

−
∫
�n

φ̃p−1
ω (x)|v(x)|2 dx.

Then, for v(x) = ω1/(p−1)ṽ(
√
ωx), we have

‖v‖2
X(ω) = ω1+2/(p−1)−n/2‖ṽ‖2

X̃(ω)
, (φω, v)L2 = ω2/(p−1)−n/2(φ̃ω, ṽ)L2 ,

〈Lj,ωv, v〉 = ω1+2/(p−1)−n/2〈L̃j,ωṽ, ṽ〉, j = 1, 2

(see (3.7), (3.11) and (3.12)). Moreover, we define

〈L0
1v, v〉 = ‖v‖2

H1 − p

∫
�n

ψp−1
1 (x)|v(x)|2 dx,

〈L0
2v, v〉 = ‖v‖2

H1 −
∫
�n

ψp−1
1 (x)|v(x)|2 dx.

Then, we have

35



Lemma 3.4. (i) Let G be a subgroup of O(n) such that GR ⊂ G. If 1 < p <

1+4/n, then there exists δ1 > 0 such that 〈L0
1v, v〉 ≥ δ1‖v‖2

L2 for any v ∈ H1
G(Rn,R)

satisfying (v, ψ1)L2 = 0.

(ii) Let 1 < p < 2∗ − 1. There exists δ2 > 0 such that 〈L0
2v, v〉 ≥ δ2‖v‖2

L2 for any

v ∈ H1(Rn,R) satisfying (v, ψ1)L2 = 0.

Proof. We begin with (ii). Since L0
2ψ1 = 0 and ψ1(x) > 0 for x ∈ Rn, ψ1 is

the first eigenfunction of L0
2 corresponding to the eigenvalue 0. Moreover, by Weyl’s

theorem, the essential spectrum of L0
2 are in [1,∞), since ψ1 tends to zero at infinity.

These conclude (ii). Next, we show (i). By Propositions 3.3 and 4.4 of Weinstein

[55], if 1 < p < 1 + 4/n, then there exists δ1 > 0 such that 〈L0
1v, v〉 ≥ δ1‖v‖2

L2 for

any v ∈ H1(Rn,R) satisfying (v, ψ1)L2 = 0 and (v, ψp−1
1 ∂jψ1)L2 = 0 for 1 ≤ j ≤ n.

Note that Proposition 3.2 of [55] was completely proved by Kwong [34] for any

n ≥ 1. Since ψ1 ∈ H1
rad(R

n) ⊂ H1
GR

(Rn) and H1
G(Rn) ⊂ H1

GR
(Rn), we see that

(v, ψp−1
1 ∂jψ1)L2 = 0 for any v ∈ H1

G(Rn,R) and 1 ≤ j ≤ n. This concludes (i).

Proof of Lemma 3.2. We show (i) by contradiction. Suppose that (i) were false.

Then, there would exist {ωj} and {vj} ⊂ XG(Rn,R) such that ωj → ∞,

lim
j→∞

〈L̃1,ωj
vj, vj〉 ≤ 0, (3.23)

‖vj‖2
X̃(ωj)

= 1, (vj , φ̃ωj
)L2 = 0. (3.24)

Here, by (3.3), we have∣∣∣∣
∫
�n

ωj
−1V2

(
x√
ωj

)
|vj(x)|2 dx

∣∣∣∣ ≤ C(ωj
−θ(q) + ω−1

j )‖V2‖Lq+L∞‖vj‖2
H1,

where θ(q) := 1 − n/2q > 0. Moreover, since ‖vj‖2
X̃(ωj)

= 1 and V1(x) ≥ 0, we have

1 = ‖vj‖2
X̃(ωj)

≥ {
1 − C(ωj

−θ(q) + ω−1
j )‖V2‖Lq+L∞

} ‖vj‖2
H1 .

Thus, we see that {vj} is bounded in H1(Rn) and

lim
j→∞

∫
�n

ωj
−1V2

(
x√
ωj

)
|vj(x)|2 dx = 0. (3.25)

Since {vj} is bounded in H1(Rn), there exists a subsequence of {vj} (still denoted

by {vj}) and v0 ∈ H1
G(Rn,R) such that vj → v0 weakly in H1

G(Rn,R) and v2
j → v2

0
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weakly in L(p+1)/2(Rn). Further, by Lemma 3.3, we see that φ̃ωj
→ ψ1 strongly in

H1(Rn) and φ̃p−1
ωj

→ ψp−1
1 strongly in L(p+1)/(p−1)(Rn). Thus, we have

lim
j→∞

∫
�n

φ̃p−1
ωj

(x)|vj(x)|2 dx =

∫
�n

ψp−1
1 (x)|v0(x)|2dx. (3.26)

Therefore, by (3.23), (3.24) and (3.26), we have

0 ≥ lim inf
j→∞

〈L̃1,ωj
vj, vj〉

= lim inf
j→∞

(
‖vj‖2

X̃(ωj)
− p

∫
�n

φ̃p−1
ωj

(x)|vj(x)|2 dx
)

= 1 − p

∫
�n

ψp−1
1 (x)|v0(x)|2dx. (3.27)

Again, by (3.23), (3.25), (3.26) and V1(x) ≥ 0, we have

0 ≥ lim inf
j→∞

〈L̃1,ωj
vj , vj〉

= lim inf
j→∞

(
‖vj‖2

H1 +

∫
�n

ωj
−1V

(
x√
ωj

)
|vj(x)|2 dx− p

∫
�n

φ̃p−1
ωj

(x)|vj(x)|2 dx
)

≥ ‖v0‖2
H1 − p

∫
�n

ψp−1
1 (x)|v0(x)|2dx = 〈L0

1v0, v0〉.

Moreover, by (3.24), we have (v0, ψ1)L2 = 0. Therefore, by Lemma 3.4 (i), we have

v0 = 0. However, this contradicts (3.27). Hence, we conclude (i). By the analogous

argument, we can also prove (ii).

§ 3.4. Proof of Theorem 3.2

In this section, we prove Theorem 3.2. Throughout this section, for simplicity,

we assume λG
1 = 0 in (V3). By considering V (x)− λG

1 instead of V (x), without loss

of generality, we can assume λG
1 = 0. As in the proof of Theorem 3.1, Theorem 3.2

follows from Lemma 3.5.

Lemma 3.5. Assume 1 < p < 2∗ − 1, (I) and (II), and let φω ∈ MG
ω .

(i) There exists ω1 > 0 with the following property: for any ω ∈ (0, ω1), there

exists δ1 > 0 such that

〈L1,ωv, v〉 ≥ δ1‖v‖2
X(ω)

for any v ∈ XG(Rn,R) satisfying (v, φω)L2 = 0.
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(ii) There exists ω2 > 0 with the following property: for any ω ∈ (0, ω2), there

exists δ2 > 0 such that

〈L2,ωv, v〉 ≥ δ2‖v‖2
X(ω)

for any v ∈ XG(Rn,R) satisfying (v, φω)L2 = 0.

To prove Lemma 3.5, as we saw in Section 3.3, we expect formally the following.

When ω → 0, if the effect of the nonlinear term |φ|p−1φ in (1.2) (with g(φ) =

−|φ|p−1φ) would disappear, we could have the linear equation −∆φ + V (x)φ = 0,

which has a solution Φ(x) with ‖Φ‖L2 = 1. So, we expect that φω(x)/‖φω‖L2 may

converge to Φ(x) as ω → 0 in some sense. Since the linear mode is stable, we expect

that the standing wave solution eiωtφω(x) of (3.1) may be also stable in XG when

ω is close to 0 for any 1 < p < 2∗ − 1. In what follows, we justify this intuitive

discussion.

Lemma 3.6. Let φω ∈ MG
ω and φ̂ω(x) := φω(x)/‖φω‖2. Then, we have

lim
ω→0

‖φ̂ω − Φ‖X = 0.

Before we show Lemma 3.6, we need some preparations. For simplifying the

argument, we use the operator H defined by (3.2) and functionals Q and N on XG

defined by

Q(v) =
1

2
‖v‖2

2, N(v) =
1

p+ 1
‖v‖p+1

p+1.

Note that 〈Q′(v), w〉 = Re(v, w)L2 , 〈(H +Q′)(v), w〉 = (v, w)X(1), and

〈N ′(v), w〉 = Re

∫
�n

|v(x)|p−1v(x)w(x) dx,

|〈N ′(u) −N ′(v), w〉| ≤ C
(‖u‖p−1

p+1 + ‖v‖p−1
p+1

) ‖u− v‖p+1‖w‖p+1.

The proof of the following Lemma 3.7 is based on Section 4 in [18].

Lemma 3.7. Let φω ∈ MG
ω . Then, we have

‖φω‖p+1
p+1 ≤ ω(p+1)/(p−1)‖Φ‖−2(p+1)/(p−1)

p+1 , ω > 0, (3.28)

lim
ω→0

ω−2/(p−1)‖φω‖2
2 = ‖Φ‖−2(p+1)/(p−1)

p+1 , (3.29)

lim
ω→0

‖φω‖p+1
p+1

‖φω‖2
2

= 0. (3.30)
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Proof. First, we note that φω is a minimizer of

inf{‖v‖p+1
p+1 ; v ∈ XG \ {0}, Iω(v) = 0} (3.31)

(see Definition 4), and Φ is a minimizer of (3.5) with λG
1 = 0. For µ > 0, we have

Iω(µΦ) = µ2‖Φ‖2
X(ω) − µp+1‖Φ‖p+1

p+1 = µ2ω − µp+1‖Φ‖p+1
p+1.

Thus, we have Iω(µ(ω)Φ) = 0 for µ(ω) = (ω/‖Φ‖p+1
p+1)

1/(p−1). Since φω is a minimizer

of (3.31), we have ‖φω‖p+1
p+1 ≤ ‖µ(ω)Φ‖p+1

p+1 = ω(p+1)/(p−1)‖Φ‖−2(p+1)/(p−1)
p+1 , namely we

have (3.28). Next, by λG
1 = 0 and Iω(φω) = 0, we have

0 ≤ ‖∇φω‖2
2 +

∫
�n

V (x)|φω(x)|2dx = −ω‖φω‖2
2 + ‖φω‖p+1

p+1.

Combining with (3.28), we obtain

‖φω‖2
2 ≤ ω2/(p−1)‖Φ‖−2(p+1)/(p−1)

p+1 , ω > 0. (3.32)

Furthermore, by Iω(φω) = 0, (3.28) and (3.32), we have

‖φω‖2
X(1) = (1 − ω)‖φω‖2

2 + ‖φω‖p+1
p+1

≤ (1 − ω)ω2/(p−1)‖Φ‖−2(p+1)/(p−1)
p+1 + ω(p+1)/(p−1)‖Φ‖−2(p+1)/(p−1)

p+1

= ω2/(p−1)‖Φ‖−2(p+1)/(p−1)
p+1 . (3.33)

Now we show (3.29). We decompose φω as φω = aωΦ + yω, where aω ∈ R and

yω ∈ XG with (yω,Φ)X(1) = 0. It follows from (3.33) that

max{|aω|2‖Φ‖2
X(1), ‖yω‖2

X(1)} ≤ |aω|2‖Φ‖2
X(1) + ‖yω‖2

X(1) = ‖φω‖2
X(1) ≤ Cω2/(p−1).

(3.34)

We investigate the asymptotic behavior of yω and aω as ω → 0 more precisely. Since

φω is a solution of (1.2), using H, Q and N , we have

(H + ωQ′)(φω) = (H +Q′)(φω) − (1 − ω)Q′(φω) = N ′(φω). (3.35)

Note that HΦ = 0 and Re(Φ, yω)L2 = 〈Q′(Φ), yω〉 = 〈(H +Q′)(Φ), yω〉 = (Φ, yω)X(1)

= 0. Taking the pairing between (3.35) and yω, we have

〈N ′(φω), yω〉 = 〈(H + ωQ′)(φω), yω〉

= (φω, yω)X(1) − (1 − ω) Re(φω, yω)L2 = ‖yω‖2
X(1) − (1 − ω)‖yω‖2

2. (3.36)
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Furthermore, by (3.6), we have 〈Hyω, yω〉 ≥ λG
2 ‖yω‖2

2 with λG
2 > λG

1 = 0. Namely, we

have ‖yω‖2
X(1) = 〈(H +Q′)(yω), yω〉 ≥ (λG

2 + 1)‖yω‖2
2. Therefore, for any 0 < ω < 1,

we have

‖yω‖2
X(1) − (1 − ω)‖yω‖2

2 ≥ ‖yω‖2
X(1) −

1 − ω

λG
2 + 1

‖yω‖2
X(1) ≥

λG
2

λG
2 + 1

‖yω‖2
X(1). (3.37)

While, we have

|〈N ′(φω), yω〉| = |〈N ′(φω) −N ′(aωΦ), yω〉 + 〈N ′(aωΦ), yω〉|

≤ C(‖φω‖p−1
p+1 + ‖aωΦ‖p−1

p+1)‖yω‖2
p+1 + C‖aωΦ‖p

p+1‖yω‖p+1. (3.38)

We summarize (3.36)–(3.38) to obtain

λG
2

λG
2 + 1

‖yω‖2
X(1) ≤ C

(
‖φω‖p−1

X(1) + |aω|p−1‖Φ‖p−1
X(1)

)
‖yω‖2

X(1)+C|aω|p‖Φ‖p
X(1)‖yω‖X(1).

By (3.34), if we take ω so small that C
(
‖φω‖p−1

X(1) + |aω|p−1‖Φ‖p−1
X(1)

)
< λG

2 /(λ
G
2 +1),

then we have

‖yω‖X(1) ≤ C|aω|p‖Φ‖p
X(1). (3.39)

Here, we note that aω �= 0. Indeed, if aω = 0, then it follows from (3.39) that yω = 0,

so we have φω = 0, which is a contradiction. Next, taking the pairing between (3.35)

and Φ, we have

〈Hφω,Φ〉 + ω〈Q′(φω),Φ〉 = 〈N ′(φω),Φ〉

= 〈N ′(aωΦ),Φ〉 + 〈N ′(φω) −N ′(aωΦ),Φ〉

= |aω|p−1aω‖Φ‖p+1
p+1 + 〈N ′(φω) −N ′(aωΦ),Φ〉.

Here, by (3.39), we have

〈Hφω,Φ〉 + ω〈Q′(φω),Φ〉 = 〈HΦ, φω〉 + ωRe(aωΦ + yω,Φ)L2 = ωaω‖Φ‖2
2 = ωaω,

|〈N ′(φω) −N ′(aωΦ),Φ〉| ≤ C
(
‖φω‖p−1

X(1) + |aω|p−1‖Φ‖p−1
X(1)

)
‖yω‖X(1)‖Φ‖X(1)

≤ C
(
‖yω‖p−1

X(1) + |aω|p−1
)
‖yω‖X(1) ≤ C|aω|2p−1.

Since aω �= 0, we have

ω = |aω|p−1‖Φ‖p+1
p+1 +

1

aω

〈N ′(φω) −N ′(aωΦ),Φ〉

= |aω|p−1‖Φ‖p+1
p+1 +O(|aω|2(p−1)).
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Since it follows (3.34) that |aω| = O(ω1/(p−1)), we have

|aω|p−1 = ω‖Φ‖−(p+1)
p+1 +O(|aω|2(p−1)) = ω‖Φ‖−(p+1)

p+1 +O(ω2).

Therefore, we obtain

|aω| = ω1/(p−1)‖Φ‖−(p+1)/(p−1)
p+1 +O(ωp/(p−1)). (3.40)

From (3.39) and (3.40), we see that

‖φω‖2
2 = |aω|2 + ‖yω‖2

2 = ω2/(p−1)‖Φ‖−2(p+1)/(p−1)
p+1 + o(ω2/(p−1)),

which implies (3.29). Finally, (3.30) follows from (3.28) and (3.29).

We are now in a position to give a proof of Lemma 3.6.

Proof of Lemma 3.6. First, we note that ‖φ̂ω‖2 = 1. Dividing Iω(φω) = 0 by

‖φω‖2
2 implies

〈Hφ̂ω, φ̂ω〉 + ω = ‖φω‖p+1
p+1/‖φω‖2

2.

By (3.30) in Lemma 3.7, {φ̂ω} is a minimizing sequence of (3.5) with λG
1 = 0 as

ω → 0. Moreover, by (3.3), we see that {φ̂ω} is bounded in XG. Thus, by (V3),

there exist a subsequence {φ̂ωj
} and φ0 ∈ XG such that ωj → 0 and

φ̂ωj
→ φ0 weakly in XG, (3.41)

φ̂ωj
→ φ0 strongly in L2(Rn). (3.42)

By (3.42), we have 1 = limj→∞ ‖φωj
‖2

2 = ‖φ0‖2
2 and φ0 �= 0. Moreover, by the lower

semi-continuity of X(1)-norm and 〈Hφ0, φ0〉 ≥ 0, we have

1 = lim inf
j→∞

(
〈Hφ̂ωj

, φ̂ωj
〉 + ‖φ̂ωj

‖2
2

)
= lim inf

j→∞
‖φ̂ωj

‖2
X(1)

≥ ‖φ0‖2
X(1) = 〈Hφ0, φ0〉 + ‖φ0‖2

2 ≥ 1. (3.43)

Thus, we have 〈Hφ0, φ0〉 = 0 and ‖φ0‖2
2 = 1. Since φ0 is non-negative, by Remark

3.1, we have φ0 = Φ. Therefore, by (3.41) and (3.43), we see that φ̂ωj
→ Φ strongly

in XG. This completes the proof.
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Proof of Lemma 3.5. Suppose that (i) were false. Then, there would exist {ωj}
and {vj} ⊂ XG(Rn,R) such that ωj → 0 and

lim
j→∞

〈L1,ωj
vj, vj〉 ≤ 0, (3.44)

‖vj‖2
X(ωj)

= 1, (vj , φ̂ωj
)L2 = 0. (3.45)

Since ‖vj‖2
X(ωj)

= 〈Hvj , vj〉 + ωj‖vj‖2
2 = 1, we have 〈Hvj , vj〉 ≤ 1. We decompose

vj as vj = cjΦ + wj with cj ∈ R and wj ∈ XG satisfying Re(wj,Φ)L2 = 0. Then,

by HΦ = 0 and (3.6) with λG
2 > λG

1 = 0, we have 1 ≥ 〈Hvj , vj〉 = 〈Hwj , wj〉 ≥
λG

2 ‖wj‖2
L2 . Thus, {wj} is bounded in L2(Rn), and there exist a subsequence of {wj}

(still denoted by {wj}) and w0 ∈ L2(Rn) such that wj → w0 weakly in L2(Rn).

Moreover, by (3.45), we have

0 = (vj , φ̂ωj
)L2 = cj Re(Φ, φ̂ωj

)L2 + Re(wj, φ̂ωj
)L2. (3.46)

By Lemma 3.6, we have Re(Φ, φ̂ωj
)L2 → ‖Φ‖2

2 = 1 and Re(wj, φ̂ωj
)L2 → Re(w0,Φ)L2 .

Thus, by (3.46), we see that cj → −Re(w0,Φ)L2 and {cj} is bounded. Since ‖vj‖2 ≤
|cj |‖Φ‖2 + ‖wj‖2, we see that {vj} is bounded in L2(Rn). Since 〈Hvj , vj〉 ≤ 1 and

X ↪→ H1(Rn), {vj} is bounded in H1(Rn). Therefore, there exists a subsequence

{vj} which converges to some v0 weakly in H1(Rn) and |vj|2 → |v0|2 weakly in

L(p+1)/2(Rn). Thus, by Lemma 3.6 and (3.29), we have

lim
j→∞

∫
�n

φp−1
ωj

(x)|vj(x)|2dx = lim
j→∞

∫
�n

‖φωj
‖p−1

2 φ̂p−1
ωj

(x)|vj(x)|2dx

=

∫
�n

Φp−1(x)|v0(x)|2dx lim
j→∞

‖φωj
‖p−1

2 = 0. (3.47)

From (3.44), (3.45) and (3.47), we obtain

0 ≥ lim
j→∞

〈L1,ωj
vj, vj〉 = lim

j→∞

(
‖vj‖2

X(ωj)
− p

∫
�n

φp−1
ωj

(x)|vj(x)|2dx
)

= 1,

which is a contradiction. Hence, we conclude (i). By the analogous argument, we

can also prove (ii).
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CHAPTER 4

Stability of standing waves for nonlinear

Schrödinger equations with double power nonlinearity

§ 4.1. Introduction

In this chapter, we consider the case where g(u) = −|u|p−1u+f(u) and V (x) ≡ 0

in (1.1), that is,

i∂tu = −∆u− |u|p−1u+ f(u), (t, x) ∈ R
1+n, (4.1)

where 1 < p < 2∗ − 1, 2∗ := 2n/(n − 2) if n ≥ 3, 2∗ := ∞ if n = 1, 2. We always

assume that f(z) =
z

|z|f1(|z|) for all z ∈ C\{0}, where f1 ∈ C1(R,R) and f1(0) = 0.

The main purpose of this chapter is to show that under suitable assumptions

on f(u), if p < 1 + 4/n and n ≥ 3, the standing wave solution eiωtφω(x) of (4.1) is

stable for sufficiently small ω > 0 (see Theorem 4.1 below).

Remark 4.1. By a series of Ohta’s papers [41, 42, 43, 44] on the generalized

Davey-Stewartson system, we may have instability or strong instability (blow-up)

results of standing waves of (4.1) for the case where f(u) = −|u|q−1u, if ω > 0 and

1+4/n ≤ p < q < 2∗−1 or sufficiently large ω > 0 and 1 < p < 1+4/n < q < 2∗−1.

We remark that it follows the stability for the case f(u) = −|u|q−1u, if n ≥ 3,

1 < p < q < 1 + 4/n and sufficiently large ω > 0 from the analog of Theorem 4.1

below.

In this chapter, we assume the followings for f(u). Let F (z) =
∫ |z|

0
f(t)dt for

z ∈ C. For all j = 0, 1,

(f1) f (j)(z) = o(|z|p−j), as |z| → 0.

(f2) f (j)(z) = o(|z|(2∗−1)−j), as |z| → ∞.

(f3) There exists s > 0 such that
ω

2
s2 − 1

p+ 1
sp+1 + F (s) < 0.
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We define the energy E and the charge Q on H1(Rn) by

E(v) :=
1

2
‖∇v‖2

2 −
1

p+ 1
‖v‖p+1

p+1 +

∫
�n

F (v)dx, Q(v) :=
1

2
‖v‖2

2.

The following well-posedness of the Cauchy problem for (4.1) in H1(Rn) is already

established (See, for example, [7, 10, 24, 32]).

Proposition 4.1. For any u0 ∈ H1(Rn), there exist T > 0 and a unique

solution u(t) ∈ C([0, T ), H1(Rn)) of (4.1) with u(0) = u0 such that T = +∞ or else,

T < +∞ and lim
t↑T

‖∇u(t)‖2 = +∞. Furthermore, u(t) satisfies

E(u(t)) = E(u0), Q(u(t)) = Q(u0), t ∈ [0, T ).

Next, we consider the stationary problem (1.2) with V (x) ≡ 0 and g(u) =

−|u|p−1u+ f(u).

Definition 6. For ω > 0, we define a functional called action on H1(Rn) by

Sω(v) := E(v) + ωQ(v) =
1

2
‖∇v‖2

2 +
ω

2
‖v‖2

2 −
1

p+ 1
‖v‖p+1

p+1 +

∫
�n

F (v)dx.

The existence of ground states for (1.2) in this case was proved in [5, 37].

Proposition 4.2. Let

ω0 := sup{ω > 0 ;
ω

2
s2 − 1

p+ 1
sp+1 + F (s) < 0 for some s > 0}.

Then, Gω is not empty for any ω ∈ (0, ω0).

Remark 4.2. Let φω ∈ Gω. By the assumptions (f1) and (f2), using the

analogous method in Theorem 8.1.1 of [7] and Theorem 2.4 of [12], we have φω ∈
W 3,r(Rn) for r ∈ [2,∞), lim|x|→∞{|φω(x)|+ |∇φω(x)|} = 0 and so on. It also follows

from (f1), (f2) and the maximum principle that φω(x) > 0 in R
n.

Definition 7. For φω ∈ Gω and δ > 0, we put

Uδ(φω) :=

{
v ∈ H1(Rn) ; inf

θ∈�,y∈�n
‖v − eiθτyφω‖H1 < δ

}
,

where τyv(x) = v(x− y). We say that a standing wave solution eiωtφω(x) of (4.1) is

stable in H1(Rn) if for any ε > 0 there exists δ > 0 such that for any u0 ∈ Uδ(φω),

the solution u(t) of (4.1) with u(0) = u0 satisfies u(t) ∈ Uε(φω) for any t ≥ 0.

Otherwise, eiωtφω(x) is said to be unstable in H1(Rn).
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Our main result in this chapter is the following.

Theorem 4.1. Assume n ≥ 3, 1 < p < 1 + 4/n, (f1) , (f2) and (f3). Let

φω(x) ∈ Gω. Then there exists ω∗ ∈ (0, ω0) such that the standing wave solution

eiωtφω(x) of (4.1) is stable in H1(Rn) for any ω ∈ (0, ω∗).

For the proof of Theorem 4.1, we use the following sufficient condition for stability

in H1(Rn).

Proposition 4.3. Assume 1 < p < 2∗ − 1, (f1), (f2) and (f3). Let φω ∈ Gω.

If there exists δ > 0 such that

〈S ′′
ω(φω)v, v〉 ≥ δ‖v‖2

H1 (4.2)

for any v ∈ H1(Rn) satisfying Re(φω, v)L2 = 0, Re(iφω, v)L2 = 0 and Re(∂lφω, v)L2 =

0 for l = 1, · · · , n, then the standing wave solution eiωtφω(x) of (4.1) is stable in

H1(Rn).

Remark 4.3. Theorem 4.1 does not seem to follow immediately from the ab-

stract scheme in [29] since it would not be easy to compute the spectrum of linearized

operators, especially for the case that the nonlinearity is not monotone. This has

a close relation to the uniqueness problem for (1.2). Moreover, the assumptions in

Proposition 4.3 are slightly different from those in Lemma 4.5 of [29] or Theorem 3.4

of [28]. In fact, applying Lemma 4.5 of [29] directly to our case, Re(iφω, v)L2 = 0 and

Re(∂lφω, v)L2 = 0 for l = 1, · · · , n are replaced by (iφω, v)H1 = 0 and (∂lφω, v)H1 = 0

for l = 1, · · · , n in Proposition 4.3. If we apply Proposition 4.3 with (iφω, v)H1 = 0

and (∂lφω, v)H1 = 0 for l = 1, · · · , n, we need more detailed convergence property

of φω(x) to ψ1(x), for instance, strongly in W 2,2(Rn). That is why it is more conve-

nient for us to use such weaker restrictions to v ∈ H1(Rn) as Re(iφω, v)L2 = 0 and

Re(∂lφω, v)L2 = 0 for l = 1, · · · , n. For the sake of completeness, we give the proof

of Proposition 4.3 in Section 4.2.

It does not seem easy to verify condition (4.2) directly. In Section 4.3, we first

study a limiting problem. We show that as ω → 0, the rescaled function φ̃ω(x)

defined by φω(x) = ω1/(p−1)φ̃ω(
√
ωx) tends to the unique positive radial solution
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ψ1(x) of (1.4) with ω = 1 up to translations. From known stability properties of

ψ1(x), we are able to prove (4.2) in the limit. We remark that the similar idea was

also applied to nonlinear Schrödinger equations with potentials in [21] (Chapter 3).

For v ∈ H1(Rn) with v1(x) = Re v(x) and v2(x) = Im v(x), we have

〈S ′′
ω(φω)v, v〉 = 〈L1,ωv1, v1〉 + 〈L2,ωv2, v2〉, (4.3)

〈L1,ωv1, v1〉 = ‖∇v1‖2
2 + ω‖v1‖2

2 − p

∫
�n

φp−1
ω (x)|v1(x)|2dx (4.4)

+

∫
�n

f ′(φω(x))|v1(x)|2 dx, (4.5)

〈L2,ωv2, v2〉 = ‖∇v2‖2
2 + ω‖v2‖2

2 −
∫
�n

φp−1
ω (x)|v2(x)|2dx (4.6)

+

∫
�n

f(φω(x))

φω(x)
|v2(x)|2 dx, (4.7)

Re(φω, v)L2 = (φω, v1)L2, Re(iφω, v)L2 = (φω, v2)L2,

Re(∂lφω, v)L2 = (∂lφω, v1)L2, for l = 1, · · · , n.

This chapter is organized as follows. In Section 4.2, following Grillakis, Shatah

and Strauss [28], we give the proof of Proposition 4.3. In Section 4.3, we prove

a convergence lemma which plays the most important role in this chapter. Here,

we briefly note the difficulty in spatial dimension n = 2. We consider a certain

minimization problem in Section 4.3. Using the variational characterization of mini-

mizers, we show the convergence lemma. But, a minimizer is not always a solution of

(1.2) since the Lagrange multiplier is not always determined (see, proof of Lemma

4.3 (ii)). In Section 4.4, we prove Theorem 4.1, using the convergence lemma of

Section 4.3 and some properties of the standing wave solution eiωtψω(x) of (4.1)

with f(u) ≡ 0. Lastly, we give a statement for the generalized Davey-Stewartson

system in Section 4.5. Throughout this chapter, different positive constants might

be denoted by the same letter C.

§ 4.2. Proof of Proposition 4.3
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In this section, we prove Proposition 4.3. First, following Grillakis, Shatah and

Strauss [28, Theorem 3.4] and Iliev and Kirchev [31, Proposition 3], we prove the

following lemma.

Lemma 4.1. Under the assumptions in Proposition 4.3, there exist C > 0 and

ε > 0 such that

E(u) − E(φω) ≥ C inf
θ∈�,y∈�n

‖u− eiθφω(· − y)‖2
H1

for u ∈ Uε(φω) with Q(u) = Q(φω).

Proof. Let u ∈ Uε(φω) with Q(u) = Q(φω). By the implicit function theorem, if

ε > 0 is small, there exists θ(u) ∈ R and y(u) ∈ R
n such that

‖u− eiθ(u)φω(· − y(u))‖2
H1 = min

θ∈�,y∈�n
‖u− eiθφω(· − y)‖2

H1, (4.8)

(see Lemma 3.4 and Lemma 3.5 of [13] for details). Let v := e−iθ(u)u(·+ y(u))−φω.

Taylor expansion gives

Sω(u) = Sω(e−iθ(u)u(· + y(u))) = Sω(φω) + 〈S ′
ω(φω), v〉 +

1

2
〈S ′′

ω(φω)v, v〉 + o(‖v‖2
H1).

Since S ′
ω(φω) = 0 and Q(φω) = Q(u), we have

E(u) − E(φω) =
1

2
〈S ′′

ω(φω)v, v〉 + o(‖v‖2
H1). (4.9)

We decompose v as v = aφω + biφω + cl∂lφω + w with a, b, cl ∈ R, w ∈ H1(Rn,C)

satisfying Re(w, φω)L2 = 0, Re(w, iφω)L2 = 0 and Re(w, ∂lφω)L2 = 0 for l = 1, · · · , n.

Another expansion gives

Q(φω) = Q(u) = Q(e−iθ(u)u(· + y(u))) = Q(φω) + 〈Q′(φω), v〉 +O(‖v‖2
H1),

〈Q′(φω), v〉 = Re(φω, v)L2 = Re(φω, aφω + biφω + cl∂lφω + w)L2 = a‖φω‖2
2.

Thus, we have a = O(‖v‖2
H1). Here, we can have Re(φω, iφω)H1 = 0, Re(φω, ∂lφω)H1

= 0 and Re(iφω, ∂lφω)H1 = 0 for l = 1, · · · , n. Moreover, by (4.8), we have 0 =

Re(v, iφω)H1 = b‖φω‖2
H1 + Re(w, iφω)H1 and 0 = Re(v, ∂lφω)H1 = cl‖∂lφω‖2

H1 +

Re(w, ∂lφω)H1 for l = 1, · · · , n. Thus, we have |b|‖φω‖H1 ≤ ‖w‖H1 , |cl|‖∂lφω‖H1 ≤
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‖w‖H1 for l = 1, · · · , n and ‖v‖H1 ≤ (|a| + |b|)‖φω‖H1 + |cl|‖∂lφω‖H1 + ‖w‖H1 ≤
3‖w‖H1 +O(‖v‖2

H1). Therefore, we have

‖w‖2
H1 ≥ 1

9
‖v‖2

H1 +O(‖v‖3
H1). (4.10)

Furthermore, since S ′′
ω(φω)iφω = 0 and S ′′

ω(φω)∂lφω = 0 for l = 1, · · · , n, we have

〈S ′′
ω(φω)w,w〉 = 〈S ′′

ω(φω)v, v〉 − 2a〈S ′′
ω(φω)φω, v〉 + a2〈S ′′

ω(φω)φω, φω〉

= 〈S ′′
ω(φω)v, v〉 +O(‖v‖3

H1). (4.11)

Since w ∈ H1(Rn) satisfies Re(w, φω)L2 = 0, Re(w, iφω)L2 = 0 and Re(w, ∂lφω)L2 = 0

for l = 1, · · · , n, by (4.2) in Proposition 4.3, there exists δ > 0 such that

〈S ′′
ω(φω)w,w〉 ≥ δ‖w‖2

H1 . (4.12)

By (4.9)–(4.12), we have

E(u) − E(φω) ≥ δ

2
‖w‖2

H1 + o(‖v‖2
H1) ≥ δ

18
‖v‖2

H1 + o(‖v‖2
H1).

Finally, since u ∈ Uε(φω) and ‖v‖H1 = ‖u − eiθ(u)φω(· − y(u))‖H1 < ε, we can take

ε = ε(δ) > 0 such that

E(u) − E(φω) ≥ δ

36
‖u− eiθ(u)φω(· − y(u))‖2

H1.

This completes the proof.

Proposition 4.3 follows from Lemma 4.1 and the proof of Theorem 3.5 in [28] or

Theorem 4.1 of [29].

§ 4.3. Proof of convergence lemma

To prove Lemma 4.5 in Section 4, we rescale φω ∈ Gω as follows:

φω(x) = ω1/(p−1)φ̃ω(
√
ωx), ω ∈ (0, ω0). (4.13)

The rescaled function φ̃ω(x) satisfies

−∆φ̃ω + φ̃ω − |φ̃ω|p−1φ̃ω + ω−p/(p−1)f(ω1/(p−1)φ̃ω) = 0, x ∈ R
n. (4.14)

From (f1) and (f2) with j = 0, for any ε > 0, there exists Cε > 0 such that

|ω−p/(p−1)f(ω1/(p−1)φ̃ω)| ≤ ε|φ̃ω|p + Cεω
θ(p)|φ̃ω|2∗−1,
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where θ(p) := {(2∗ − 1) − p}/(p − 1). Since θ(p) > 0, when ω → 0, the term of

higher degree than the p th power nonlinearity disappears formally. So, we expect

that φ̃ω(x) may converge to the unique positive radial solution ψ1(x) of (1.4) with

ω = 1 in some sense. Since the standing wave solution eitψ1(x) of (4.1) with f(u) ≡ 0

is stable in H1(Rn) when p < 1+4/n, we also expect that the standing wave solution

eiωtφω(x) of (4.1) may be stable in H1(Rn) when p < 1 + 4/n and ω is sufficiently

small. This is the reason why we introduce the rescaled function φ̃ω(x). In fact, we

shall justify this observation in this section.

Lemma 4.2. Assume 1 < p < 2∗−1, (f1), (f2) and (f3). Let n ≥ 3, φω(x) ∈ Gω

and ψ1(x) be the unique positive radial solution of (1.4) with ω = 1. Then, for any

sequence {ωj} with ωj → 0, there exist a subsequence of {φ̃ωj
(x)} (still denoted by

the same letter) and a sequence {yj} ⊂ R
n such that

lim
j→∞

‖φ̃ωj
(· + yj) − ψ1‖H1 = 0 (4.15)

Before we show Lemma 4.2, we need some preparations. We define the following

functionals on H1(Rn).

Vω(v) :=
1

2
‖∇v‖2

2 − Sω(v)

=
1

p+ 1
‖v‖p+1

p+1 −
∫
�n

F (v)dx− ω

2
‖v‖2

2,

Kω(v) := Sω(v) − 1

n
‖∇v‖2

2

=

(
1

2
− 1

n

)
‖∇v‖2

2 +
ω

2
‖v‖2

2 −
1

p+ 1
‖v‖p+1

p+1 +

∫
�n

F (v)dx.

Lemma 4.3. Assume (f1), (f2) and (f3). Let φω ∈ Gω, n ≥ 3 and µω =

(1/2 − 1/n)‖∇φω‖2
2.

(i) The variational problem

inf

{
1

n
‖∇v‖2

2 ; v ∈ H1(Rn) \ {0}, Vω(v) ≥ µω

}
(4.16)

is equivalent to

inf

{
1

n
‖∇v‖2

2 ; v ∈ H1(Rn) \ {0}, Kω(v) ≤ 0

}
. (4.17)
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(ii) Let Mω be the set of minimizer for (4.17). If φ ∈ Mω, then φ ∈ Xω. In

particular, we have φ ∈ Gω and Gω ≡ Mω.

Remark 4.4. (i) Note that Kω(v) =
1

n
∂λSω(v(·/λ))|λ=1 for v ∈ H1(Rn). The

functional Kω is called the Pohozaev functional.

(ii) The existence of minimizers for (4.16) was showed in Theorem II.2 of [37].

Proof of Lemma 4.3.

For the proof of (i), see Lemma 2.1 (4) of [41]. We show (ii). Let φ ∈ Mω.

Then, there exists a Lagrange multiplier Λ ∈ R such that (1/n)(‖∇φ‖2
2)

′ = ΛK ′
ω(φ).

Thus, we have 〈(1/n)(‖∇φ‖2
2)

′, x · φ〉 = Λ〈K ′
ω(φ), x · φ〉, which implies(

2

n
− n− 2

n
Λ

) (
1 − n

2

)
‖∇φ‖2

2 = nΛ

{
1

p+ 1
‖φ‖p+1

p+1 −
∫
�n

F (φ)dx− ω

2
‖φ‖2

2

}
.

It follows from Kω(φ) = 0 that(
Λ +

2

n
− n− 2

n
Λ

)
‖∇φ‖2

2 = 0.

Therefore, we have Λ = −1 and φ ∈ Xω. Moreover, for any v ∈ Xω, we have

Kω(v) = 0. Thus, by the definition of (4.17), we have (1/n)‖∇φ‖2
2 ≤ (1/n)‖∇v‖2

2

and then, Sω(φ) = Kω(φ) + (1/n)‖∇φ‖2
2 ≤ Kω(v) + (1/n)‖∇v‖2

2 = Sω(v). Namely,

φ ∈ Gω. It is easy to see that a ground state of (1.2) in H1(Rn) is a minimizer of

(4.17).

We consider

K̃ω(v) :=

(
1

2
− 1

n

)
‖∇v‖2

2 +
1

2
‖v‖2

2 −
1

p+ 1
‖v‖p+1

p+1

+ω−(p+1)/(p−1)

∫
�n

F (ω1/(p−1)v)dx,

K0
1(v) :=

(
1

2
− 1

n

)
‖∇v‖2

2 +
1

2
‖v‖2

2 −
1

p+ 1
‖v‖p+1

p+1.

Lemma 4.4. Assume (f1), (f2) and (f3). Let φω ∈ Gω and n ≥ 3. Then we

have,

(i) lim
ω→0

‖∇φ̃ω‖2
2 = ‖∇ψ1‖2

2, (ii) lim
ω→0

K0
1 (φ̃ω) = 0.
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Proof of Lemma 4.4. First of all, we note that φ̃ω(x) is a minimizer of

inf

{
1

n
‖∇v‖2

2 ; v ∈ H1(Rn) \ {0}, K̃ω(v) ≤ 0

}
, (4.18)

and ψ1(x) is a minimizer of

inf

{
1

n
‖∇v‖2

2 ; v ∈ H1(Rn) \ {0}, K0
1(v) ≤ 0

}
. (4.19)

In order to prove (i), we show that for any µ > 1 there exists ω(µ) ∈ (0, ω0) such

that K̃ω(µψ1) < 0 and K0
1(µφ̃ω) < 0 hold for any ω ∈ (0, ω(µ)). If this is true, then

the above variational characterizations of φ̃ω(x) and ψ1(x) yield that

1

µ2
‖∇ψ1‖2

2 ≤ ‖∇φ̃ω‖2
2 ≤ µ2‖∇ψ1‖2

2, ω ∈ (0, ω(µ)).

Since µ > 1 is arbitrary, we conclude (i). First, from (f1) and (f2) with j = 0, for

any ε > 0 there exists Cε > 0 such that

∫
�n

F (v(x))dx ≤ ε

p+ 1
‖v‖p+1

p+1 +
Cε

2∗
‖v‖2∗

2∗,

for any v ∈ H1(Rn). Using K0
1(ψ1) = 0, we have

µ−2K̃ω(µψ1) = −(µp−1 − 1)
1

p+ 1
‖ψ1‖p+1

p+1 + ω−(p+1)/(p−1)µ−2

∫
�n

F (ω1/(p−1)µψ1)dx

≤ −(µp−1 − 1)
1

p+ 1
‖ψ1‖p+1

p+1 + ε
µp−1

p+ 1
‖ψ1‖p+1

p+1 + Cε
µ2∗−2

2∗
ωθ(p)‖ψ1‖2∗

2∗ ,

where θ(p) := {(2∗ − 1) − p}/(p− 1). We take ε = (µp−1 − 1)/(2µp−1) to get

µ−2K̃ω(µψ1) ≤ −(µp−1 − 1)
1

2(p+ 1)
‖ψ1‖p+1

p+1 + Cµ
µ2∗−2

2∗
ωθ(p)‖ψ1‖2∗

2∗

= − 1

2(p+ 1)
‖ψ1‖p+1

p+1

{
(µp−1 − 1) − ωθ(p) 2µ

2∗−2Cµ(p+ 1)

2∗
‖ψ1‖2∗

2∗

‖ψ1‖p+1
p+1

}
.

Thus, for any µ > 1, there exists ω1(µ) ∈ (0, ω0) such that K̃ω(µψ1) < 0 for any

ω ∈ (0, ω1(µ)). Namely, we have ‖∇φ̃ω‖2
2 ≤ µ2‖∇ψ1‖2

2, for any ω ∈ (0, ω1(µ)). Next,
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from (f1), (f2) and K̃ω(φ̃ω) = 0, we have

µ−2K0
1(µφ̃ω) = −(µp−1 − 1)

1

p+ 1
‖φ̃ω‖p+1

p+1 − ω−(p+1)/(p−1)

∫
�n

F (ω1/(p−1)φ̃ω)dx

≤ −(µp−1 − 1)
1

p+ 1
‖φ̃ω‖p+1

p+1 +
ε

p+ 1
‖φ̃ω‖p+1

p+1 +
Cε

2∗
ωθ(p)‖φ̃ω‖2∗

2∗

= −(µp−1 − 1)
1

2(p+ 1)
‖φ̃ω‖p+1

p+1 +
C

2∗
ωθ(p)‖∇φ̃ω‖2∗

2

= −(µp−1 − 1)
1

2(p+ 1)
‖φ̃ω‖p+1

p+1 +
C

2∗
ωθ(p)‖∇φ̃ω‖2

2‖∇φ̃ω‖2∗−2
2 .

We have taken ε = (µp−1 − 1)/2 and used the Sobolev embedding. Here, from

K̃ω(φ̃ω) = 0 and by the same argument as above, we have(
1

2
− 1

n

)
‖∇φ̃ω‖2

2 ≤ 1

p+ 1
‖φ̃ω‖p+1

p+1 − ω−(p+1)/(p−1)

∫
�n

F (ω1/(p−1)φ̃ω)dx

≤ 1

2(p+ 1)
‖φ̃ω‖p+1

p+1 +
C

2∗
ωθ(p)‖∇φ̃ω‖2

2‖∇φ̃ω‖2∗−2
2 .

Since we have already proved that ‖∇φ̃ω‖2
2 ≤ 2‖∇ψ1‖2

2 for any ω ∈ (0, ω1(
√

2)), we

have (
1

2
− 1

n

)
‖∇φ̃ω‖2

2 ≤
1

2(p+ 1)
‖φ̃ω‖p+1

p+1 +
C

2∗
ωθ(p)‖∇φ̃ω‖2

2‖∇ψ1‖2∗−2
2 ,

for any ω ∈ (0, ω1(
√

2)). Since n ≥ 3, there exists ω3 > 0 such that

C

2∗
ωθ(p)‖∇ψ1‖2∗−2

2 ≤ 1

2

(
1

2
− 1

n

)

for any ω ∈ (0, ω3). So, we have

‖∇φ̃ω‖2
2 ≤

2∗

p+ 1
‖φ̃ω‖p+1

p+1

for any ω ∈ (0, ω4), where ω4 := min{ω3, ω1(
√

2)}. Thus, we have

µ−2K0
1 (µφ̃ω) ≤ −(µp−1 − 1)

1

2(p+ 1)
‖φ̃ω‖p+1

p+1 +
C

2∗
ωθ(p)‖∇φ̃ω‖2

2‖∇ψ1‖2∗−2
2

≤ − 1

2(p+ 1)
{(µp−1 − 1) − 2Cωθ(p)‖∇ψ1‖2∗−2

2 }‖φ̃ω‖p+1
p+1 (4.20)

for any ω ∈ (0, ω4). Therefore, for any µ > 1, there exists ω2(µ) ∈ (0, ω4) such that

K0
1(µφ̃ω) < 0 for any ω ∈ (0, ω2(µ)). Hence we conclude (i).
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Secondly, we show (ii). From K̃ω(φ̃ω) = 0, we have

1

2
‖φ̃ω‖2

2 ≤ 1

p+ 1
‖φ̃ω‖p+1

p+1 − ω−(p+1)/(p−1)

∫
�n

F (ω1/(p−1)φ̃ω)dx

≤ 2

p+ 1
‖φ̃ω‖p+1

p+1 + Cωθ(p)‖φ̃ω‖2∗
2∗

≤ 2

p+ 1

{
p+ 1

8
‖φ̃ω‖2

2 + C‖φ̃ω‖2∗
2∗

}
+ Cωθ(p)‖∇φ̃ω‖2∗

2 .

Therefore, we have

‖φ̃ω‖2
2 ≤ C(1 + ωθ(p))‖∇φ̃ω‖2∗

2 ,

‖φ̃ω‖p+1 ≤ C‖φ̃ω‖H1 ≤ {C(1 + ωθ(p))‖∇φ̃ω‖2∗
2 + C‖∇φ̃ω‖2

2}1/2. (4.21)

By (4.20) with µ = 1, (4.21) and (i), we have

lim sup
ω→0

K0
1(φ̃ω) ≤ 0.

Moreover, for any ω ∈ (0, ω0) there exists µ(ω) > 0 such that K0
1 (µ(ω)φ̃ω) = 0.

Thus, we have

‖∇ψ1‖2
2 ≤ ‖µ(ω)∇φ̃ω‖2

2 = µ(ω)2‖∇φ̃ω‖2
2,

which together with (i) implies that

lim inf
ω→0

µ(ω) ≥ lim inf
ω→0

‖∇ψ1‖2/‖∇φ̃ω‖2 = 1.

From K0
1(µ(ω)φ̃ω) = 0, we have

lim inf
ω→0

K0
1(φ̃ω) = lim inf

ω→0

{
1

p+ 1
(µ(ω)p−1 − 1)‖φ̃ω‖p+1

p+1

}
≥ 0.

Hence, we conclude (ii).

Finally, we are in position to prove Lemma 4.2.

Proof of Lemma 4.2. By Lemma 4.4, for any {ωj} → 0, {φ̃ωj
} is a minimizing

sequence of (4.19). We know from a similar proof to Lemma 4.3 (i) that (4.19) is

equivalent to

inf

{
1

n
‖∇v‖2

2 ; v ∈ H1(Rn) \ {0}, V 0
1 (v) ≥ µ0

1

}
, (4.22)
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where

V 0
1 (v) :=

1

p+ 1
‖v‖p+1

p+1 −
1

2
‖v‖2

2,

µ0
1 = (1/2 − 1/n)‖∇ψ1‖2

2.

Thus, applying the concentration compactness principle (see Theorem II.2 in [37]) to

(4.22), we obtain a minimum of (4.22) to which a subsequence of {φ̃ωj
} converges.

It follows from Lemma 4.3 (ii) that such minimum is a solution of (1.4), namely

ψ1(x). Therefore we have (4.15).

§ 4.4. Proof of Theorem 4.1

In this section, following the idea of Esteban and Strauss [16], we prove the

following Lemma 4.5 to show Theorem 4.1.

Lemma 4.5. Assume (f1), (f2) and (f3). Let φω ∈ Gω.

(i) Let 1 < p < 1 + 4/n. There exists ω∗
1 > 0 with the following property: for any

ω ∈ (0, ω∗
1), there exists δ1 > 0 such that

〈L1,ωv, v〉 ≥ δ1‖v‖2
H1

for any v ∈ H1(Rn,R) satisfying (v, φω)L2 = 0 and (v, ∂lφω)L2 = 0 for l = 1, · · · , n.
(ii) There exists ω∗

2 > 0 with the following property: for any ω ∈ (0, ω∗
2), there

exists δ2 > 0 such that

〈L2,ωv, v〉 ≥ δ2‖v‖2
H1

for any v ∈ H1(Rn,R) satisfying (v, φω)L2 = 0.

Proof of Theorem 4.1. By (4.3) and Lemma 4.5, there exists δ > 0 such that

(4.2) holds for any v ∈ H1(Rn) satisfying Re(φω, v)L2 = 0, Re(∂lφω, v)L2 = 0 for

l = 1, · · · , n and Re(iφω, v)L2 = 0. Hence, Theorem 4.1 follows from Proposition

4.3.
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For ω ∈ (0, ω0), we define the rescaled operators L̃1,ω and L̃2,ω by

〈L̃1,ωv, v〉 = ‖v‖2
H1 − p

∫
�n

φ̃ω
p−1

(x)|v(x)|2 dx

+

∫
�n

ω−1f ′(ω1/(p−1)φ̃ω(x))|v(x)|2 dx,

〈L̃2,ωv, v〉 = ‖v‖2
H1 −

∫
�n

φ̃ω
p−1

(x)|v(x)|2 dx

+

∫
�n

ω−p/(p−1)f(ω1/(p−1)φ̃ω(x))

φ̃ω(x)
|v(x)|2 dx.

Then, for v(x) = ω1/(p−1)ṽ(
√
ωx), we have

‖v‖2
H1 = ω1+2/(p−1)−n/2‖ṽ‖2

H1, 〈Lj,ωv, v〉 = ω1+2/(p−1)−n/2〈L̃j,ωṽ, ṽ〉, j = 1, 2,

(φω, v)L2 = ω2/(p−1)−n/2(φ̃ω, ṽ)L2,

(∂lφω, v)L2 = ω2/(p−1)−n/2+1/2(∂lφ̃ω, ṽ)L2, l = 1, · · · , n.

(see (4.5) and (4.7)). Moreover, we define

〈L0
1v, v〉 = ‖v‖2

H1 − p

∫
�n

ψp−1
1 (x)|v(x)|2 dx,

〈L0
2v, v〉 = ‖v‖2

H1 −
∫
�n

ψp−1
1 (x)|v(x)|2 dx.

Then, we have

Lemma 4.6. (i) If 1 < p < 1+4/n, then there exists δ1 > 0 such that 〈L0
1v, v〉 ≥

δ1‖v‖2
L2 for any v ∈ H1(Rn,R) satisfying (v, ψ1)L2 = 0 and (v, ∂lψ1)L2 = 0 for

l = 1, · · · , n.
(ii) Let 1 < p < 2∗ − 1. There exists δ2 > 0 such that 〈L0

2v, v〉 ≥ δ2‖v‖2
L2 for any

v ∈ H1(Rn,R) satisfying (v, ψ1)L2 = 0.

Proof. We begin with (ii). Since L0
2ψ1 = 0 and ψ1(x) > 0 for x ∈ Rn, ψ1 is

the first eigenfunction of L0
2 corresponding to the eigenvalue 0. Moreover, by Weyl’s

theorem, the essential spectrum of L0
2 are in [1,∞), since ψ1 tends to zero at infinity.

These conclude (ii). Next, we show (i). The essential spectrum of L0
1 are in [1,∞).

Also, Weinstein proved in Appendix A of [55] (completed by Kwong [34]) that L0
1

has exactly one simple negative eigenvalue and

ker(L0
1) := {v ∈ H1(Rn,R) ; L0

1v = 0} = span{∂lψ1(x) ; l = 1, · · · , n}.
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Using these facts and the spectral decomposition, we can have (i) by the argument

of Proposition 1 in Iliev and Kirchev [31], which is based on the method of Grillakis,

Shatah and Strauss [28].

Proof of Lemma 4.5. We show (i) by contradiction. Suppose that (i) were false.

Then, there would exist {ωj} and {vj} ⊂ H1(Rn,R) such that ωj → 0,

lim
j→∞

〈L̃1,ωj
vj , vj〉 ≤ 0, (4.23)

‖vj‖2
H1 = 1, (4.24)

(vj, φ̃ωj
)L2 = 0, (vj, ∂lφ̃ωj

)L2 = 0, (4.25)

for l = 1, · · · , n. By Lemma 4.2, there exist a subsequence of {φ̃ωj
} (still denoted

by {φ̃ωj
}) and {yj} ∈ Rn such that φ̃ωj

(· + yj) → ψ1(·) strongly in H1(Rn) and

φ̃r−1
ωj

(· + yj) → ψr−1
1 (·) strongly in L(r+1)/(r−1)(Rn), where 1 < r ≤ 2∗ − 1. Further,

since {vj(· + yj)} is bounded in H1(Rn), there exists a subsequence of {vj(· + yj)}
(still denoted by {vj(· + yj)}) and v0(·) ∈ H1(Rn,R) such that vj(· + yj) → v0(·)
weakly in H1(Rn) and v2

j (· + yj) → v2
0(·) weakly in L(r+1)/2(Rn). Thus, we have

lim
j→∞

∫
�n

φ̃r−1
ωj

(x+ yj)|vj(x+ yj)|2 dx =

∫
�n

ψr−1
1 (x)|v0(x)|2dx. (4.26)

Here, by (f1) and (f2) with j = 1, we have for any ε > 0,∣∣∣∣
∫
�n

ωj
−1f ′

(
ωj

1/(p−1)φ̃ωj
(x+ yj)

)
|vj(x+ yj)|2 dx

∣∣∣∣
≤ ωj

−1 ×∫
�n

(
ε
∣∣∣ωj

1/(p−1)φ̃ωj
(x+ yj)

∣∣∣p−1

+ Cε

∣∣∣ωj
1/(p−1)φ̃ωj

(x+ yj)
∣∣∣2∗−2

)
|vj(x+ yj)|2 dx

= ε

∫
�n

φ̃p−1
ωj

(x+ yj)|vj(x+ yj)|2 dx

+Cεωj
θ(p)

∫
�n

φ̃2∗−2
ωj

(x+ yj)|vj(x+ yj)|2 dx

where θ(p) := {(2∗ − 1) − p}/(p− 1) > 0. Accordingly, using (4.26) with r = p or

2∗ − 1, we have

lim sup
j→∞

∣∣∣∣
∫
�n

ωj
−1f ′

(
ωj

1/(p−1)φ̃ωj
(x+ yj)

)
|vj(x+ yj)|2 dx

∣∣∣∣
≤ ε

∫
�n

ψp−1
1 (x)|v0(x)|2dx.
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Since ε > 0 is arbitrary, we have

lim
j→∞

∫
�n

ωj
−1f ′

(
ωj

1/(p−1)φ̃ωj
(x+ yj)

)
|vj(x+ yj)|2 dx = 0. (4.27)

Therefore, by (4.23), (4.24), (4.26) and (4.27), we have

0 ≥ lim inf
j→∞

〈L̃1,ωj
vj , vj〉

= lim inf
j→∞

(
‖vj‖2

H1 − p

∫
�n

φ̃p−1
ωj

(x+ yj)|vj(x+ yj)|2 dx
)

= 1 − p

∫
�n

ψp−1
1 (x)|v0(x)|2dx. (4.28)

Again, by (4.23), (4.26) and (4.27), we have

0 ≥ lim inf
j→∞

〈L̃1,ωj
vj , vj〉

= lim inf
j→∞

(
‖vj‖2

H1 − p

∫
�n

φ̃p−1
ωj

(x+ yj)|vj(x+ yj)|2 dx
)

≥ ‖v0‖2
H1 − p

∫
�n

ψp−1
1 (x)|v0(x)|2dx = 〈L0

1v0, v0〉.

Moreover, by (4.25), we have (v0, ψ1)L2 = (v0, ∂lψ1)L2 = 0, for l = 1, · · · , n. There-

fore, by Lemma 4.6 (i), we have v0 = 0. However, this contradicts (4.28). Hence,

we conclude (i). By the analogous argument, we can also prove (ii).

§ 4.5. The generalized Davey-Stewartson System

In this section, we give a remark on the stability of standing waves eiωtφω(x) for

i∂tu = −∆u− |u|p−1u− E1(|u|2)u, (t, x) ∈ R
1+n, (4.29)

where 1 < p < 2∗ − 1, n = 2, or 3 and E1 is the singular integral operator with

symbol σ1(ξ) = ξ2
1/|ξ|2 for ξ = (ξ1, · · · , ξn) ∈ Rn. φω(x) is a ground state of

−∆φ+ ωφ− |φ|p−1φ− E1(|φ|2)φ = 0, x ∈ R
n. (4.30)

For ω > 0, Cipolatti [12] showed the existence of ground states for (4.30) by studying

the following variational problem:

Σµ = inf{‖∇v‖2
2 ; v ∈ H1(Rn) \ {0}, Vω(v) ≥ µ}, µ > 0, (4.31)

where Vω(v) :=
1

p+ 1
‖v‖p+1

p+1 +
1

4

∫
�n

|v|2E1(|v|2)dx− ω

2
‖v‖2

2.
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Equation (4.29) describes the evolution of weakly nonlinear waves that travel

predominantly in one direction (see [14, 22]). The unique local existence of H1

solution to the Cauchy problem of (4.29) has already been established (see [22]).

There were some papers concerned with the stability and instability of standing

waves for (4.29) (see [13, 41, 42, 43, 44]).

By applying the argument of Sections 3 and 4 to the above variational charac-

terization (4.31), we have the following improvement of the result in Ohta [40].

Theorem 4.2. Assume n = 3 and 1 < p < 1 + 4/3. Let φω(x) be a ground state

for (4.30). Then there exists ω∗ > 0 such that the standing wave solution eiωtφω(x)

of (4.29) is stable in H1(Rn) for any ω ∈ (0, ω∗).
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CHAPTER 5

Appendix

In this chapter, we consider (1.1) with V (x) ≡ 0 and g(u) = −|u|p−1u+ |u|q−1u,

i∂tu = −∆u− |u|p−1u+ |u|q−1u, (t, x) ∈ R
1+n, (5.1)

where 1 < p < q < 2∗ − 1. When we study the stability of standing waves eiωtφω(x)

of (5.1), the corresponding stationary problem is the following.
−∆φ+ ωφ− |φ|p−1φ+ |φ|q−1φ = 0, x ∈ Rn,

φ ∈ H1(Rn), φ �≡ 0.
(5.2)

The existence of ground states follows from Proposition IV in Chapter 1 for any

ω ∈ (0, ω0). In this case, we can explicitly have the expression of ω0, that is,

ω0 =
2(q − p)

(p+ 1)(q − 1)

{
(p− 1)(q + 1)

(p+ 1)(q − 1)

}(p−1)/(q−p)

.

As we mentioned in Chapter 1, this case was numerically studied by Anderson [1]

and Shatah [51] showed that there are stable standing waves for ω close to ω0 with

p = 3, q = 5 and n ≥ 3. Namely, there exists a sequence {ωk} approaching ω0, for

which eiωktφωk
(x) is stable. In n = 1 case, Ohta [40] proved that for 1 < p < q <∞,

the standing wave solution is stable for any ω close to ω0. For proving the same

result in n ≥ 2, we study the asymptotic behavior of φω(x) as ω → ω0, which would

be useful to apply this case to Proposition VI.

First, we remark that by the standard elliptic argument, if φω ∈ Gω, we have

φω(x) > 0 in R
n, φω ∈ C2(Rn), lim|x|→∞ |φω(x)| = 0 and φω(x) decays exponentially.

Moreover, it is known that φω(x) = φω(|x|) and φ′
ω(r) < 0 for all r > 0, where

r = |x| and a prime denotes the differentiation with respect to r (see, e.g., [35]).

Thus in order to study the properties of a solution φω(x) of (5.2), it is important
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to investigate the properties of solutions u ∈ C2([0,∞)) of the corresponding radial

problem




−u′′ − n− 1

r
u′ = hω(u), r > 0, ω ∈ (0, ω0) ; u > 0, r ≥ 0,

u′(0) = 0, lim
r→∞

u(r) = 0,
(5.3)

where hω(u) := −ωu+ |u|p−1u− |u|q−1u. We define for u ≥ 0 and ω ∈ (0, ω0),

Hω(u) =

∫ u

0

hω(s)ds,

βω = inf{u > 0 ; Hω(u) > 0}.

Here, we also define for u ≥ 0,

hω0(u) := −ω0u+ |u|p−1u− |u|q−1u,

Hω0(u) =

∫ u

0

hω0(s)ds.

First, we need two basic lemmas in [46] concerning solutions of (5.3).

Lemma 5.1. Let u be a solution of equation (5.3), non-constant on a finite in-

terval (r0, r1) ⊂ R
+. Then, the following inequality holds.

1

2
u′(r1)2 − 1

2
u′(r0)2 < −

∫ u(r1)

u(r0)

hω(s)ds. (5.4)

Proof. Multiply equation (5.3) by u′ and integrate over (r0, r1). This yields

1

2

[
u′(r)2

]r1

r0
+ (n− 1)

∫ r1

r0

u′(r)2dr

r
+

∫ u(r1)

u(r0)

hω(s)ds = 0.

Since the second term is positive unless u(r) ≡ constant, the desired inequality

follows.

Lemma 5.2. Let u be a solution of the problem (5.3) satisfying u′(r) ≤ 0 for all

r > 0. Then, we have

lim
r→∞

u′(r) = 0 and u(0) ≥ βω.

60



Proof. Since u′(r) ≤ 0 on (0,∞) and hω(s) < 0 for small s > 0, for r large

enough,

u′′(r) = −n− 1

r
u′(r) − hω(u(r)) > 0.

Therefore there exists limr→∞ u′(r)(≤ 0). Because u(r) > 0 for all r > 0, it follows

that limr→∞ u′(r) = 0. Now we apply Lemma 5.1 on (0, r) and let r → ∞. This

yields Hω(u(0)) ≥ 0 and hence u(0) ≥ βω.

Remark 5.1. We do not actually need to assume that u′(r) ≤ 0 for all r > 0.

We can prove that a solution u of (5.3) is strictly decreasing (see Lemma 3 of [46]).

Our main purpose in this chapter is to show the following proposition. We prove

it by using ODE method in [6].

Proposition 5.1. Let φω ∈ Gω. Then, we have

lim
ω→ω0

‖φω − φ0‖H1
loc(�

n ) = 0,

where

φ0 =

{
(p− 1)(q + 1)

(p+ 1)(q − 1)

}1/(q−p)

.

Remark 5.2. (i) φ0 is a nonzero solution of

Hω0(u) = −ω0

2
u2 +

1

p+ 1
up+1 − 1

q + 1
uq+1 = 0,

hω0(u) = H ′
ω0

(u) = −ω0u+ up − uq = 0, for u ≥ 0.

(ii) We note that βω converges to φ0 a.e. x ∈ Rn as ω → ω0.

Proof of Proposition 5.1. For any ω ∈ (0, ω0), −∆φω(x) ≥ 0 at the point x = 0

where φω(x) achieves its maximum and hence from (5.2), −ωφω + φp
ω − φq

ω ≥ 0 at

x = 0. Thus, we have φω(0) ≤ 1 since ω > 0, p < q and φω(x) > 0 in R
n. So, we have

φω(x) ≤ φω(0) ≤ 1 for any x ∈ Rn. For any fixed R > 0, BR denote the ball of radius

R centered at the origin, and we have
∫

BR
|φω(x)|2dx ≤ C, where C is independent

of ω. By the elliptic regularity theorem, ‖φω‖W 2,2(BR) is also bounded. For any {ωj}
with ωj → ω0, there exist a subsequence {φωj

} (still denoted by the same letter)
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and v ∈ W 2,2(BR) such that φωj
converges strongly to v in H1(BR) ∩ Lr+1(BR)

for 1 < r < 2∗ − 1. Particularly, φωj
converges to v a.e. x ∈ Rn and hence v(x)

is positive, radially symmetric, monotone decreasing, C2(Rn) function and satisfies

the equation

−∆v + ω0v − |v|p−1v + |v|q−1v = 0.

From Lemma 5.2, we have φω(0) ≥ βω. Therefore,

v(0) = lim inf
ωj→ω0

φωj
(0) ≥ lim inf

ωj→ω0

βωj
= φ0.

While, if we suppose that v(0) > φ0, then we have hω0(v(0)) < 0. But, since v

achieves its maximum at the origin, it follows that −∆v(0) = hω0(v(0)) ≥ 0, which

is a contradiction. Hence, we have v(0) = φ0. By applying the following Lemma 5.3

to v, we obtain that v(x) ≡ φ0 for x ∈ Rn, which concludes the proof.

Lemma 5.3. Let u ∈ C2([0,∞)) be a positive solution of the initial value problem
−u′′ − n− 1

r
u′ = hω0(u), r > 0 ;

u(0) = φ0, u′(0) = 0.
(5.5)

Assume that u′(r) ≤ 0 for all r > 0. Then, u ≡ φ0 (constant).

Proof. For the case n = 1, by the uniqueness to the IVP, u ≡ φ0 since hω0(φ0) = 0.

Therefore, from now on, we discuss the case n ≥ 2. Since u(r) > 0 and u′(r) ≤ 0

for any r > 0, there exists l ≥ 0 such that limr→∞ u(r) = l. If we show that l = φ0,

we have u ≡ φ0 because u′(r) ≤ 0 for any r > 0. Multiply (5.5) by u′ and integrate

between 0 and r. This yields

1

2
{u′(r)}2 + (n− 1)

∫ r

0

{u′(s)}2ds

s
= Hω0(φ0) −Hω0(u(r)). (5.6)

We remark that there exists M > 0 such that Hω0(u(r)) ≥ −M and that Hω0(φ0) =

0. Therefore

lim
r→∞

∫ r

0

{u′(s)}2ds

s
<∞

and hence u′(r) converges as r → ∞. Since u is bounded, we deduce that

lim
r→∞

u′(r) = 0.
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Thus, from (5.5), we deduce that u′′(r) converges as r → ∞. Again, since u′ is

bounded,

lim
r→∞

u′′(r) = 0.

If we now let r tend to infinity in (5.5), we obtain

hω0(l) = 0.

Let

α := inf{s > 0 ; hω0(s) ≥ 0}.

The possible value of l are 0, α and φ0. Let us prove that l �= α. Suppose to the

contrary that l = α. We set

w(r) = r(n−1)/2{u(r) − α}.

Then w satisfies

−w′′ =

{
hω0(u)

u− α
− (n− 1)(n− 3)

4r2

}
w,

w(r) > 0 for all r ≥ 0.

Since u(r) ↓ α as r → ∞ and h′ω0
(α) > 0, we have

lim
u→α

hω0(u)

u− α
> 0.

Therefore, there exist δ > 0 and R1 > 0 such that

hω0(u)

u− α
− (n− 1)(n− 3)

4r2
≥ δ for all r ≥ R1.

Thus w′′ < 0 for r ≥ R1, which implies that for some L ≥ −∞, w′(r) ↓ L as r → ∞.

Now, if L < 0, then w(r) → −∞ as r → ∞, which is impossible. On the other hand,

if L ≥ 0, then w(r) ≥ w(R1) > 0 for r ≥ R1. This implies that −w′′ ≥ δw(R1) > 0

for r ≥ R1. Therefore w′(r) ↓ −∞ as r → ∞ and so w(r) ↓ −∞ as r → ∞. The

contradiction proves that l �= α. Next, we show that l �= 0 by contradiction. Assume

that l = 0. Let r tend to ∞ in (5.6), then we have

(n− 1)

∫ ∞

0

{u′(s)}2ds

s
= 0.

63



Since n ≥ 2 and u′ is continuous, we have u′ ≡ 0 for any r ≥ 0. This is impossible

because we have assumed that u(r) ↓ 0 and u(0) = φ0 > 0. Hence, l �= 0 and then

we have proved that l = φ0.

Remark 5.3. As we proved the stability of standing waves in Chapters 3 and

4, we hope to show that the standing wave solution eiωtφω is stable for any ω close

to ω0. However, the difference of topology between the sufficient condition (1.7) in

Proposition VI and the convergence of φω(x) as ω → ω0 in Proposition 5.1 makes it

hard to apply the similar method.
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