
ISSN 1343-9499

TOHOKU
MATHEMATICAL

PUBLICATIONS

Number 23

Studies on toric Fano varieties

by

Hiroshi Sato

April 2002

c©Tohoku University

Sendai 980-8578, Japan



Editorial Board

Shigetoshi Bando Masanori Ishida Katsuei Kenmotsu

Hideo Kozono Yasuo Morita Tetsuo Nakamura

Seiki Nishikawa Tadao Oda Norio Shimakura

Toshikazu Sunada Izumi Takagi Toyofumi Takahashi

Masayoshi Takeda Kazuyuki Tanaka Yoshio Tsutsumi

Eiji Yanagida Takashi Yoshino Akihiko Yukie

This series aims to publish material related to the activities of the
Mathematical Institute of Tohoku University. This may include:
1. Theses submitted to the Institute by grantees of the degree of Doctor

of Science.
2. Proceedings of symposia as well as lecture notes of the Institute.
A primary advantage of the series lies in quick and timely publication.
Consequently, some of the material published here may very likely
appear elsewhere in final form.

Tohoku Mathematical Publications

Mathematical Institute
Tohoku University

Sendai 980-8578, Japan



Studies on toric Fano varieties

A thesis presented

by

Hiroshi Sato

to

The Mathematical Institute

for the degree of

Doctor of Science

Tohoku University

Sendai, Japan

March 2001



Studies on toric Fano varieties

Hiroshi Sato∗

∗Partly supported by the Grant-in-Aid for JSPS Fellows, The Ministry of Education, Science,

Sports and Culture, Japan.

2000 Mathematics Subject Classification. Primary 14M25; Secondary 14J30, 14J45, 14K12,

32G05.



Abstract

Chapter 1 is intended to give basic tools for the classification of nonsingular toric Fano

varieties by means of the notions of primitive collections and primitive relations due to

Batyrev. By using them we can easily deal with equivariant blow-ups and blow-downs,

and obtain an easy criterion to determine whether a given nonsingular toric variety is a

Fano variety or not. As applications of these results, we prove a toric version of a theorem

of Mori, and in principle, can classify all nonsingular toric Fano varieties obtained from a

given nonsingular toric Fano variety by finite successions of equivariant blow-ups and blow-

downs through nonsingular toric Fano varieties. In particular, we obtain a new method

for the classification of nonsingular toric Fano varieties of dimension at most four. This

method is extended to the case of Gorenstein toric Fano varieties endowed with natural

resolutions of singularities, by which we obtain a new method for the classification of

Gorenstein toric Fano surfaces.

In Chapter 2, we investigate whether the 124 nonsingular toric Fano 4-folds admit

totally nondegenerate embeddings from abelian surfaces or not. In consequence, we de-

termine the possibilities of these embeddings, except for the remaining 21 nonsingular

toric Fano 4-folds.

In Chapter 3, we obtain a complete classification of toric weakened Fano 3-folds, that

is, smooth toric weak Fano 3-folds which are not Fano but are deformed to smooth Fano

3-folds. There exist exactly 15 toric weakened Fano 3-folds up to isomorphisms.

Finally, we construct one-parameter complex analytic families whose special fibers are

complete toric varieties in Chapter 4. Under appropriate assumptions, the general fibers

of these families also become toric varieties, and the corresponding fans are explicitly

described by the data of the fans associated to the special fibers. Using these families, we

construct a deformation family for a certain toric weakened Fano 3-fold. Moreover, we

get certain examples of toric weakened Fano 4-folds.
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Chapter 1

Toward the classification of

higher-dimensional toric Fano

varieties

1.1 Introduction

A Gorenstein toric Fano variety is a complete toric variety X with at most Gorenstein

singularities such that the anticanonical divisor −KX is ample. Gorenstein toric Fano

varieties are very important as ambient spaces of Calabi-Yau varieties, and, for instance,

Batyrev [4] systematically constructed examples of mirror symmetric pairs of Calabi-

Yau varieties as hypersurfaces in Gorenstein toric Fano varieties. The set of isomorphism

classes of Gorenstein toric Fano d-folds is a finite set for any dimension d (see Batyrev [3]).

Nonsingular toric Fano d-folds are classified for d ≤ 4 and Gorenstein toric Fano d-folds

are classified for d ≤ 3 (see Batyrev [6] and Watanabe-Watanabe [36] in the nonsingular

cases, and Koelman [16], Kreuzer-Skarke [17] and [18] in the Gorenstein cases). In this

chapter, we study the classification of higher-dimensional nonsingular or Gorenstein toric

Fano varieties using the notions of primitive collections and primitive relations introduced

by Batyrev [5]. First we consider the nonsingular case.

Definition 1.1.1 Let Fd be the set of isomorphism classes of toric Fano d-folds. X1 and

X2 in Fd are said to be F-equivalent if there exists a sequence of equivariant blow-ups and

blow-downs from X1 to X2 through nonsingular toric Fano d-folds, namely there exist
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nonsingular toric Fano d-folds Y0 = X1, Y1, . . . , Y2l = X2 together with finite successions

Yj → Yj−1 and Yj → Yj+1, for each odd 1 ≤ j ≤ 2l − 1, of equivariant blow-ups through

nonsingular toric Fano d-folds. We denote the relation by X1
F∼ X2. Then “

F∼” is obviously

an equivalence relation.

Remark 1.1.2 For equivariant birational maps of complete nonsingular toric varieties

which need not be Fano varieties, related factorization conjectures have been proposed by

Oda [27]. The weak version analogous to the factorization in Definition 1.1.1 was proved

by W�lodarczyk [37] and Morelli [22], while the strong version was proved by Morelli [22]

and later supplemented by Abramovich-Matsuki-Rashid [1].

As we see in this chapter, if we get a complete system of representatives for (F , F∼), then

we get the classification of nonsingular toric Fano d-folds. The following conjecture for

nonsingular toric Fano d-folds holds for d ≤ 4 as a consequence of the known classification.

Conjecture 1.1.3 Any nonsingular toric Fano d-fold is either pseudo-symmetric or F-

equivalent to the d-dimensional projective space Pd.

In this chapter, we prove this conjecture for d = 3 and d = 4 without using the

classification. As a result, we get a new method for the classification of nonsingular toric

Fano 3-folds and 4-folds. Using this method for the classification, we can show that there

exist 124 nonsingular toric Fano 4-folds up to isomorphism.

On the other hand, Gorenstein toric Fano d-folds are related to nonsingular toric weak

Fano d-folds, where a nonsingular toric weak Fano variety is a nonsingular projective toric

variety X such that the anticanonical divisor −KX is nef and big, and the methods for

nonsingular toric Fano d-folds are extended to the case of nonsingular weak toric Fano

d-folds. As a result, we get a new method for the classification of Gorenstein toric Fano

surfaces.

The content of this chapter is as follows: In Section 1.2, we study basic concepts on

toric Fano varieties, and recall the correspondence between Gorenstein toric Fano varieties

and reflexive polytopes. In Sections 1.3 and 1.4, we introduce primitive collections and

primitive relations. We can characterize toric Fano varieties using them, and calculate

them before and after an equivariant blow-up. Moreover, we have a criterion for the

possibility of an equivariant blow-down in terms of primitive collections and primitive
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relations. In Section 1.4, we give a new nonsingular toric Fano 4-fold which is missing in

the classification of Batyrev [6]. In Section 1.5, we give a toric version of a theorem of

Mori as an application of Sections 1.3 and 1.4. In Section 1.6, we give a procedure for the

classification which says that we have only to get a complete system of representatives

for the F-equivalence relation for the set of isomorphism classes of nonsingular toric Fano

d-folds. We also study a correspondence between toric weak Fano varieties and Gorenstein

toric Fano varieties. Especially, we get a new method for the classification of Gorenstein

toric Fano surfaces. In Sections 1.7 and 1.8, we prove Conjecture 1.1.3 for d = 3 and

d = 4. We give the table of the 124 nonsingular toric Fano 4-folds in terms of primitive

relations in Section 1.9. In Section 1.10, as an application of Sections 1.3 and 1.4, we

describe all the equivariant blow-up relations among nonsingular toric Fano 4-folds using

the classification of Batyrev [6].

The author wishes to thank Professors Tadao Oda, Yasuhiro Nakagawa and Takeshi

Kajiwara for their advice and encouragement.

1.2 Reflexive polytopes

In this section, we recall some basic notation and facts about toric Fano varieties (see

Batyrev [4], Fulton [9], and Oda [26] for more details). The following notation is used

throughout this chapter.

Let N be a free abelian group of rank d and M := HomZ(N,Z) the dual group. The

natural pairing 〈 , 〉 : M ×N → Z is extended to a bilinear form 〈 , 〉 : MR ×NR → R,

where MR := M ⊗Z R, NR := N ⊗Z R.

For a finite complete fan Σ in N and 0 ≤ i ≤ d, we put Σ(i) := {σ ∈ Σ | dimσ = i}.
Each τ ∈ Σ(1) determines a unique element e(τ) ∈ N which generates the semigroup

τ ∩N . We put

G(Σ) := {e(τ) ∈ N | τ ∈ Σ(1)}

and G(σ) := σ ∩G(Σ) for σ ∈ Σ.

Definition 1.2.1 (Batyrev [4]) A d-dimensional convex lattice polytope ∆ ⊂ NR is

called a reflexive polytope if the origin 0 is in the interior of ∆ and the polar

∆∗ := {y ∈MR | 〈y, x〉 ≥ −1, ∀x ∈ ∆} ⊂MR
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is also a convex lattice polytope.

For a d-dimensional convex polytope ∆ ⊂ NR and 0 ≤ i ≤ d − 1, we denote by ∆(i)

the set of i-dimensional faces of ∆.

Let ∆ ⊂ NR be a convex lattice polytope such that 0 is in the interior of ∆. For any

i-dimensional face δ ⊂ ∆ (0 ≤ i ≤ d− 1), let

σ(δ) := {rx ∈ NR | r ∈ R≥0, x ∈ δ} .

Then σ(δ) is an (i + 1)-dimensional strongly convex rational polyhedral cone in NR.

Moreover,

Σ(∆) := {σ(δ) | δ ∈ ∆(i) (0 ≤ i ≤ d− 1)} ∪ {0}

is a finite complete fan in N .

Proposition 1.2.2 (Batyrev [4]) If ∆ ⊂ NR is a reflexive polytope, then TNemb(Σ(∆))

is a Gorenstein toric Fano variety. Conversely, if Σ is a finite complete fan in N such

that TNemb(Σ) is a Gorenstein toric Fano variety, then Conv(G(Σ)) ⊂ NR is a reflex-

ive polytope, where Conv(G(Σ)) is the convex hull of G(Σ) ⊂ NR. Moreover, any two

Gorenstein toric Fano varieties TNemb(Σ(∆1)) and TNemb(Σ(∆2)) corresponding to two

reflexive polytopes ∆1 ⊂ NR and ∆2 ⊂ NR are isomorphic if and only if ∆1 and ∆2 are

equivalent up to unimodular transformation of the lattice N .

Remark 1.2.3 A reflexive polytope ∆ is called a Fano polytope if Σ(∆) is nonsingular.

1.3 Primitive collections and primitive relations

Primitive collections and primitive relations, introduced by Batyrev [5], are very con-

venient in describing higher-dimensional fans. In this section, we recall these concepts

and, by making use of them, characterize toric Fano varieties.

Definition 1.3.1 Let Σ be a finite complete simplicial fan in N . A nonempty subset

P ⊂ G(Σ) is a primitive collection of Σ, if Cone(P ) �∈ Σ, while Cone (P \ {x}) ∈ Σ for

every x ∈ P , where Cone(S) :=
∑
x∈S R≥0x for any subset S ⊂ NR.

We denote by PC(Σ) the set of primitive collections of Σ.
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Remark 1.3.2 By definition, for any subset S ⊂ G(Σ) which does not generate a cone

in Σ, there exists a primitive collection P ∈ PC(Σ) such that P ⊂ S.

Definition 1.3.3 Let Σ1 and Σ2 be finite complete simplicial fans in N . Then PC(Σ1)

and PC(Σ2) are isomorphic if there exists a bijective map ϕ : G(Σ1) → G(Σ2) which

induces a well-defined bijective map

ϕ∗ : PC(Σ1) � P �−→ ϕ(P ) ∈ PC(Σ2).

By Definitions 1.3.1 and 1.3.3, we immediately get the following:

Proposition 1.3.4 Let Σ1 and Σ2 be finite complete simplicial fans in N . Then Σ1 and

Σ2 are combinatorially equivalent if and only if PC(Σ1) and PC(Σ2) are isomorphic. Here

Σ1 and Σ2 are said to be combinatorially equivalent if there exists a bijective map

ψ : G(Σ1) −→ G(Σ2)

such that for any nonempty subset S ⊂ G(Σ1), we have Cone(S) ∈ Σ1 when and only

when Cone(ψ(S)) ∈ Σ2.

In the nonsingular case, we have the following additional information:

Definition 1.3.5 Let Σ be a finite complete nonsingular fan in N and P = {x1, . . . , xl} ∈
PC(Σ). Then there is a unique element σ(P ) ∈ Σ such that

x1 + · · ·+ xl ∈ Relint(σ(P )),

where Relint(S) stands for the relative interior of S for any subset S ⊂ NR. Hence we

get a linear relation

x1 + · · ·+ xl = a1y1 + · · ·+ amym (a1, . . . , am ∈ Z>0),

where G(σ(P )) = {y1, . . . , ym}. We call this relation the primitive relation for P .

The integer degP := l − (a1 + · · ·+ am) is called the degree of P.

By this definition and Proposition 1.3.4, we get the following characterization of iso-

morphism classes of complete nonsingular toric varieties.

7



Proposition 1.3.6 Let Σ1 and Σ2 be finite complete nonsingular fans in N . Then the

complete nonsingular toric varieties TNemb(Σ1) and TNemb(Σ2) are isomorphic if and

only if there exists an isomorphism from PC(Σ1) to PC(Σ2) which preserves their primitive

relations.

Let Σ be a finite complete nonsingular fan in N and X := TNemb(Σ). Then for any

P ∈ PC(Σ), we can define an element r(P ) ∈ A1(X) in the following way, where A1(X)

is the Z-module of algebraic 1-cycles modulo numerical equivalence.

Proposition 1.3.7 (e.g., Fulton [9], Oda [26]) Let Σ be a finite complete nonsingular

fan in N and X := TNemb(Σ). Then we have an exact sequence of Z-modules

0 −→ M
ϕ−→ ZG(Σ) ψ−→ Pic(X) −→ 0 (exact).

By the exact sequence in Proposition 1.3.7, we have Pic(X) ∼= ZG(Σ)/M and hence

A1(X) ∼= HomZ(Pic(X),Z) ∼= HomZ(ZG(Σ)/M,Z) ∼= M⊥ ⊂ HomZ(ZG(Σ),Z).

Consequently, we have

A1(X) ∼=
(ax)x∈G(Σ) ∈ HomZ(ZG(Σ),Z)

∣∣∣∣∣∣
∑

x∈G(Σ)

axx = 0

 .
Let P = {x1, . . . , xl} ∈ PC(Σ) and let

x1 + · · ·+ xl = a1y1 + · · ·+ amym

be the primitive relation for P . Then we get a linear relation

x1 + · · ·+ xl − (a1y1 + · · ·+ amym) = 0.

Thus we can define r(P ) = (r(P )x)x∈G(Σ) ∈ A1(X) by

r(P )x :=


1 if x = xi (1 ≤ i ≤ l)

−aj if x = yj (1 ≤ j ≤ m)

0 otherwise.

On the other hand, for any wall τ ∈ Σ(d− 1), there is a linear relation

b1z1 + · · ·+ bd−1zd−1 + bdzd + bd+1zd+1 = 0 (b1, . . . , bd+1 ∈ Z, bd = bd+1 = 1),
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where G(τ) = {z1, . . . , zd−1}, while Cone(G(τ) ∪ {zd}) and Cone(G(τ) ∪ {zd+1}) are the

d-dimensional strongly convex rational polyhedral cones in Σ which contain τ as a face.

We define v(τ) = (v(τ)x)x∈G(Σ) ∈ A1(X) by

v(τ)x :=

 bi if x = zi (1 ≤ i ≤ d+ 1)

0 otherwise.

Concerning this definition, the following is very useful.

Theorem 1.3.8 (Batyrev [5], [6], Reid [30]) Let Σ be a finite complete nonsingular

fan in N and X = TNemb(Σ). Then we have

NE(X) =
∑

τ∈Σ(d−1)

R≥0v(τ) =
∑

P∈PC(Σ)

R≥0r(P ),

where NE(X) ⊂ A1(X)⊗Z R is the Mori cone of effective 1-cycles.

The following theorem is the toric Nakai criterion.

Theorem 1.3.9 (Oda [26], Oda-Park [28]) Let Σ be a finite complete nonsingular fan

in N and X := TNemb(Σ). Then a TN -invariant divisor D ∈ TNDiv(X) is ample if and

only if (
D.orb(τ)

)
> 0 for all τ ∈ Σ(d− 1).

By Theorems 1.3.8 and 1.3.9, we can characterize nonsingular toric Fano varieties in

terms of primitive collections.

Theorem 1.3.10 (Batyrev [6]) Let Σ be a finite complete nonsingular fan in N and

X := TNemb(Σ). Then X is a nonsingular toric Fano variety (resp. −KX is a nef

divisor) if and only if

degP > 0 (resp. degP ≥ 0) for all P ∈ PC(Σ).

Proof. t(1, 1, . . . , 1) ∈ ZG(Σ) corresponds to the anticanonical divisor of X. So for

P ∈ PC(Σ),

(−KX .r(P )) = degP.

Hence by Theorems 1.3.8 and 1.3.9, we are done. q.e.d.
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1.4 Equivariant blow-ups and blow-downs

Let Σ be a finite complete simplicial fan in N . In this section, we investigate how the

set PC(Σ) of primitive collections change by star subdivisions. In particular, we deal with

equivariant blow-ups and blow-downs of nonsingular complete toric varieties in terms of

the primitive collections and primitive relations.

Definition 1.4.1 Let Σ be a finite complete simplicial fan in N and σ ∈ Σ with dimσ =

l, 2 ≤ l ≤ d. For x ∈ (Relint(σ))∩N with x primitive in N , we define the star subdivision

of Σ along (σ, x) in the following way.

First, we define the strongly convex rational polyhedral cones σi (1 ≤ i ≤ l) by

σi := Cone ({x1, . . . , xi−1, x, xi+1, . . . , xl}) (1 ≤ i ≤ l),

where G(σ) = {x1, . . . , xl}. Then for τ ∈ Σ such that σ ≺ τ , we can write τ uniquely as

τ = σ + τ ′ with τ ′ ∈ Σ, σ ∩ τ ′ = {0}.

In this notation, we have a finite complete simplicial fan Σ∗
(σ,x) in N defined by

Σ∗
(σ,x) := (Σ \ {τ ∈ Σ | σ ≺ τ }) ∪ {the faces of σi + τ ′ | τ ∈ Σ, σ ≺ τ, 1 ≤ i ≤ l} .

We call Σ∗
(σ,x) the star subdivision of Σ along (σ, x).

Remark 1.4.2 (Fulton [9], Oda [26]) In Definition 1.4.1, if Σ is nonsingular and x =

x1+· · ·+xl, then the equivariant proper birational morphism TNemb(Σ∗
(σ,x))→ TNemb(Σ)

corresponding to this star subdivision is the equivariant blow-up along orb(σ).

The following is one of the main theorems of this chapter.

Theorem 1.4.3 Let Σ be a finite complete simplicial fan in N , σ ∈ Σ and x a primitive

element in (Relint(σ)) ∩N . Then the primitive collections of Σ∗
(σ,x) are

(1) G(σ),

(2) P ∈ PC(Σ) such that G(σ) �⊂ P , and

(3) the minimal elements in the set {(P \G(σ)) ∪ {x} | P ∈ PC(Σ), P ∩G(σ) �= ∅}.
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To prove this theorem, we need the following three lemmas.

Lemma 1.4.4 Let Σ be a finite complete simplicial fan in N , σ ∈ Σ, and x a primitive

element in (Relint(σ)) ∩ N . For any τ ∗ ∈ Σ∗
(σ,x), if x ∈ τ ∗, then there exists τ ′ ∈ Σ

such that τ ′ ∩ σ = {0} and τ ∗ ≺ σi + τ ′ ∈ Σ∗
(σ,x) for some i with 1 ≤ i ≤ l. Moreover,

σj + τ ′ ∈ Σ∗
(σ,x) for all j (1 ≤ j ≤ l), where l = dim σ.

The proof is obvious by Definition 1.4.1.

Lemma 1.4.5 Let Σ be a finite complete simplicial fan in N , σ ∈ Σ, and x a primitive

element in (Relint(σ)) ∩N . Then P ∗ ∈ PC
(
Σ∗

(σ,x)

)
and x ∈ P ∗ imply G(σ) ∩ P ∗ = ∅.

Proof. Let P ∗ ∈ PC(Σ∗
(σ,x)), x ∈ P ∗, and suppose G(σ) ∩ P ∗ �= ∅. Then P ∗ \G(σ)

generates a cone in Σ containing x. So, by Lemma 1.4.4, there exists τ ′ ∈ Σ such that

P ∗ \G(σ) ⊂ G(σi + τ ′) (1 ≤ ∃i ≤ l), σ ∩ τ ′ = {0}, σ + τ ′ ∈ Σ.

Since (P ∗ \G(σ)) \ {x} ⊂ G(τ ′), we have an index j (1 ≤ j ≤ l) such that

P ∗ ⊂ G(σj + τ ′), σj + τ ′ ∈ Σ∗
(σ,x),

which contradicts the assumption. q.e.d.

Lemma 1.4.6 Let Σ be a finite complete simplicial fan in N , σ ∈ Σ, and x a primitive

element in (Relint(σ)) ∩N . Then for any P ∗ ∈ PC(Σ∗
(σ,x)) which contains x, there exists

P ∈ PC(Σ) such that

(P \G(σ)) ∪ {x} = P ∗.

Proof. Let P ∗ ∈ PC(Σ∗
(σ,x)), x ∈ P ∗, and suppose G(σ) ∪ (P ∗ \ {x}) generates a

strongly convex rational polyhedral cone in Σ. Then there exists τ ′ ∈ Σ such that

Cone (G(σ) ∪ (P ∗ \ {x})) = σ + τ ′, σ ∩ τ ′ = {0}.

Since G(σ) ∩ P ∗ = ∅ by Lemma 1.4.5, we have P ∗ ⊂ G(σi + τ ′) for all i (1 ≤ i ≤ l). This

contradicts P ∗ ∈ PC(Σ∗
(σ,x)). Therefore G(σ) ∪ (P ∗ \ {x}) contains a primitive collection

of Σ.
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Let P ⊂ G(σ) ∪ (P ∗ \ {x}) , P ∈ PC(Σ). For any y ∈ P ∗ \ {x}, P ∗ \ {y} generates a

strongly convex rational polyhedral cone in Σ∗
(σ,x) which contains x. Therefore, by Lemma

1.4.4, there exists τ ′ ∈ Σ such that

P ∗ \ {y} ⊂ G(σi + τ ′) (1 ≤ ∃i ≤ l), σ ∩ τ ′ = {0}.

Then P ∗ \ {x, y} ⊂ G(τ ′) because G(σ) ∩ P ∗ = ∅ by Lemma 1.4.5. So we have

Cone (G(σ) ∪ (P ∗ \ {x, y})) = σ + Cone(P ∗ \ {x, y}) ≺ σ + τ ′ ∈ Σ,

and consequently G(σ) ∪ (P ∗ \ {x, y}) generates a strongly convex rational polyhedral

cone in Σ.

On the other hand, suppose P ∗ \ {x} �⊂ P . Then there exists y ∈ P ∗ \ {x} such that

P ⊂ G(σ) ∪ (P ∗ \ {x, y}). This contradicts P ∈ PC(Σ). Therefore P ∗ \ {x} ⊂ P , and

hence clearly (P \G(σ)) ∪ {x} = P ∗. q.e.d.

We are now ready to prove Theorem 1.4.3.

Proof of Theorem 1.4.3. We put

P :=
{
P ∗ ∈ PC(Σ∗

(σ,x))
∣∣∣ x �∈ P ∗} , P ′ := PC(Σ∗

(σ,x)) \ P ,

S := {P ∈ PC(Σ) | G(σ) �⊂ P } ∪ {G(σ)} ,

and let T be the set of minimal elements of

{(P \G(σ)) ∪ {x} | P ∈ PC(Σ), P ∩G(σ) �= ∅} .

Then to prove the theorem, we have only to prove P = S and P ′ = T .

“P = S” Clearly, we have G(σ) ∈ P. Let P ∈ PC(Σ), G(σ) �⊂ P . Then for any

y ∈ P , P \ {y} generates a strongly convex rational polyhedral cone in Σ∗
(σ,x) because

G(σ) �⊂ P \ {y}. On the other hand, since x �∈ P , P does not generate a strongly convex

rational polyhedral cone in Σ∗
(σ,x). So we have P ∈ P. Conversely, let P ∗ ∈ P. If

G(σ) ⊂ P ∗, then P ∗ = G(σ) ∈ S, since G(σ) ∈ P. If G(σ) �⊂ P ∗, then for any y ∈ P ∗,

P ∗ \ {y} generates a strongly convex rational polyhedral cone in Σ because x �∈ P ∗.

Clearly, P ∗ does not generate a strongly convex rational polyhedral cone in Σ. Therefore

P ∗ ∈ PC(Σ) and we have P ∗ ∈ S.
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“P ′ = T ” Let (P \G(σ))∪{x} ∈ T (P ∈ PC(Σ)) and suppose that (P \G(σ))∪{x}
generates a strongly convex rational polyhedral cone in Σ∗

(σ,x). Then there exists τ ′ ∈ Σ

such that

Cone ((P \G(σ)) ∪ {x}) ≺ σi + τ ′ ∈ Σ∗
(σ,x) (1 ≤ ∀i ≤ l), σ ∩ τ ′ = {0}.

Since P \ G(σ) ⊂ G(τ ′), we have P ⊂ G(σ + τ ′) (σ + τ ′ ∈ Σ), a contradiction to P ∈
PC(Σ). Therefore (P \G(σ)) ∪ {x} contains a primitive collection of Σ∗

(σ,x). So let P ∗ ⊂
(P \G(σ)) ∪ {x}, P ∗ ∈ PC(Σ∗

(σ,x)). Then x ∈ P ∗ because P \G(σ) generates a strongly

convex rational polyhedral cone in Σ∗
(σ,x). So by Lemma 1.4.6, there exists P ′ ∈ PC(Σ)

such that P ∗ = (P ′ \G(σ)) ∪ {x}. Since (P ′ \G(σ)) ∪ {x} = P ∗ ⊂ (P \G(σ)) ∪ {x}, we

have (P ′ \G(σ)) ∪ {x} = (P \G(σ)) ∪ {x} by minimality. Therefore (P \G(σ)) ∪ {x} =

P ∗ ∈ PC(Σ∗
(σ,x)). Conversely, let P ∗ ∈ PC(Σ∗

(σ,x)), x ∈ P ∗. Then by Lemma 1.4.6, P ∗ is

clearly expressed in the form as stated. q.e.d.

By using Theorem 1.4.3, we can construct a nonsingular toric Fano 4-fold which is

missing in the table of Batyrev [6].

Example 1.4.7 Let d = 4, Σ a fan in N corresponding to P2 × P2 and G(Σ) =

{x1, . . . , x6}. Then the primitive relations of Σ are

x1 + x2 + x3 = 0, x4 + x5 + x6 = 0.

We get a nonsingular toric Fano 4-fold W by equivariant blow-ups of P2×P2 along three

TN -invariant 2-dimensional irreducible closed subvarieties

orb ({x1, x4}), orb ({x2, x5}), orb ({x3, x6}).

Let ΣW be the fan in N corresponding to W and G(ΣW ) = G(Σ)∪{x7, x8, x9}. Then the

primitive relations of ΣW are

x1 + x4 = x7, x2 + x5 = x8, x3 + x6 = x9,

x1 + x2 + x3 = 0, x4 + x5 + x6 = 0, x7 + x8 + x9 = 0,

x1 + x2 + x9 = x6, x4 + x5 + x9 = x3, x1 + x3 + x8 = x5,

x4 + x6 + x8 = x2, x2 + x3 + x7 = x4, x5 + x6 + x7 = x1,
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x1 + x8 + x9 = x5 + x6, x4 + x8 + x9 = x2 + x3, x2 + x7 + x9 = x4 + x6,

x5 + x7 + x9 = x1 + x3, x3 + x7 + x8 = x4 + x5, x6 + x7 + x8 = x1 + x2.

This is easily confirmed by Theorem 1.4.3. W is missing in the table of Batyrev [6].

By Theorem 1.4.3, we get a way to calculate PC(Σ∗
(σ,x)) from PC(Σ). Conversely, the

following easy lemma enables us to calculate PC(Σ) from PC(Σ∗
(σ,x)).

Lemma 1.4.8 Let Σ be a complete simplicial fan in N , σ ∈ Σ, and x ∈ (Relint(σ)) ∩
N which generates the semigroup (R≥0x) ∩ N . If P ∈ PC(Σ) and G(σ) ⊂ P , then

(P \G(σ)) ∪ {x} ∈ PC(Σ∗
(σ,x)).

Proof. We have only to prove that (P \G(σ)) ∪ {x} is a minimal element in

{(P ′ \G(σ)) ∪ {x} | P ′ ∈ PC(Σ), P ′ ∩G(σ) �= ∅}. Suppose there exists P ′ ∈ PC(Σ)

such that

P ′ \G(σ) ⊂ P \G(σ), P ′ ∩G(σ) �= ∅.

Since G(σ) ⊂ P , we have P ′ ⊂ P , hence P = P ′ because P, P ′ ∈ PC(Σ). Therefore P is

a minimal element. q.e.d.

Corollary 1.4.9 Let Σ be a finite complete simplicial fan in N , σ ∈ Σ, and x ∈ N ∩
(Relint(σ)) which generates the semigroup (R≥0x)∩N . Then the primitive collections of

Σ are

(1) P ∗ ∈ PC(Σ∗
(σ,x)) such that P ∗ �= G(σ), x �∈ P ∗, and

(2) (P ∗ \ {x}) ∪ G(σ), where P ∗ ∈ PC(Σ∗
(σ,x)) such that x ∈ P ∗ and (P ∗ \ {x}) ∪ S �∈

PC(Σ∗
(σ,x)) for any subset S ⊂ G(σ).

This immediately follows from Theorem 1.4.3 and Lemma 1.4.8.

We close this section by giving an easy criterion for the possibility of equivariant

blow-down in the nonsingular case.

Theorem 1.4.10 Let Σ∗ be a finite complete nonsingular fan in N . Then the following

are equivalent.

(1) There exist a complete nonsingular toric variety X and an equivariant blow-up ϕ :

TNemb(Σ∗)→ X along a TN -invariant closed irreducible subvariety of X.
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(2) There exists P ∗ ∈ PC(Σ∗) such that the corresponding primitive relation is

x1 + · · ·+ xl = x, P ∗ = {x1, . . . , xl}, for some x ∈ G(Σ∗)

and for any σ∗ ∈ Σ∗ which contains x, each of

(G(σ∗) ∪ P ∗) \ {xi} (1 ≤ i ≤ l)

generates a strongly convex rational polyhedral cone in Σ∗.

(3) There exists P ∗ ∈ PC(Σ∗) such that the corresponding primitive relation is

x1 + · · ·+ xl = x, P ∗ = {x1, . . . , xl}, for some x ∈ G(Σ∗)

and for any P ′ ∈ PC(Σ∗) which satisfies the conditions P ∗ ∩ P ′ �= ∅ and P ∗ �= P ′,

(P ′ \ P ∗) ∪ {x}

contains a primitive collection of Σ∗.

Proof. We prove (1) =⇒ (3) =⇒ (2) =⇒ (1).

(1) =⇒ (3) is trivial by Theorem 1.4.3.

(3) =⇒ (2). Suppose that there exists σ∗ ∈ Σ∗ such that x ∈ σ∗ and

(G(σ∗) ∪ P ∗) \ {xi} for some i (1 ≤ i ≤ l)

does not generate a strongly convex rational polyhedral cone in Σ∗. Then (G(σ∗) ∪ P ∗) \
{xi} contains a primitive collection P ′ ∈ PC(Σ∗). Since P ∗∩P ′ �= ∅ and P ∗ �= P ′, by (3),

(P ′ \ P ∗) ∪ {x} ⊂ G(σ∗)

contains a primitive collection of Σ∗, a contradiction.

(2) =⇒ (1). For any σ∗ ∈ Σ∗ which contains x, define a strongly convex rational

polyhedral cone σ′ in NR by

σ′ := Cone ((G(σ∗) ∪ P ∗) \ {x}) .

Then the finite complete nonsingular fan Σ in N defined by

Σ := (Σ∗ \ {σ∗ ∈ Σ∗ |x ∈ σ∗}) ∪ {σ′ and the faces of σ′ |σ∗ ∈ Σ∗, x ∈ σ∗}

gives a complete nonsingular toric variety X = TNemb(Σ) and an equivariant blow-up

ϕ : TNemb(Σ)→ X. q.e.d.

The equivalence (1) ⇐⇒ (3) is a useful criterion for the possibility of equivariant

blow-down in the nonsingular case.
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1.5 Decomposition of birational morphisms

In this section, we prove a toric version of a theorem of Mori which claims that “a

proper birational morphism between nonsingular Fano 3-folds is always decomposed into

a composite of blow-ups”, and study the higher-dimensional version. In the proof of the

theorem, the results of Sections 1.3 and 1.4 are used.

The following proposition is in essential use in the proof of the main theorem of this

section.

Proposition 1.5.1 Let X := TNemb(Σ) be a nonsingular toric Fano d-fold (resp. −KX

is nef ), x1 + · · · + xl = x a primitive relation of Σ and ϕ : X → X ′ := TNemb(Σ′) the

equivariant blow-down with respect to x1 + · · · + xl = x. Then X ′ is not a nonsingular

toric Fano d-fold (resp. −KX′ is not nef ) if and only if there exists a primitive relation

of Σ of the form

y1 + · · ·+ ym = a1z1 + · · ·+ anzn + bx+ c1x1 + · · ·+ cl−1xl−1

up to change of the indices, such that

(1) a1, . . . , an, b > 0, c1, . . . , cl−1 ≥ 0,

(2) m− (a1 + · · ·+ an + b+ c1 + · · ·+ cl−1) > 0 (resp. ≥ 0),

(3) m− (a1 + · · ·+ an + bl + c1 + · · ·+ cl−1) ≤ 0 (resp. < 0) and

(4) m+ n+ l ≤ d+ 1.

Proof. The sufficiency is trivial by Theorem 1.3.10.

By Corollary 1.4.9, for any new primitive collection P ′ ∈ PC(Σ′) added by the equiv-

ariant blow-down with respect to x1 + · · ·+ xl = x, there exists

P = {u1, . . . , ur, x} ∈ PC(Σ)

such that P ′ = {u1, . . . , ur, x1, . . . , xl}. Let the primitive relation corresponding to P be

u1 + · · ·+ ur + x = h1v1 + · · ·+ hsvs.

Then Cone ({v1, . . . , vs}) ∈ Σ′ because x �∈ {v1, . . . , vs}. So the primitive relation corre-

sponding to P ′ is

u1 + · · ·+ ur + x1 + · · ·+ xl = h1v1 + · · ·+ hsvs.
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Therefore degP ′ = r + l − (h1 + · · ·+ hs) > r + 1− (h1 + · · ·+ hs) = degP > 0.

By the above discussion, if X ′ is not a nonsingular toric Fano d-fold, then there exists

a primitive collection P in PC(Σ) such that P is in PC(Σ′), its primitive relation contains

x on the right-hand side and r(P ) is contained in an extremal ray of NE(X ′). So we get

the conditions (1) and (4). Since X is a Fano variety while X ′ is not a Fano variety, we

get the conditions (2) and (3). q.e.d.

Example 1.5.2 We consider Proposition 1.5.1 in the case of the equivariant blow-down

ϕ : X → X ′ with respect to the primitive relation of Σ of the form x1 + x2 = x.

(1) “d = 2” X ′ is always a nonsingular toric Fano surface. On the other hand, if

−KX is nef, then −KX′ is always nef.

(2) “d = 3” X ′ is not a nonsingular toric Fano 3-fold if and only if there exists the

following primitive relation of Σ.

y1 + y2 = x ({y1, y2} ∩ {x1, x2} = ∅) .

(3) “d = 4” X ′ is not a nonsingular toric Fano 4-fold if and only if there exists one

of the following primitive relations of Σ.

y1 + y2 = x, y1 + y2 + y3 = 2x, y1 + y2 + y3 = x+ x1 ({y1, y2, y3} ∩ {x1, x2} = ∅) .

Next, let d = 3 and let ϕ : X → X ′ be the equivariant blow-down with respect to

the primitive relation of Σ, x1 + x2 + x3 = x. Then X ′ is always a nonsingular toric Fano

3-fold by Proposition 1.5.1. We need these facts later.

The following is the toric version of the Mori theory.

Proposition 1.5.3 (Reid [30]) Let Σ be a finite complete nonsingular fan in N , X :=

TNemb(Σ) a projective toric variety, and P = {x1, . . . , xl} ∈ PC(Σ) with the primitive

relation corresponding to P being x1 + · · ·+ xl = a1y1 + · · ·+ amym. If r(P ) is contained

in an extremal ray of NE(X) and m ≥ 1, then there exist a nonsingular projective toric

d-fold X ′ and an equivariant morphism

ContP : X −→ X ′

such that the following are satisfied:
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(1) For any τ ∈ Σ, the image of orb(τ) by ContP is a point if and only if v(τ) = r(P ) ∈
A1(X).

(2) Let Σ′ be a fan in N such that X ′ = TNemb(Σ′). If m = 1, then Σ′ is simplicial and

σ′ = Cone ({x1, . . . , xl}) ∈ Σ′, G(Σ′) = G(Σ) \ {y1}.

Moreover, Σ = (Σ′)∗(σ′,x), where x := (x1 + · · · + xl)/a1. In particular, if a1 = 1,

then X ′ is nonsingular and ContP is an equivariant blow-up.

To prove the main theorem of this section, we suppose d = 3. Let ϕ : Y −→ X be

an equivariant morphism between nonsingular toric Fano 3-folds, and Σ and Σ̃ fans in N

such that X = TNemb(Σ) and Y = TNemb(Σ̃). To apply Propositions 1.5.1 and 1.5.3, we

have to investigate the subdivision of a 3-dimensional strongly convex rational polyhedral

cone in Σ. The following lemma is fundamental in classifying subdivisions.

Lemma 1.5.4 Let d = rank N = 3, Σ and Σ̃ finite complete nonsingular fans in N and

ϕ : TNemb(Σ̃) −→ TNemb(Σ) an equivariant morphism. For any σ ∈ Σ(3) for which

G(σ) = {x1, x2, x3}, let σ̃ be the unique strongly convex rational polyhedral cone in Σ̃\{0}
such that x1 + x2 + x3 ∈ Relint(σ̃). Then we have the following:

(1) dim σ̃ = 3⇐⇒ σ = σ̃ ∈ Σ̃.

(2) dim σ̃ = 2⇐⇒ G(σ̃) = {x, x3} where x := x1 + x2 up to change of the indices.

(3) dim σ̃ = 1⇐⇒ G(σ̃) = {x} where x := x1 + x2 + x3.

Proof. The sufficiency is trivial. Let s = dim σ̃ and G(σ̃) = {y1, . . . , ys}. Then

σ̃ ⊂ σ, since ϕ is an equivariant morphism, and hence we have

yi = ai1x1 + ai2x2 + ai3x3 (1 ≤ i ≤ s), aij ∈ Z≥0 (1 ≤ i ≤ s, 1 ≤ j ≤ 3).

If we put x1 +x2 +x3 = b1y1 + · · ·+bsys (b1, . . . , bs ∈ Z>0), then b1 = · · · = bs = 1 because

aij (1 ≤ i ≤ s, 1 ≤ j ≤ 3) are nonnegative. q.e.d.

Now we are ready to classify the subdivisions of a 3-dimensional strongly convex

rational polyhedral cone σ ∈ Σ(3). There are five types of subdivisions for σ. Let

G(σ) = {x1, x2, x3}.
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(1) “dim σ̃ = 3” σ = σ̃ ∈ Σ̃(3) by Lemma 1.5.4.

(2) “dim σ̃ = 2” By Lemma 1.5.4, we have x1+x2+x3 ∈ Cone ({x3, x4}) ∈ Σ̃(2), where

x4 := x1 + x2 ∈ G(Σ̃). Then {x1, x2} ∈ PC(Σ̃) and r({x1, x2}) is contained in an

extremal ray of NE(Y ), since deg ({x1, x2}) = 1. So σ1 := Cone ({x1, x3, x4}) , σ2 :=

Cone ({x2, x3, x4}) are in Σ̃(3) and σ = σ1∪σ2 by Theorem 1.4.10 (2) and Proposition

1.5.3.

(3) “dim σ̃ = 1 and {x1, x2} ∈ PC(Σ̃)” Let x4 := x1 + x2 + x3 ∈ G(Σ̃) and x5 :=

x1 + x2. Then x5 ∈ G(Σ̃) and the primitive relation corresponding to {x1, x2} is

x1 + x2 = x5. Since x3 + x5 = x4, we have {x3, x5} ∈ PC(Σ̃) and x3 + x5 = x4 is

the corresponding primitive relation. Hence, since r({x1, x2}) and r({x3, x5}) are

contained in an extremal ray of NE(Y ), we see that σ1 := Cone ({x1, x3, x4}) , σ2 :=

Cone ({x1, x4, x5}) , σ3 := Cone ({x2, x3, x4}) , σ4 := Cone ({x2, x4, x5}) are in Σ̃(3)

and σ = σ1 ∪ σ2 ∪ σ3 ∪ σ4 for the same reason as above.

(4) “dim σ̃ = 1, {x1, x2, x3} ∈ PC(Σ̃) and r ({x1, x2, x3}) is contained in an extremal

ray of NE(Y )” Let x4 := x1 + x2 + x3. Then by Proposition 1.5.3, we have

σ1 := Cone ({x1, x2, x4}) , σ2 := Cone ({x2, x3, x4}) , σ3 := Cone ({x1, x3, x4}) are

in Σ̃(3) and σ = σ1 ∪ σ2 ∪ σ3.

(5) “dim σ̃ = 1, {x1, x2, x3} ∈ PC(Σ̃) and r ({x1, x2, x3}) is not contained in an extremal

ray of NE(Y )” Let x4 := x1 +x2 +x3. Then the primitive relation corresponding

to {x1, x2, x3} is x1 + x2 + x3 = x4 and so deg ({x1, x2, x3}) = 2. Therefore there

exist two primitive collections P1, P2 ∈ PC(Σ̃) such that degP1 = degP2 = 1 and

r ({x1, x2, x3}) = r(P1) + r(P2). On the other hand, there are two types of primitive

relations corresponding to the primitive collection P such that degP = 1 and r(P )

is contained in an extremal ray. The possibilities are

(a) z1 + z2 + z3 = 2z4, (b) w1 + w2 = w3.

By easy calculation, the combinations ((a), (a)) and ((b), (b)) are impossible. In the

case of the combination ((a), (b)), we have z4 = w1 = x4, w3 = z1, w2 = x1, z2 = x2

and z3 = x3. Then putting x5 := z1, we have σ1 := Cone ({x1, x2, x5}) , σ2 :=

Cone ({x2, x4, x5}) , σ3 := Cone ({x1, x3, x5}) , σ4 := Cone ({x3, x4, x5}) , σ5 :=
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Cone ({x2, x3, x4}) are in Σ̃(3) and σ = σ1 ∪ σ2 ∪ σ3 ∪ σ4 ∪ σ5 for the same reason as

in (2).

By the above classification, we get the following main theorem in this section. This is

a toric version of a theorem of Mori.

Theorem 1.5.5 Let X and Y be nonsingular toric Fano 3-folds, and ϕ : Y −→ X an

equivariant morphism. Then we have a decomposition of ϕ

Y = Xr
ϕr−→ Xr−1

ϕr−1−→ · · · · · · ϕ2−→ X1
ϕ1−→ X0 = X,

where Xi (0 ≤ i ≤ r) is a nonsingular toric Fano 3-fold, ϕj (2 ≤ j ≤ r) is an equivariant

blow-up along a TN -invariant 1-dimensional irreducible closed subvariety of Xj−1 and ϕ1

is an equivariant blow-up along some TN -invariant points of X.

Proof. In the above classification, carry out equivariant blow-downs in the order

(3) =⇒ (2) =⇒ (1), (2) =⇒ (1), (5) =⇒ (4) =⇒ (1) and (4) =⇒ (1). Then by Proposition

1.5.1 and Example 1.5.2, we get a decomposition as in the statement. q.e.d.

If d ≥ 4, the method we employed in the 3-dimensional case is insufficient. For

example, in the case of d = 4, there is a subdivision of a 4-dimensional strongly convex

rational polyhedral cone σ ∈ Σ(4) such that the primitive relations corresponding to{
P ∈ PC(Σ̃) | P ⊂ σ

}
⊂ PC(Σ̃) are

x1 + x2 + x3 = x5, x2 + x4 = x6 and x1 + x3 + x6 = x4 + x5,

where G(σ) = {x1, x2, x3, x4}, x5, x6 ∈ G(Σ̃). This does not contradict the fact that Y

is a nonsingular toric Fano variety, but we cannot decide by Proposition 1.5.1 whether

the equivariant blow-down of Y with respect to the primitive relation x2 + x4 = x6 is

also a nonsingular toric Fano variety or not. However, there is still a possibility of the

decomposition similar to that in Theorem 1.5.5 in the case d ≥ 4.

Conjecture 1.5.6 Let X and Y be nonsingular toric Fano d-folds, and ϕ : Y −→ X an

equivariant morphism. Then we have a decomposition of ϕ

Y = Xr
ϕr−→ Xr−1

ϕr−1−→ · · · · · · ϕ2−→ X1
ϕ1−→ X0 = X,

where Xi (0 ≤ i ≤ r) is a nonsingular toric Fano d-fold, and each of ϕj (1 ≤ j ≤ r) is an

equivariant blow-up along a TN -invariant irreducible closed subvariety of Xj−1.

20



1.6 Program for the classification of toric Fano vari-

eties

In this section, we describe a program for the classification of nonsingular toric Fano

varieties. This program can be extended to the case of Gorenstein toric Fano varieties

endowed with natural resolution of singularities.

First, we consider the classification of nonsingular toric Fano d-folds. We define the

F-equivalence relation again. Let

Fd := {nonsingular toric Fano d-folds} / ∼= .

Definition 1.6.1 X1 and X2 in Fd are said to be F-equivalent if there exists a sequence of

equivariant blow-ups and blow-downs from X1 to X2 through toric Fano d-folds, namely

there exist nonsingular toric Fano d-folds Y0 = X1, Y1, . . . , Y2l = X2 together with finite

successions Yj → Yj−1 and Yj → Yj+1, for each odd 1 ≤ j ≤ 2l−1, of equivariant blow-ups

through nonsingular toric Fano d-folds. We denote the relation by X1
F∼ X2. Then “

F∼”

is obviously an equivalence relation.

In order to classify nonsingular toric Fano d-folds, it follows from Proposition 1.3.6,

Theorems 1.3.10, 1.4.3, 1.4.10 and Corollory 1.4.9 that we have only to solve the following

problem.

Problem 1.6.2 Obtain a complete system of representatives for (Fd, F∼).

In regard to Problem 1.6.2, we propose the following conjecture.

Conjecture 1.6.3 Any nonsingular toric Fano d-fold is either pseudo-symmetric or F-

equivalent to the d-dimensional projective space Pd, where a nonsingular toric Fano d-fold

TNemb(Σ) is said to be pseudo-symmetric if there exist two d-dimensional strongly convex

rational polyhedral cones σ, σ′ ∈ Σ(d) such that σ = −σ′ := {−x ∈ NR |x ∈ σ′}.

If Conjecture 1.6.3 is true, we obtain a complete system of representatives for (Fd, F∼),

since pseudo-symmetric ones are already completely classified in the following fashion.
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Definition 1.6.4 Let k ∈ Z>0, d = 2k and {e1, . . . , ed} a basis of N . The 2k-dimensional

del Pezzo variety V 2k is the nonsingular toric Fano 2k-fold corresponding to the Fano

polytope in NR defined by

Conv ({e1, . . . , ed,−e1, . . . ,−ed, e1 + · · ·+ ed,−(e1 + · · ·+ ed)}) ,

while the 2k-dimensional pseudo del Pezzo variety Ṽ 2k is the nonsingular toric Fano 2k-

fold corresponding to the Fano polytope in NR defined by

Conv ({e1, . . . , ed,−e1, . . . ,−ed, e1 + · · ·+ ed}) .

Remark 1.6.5 In the table obtained in Section 1.10, (117) is the 4-dimensional pseudo

del Pezzo variety Ṽ 4, while (118) is the 4-dimensional del Pezzo variety V 4.

Theorem 1.6.6 (Ewald [8], Voskresenskij-Klyachko [35]) For any pseudo symmet-

ric toric Fano variety X, there exist s,m, n ∈ Z≥0, k1, . . . , km, l1, . . . ln ∈ Z>0 such that

X ∼= (P1)s × V 2k1 × · · · × V 2km × Ṽ 2l1 × · · · × Ṽ 2ln ,

where V 2ki is the 2ki-dimensional del Pezzo variety, while Ṽ 2lj is the 2lj-dimensional

psudo del Pezzo variety for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Conjecture 1.6.3 is very hard to deal with in general. So we investigate Conjecture

1.6.3 in a certain special class of nonsingular toric Fano d-folds.

Theorem 1.6.7 Let r, a1, . . . , ar in Z>0 and a1 + · · ·+ ar = d. Then we have

Pa1 × · · · ×Par F∼ Pd.

Proof. We are going to prove this by induction on d.

Let Σ be a fan in N corresponding to the d-dimensional projective space and G(Σ) =

{x1, . . . , xd+1}. Then the primitive relation is

x1 + · · ·+ xd+1 = 0.

By the equivariant blow-up along {x1, . . . , xa1+1} for 1 ≤ a1 < d, we get a fan Σ1 in N

whose primitive relations are

x1 + · · ·+ xa1+1 = xd+2, xa1+2 + · · ·+ xd+2 = 0,
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where G(Σ1) = G(Σ) ∪ {xd+2}. Moreover, by the equivariant blow-up of Σ1 along

{x1, xa1+2, . . . , xd+1}, we get a fan Σ2 in N whose primitive relations are

x1 + xa1+2 + · · ·+ xd+1 = xd+3, x2 + · · ·+ xa1+1 + xd+3 = 0, xd+2 + xd+3 = x1,

x1 + · · ·+ xa1+1 = xd+2, xa1+2 + · · ·+ xd+2 = 0,

where G(Σ2) = G(Σ1) ∪ {xd+3}. Then TNemb(Σ1) and TNemb(Σ2) are nonsingular toric

Fano d-folds by Theorem 1.3.10. By Theorem 1.4.10, Σ2 can be equivariantly blown-down

to a fan Σ′ in N with respect to the primitive relation xd+2 + xd+3 = x1. The primitive

relations of Σ′ are

x2 + · · ·+ xa1+1 + xd+3 = 0, xa1+2 + · · ·+ xd+2 = 0,

where G(Σ′) = {x2, . . . , xd+3}. So the toric variety corresponding to Σ′ is isomorphic to

Pa1 ×Pd−a1, and we have

Pd F∼ Pa1 ×Pd−a1.

Then by the induction assumption, we have

Pd−a1 F∼ Pa2 × · · · ×Par .

q.e.d.

Next, we consider more complicated nonsingular toric Fano d-folds.

Definition 1.6.8 (Batyrev [5]) Let Σ be a finite complete nonsingular fan in N . Then

Σ is called a splitting fan if for any two distinct primitive collections P1 and P2 in PC(Σ),

we have P1 ∩ P2 = ∅.

The following is well-known.

Theorem 1.6.9 (Kleinschmidt [15]) Let Σ be a finite complete nonsingular fan in N

and X := TNemb(Σ). If the Picard number of X is two or three, then X is projective.

Moreover, if the Picard number of X is two, then Σ is a splitting fan.

The nonsingular toric d-folds corresponding to splitting fans are characterized by the

following proposition.
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Proposition 1.6.10 (Batyrev [5]) Let Σ be a finite complete nonsingular fan in N .

Then Σ is a splitting fan if and only if there exist toric manifolds X0, . . . , Xr such that X0

is a projective space, Xr = TNemb(Σ) and for 1 ≤ i ≤ r, Xi is an equivariant projective

space bundle over Xi−1.

For any splitting fan Σ in N , TNemb(Σ) is projective by Proposition 1.6.10. So the

assumption in the following lemma is satisfied.

Lemma 1.6.11 (Batyrev [5]) Let Σ be a finite complete nonsingular fan in N such that

TNemb(Σ) is projective. Then there exists a primitive collection P in PC(Σ) such that

σ(P ) = 0.

Theorem 1.6.12 Let Σ be a splitting fan in N and let P = {x1, . . . , xr} be a primitive

collection such that σ(P ) = 0. If, for any primitive collection P ′ in PC(Σ) such that

σ(P ′)∩P �= ∅, there exists y in P ′ such that y is not in σ(P ′′) for any P ′′ in PC(Σ), then

there exists a nonsingular toric Fano (d− r + 1)-fold X ′ in Fd−r+1 such that

TNemb(Σ)
F∼ Pr−1 ×X ′.

Proof. If σ(P ′) ∩ P = ∅ for any primitive collection P ′ in PC(Σ), then TNemb(Σ)

is isomorphic to the product as in the statement.

So, let P ′ = {y1, . . . , ys} be a primitive collection such that σ(P ′) ∩ P �= ∅, and xi in

σ(P ′)∩P . Then by assumption, there exists yj in P ′ such that yj is not in σ(P ′′) for any

P ′′ in PC(Σ). The primitive relations of Σ are

x1 + · · ·+ xr = 0, y1 + · · ·+ ys = axi + · · · (a > 0), . . . .

By the equivariant blow-up along {x1, . . . , xi−1, xi+1, . . . , xr, yj}, we get a fan Σ1 in N

whose primitive relations are

x1 + · · ·+ xi−1 + xi+1 + · · ·+ xr + yj = z, xi + z = yj,

y1 + · · ·+ yj−1 + yj+1 + · · ·+ ys + z = (a− 1)xi + · · · ,

x1 + · · ·+ xr = 0, y1 + · · ·+ ys = axi + · · · , . . . ,

where G(Σ1) = G(Σ) ∪ {z} and the first three primitive relations are new. Then

TNemb(Σ1) is a nonsingular toric Fano d-fold by Theorem 1.3.10. By Theorem 1.4.10, Σ1
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can be equivariantly blown-down to a fan Σ′ in N with respect to the primitive relation

xi + z = yj . The primitive relations of Σ′ are

x1 + · · ·+ xr = 0, y1 + · · ·+ yj−1 + yj+1 + · · ·+ ys + z = (a− 1)xi + · · · , . . . ,

where G(Σ′) = (G(Σ) \ {yj}) ∪ {z}. Then TNemb(Σ′) is also a nonsingular toric Fano

d-fold by Theorem 1.3.10, and Σ′ satisfies the assumption of the statement. So we can

replace Σ by Σ′ and carry out this operation again. This operation terminates in finite

steps and TNemb(Σ′) becomes a product as in the statement. q.e.d.

By Theorems 1.6.7 and 1.6.12, we get the following immediately.

Corollary 1.6.13 Let Σ be a splitting fan in N and let TNemb(Σ) be a nonsingular toric

Fano d-fold. If the Picard number of TNemb(Σ) is not greater than three, then TNemb(Σ)

is F-equivalent to the d-dimensional projective space.

Next, we consider the classification of Gorenstein toric Fano varieties.

Let ∆ be a reflexive polytope in NR. For any δ ∈ ∆(d− 1), subdivide δ as

δ = Sδ,1 ∪ Sδ,2 ∪ · · · ∪ Sδ,k(δ),

where Sδ,i (1 ≤ i ≤ k(δ)) are (d− 1)-dimensional simplices such that

Sδ,i ∩N = Sδ,i(0) ⊂ δ ∩N (1 ≤ i ≤ k(δ)) .

Then we can define a finite complete fan Σ̃(∆) in N by

Σ̃(∆) := {σ(Sδ,i) and the faces of σ(Sδ,i) | δ ∈ ∆(d− 1), 1 ≤ i ≤ k(δ)} ∪ {0}.

Proposition 1.6.14 (Batyrev [4]) Let ∆ be a reflexive polytope in NR. Then there

exists a subdivision of Σ(∆) as above such that TNemb
(
Σ̃(∆)

)
is a projective toric variety

with only Gorenstein terminal quotient singularities. Moreover, the equivariant morphism

corresponding to this subdivision ϕ : TNemb
(
Σ̃(∆)

)
−→ TNemb(Σ(∆)) is crepant.

Remark 1.6.15 In Proposition 1.6.14, if TNemb
(
Σ̃(∆)

)
is nonsingular, then for any

P ∈ PC
(
Σ̃(∆)

)
, we have degP ≥ 0 because Conv

(
G
(
Σ̃(∆)

))
= ∆. By Theorem 1.3.10,

this means that the anticanonical divisor of TNemb
(
Σ̃(∆)

)
is nef.
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Definition 1.6.16 Let X be a nonsingular projective algebraic variety. Then X is called

a nonsingular weak Fano variety if the anticanonical divisor −KX is nef and big.

By the following proposition, the condition “big” is automatic in the case of toric

varieties.

Proposition 1.6.17 Let Σ be a finite complete nonsingular fan in N such that the cor-

responding toric d-fold X := TNemb(Σ) is projective. Then the following are equivalent.

(1) X is a nonsingular toric weak Fano variety.

(2) The anticanonical divisor −KX is nef.

(3) For any P ∈ PC(Σ), we have degP ≥ 0.

Proof. The equivalence (2)⇐⇒ (3) follows from Theorem 1.3.10.

Suppose the anticanonical divisor −KX is nef. Then ∆ = Conv (G(Σ)) is a reflexive

polytope. So we have (−KX)d = vold(∆
∗) > 0. Therefore −KX is big. q.e.d.

For the Gorenstein toric Fano varieties endowed with crepant resolutions of singu-

larities as Proposition 1.6.14, we can consider instead the nonsingular toric weak Fano

varieties by Propositions 1.6.14, 1.6.17 and Remark 1.6.15. In this case, we can apply the

method for nonsingular toric Fano varieties by Theorem 1.3.10 and Proposition 1.6.17. In

particular, in the cases of d = 2 and d = 3, TNemb
(
Σ̃(∆)

)
is always nonsingular.

We introduce the same concepts for nonsingular toric weak Fano d-folds as in the case

of nonsingular toric Fano d-folds. Let

Fw
d := {nonsingular toric weak Fano d-folds} / ∼= .

First, we define the concept, flop, for nonsingular projective toric d-folds.

Definition 1.6.18 Let X = TNemb(Σ) be a nonsingular projective toric d-fold and P a

primitive collection of Σ with primitive relation

x1 + · · ·+ xl = y1 + · · ·+ yl.

If r(P ) is contained in an extremal ray of NE(X), then we can do the following operation.

First, blow-up X along {y1, . . . , yl} to get the toric variety X ′ = TNemb(Σ′) and the
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primitive relation of Σ′, x1 + · · · + xl = z, where G(Σ′) = G(Σ) ∪ {z}. Next, blow-down

X ′ with respect to x1 + · · · + xl = z to get the toric variety X+ = TNemb(Σ+) and the

primitive relation of Σ+,

y1 + · · ·+ yl = x1 + · · ·+ xl,

where G(Σ+) = G(Σ). We call this operation flop.

Definition 1.6.19 X1 and X2 in Fw
d are said to be weakly-F-equivalent if there exists a

sequence of equivariant blow-ups, blow-downs and flops from X1 to X2 through toric weak

Fano d-folds, namely there exist nonsingular toric weak Fano d-folds Y0 = X1, Y1, . . . , Y3l =

X2 together with finite successions Y3j−2 → Y3j−3 and Y3j−2 → Y3j−1, for each 1 ≤ j ≤ l,

of equivariant blow-ups through nonsingular toric Fano d-folds, and finite successions

Y3k−1 ↔ Y3k, for each 1 ≤ k ≤ l, of flop through nonsingular toric Fano d-folds. We

denote the relation by X1
wF∼ X2. Then “

wF∼” is obviously an equivalence relation.

Corresponding to Conjecture 1.6.3, we may propose the following conjecture for non-

singular toric weak Fano d-folds.

Conjecture 1.6.20 Any nonsingular toric weak Fano d-fold is weakly-F-equivalent to the

d-dimensional projective space Pd.

Remark 1.6.21 Since the 4-dimensional pseudo del Pezzo variety and the 4-dimensional

del Pezzo variety can be equivariantly blown-up to nonsingular toric weak Fano 4-folds,

we exclude the pseudo-symmetric toric Fano varieties from Conjecture 1.6.20.

We can easily prove Conjectures 1.6.3 and 1.6.20 for d = 2.

Theorem 1.6.22 Any nonsingular toric del Pezzo surface is F-equivalent to the projec-

tive plane P2, while any nonsingular toric weak Fano surface is weakly-F-equivalent to

P2. In particular, Conjectures 1.6.3 and 1.6.20 are true for d = 2, and we obtain a new

method for the classification of Gorenstein toric Fano surfaces by the above discussion.

Proof. We prove Theorem 1.6.22 in the case of nonsingular toric weak Fano surfaces.

We can similarly prove Theorem 1.6.22 in the case of nonsingular toric Fano surfaces.

By Proposition 1.5.1 and Example 1.5.2, if a nonsingular toric weak Fano surface X is

not minimal in the sense of equivariant blow-ups, then X can be equivariantly blown-down
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to nonsingular toric weak Fano surface. On the other hand, the minimal complete nonsin-

gular toric surfaces in the sense of equivariant blow-ups are P2 and PP1 (OP1 ⊕OP1(a))

(a ≥ 0 and a �= 1) (See Oda [26]). So the minimal nonsingular toric weak Fano surfaces

in the sense of equivariant blow-ups are

P2, P1 ×P1 and PP1 (OP1 ⊕OP1(2)) .

These are weakly-F-equivalent to the 2-dimensional projective space P2 by easy calcula-

tion. q.e.d.

1.7 The classification of nonsingular toric Fano 3-

folds

We devote this section to proving Conjecture 1.6.3 for d = 3. Throughout this section,

we assume d = 3.

Theorem 1.7.1 Every nonsingular toric Fano 3-fold is F-equivalent to the 3-dimensional

projective space P3. In particular, Conjecture 1.6.3 is true for d = 3, and we obtain a

new method for the classification of nonsingular toric Fano 3-folds.

To prove Theorem 1.7.1, we prove the following lemma. For a toric variety X, we

denote by ρ(X) the Picard number of X.

Lemma 1.7.2 Let X = TNemb(Σ) be a nonsingular toric Fano 3-fold and ρ(X) ≥ 2.

Then, there exists a primitive collection P in PC(Σ) such that #P = 2.

Proof. Suppose that there does not exist a primitive collection P in PC(Σ) such

that #P = 2. Let ∆(Σ) be the Fano polytope corresponding to X. Then the f -vector of

∆(Σ) is

(ρ(X) + 3, (ρ(X) + 2)(ρ(X) + 3)/2, f3)

by assumption. By the Dehn-Sommerville equalities (see Oda [26]), we have ρ(X) = 1

and f3 = 4. q.e.d.
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Remark 1.7.3 The method in the proof of Lemma 1.7.2 is not available for d ≥ 4,

because, for any f0 > 0, there always exists a simplicial polytope whose f -vector is

(f0, f0(f0 − 1)/2, . . . . . . ) .

Proof of Theorem 1.7.1. Let X = TNemb(Σ) be a nonsingular toric Fano 3-fold.

If ρ(X) = 2, then Σ is a splitting fan by Theorem 1.6.9, and hence X is F-equivalent

to P3 by Corollary 1.6.13.

Suppose that ρ(X) ≥ 3. Then, there exists a primitive collection P in PC(Σ) such

that #P = 2 by Lemma 1.7.2. According to Theorem 1.3.10, we have two cases.

(1) “ There exists a primitive collection P in PC(Σ) with primitive relation x1 + x2 =

x (x1, x2, x ∈ G(Σ)).” Since degP = 1, r(P ) is contained in an extremal ray of

NE(X). So, X can be equivariantly blown-down with respect to x1 + x2 = x.

Let ϕ : X → Y be the equivariant blow-down with respect to x1 + x2 = x. By

Proposition 1.5.1 and Example 1.5.2, if Y is not a nonsingular toric Fano 3-fold,

then there exists a primitive collection P ′ in PC(Σ) with primitive relation

y1 + y2 = x ({x1, x2} ∩ {y1, y2} = ∅) .

Since degP ′ = 1, {x, x1, y1}, {x, x1, y2},{x, x2, y1} and {x, x2, y2} generate strongly

convex rational polyhedral cones of Σ(3) by Theorem 1.4.10. Since ρ(X) ≥ 3, there

exists z in G(Σ) \ {x, x1, x2, y1, y2}. {x, z} is obviously a primitive collection of Σ.

If the primitive relation of {x, z} is x + z = z′ (z′ ∈ G(Σ)), then, obviously, X

can be equivariantly blown-down to a nonsingular toric Fano 3-fold with respect to

x + z = z′. If the primitive relation of {x, z} is x + z = 0 and ρ(X) ≥ 4, then

there exists w in G(Σ)\{x, x1, x2, y1, y2, z}, and hence we can replace z by w. If the

primitive relation of {x, z} is x + z = 0 and ρ(X) = 3, then the primitive relations

of Σ are

x1 + x2 = x, y1 + y2 = x and x+ z = 0.

Thus, Σ is a splitting fan, and hence X is F-equivalent to P3 by Corollary 1.6.13.

(2) “For any primitive collection P in PC(Σ) such that #P = 2, its primitive relation

is x1 + x2 = 0 (x1, x2 ∈ G(Σ)).” There exists a primitive relation x1 + x2 = 0 by
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Lemma 1.7.2. Let {x1, x
′
1, x

′′
1} generate a 3-dimensional strongly convex rational

polyhedral cone in Σ, where x′1 and x′′1 are in G(Σ). By assumption, there exist

distinct elements y1 and y2 in G(Σ) \ {x1, x2, x
′
1, x

′′
1}. If {y1, y2} is not a primitive

collection, then {x2, y1, y2} generates a 3-dimensional cone in Σ. Since {x2, y1}
and {x2, y2} are also not a primitive collection by assumption, the open set NR \
(Cone ({x2, y1}) ∪ Cone ({x2, y2}) ∪ Cone ({y1, y2})) has two connected components.

If {x2, y1, y2} is a primitive collection, then there exist elements of G(Σ) in both

connected components, and hence there exists a primitive relation like u1 + u2 =

u. This contradicts the assumption. Therefore, either {x′1, y1} or {x′′1, y1} is a

primitive collection, because otherwise, both {x2, y1, x
′
1} and {x2, y1, x

′′
1} generate

3-dimensional cones in Σ. So, we have two primitive relations y1 + x′1 = 0 and

y2 + x′′1 = 0 up to change of the indices. Therefore,

Cone ({x1, x
′
1, x

′′
1}) = −Cone ({x2, y1, y2}) ,

and hence TNemb(Σ) is a pseudo-symmetric toric Fano 3-fold. Conversely, let

{y1, y2} be a primitive collection. Then the corresponding primitive relation is

y1 + y2 = 0 by assumption, and x1, x2, y1 and y2 are contained in a plane. So, there

exists z in G(Σ) \ {x1, x2, x
′
1, x

′′
1, y1, y2}, and both {x′1, z} and {x′′1, z} are primitive

collections. This contradicts the assumption. On the other hand, by Theorem 1.6.6,

the psudo-symmetric toric Fano 3-folds are

P1 ×P1 ×P1, P1 × V 2 and P1 × Ṽ 2.

By Definition 1.6.4 and Theorem 1.6.7, these are F-equivalent to P3. q.e.d.

1.8 The classification of nonsingular toric Fano 4-

folds

In this section, we prove Conjecture 1.6.3 for d = 4. As a result, we obtain a new

method for the classification of nonsingular toric Fano 4-folds. Using this method for the

classification, we obtain the 124 nonsingular toric Fano 4-folds.

Theorem 1.8.1 Every nonsingular toric Fano 4-fold other than the 4-dimensional del

Pezzo variety V 4 and the 4-dimensional pseudo del Pezzo variety Ṽ 4 is F-equivalent to
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the 4-dimensional projective space P4. In particular, Conjecture 1.6.3 is true for d = 4,

and hence we obtain a new method for the classification of nonsingular toric Fano 4-folds.

We devote the rest of this section to proving Theorem 1.8.1. So, let X = TNemb(Σ)

be a nonsingular toric Fano 4-fold and ρ = ρ(X) the Picard number of X.

If ρ(X) = 2, then Σ is a splitting fan by Theorem 1.6.9, and hence X is F-equivalent

to P4 by Corollary 1.6.13.

The following theorem holds for any nonsingular projective toric d-folds of Picard

number 3.

Theorem 1.8.2 (Batyrev [5]) Let X = TNemb(Σ) be a nonsingular projective toric

d-fold of Picard number 3. Then, one of the following holds.

(1) Σ is a splitting fan.

(2) # PC(Σ) = 5.

Moreover, in the case of (2), there exists (p0, p1, p2, p3, p4) ∈ (Z>0)5 such that the

primitive relations of Σ are

v1 + · · ·+ vp0 + y1 + · · ·+ yp1 = c2z2 + · · ·+ cp2zp2 + (b1 + 1)t1 + · · ·+ (bp3 + 1)tp3,

y1 + · · ·+ yp1 + z1 + · · ·+ zp2 = u1 + · · ·+ up4 , z1 + · · ·+ zp2 + t1 + · · ·+ tp3 = 0,

t1 + · · ·+ tp3 + u1 + · · ·+ up4 = y1 + · · ·+ yp1 and

u1 + · · ·+ up4 + v1 + · · ·+ vp0 = c2z2 + · · ·+ cp2zp2 + b1t1 + · · ·+ bp3tp3 ,

where

G(Σ) = {v1, . . . , vp0 , y1, . . . , yp1 , z1, . . . , zp2 , t1, . . . , tp3 , u1, · · · , up4},

and c2, . . . , cp2 , b1, . . . , bp3 ∈ Z>0.

The following holds.

Proposition 1.8.3 In Theorem 1.8.2, suppose that X is a nonsingular toric Fano d-fold.

If p1 = 1 or p4 = 1, then X can be equivariantly blown-down to a nonsingular toric Fano

d-fold.
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Proof. We prove Proposition 1.8.3 for the case of p1 = 1. We can prove the case of

p4 = 1 similarly.

By assumption, we have the primitive relation

t1 + · · ·+ tp3 + u1 + · · ·+ up4 = y1.

The primitive collections which have common elements with {t1, . . . , tp3, u1, . . . , up4} are

{z1, . . . , zp2 , t1, . . . , tp3} and {u1, · · · , up4 , v1, . . . , vp0}.

Since {z1, . . . , zp2 , y1} and {v1, . . . , vp0 , y1} are in PC(Σ), X can be equivariantly blown-

down to a toric variety X ′ by Theorem 1.4.10. X ′ is obviously a nonsingular toric Fano

variety by Proposition 1.5.1. q.e.d.

Let ρ = 3. Since # G(Σ) = 7, we have (p0, p1, p2, p3, p4) = (1, 1, 1, 1, 3), (1, 1, 1, 2, 2) or

their permutations. By Proposition 1.8.3, if (p0, p1, p2, p3, p4) �= (1, 2, 1, 1, 2), then X can

be equivariantly blown-down to a nonsingular toric Fano 4-fold. So, let (p0, p1, p2, p3, p4) =

(1, 2, 1, 1, 2). Then the primitive relations of Σ are

v1 + y1 + y2 = (b1 + 1)t1, y1 + y2 + z1 = u1 + u2, z1 + t1 = 0,

t1 + u1 + u2 = y1 + y2 and u1 + u2 + v1 = b1t1,

where b1 = 0 or 1. If b1 = 0, then X can be equivariantly blown-down to a nonsingular

toric Fano 4-fold with respect to v1 + y1 + y2 = t1 by Theorem 1.4.10 and Proposition

1.5.1. On the other hand, if b1 = 1, we can show easily that X is F-equivalent to P4 (see

G1 in the table of Section 1.10).

Next, we consider the case of ρ ≥ 4. We need the following proposition.

Proposition 1.8.4 Let X = TNemb(Σ) be a nonsingular toric Fano 4-fold and ρ(X) ≥ 3.

Then, there exists a primitive collection P in PC(Σ) such that #P = 2.

To prove Proposition 1.8.4, we have to prove the following three lemmas.

Lemma 1.8.5 Let X = TNemb(Σ) be a nonsingular toric Fano 4-fold and ρ(X) ≥ 3. If

there does not exist a primitive collection P in PC(Σ) such that #P = 2, then there does

not exist a primitive collection P ′ in PC(Σ) such that #P ′ = 4.
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Proof. Suppose that there exists a primitive collection P ′ = {x1, x2, x3, x4} in

PC(Σ). Then the open set

NR \ (Cone ({x2, x3, x4}) ∪ Cone ({x1, x3, x4}) ∪ Cone ({x1, x2, x4}) ∪ Cone ({x1, x2, x3}))

has two connected components. Therefore, since there exist at least two other elements by

the assumption ρ(X) ≥ 3, there exists a primitive relation P in PC(Σ) such that #P = 2.

This contradicts the assumption. q.e.d.

Lemma 1.8.6 Let X = TNemb(Σ) be a nonsingular toric Fano 4-fold and ρ(X) ≥ 3. If

there does not exist a primitive collection P in PC(Σ) such that #P = 2, then there does

not exist a primitive relation of the form

x1 + x2 + x3 = ax4 (a = 1, 2).

Proof. Suppose that there exists a primitive collection P in PC(Σ) with primitive

relation x1 + x2 + x3 = ax4 (a = 1, 2). If r(P ) is contained in an extremal ray of

NE(X), then there exist z1, z2 ∈ G(Σ) \ {x1, x2, x3, x4} such that {xi, xj, x4, zk} generate

4-dimensional strongly convex rational polyhedral cones in Σ for 1 ≤ i < j ≤ 3, 1 ≤ k ≤ 2.

Since # G(Σ) = ρ+4 ≥ 7, there exists w ∈ G(Σ)\{x1, x2, x3, x4, z1, z2}, and hence {x4, w}
is a primitive collection of Σ. This contradicts the assumption. So, there does not exists

a primitive relation of the form x1 + x2 + x3 = 2x4, since its degree is one. On the other

hand, suppose that the primitive relation x1 + x2 + x3 = x4 is represented as the sum of

two primitive relations of degree one. By Lemma 1.8.5 and assumption, for any primitive

collection P ′ such that degP ′ = 1, its primitive relation is of the form y1+y2+y3 = y4+y5.

Therefore, there exist two primitive relations

t1 + t2 + x1 = x4 + s and s+ x2 + x3 = t1 + t2

such that

{t1, t2, x4, s}, {t1, x1, x4, s}, {t2, x1, x4, s}, {s, x2, t1, t2}, {s, x3, t1, t2} and {x2, x3, t1, t2}

generate 4-dimensional strongly convex rational polyhedral cones in Σ. This is a con-

tradiction, because there exist three 4-dimensional strongly convex rational polyhedral

cones generated by {t1, t2, x4, s}, {s, x2, t1, t2} and {s, x3, t1, t2}, and they contain the

3-dimensional strongly convex rational polyhedral cone generated by {t1, t2, s}. q.e.d.
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Lemma 1.8.7 Let X = TNemb(Σ) be a nonsingular toric Fano 4-fold and ρ(X) ≥ 3. If

there does not exist a primitive collection P in PC(Σ) such that #P = 2, then there exists

a primitive collection P ′ = {x1, x2, x3} in PC(Σ) such that x1 + x2 + x3 �= 0.

Proof. Suppose that x1 + x2 + x3 = 0 for any primitive collection P ′ = {x1, x2, x3}
in PC(Σ). By Lemmas 1.8.5, 1.8.6, and assumption, for any primitive collection P in

PC(Σ), we have #P = 3. If Σ is a splitting fan, then X is isomorphic to P2 × P2,

and hence ρ(X) = 2. So, there exist two primitive collections P1, P2 in PC(Σ) such that

P1 ∩ P2 = ∅. If P1 = {x1, x2, x3} and P2 = {x1, x4, x5}, that is, #(P1 ∩ P2) = 1, then we

have x2 + x3 = x4 + x5, and hence {x2, x3} or {x4, x5} in PC(Σ). This contradicts the

assumption. The case P1 = {x1, x2, x3} and P2 = {x1, x2, x4}, that is, #(P1 ∩ P2) = 2, is

also impossible, because x3 = x4. q.e.d.

Proof of Proposition 1.8.4. By Lemmas 1.8.6 and 1.8.7, there exists a primitive

collection P in PC(Σ) with primitive relation x1 + x2 + x3 = x4 + x5. Since degP =

1, we have three 4-dimensional strongly convex rational polyhedral cones generated by

{xi, xj, x4, x5}, where 1 ≤ i < j ≤ 3. There exist distinct elements y1 and y2 in G(Σ) \
{x1, x2, x3, x4, x5} by the assumption ρ ≥ 3, and hence we have {x4, x5, y1} and {x4, x5, y2}
in PC(Σ). If y1 + x4 + x5 = 0, then we have y2 + x4 + x5 �= 0. Therefore, we have

y2 + x4 + x5 = x1 + x2 up to change of indices. This is a contradiction, because we have

x3 + y2 = 0, and hence {x3, y2} is in PC(Σ). The case y1 + x4 + x5 �= 0 is similar. q.e.d.

Let ρ ≥ 4. Then, there exists a primitive collection of Σ whose cardinality is two by

Proposition 1.8.4. We divide the proof of Theorem 1.8.1 for ρ ≥ 4 into two cases.

(1) “There exists a primitive relation x1 + x2 = x, where x1, x2, x ∈ G(Σ).”

Let ϕ : X → X ′ be the equivariant blow-down with respect to x1 + x2 = x. If X ′ is

not a nonsingular toric Fano 4-fold, then, by Proposition 1.5.1 and Example 1.5.2, there

exist one of the following primitive relations:

y1 + y2 + y3 = 2x, y1 + y2 + y3 = x + x1 and y1 + y2 = x,

where y1, y2, y3 in G(Σ).

(1.1) “y1 + y2 + y3 = 2x or y1 + y2 + y3 = x + x1.” Since the degree is one, we have

six 4-dimensional strongly convex rational polyhedral cones generated by {xi, x, yj, yk},
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where 1 ≤ i ≤ 2, 1 ≤ j < k ≤ 3. There exist distinct elements z1 and z2 in G(Σ) \
{x1, x2, x, y1, y2, y3}, because # G(Σ) = ρ + 4 ≥ 8, and hence we have two primitive

collections {x, z1} and {x, z2} in PC(Σ). Therefore, we obtain a primitive relation of Σ

of the form

x+ z1 = w (w ∈ {x1, x2, y1, y2, y3})

up to change of indices. Let ϕ : X → X ′′ be the equivariant blow-down with respect to

x+ z1 = w.

(1.1.1) “w �= x1 or y1+y2+y3 = 2x is a primitive relation of Σ.” Then X ′′ is obviously

a nonsingular toric Fano 4-fold.

(1.1.2) “w = x1 and y1 + y2 + y3 = x+ x1 is a primitive relation of Σ.” In this case,

X ′′ is not a nonsingular toric Fano 4-fold by Proposition 1.5.1 and Example 1.5.2. Since

ρ ≥ 4, there exists t ∈ G(Σ) \ {x1, x2, x, y1, y2, y3, z1}. So, we have one of the following

primitive relations of Σ up to change of indices:

t+ x1 = y1, t+ x1 = x2 and t+ x1 = z1.

Let ϕ′ : X → X ′′′ be the equivariant blow-down with respect to this primitive relation.

Then, X ′′′ is obviously a nonsingular toric Fano 4-fold.

(1.2) “y1 + y2 = x.” Since the degree is one, there exist two elements z1 and z2

in G(Σ) \ {x1, x2, x, y1, y2}, and we have eight 4-dimensional strongly convex rational

polyhedral cones generated by {xi, x, yj , zk}, where 1 ≤ i, j, k ≤ 2. There exist w in

G(Σ) \ {x1, x2, x, y1, y2, z1, z2}, because # G(Σ) = ρ + 4 ≥ 8, and hence P = {x, w} is a

primitive collection of Σ.

(1.2.1) “The primitive relation of P is x+w = t, where t in {z1, z2}.” Let ϕ : X → X ′′

be the equivariant blow-down with respect to x + w = t. Then, X ′′ is obviously a

nonsingular toric Fano 4-fold.

(1.2.2) “The primitive relation of P is x + w = t, where t in {x1, x2, y1, y2}.” Let

ϕ : X → X ′′ be the equivariant blow-down with respect to x + w = t. If X ′′ is not a

nonsingular toric Fano 4-fold, then we obviously have a primitive relation z1 + z2 = t

by Proposition 1.5.1. We may assume t = x2 without loss of generality. Then, we have

four 4-dimensional strongly convex rational polyhedral cones generated by {x2, yi, yj , w},
where 1 ≤ i, j ≤ 2. {x1, x, y1, z1} is a Z-basis of N . Using this basis, we have

x2 = −x1 + x, y2 = x− y1, z2 = −x1 + x− z1 and w = −x1.
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Since the coefficient of x in none of these relation is negative, there exist u in G(Σ) \
{x1, x2, x, y1, y2, z1, z2, w} by the completeness of Σ, and hence we have two primitive

collections {x, u} and {x2, u} in PC(Σ). Therefore, we have a primitive relation either

x + u = s or x2 + u = s, where s is in {x1, y1, y2, z1, z2, w}. Let ϕ : X → X ′′ be the

equivariant blow-down with respect to x + u = s. Then, X ′′ is obviously a nonsingular

toric Fano 4-fold. The case of the blow-down with respect to x2 + u = s is similar.

(1.2.3) “The primitive relation of P is x + w = 0.” If ρ ≥ 5, then there exist v in

G(Σ) \ {x1, x2, x, y1, y2, z1, z2, w, v}, and hence we have the primitive relation x + v �= 0.

In this case, we can use the same method as in (1.2.1) or (1.2.2).

So let ρ = 4 and G(Σ) = {x1, x2, x, y1, y2, z1, z2, w}. Then, either {z1, z2} or {x, z1, z2}
is a primitive collection of Σ.

(1.2.3.1) “z1 + z2 = 0 is a primitive relation of Σ.” X is obviously a nonsingular toric

Fano 4-fold in this case. The primitive relations of Σ are

x1 + x2 = x, y1 + y2 = x, x + w = 0 and z1 + z2 = 0.

Therefore, Σ is a splitting fan, and hence X is F-equivalent to P4 by Theorems 1.6.7 and

1.6.12.

(1.2.3.2) “z1 +z2 = x is a primitive relation of Σ.” X is obviously a nonsingular toric

Fano 4-fold in this case. The primitive relations of Σ are

x1 + x2 = x, y1 + y2 = x, x+ w = 0 and z1 + z2 = x.

Therefore, Σ is a splitting fan, and hence X is F-equivalent to P4 by Theorems 1.6.7 and

1.6.12.

(1.2.3.3) “z1 + z2 = t is a primitive relation of Σ, where t in {x1, x2, y1, y2, w}.” Let

ϕ : X → X ′′ be the equivariant blow-down with respect to z1 + z2 = t. Then X ′′ is

obviously a nonsingular toric Fano 4-fold by Proposition 1.5.1 and Example 1.5.2.

(1.2.3.4) “z1 + z2 + x = 0 is a primitive relation of Σ.” This is impossible, because

z1 + z2 = −x = w, and hence {z1, z2} is a primitive collection of Σ.

(1.2.3.5) “z1 + z2 + x = ax1 is a primitive relation of Σ, where a = 1 or 2.” Since

ax1 +w = z1 + z2, {t, w} is a primitive collection of Σ. There exists u in {x2, y1, y2, z1, z2}
such that the primitive relation of {x1, w} is x1 + w = u, because x + w = 0. Since

x1 − x − u = 0, we have u = x2. Because, otherwise, {x1, x, u} is a part of a Z-basis of
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N . However, this contradicts the fact x1 +x2 = x. We can replace x1 by x2, y1 or y2, and

repeat the same argument.

(1.2.3.6) “z1 + z2 + x = aw is a primitive relation of Σ, where a = 1 or 2.” We have

z1 + z2 = aw − x = (a+ 1)w. This is a contradiction.

(1.2.3.7) “z1 + z2 + x = xi + yj is a primitive relation of Σ, where 1 ≤ i, j ≤ 2.” X is

obviously a nonsingular toric Fano 4-fold. We can show easily that X is F-equivalent to

P4 (See M2 in the table of Section 1.10).

(2) “There does not exist a primitive collection P = {x1, x2} in PC(Σ) with primitive

relation x1 + x2 �= 0.”

In this case, we need the following lemma. This lemma can be proved in the same way

as Lemmas 1.8.5 and 1.8.6.

Lemma 1.8.8 Let X = TNemb(Σ) be a nonsingular toric Fano 4-fold and ρ(X) ≥ 4. If

there does not exist a primitive collection P = {x1, x2} in PC(Σ) with primitive relation

x1 + x2 �= 0, then the following hold.

(1) There does not exist a primitive collection P in PC(Σ) such that #P = 4.

(2) There does not exist a primitive relation of Σ of the form

x1 + x2 + x3 = ax4 (a = 1, 2).

Since ρ ≥ 4, there exists a primitive collection P = {x1, x2} in PC(Σ) with primitive

relation x1 + x2 = 0, by Proposition 1.8.4. We fix this P .

(2.1) “r(P ) is contained in an extremal ray of NE(X).” By toric Mori theory, there

exists a nonsingular projective toric 3-fold Y = TNemb(Σ∗) such that X is an equivariant

P1-bundle over Y , G(Σ∗) ⊂ G(Σ), and if P ∗ is a primitive collection of Σ∗, then P ∗

is also a primitive collection of Σ. Let # G(Σ∗) = n and n0 the number of the primi-

tive collections of Σ∗ whose cardinality is two. Then the f -vector of the 3-dimensional

simplicial convex polytope corresponding to Σ∗ is (n, n(n− 1)/2− n0, f2). By the Dehn-

Sommerville equalities (see Oda [26]), we have n0 = (n− 3)(n− 4)/2. So by assumption,

we have n0 = (n−3)(n−4)/2 ≤ n/2. Since ρ ≥ 4, we have n = 6, and hence the primitive

relations of Σ are

x1 + x2 = 0, x3 + x4 = 0, x5 + x6 = 0 and x7 + x8 = 0.
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Thus, X is P1 ×P1 ×P1 ×P1, and hence X is F-equivalent to P4 by Theorem 1.6.7.

(2.2) “r(P ) is not contained in an extremal ray of NE(X).” By Lemma 1.8.8, there

exist two primitive relations of Σ of the form

x1 + y1 + y2 = z1 + z2 and x2 + z1 + z2 = y1 + y2,

with y1, y2, z1, z2 in G(Σ). We have five 4-dimensional strongly convex rational polyhedral

cones of Σ generated by

{x1, y1, z1, z2}, {x1, y2, z1, z2}, {y1, y2, z1, z2}, {x2, y1, y2, z1} and {x2, y1, y1, z2}.

By the assumption ρ ≥ 4, there exists w in G(Σ) \ {x1, x2, y1, y2, z1, z2} such that either

{z1, z2, w} or {z1, z2, w} is a primitive collection of Σ, because there exists at most one

primitive collection among {z1, w}, {z2, w}, {y1, w} and {y1, w}, and the others generate

2-dimensional strongly convex rational polyhedral cones of Σ. If w + z1 + z2 = 0 is a

primitive relation, then we have y1 + y2 + w = x2. So, by assumption, {y1, y2}, {y1, w}
and {y2, w} are not primitive collections. Therefore, {y1, y2, w} is a primitive collection

of Σ. This contradicts Lemma 1.8.8.

By the above discussion, we have the primitive relations w + z1 + z2 = t1 + t2 and

w + y1 + y2 = s1 + s2, where the possibilities for {t1, t2} are {x1, y1} and {x1, y2}, while

the possibilities for {s1, s2} are {x2, z1} and {x2, z2}. So, we have 4 ≤ ρ ≤ 6.

(2.2.1) “ρ = 4” X is obviously a nonsingular toric Fano 4-fold. We can show easily

that X is F-equivalent to P4 (See M1 in the table of Section 1.10).

(2.2.2) “ρ = 5” X is the 4-dimensional pseudo del Pezzo variety. Moreover, X is not

F-equivalent to P4 (See (117) in the table of Section 1.10). The primitive relations of Σ

are

x0 + x4 = 0, x1 + x5 = 0, x2 + x6 = 0, x3 + x7 = 0,

x0 +x1 +x2 = x7 +x8, x0 +x1 +x3 = x6 +x8, x0 +x2 +x3 = x5 +x8, x1 +x2 +x3 = x4 +x8,

x4 +x5 +x8 = x2 +x3, x4 +x6 +x8 = x1 +x3, x4 +x7 +x8 = x1 +x2, x5 +x6 +x8 = x0 +x3,

x5 + x7 + x8 = x0 + x2, x6 + x7 + x8 = x0 + x1,

where G(Σ) = {x0, x1, x2, x3, x4, x5, x6, x7, x8}.
(2.2.3) “ρ = 6” X is the 4-dimensional del Pezzo variety. Moreover, X is not F-

equivalent to P4 (See (118) in the table of Section 1.10). The primitive relations of Σ
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are

x0 + x4 = 0, x1 + x5 = 0, x2 + x6 = 0, x3 + x7 = 0, x8 + x9 = 0,

x0 +x1 +x2 = x7 +x8, x0 +x1 +x3 = x6 +x8, x0 +x2 +x3 = x5 +x8, x1 +x2 +x3 = x4 +x8,

x0 +x1 +x9 = x6 +x7, x0 +x2 +x9 = x5 +x7, x0 +x3 +x9 = x5 +x6, x1 +x2 +x9 = x4 +x7,

x1 +x3 +x9 = x4 +x6, x2 +x3 +x9 = x4 +x5, x4 +x5 +x6 = x3 +x9, x4 +x5 +x7 = x2 +x9,

x4 +x6 +x7 = x1 +x9, x5 +x6 +x7 = x0 +x9, x4 +x5 +x8 = x2 +x3, x4 +x6 +x8 = x1 +x3,

x4 +x7 +x8 = x1 +x2, x5 +x6 +x8 = x0 +x3, x5 +x7 +x8 = x0 +x2, x6 +x7 +x8 = x0 +x1,

where G(Σ) = {x0, x1, x2, x3, x4, x5, x6, x7, x8, x9}.

1.9 124 nonsingular toric Fano 4-folds

In this section, we describe the 124 nonsingular toric Fano 4-folds in terms of primitive

relations. We use the same notation as in Batyrev [6] (see also Section 1.10). Let G(Σ) =

{x1, x2, . . .}.

(1) 4-dimensional projective space P4. The primitive relation is x1+x2+x3+x4+x5 =

0.

“type B” The primitive relations are as follows:

Case 2 3 4 5 6

x1 + x2 + x3 + x4 = 3x5 2x5 x5 0 0

x5 + x6 = 0 0 0 0 x1

Notation B1 B2 B3 B4 B5

“type C” The primitive relations are x1 + x2 + x3 = 0 and

Case 7 8 9 10

x4 + x5 + x6 = 2x1 x1 x1 + x2 0

Notation C1 C2 C3 C4

“type E” The primitive relations are x1 + x7 = 0, x1 + x2 = x6, x6 + x7 = x2 and
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Case 11 12 13

x2 + x3 + x4 + x5 = 2x1 x1 0

x3 + x4 + x5 + x6 = 3x1 2x1 x1

Notation E1 E2 E3

“type D” The primitive relations are as follows:

Case 14 15 16 17 18 19 20 21 22 23 24

x1 + x2 + x3 = 2x6 2x4 x4 + x6 2x6 2x4 x6 0 x4 x4 + x6 x6 0

x4 + x5 = x6 x6 x6 x1 0 x6 x1 x6 0 x1 x1

x6 + x7 = 0 0 0 0 0 0 x1 0 0 0 x4

Notation D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

Case 25 26 27 28 29 30 31 32

x1 + x2 + x3 = x4 0 0 0 x4 + x7 0 2x7 x7

x4 + x5 = 0 0 0 0 x6 x1 x6 x6

x6 + x7 = 0 0 x1 x4 0 x2 0 0

Notation D12 D13 D14 D15 D16 D17 D18 D19

“type G” The primitive relations are as follows:

Case 33 34 35 36 37 38

x1 + x7 = 0 x4 0 x4 x4 x4

x2 + x3 + x4 = x1 x7 0 x7 x7 x7

x4 + x5 + x6 = 2x1 2x1 x1 x1 + x2 0 x1

x5 + x6 + x7 = x2 + x3 x1 x2 + x3 x2 x2 + x3 0

x1 + x2 + x3 = x5 + x6 0 x5 + x6 0 0 0

Notation G1 G2 G3 G4 G5 G6

“type H” The primitive relations are x1 + x2 = x8, x7 + v8 = x1, x1 + x6 = x7,

x2 + x7 = 0, x6 + x8 = 0 and
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Case 39 40 41 42 43 44 45 46 47 48

x3 + x4 + x5 = 2x1 x1 + x8 2x8 x1 x8 x2 + x8 2x2 0 x2 x2 + x6

Notation H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

“type L” The primitive relations are x1 + x8 = 0 and

Case 49 50 51 52 53 54 55 56 57 58 59 60 61

x2 + x3 = x1 x1 x1 x1 0 0 x1 0 0 x1 0 x1 x1

x4 + x5 = x1 x3 x1 x3 x3 x3 0 0 0 x3 x3 x8 x1

x6 + x7 = x1 x3 x4 x4 x3 x4 x4 0 x4 x2 x2 x4 x8

Notation L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

“type I” The primitive relations are x7 + x8 = x3, x3 + x6 = x7, x6 + x8 = 0, and

Case 62 63 64 65 66 67 68 69 70 71

x1 + x2 = x3 x8 x8 x7 x4 x3 0 x6 x7 x8

x3 + x4 + x5 = 2x8 2x8 x1 + x8 2x8 2x8 x8 2x8 x1 + x8 x8 x8

x4 + x5 + x7 = x8 x8 x1 x8 x8 0 x8 x1 0 0

Notation I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

Case 72 73 74 75 76

x1 + x2 = 0 x6 0 x4 x6

x3 + x4 + x5 = x1 + x8 x8 x8 x8 2x8

x4 + x5 + x7 = x1 0 0 0 x8

Notation I11 I12 I13 I14 I15

“type M” The primitive relations are as follows:
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Case 77 78 79 80 81

x1 + x8 = 0 0 0 0 x5

x4 + x5 = 0 x1 x1 x1 x7

x6 + x7 = 0 x1 x5 0 x1

x1 + x2 + x3 = x4 + x6 x4 + x6 x4 + x6 x4 + x6 x6

x4 + x6 + x8 = x2 + x3 x2 + x3 x2 + x3 x2 + x3 0

x2 + x3 + x5 = x6 + x8 x6 x6 x6 x6 + x8

x2 + x3 + x7 = x4 + x8 x4 0 x4 + x8 0

Notation M1 M2 M3 M4 M5

“type J” The primitive relations are x3+x6 = x7, x1+x2+x8 = x4+x5, x4+x5+x6 =

x1 + x2, x7 + x8 = x3, x6 + x8 = 0 and

Case 82 83

x3 + x4 + x5 = 0 x8

x4 + x5 + x7 = x6 0

x1 + x2 + x3 = x6 0

x1 + x2 + x7 = 2x6 x6

Notation J1 J2

“type Q” The primitive relations are x8 + x9 = 0, x7 + x9 = x1, x1 + x2 = x9,

x1 + x8 = x7, x2 + x7 = 0 and

Case 84 85 86 87 88 89 90 91 92 93 94 95

x3 + x5 = x1 x1 x9 x1 x9 0 x9 0 x9 0 0 x1

x4 + x6 = x1 x3 x9 x9 x3 x1 x7 x9 x2 x3 0 x2

Notation Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Case 96 97 98 99 100

x3 + x5 = x2 x2 0 x9 x2

x4 + x6 = x2 x3 x2 x8 x8

Notation Q13 Q14 Q15 Q16 Q17
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“type K” The primitive relations are x7 + x9 = x1, x1 + x8 = x7, x8 + x9 = 0,

x2 + x8 = x6, x6 + x7 = x8, x1 + x6 = 0, x6 + x9 = x2, x1 + x2 = x9, x2 + x7 = 0 and

Case 101 102 103 104

x3 + x4 + x5 = 2x9 x1 + x9 x9 0

Notation K1 K2 K3 K4

“type R” The primitive relations are x5 + x7 = 0, x1 + x9 = 0, x5 + x9 = x8,

x1 +x8 = x5, x7 +x8 = x9, x2 +x3 +x9 = x4 +x7, x2 +x3 +x5 = x1 +x4, x2 +x3 +x8 = x4,

x1 + x4 + x7 = x2 + x3 and

Case 105 106 107

x4 + x6 = x8 x5 0

x2 + x3 + x6 = 0 x1 x1 + x7

Notation R1 R2 R3

(108) The primitive relations are x7 +x9 = 0, x8 +x9 = x1, x3 +x5 = x4, x4 +x6 = x5,

x1 + x7 = x8, x3 + x6 = 0, x1 + x2 + x5 = x6 + x9, x1 + x2 + x4 = x9, x2 + x5 + x8 = x6

and x2 + x4 + x8 = 0.

“type U” The primitive relations are x1 + x3 = x2, x2 + x4 = x3, x1 + x4 = 0,

x3 + x5 = x4, x4 + x6 = x5, x2 + x5 = 0, x1 + x5 = x6, x2 + x6 = x1, x3 + x6 = 0 and

Case 109 110 111 112 113 114 115 116

x8 + x7 = x1 x1 x1 0 0 x1 x1 x1

x9 + x10 = x1 x8 x2 x8 0 0 x3 x4

Notation U1 U2 U3 U4 U5 U6 U7 U8

(117) 4-dimensional pseudo del Pezzo variety (see Definition 1.6.4 and Remark 1.6.5).

The primitive relations are x4+x9 = 0, x1+x5 = 0, x2+x6 = 0, x3+x7 = 0, x1+x2+x9 =

x7 + x8, x1 + x3 + x9 = x6 + x8, x2 + x3 + x9 = x5 + x8, x1 + x2 + x3 = x4 + x8,

x4 +x5 +x8 = x2 +x3, x4 +x6 +x8 = x1 +x3, x4 +x7 +x8 = x1 +x2, x5 +x6 +x8 = x3 +x9,

x5 + x7 + x8 = x2 + x9 and x6 + x7 + x8 = x1 + x9.
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(118) 4-dimensional del Pezzo variety (see Definition 1.6.4 and Remark 1.6.5). The

primitive relations are x4 + x10 = 0, x1 + x5 = 0, x2 + x6 = 0, x3 + x7 = 0, x8 + x9 = 0,

x1+x2+x10 = x7+x8, x1+x3+x10 = x6+x8, x2+x3+x10 = x5+x8, x1+x2+x3 = x4+x8,

x1+x9+x10 = x6+x7, x2+x9+x10 = x5+x7, x3+x9+x10 = x5+x6, x1+x2+x9 = x4+x7,

x1 +x3 +x9 = x4 +x6, x2 +x3 +x9 = x4 +x5, x4 +x5 +x6 = x3 +x9, x4 +x5 +x7 = x2 +x9,

x4 +x6 +x7 = x1 +x9, x5 +x6 +x7 = x9 +x10, x4 +x5 +x8 = x2 +x3, x4 +x6 +x8 = x1 +x3,

x4+x7+x8 = x1+x2, x5+x6+x8 = x3+x10, x5+x7+x8 = x2+x10 and x6+x7+x8 = x1+x10.

(119) S2 × S2. The primitive relations are x1 + x3 = 0, x1 + x4 = x5, x2 + x4 = x3,

x2 + x5 = 0, x3 + x5 = x4, x6 + x8 = 0, x6 + x9 = x10, x7 + x9 = x8, x7 + x10 = 0 and

x8 + x10 = x9.

(120) S2 × S3. The primitive relations are x1 + x3 = 0, x1 + x4 = x5, x2 + x4 = x3,

x2 + x5 = 0, x3 + x5 = x4, x6 + x8 = x7, x6 + x9 = 0, x6 + x10 = x11, x7 + x9 = x8,

x7 + x10 = 0, x7 + x11 = x6, x8 + x10 = x9, x8 + x11 = 0 and x9 + x11 = x10.

(121) S3 × S3. The primitive relations are x1 + x3 = x2, x1 + x4 = 0, x1 + x5 = x6,

x2 + x4 = x3, x2 + x5 = 0, x2 + x6 = x1, x3 + x5 = x4, x3 + x6 = 0, x4 + x6 = x5,

x7 + x9 = x8, x7 + x10 = 0, x7 + x11 = x12, x8 + x10 = x9, x8 + x11 = 0, x8 + x12 = x7,

x9 + x11 = x10, x9 + x12 = 0 and x10 + x12 = x11.

“type Z” The primitive relations are x1+x2+x5 = 0, x1+x2+x6 = x7, x2+x4+x5 =

x8, x2 + x4 + x6 = x7 + x8 and

Case 122 123

x3 + x8 + x7 = 0 x2

x3 + x4 + x6 = x1 + x5 0

x3 + x4 + x7 = x1 x1 + x2

x3 + x6 + x8 = x5 x2 + x5

Notation Z1 Z2

(124) The primitive relations are x1+x4 = x7, x2+x5 = x8, x3+x6 = x9, x1+x2+x3 =

0, x4 +x5 +x6 = 0, x7 +x8 +x9 = 0, x1 +x2 +x9 = x6, x4 +x5 +x9 = x3, x1 +x3 +x8 = x5,

x4 + x6 + x8 = x2, x2 + x3 + x7 = x4, x5 + x6 + x7 = x1, x1 + x8 + x9 = x5 + x6,

x4 +x8 +x9 = x2 +x3, x2 +x7 +x9 = x4 +x6, x5 +x7 +x9 = x1 +x3, x3 +x7 +x8 = x4 +x5

and x6 + x7 + x8 = x1 + x2 (see Example 1.4.7).
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1.10 Equivariant blow-up relations among nonsingu-

lar toric Fano 4-folds

In this section, we describe all the equivariant blow-up relations among nonsingular

toric Fano 4-folds using the results of Sections 1.3, 1.4, 1.6 and 1.8. In Table 1, we use

the same notation as in Batyrev [6], and i-blow-up means the equivariant blow-up along

a TN -invariant irreducible closed subvariety of codimension i.

Table 1: equivariant blow-up relations among nonsingular toric Fano 4-folds

equivariant blow-up notation

(1) none P4

(2) none B1

(3) none B2

(4) 4-blow-up of P4 B3

(5) none B4

(6) 2-blow-up of P4 B5

(7) none C1

(8) 3-blow-up of P4 C2

(9) none C3

(10) none C4

(11) 2-blow-up of B1, B2 E1

(12) 2-blow-up of B2, B3 E2

(13) 2-blow-up of B3, B4, 4-blow-up of B5 E3

(14) none D1

(15) 2-blow-up of C1 D2

(16) none D3

(17) 2-blow-up of B2 D4

(18) none D5

(19) 2-blow-up of C3 D6

(20) none D7
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(21) 2-blow-up of C2, 3-blow-up of B3 D8

(22) none D9

(23) 2-blow-up of B5, 3-blow-up of B3 D10

(24) 2-blow-up of B5, C2 D11

(25) 3-blow-up of B4 D12

(26) none D13

(27) 2-blow-up of B4 D14

(28) 2-blow-up of C4 D15

(29) 2-blow-up of C3 D16

(30) 2-blow-up of B5 D17

(31) 2-blow-up of C1 D18

(32) 2-blow-up of C2, 3-blow-up of B5 D19

(33) none G1

(34) 2-blow-up of C2, 3-blow-up of C1 G2

(35) 3-blow-up of C3 G3

(36) 2-blow-up of C2, 3-blow-up of C3 G4

(37) 2-blow-up of C3, 3-blow-up of C4 G5

(38) 2-blow-up of C4, 3-blow-up of C2 G6

(39) 2-blow-up of D2 H1

(40) 2-blow-up of D3 H2

(41) 2-blow-up of D1, D5 H3

(42) 2-blow-up of D8, D9 H4

(43) 2-blow-up of D6, D12, D16 H5

(44) 2-blow-up of D3, D9 H6

(45) 2-blow-up of D2, D5, D18 H7

(46) 2-blow-up of D13, D15 H8

(47) 2-blow-up of D8, D12, D19, 3-blow-up of E3 H9

(48) 2-blow-up of D9, D16 H10

(49) none L1

(50) 2-blow-up of D7 L2

(51) 2-blow-up of D6 L3
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(52) 2-blow-up of D8, D10, D11 L4

(53) none L5

(54) 2-blow-up of D12, D14 L6

(55) 2-blow-up of D15 L7

(56) none L8

(57) 2-blow-up of D13 L9

(58) 2-blow-up of D10, D17 L10

(59) 2-blow-up of D14 L11

(60) 2-blow-up of D11, D17, D19 L12

(61) 2-blow-up of D7 L13

(62) 2-blow-up of D4 I1

(63) 2-blow-up of D1, D6 I2

(64) 2-blow-up of D3, D8 I3

(65) 2-blow-up of D10 I4

(66) 2-blow-up of E2, D4, D10 I5

(67) 2-blow-up of D10, 3-blow-up of D11 I6

(68) 2-blow-up of D5, D12 I7

(69) 2-blow-up of D8, D16, G4 I8

(70) 2-blow-up of D14, 3-blow-up of D7 I9

(71) 2-blow-up of D6, D15, G5 I10

(72) 2-blow-up of D9, D12 I11

(73) 2-blow-up of D15, D19, G6, 3-blow-up of D11 I12

(74) 2-blow-up of D12, D13, 3-blow-up of D14 I13

(75) 2-blow-up of E3, D10, D14, 3-blow-up of D17 I14

(76) 2-blow-up of D18, D19, G2 I15

(77) none M1

(78) none M2

(79) 2-blow-up of G3, G5 M3

(80) 2-blow-up of G3 M4

(81) 2-blow-up of G4, G6 M5

(82) 2-blow-up of G1, G3 J1
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(83) 2-blow-up of G3, 3-blow-up of G5 J2

(84) 2-blow-up of L2 Q1

(85) 2-blow-up of H4, L4 Q2

(86) 2-blow-up of L1, L5 Q3

(87) 2-blow-up of L3 Q4

(88) 2-blow-up of H5, L3, L6 Q5

(89) 2-blow-up of L6 Q6

(90) 2-blow-up of L7 Q7

(91) 2-blow-up of L5, L9 Q8

(92) 2-blow-up of L3, L7, I10 Q9

(93) 2-blow-up of H8, L7, L9 Q10

(94) 2-blow-up of L8, L9 Q11

(95) 2-blow-up of L10, L12, I6 Q12

(96) 2-blow-up of L2, L5, L13 Q13

(97) 2-blow-up of H9, L4, L6, L12, I14 Q14

(98) 2-blow-up of L6, L9, L11, I13 Q15

(99) 2-blow-up of L11, L13, I9 Q16

(100) 2-blow-up of L7, L12, I12 Q17

(101) 2-blow-up of H1, H3, H7 K1

(102) 2-blow-up of H2, H6, H10 K2

(103) 2-blow-up of H4, H5, H9 K3

(104) 2-blow-up of H8 K4

(105) 2-blow-up of M3 R1

(106) 2-blow-up of M2, M4 R2

(107) 2-blow-up of M1, M4 R3

(108) 2-blow-up of I11, I13

(109) 2-blow-up of Q1, Q3, Q13 U1

(110) 2-blow-up of Q2, Q5, Q14, K3 U2

(111) 2-blow-up of Q4, Q9 U3

(112) 2-blow-up of Q10, K4 U4

(113) 2-blow-up of Q11 U5
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(114) 2-blow-up of Q6, Q8, Q15 U6

(115) 2-blow-up of Q7, Q12, Q17 U7

(116) 2-blow-up of Q16 U8

(117) none (See Definition 1.6.4 and Remark 1.6.5) Ṽ 4

(118) none (See Definition 1.6.4 and Remark 1.6.5) V 4

(119) 2-blow-up of Q10, Q11 S2 × S2

(120) 2-blow-up of U4, U5, S2 × S2 S2 × S3

(121) 2-blow-up of S2 × S3 S3 × S3

(122) 2-blow-up of G6 Z1

(123) 2-blow-up of G4 Z2

(124) 2-blow-up of Z1 (See Example 1.4.7) W
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Chapter 2

Remarks on abelian surfaces in

nonsingular toric Fano 4-folds

2.1 Introduction

There exist no embeddings from abelian surfaces into nonsingular projective toric 3-

folds over C (see, e.g., Kajiwara [13] and [14]). So, the next problem is to study which

nonsingular projective toric 4-folds admit embeddings from abelian surfaces. This problem

was considered by many people (see Horrocks-Mumford [11], Hulek [12], Kajiwara [13],

[14], Lange [19] and Sankaran [31]). In this chapter, we consider the following problem.

Problem 2.1.1 Which nonsingular toric Fano 4-fold admits a totally nondegenerate em-

bedding from an abelian surface (see Definition 2.2.1)?

There exist exactly 124 nonsingular toric Fano 4-folds up to isomorphism (see Batyrev

[6] and Sato [33]). We give a partial answer to Problem 2.1.1 (see Theorem 2.6.4).

The content of this chapter is as follows: In Section 2.2, we recall the definition of a to-

tally nondegenerate embedding. In Section 2.3, we describe criteria for the non-existence

of totally nondegenerate finite morphisms, and using these criteria, we show the non-

existence for some nonsingular projective toric 4-folds. In Section 2.4, we consider the

relationship between 2-blow-ups of toric 4-folds and totally nondegenerate finite mor-

phisms. As a result, we can derive the main result in Section 2.6. In Section 2.5, we show

the non-existence of totally nondegenerate finite morphisms for some nonsingular toric

Fano 4-folds. In Section 2.6, we obtain the main result.
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2.2 totally nondegenerate embedding

The following notation is used throughout this chapter. For fundamental properties

of the toric geometry, see Oda [26].

Let N := Z4 and M := HomZ(N,Z) the dual group. For a finite complete nonsingular

fan Σ in N and 0 ≤ i ≤ 4, we put Σ(i) := {σ ∈ Σ | dimσ = i}. Each τ ∈ Σ(1) determines

a unique element e(τ) ∈ N which generates the semigroup τ ∩N . We put

G(Σ) := {e(τ) ∈ N | τ ∈ Σ(1)} .

Let X be the complete nonsingular toric 4-fold corresponding to the fan Σ. Let G(Σ) =

{x1, . . . , xn} and let {D1, . . . , Dn} be the corresponding TN -invariant prime divisors on

X. In particular, the Picard number of X is n− 4.

In this chapter, we study the finite morphisms from abelian surfaces to nonsingular

complete toric 4-folds satisfying the following condition.

Definition 2.2.1 Let X be a 4-dimensional complete nonsingular toric variety and A

an abelian surface. A finite morphism ϕ : A → X is called a totally nondegenerate

finite morphism if Di ∩ϕ(A) is non-empty on ϕ(A) for any TN -invariant prime divisor Di

(1 ≤ i ≤ n). If ϕ is an embedding, we call ϕ a totally nondegenerate embedding.

Notation 2.2.2 We use the following notation throughout this chapter.

(1) Let ϕ : A → X be a totally nondegenerate finite morphism. For a TN -invariant

prime divisor Di on X, we put Ci := ϕ∗Di. Ci is an effective divisor on A.

(2) The types of nonsingular toric Fano 4-folds are in the sense of Batyrev [6] and Sato

[33]. We use characters B, C,D . . . instead of B,C,D . . .. See Table 1 in Section 2.7.

For a basis {x1, x2, x3, x4} of N , by computing the divisors of the rational func-

tions e(x∗1), e(x∗2), e(x∗3), e(x∗4) ∈ C(X), where {x∗1, x∗2, x∗3, x∗4} ⊂ M is the dual basis

of {x1, x2, x3, x4}, we obtain four linear relations

div (e(x∗1)) = 0, div (e(x∗2)) = 0, div (e(x∗3)) = 0 and div (e(x∗4)) = 0
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among TN -invariant prime divisors in Pic(X). We often use this argument in the following

sections.

2.3 Criteria for non-existence

In this section, we present criteria for the non-existence of totally nondegenerate finite

morphism from abelian surface A to a projective nonsingular toric 4-fold. We reduce

Kajiwara’s method in [13] and [14] to a more convenient form. For fundamental properties

of primitive collections and primitive relations, see Batyrev [5], [6] and Sato [33].

Lemma 2.3.1 Let A be an abelian surface and D an effective divisor on A. Then we

have D2 ≥ 0.

Proof. We may assume that D is an irreducible curve on A. For some point x ∈ A,

we have D(D+ x) ≥ 0, where D+ x is the translation of D by x. Since D and D+ x are

algebraically equivalent, we have D2 = D(D + x) ≥ 0. q.e.d.

Lemma 2.3.2 Let X be a complete nonsingular toric 4-fold and ϕ : A → X a totally

nondegenerate finite morphism. If (ϕ∗Di)(ϕ
∗Dj) = 0 and (ϕ∗Dj)(ϕ

∗Dk) = 0, where

1 ≤ i, j, k ≤ n, then we have (ϕ∗Di)(ϕ
∗Dk) = 0.

Proof. Suppose that (ϕ∗Di)(ϕ
∗Dk) > 0. Since (ϕ∗Di + ϕ∗Dk)

2 = (ϕ∗Di)
2 +

(ϕ∗Dk)
2 + 2(ϕ∗Di)(ϕ

∗Dk) ≥ 2(ϕ∗Di)(ϕ
∗Dk) > 0 by Lemma 2.3.1, ϕ∗Di + ϕ∗Dk is an

ample divisor on A. On the other hand, (ϕ∗Di + ϕ∗Dk) (ϕ∗Dj) = 0 by assumption. This

contradicts the fact that ϕ∗Di + ϕ∗Dk is ample. Therefore, (ϕ∗Di)(ϕ
∗Dk) = 0. q.e.d.

For a totally nondegenerate finite morphism ϕ : A → X, we define a graph Γϕ as

follows: The vertex set of Γϕ is {1, . . . , n}, and {i, j} is an edge of Γϕ if i �= j and

(ϕ∗Di)(ϕ
∗Dj) = CiCj = 0.

Remark 2.3.3 Lemma 2.3.2 implies that every connected component of Γϕ is complete,

that is, any pair of distinct vertices is connected by an edge. In particular, if Γϕ is

connected, then Γϕ is a complete graph.
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Lemma 2.3.4 Let X be a projective nonsingular toric 4-fold. If there exists a totally

nondegenerate finite morphism ϕ : A→ X, then (ϕ∗Di)(ϕ
∗Dj) > 0 for some 1 ≤ i < j ≤

n.

Proof. Since X is projective, there exists an ample effective divisor
∑n
k=1 akDk on

X. Since
∑n
k=1 akϕ

∗Dk is also ample on A, we have (
∑n
k=1 akϕ

∗Dk)
2 > 0. Therefore, we

have (ϕ∗Di)(ϕ
∗Dj) > 0 for some 1 ≤ i ≤ j ≤ n. If i = j, then there exists 1 ≤ l ≤ n such

that l �= i and (ϕ∗Di)(ϕ
∗Dl) > 0 by Lemma 2.3.2. q.e.d.

Remark 2.3.5 Lemma 2.3.4 implies that Γϕ is not complete. In particular, by Remark

2.3.3, Γϕ is not connected.

Remark 2.3.6 For n > 5, the assertion in Remark 2.3.5 is also true if we replace the

vertex set of Γϕ by S ⊂ {1, . . . , n} such that {Di}i∈S ⊂ Pic(X) generates Pic(X).

By using this incompleteness of Γϕ, we can show the non-existence of totally nonde-

generate finite morphisms for some projective nonsingular toric 4-folds. For example, the

following holds.

Example 2.3.7 Let X be the nonsingular projective toric 4-fold corresponding to the

fan Σ with primitive relations

x1 + x7 = 0, x2 + x3 + x4 = ax1, x4 + x5 + x6 = (a+ 1)x1,

x5 + x6 + x7 = x2 + x3 and x1 + x2 + x3 = x5 + x6,

where G(Σ) = {x1, . . . , x7} and a is a positive integer. D1D7 = 0 on X because {x1, x7}
is a primitive collection of Σ, and by a basis {x1, x2, x4, x5} of N , we have

(1) D1 + aD3 + (a+ 1)D6 −D7 = 0, (2) D2 −D3 = 0,

(3) −D3 +D4 −D6 = 0 and (4) D5 −D6 = 0

in Pic(X), respectively. Suppose that there exists a totally nondegenerate finite morphism

ϕ : A → X. By intersecting D1 with both sides of (1) and restricting the result to A,

we have C2
1 + aC1C3 + (a + 1)C1C6 − C1C7 = 0. So, we have C1C3 = C1C6 = 0 and

C1C2 = C1C4 = C1C5 = 0 by (2), (3) and (4). Hence Γϕ is connected, a contradiction to

Remark 2.3.5. Therefore, X admits no totally nondegenerate finite morphism.
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Remark 2.3.8 In Example 2.3.7, if a = 1, then X is the nonsingular toric Fano 4-fold

of type G1. So there exists no totally nondegenerate finite morphism to the nonsingular

toric Fano 4-fold of type G1.

Proposition 2.3.9 If a nonsingular projective toric 4-fold X has an equivariant projec-

tive birational divisorial contraction to a possibly singular point, then there exist no totally

nondegenerate finite morphism to X.

Proof. Suppose that there exists a totally nondegenerate finite morphsim ϕ : A →
X. By the Mori theory for projective toric varieties (see Reid [30]), we may assume,

without loss of generality, that we have a primitive relation x1 +x2 +x3 +x4 = ax5, where

a is a positive integer. Obviously, D5Di = 0 for 6 ≤ i ≤ n. By a basis {x1, x2, x3, x5}
of N , we have aD4 + D5 + b6D6 + · · · + bnDn = 0 in Pic(X). So aC4C5 + C2

5 = 0 on

A. Therefore, C4C5 = 0, and similarly CiC5 = 0 for 1 ≤ i ≤ 4. This means that Γϕ is

connected, a contradiction to Remark 2.3.5. q.e.d.

Remark 2.3.10 By Proposition 2.3.9, there exist no totally nondegenerate finite mor-

phism to the nonsingular toric Fano 4-folds of types B1, B2, B3 and E3.

We now consider the case where X is decomposed into the product of P1 and a

projective nonsingular toric 3-fold. Let X = P1 ×X ′ be a projective nonsingular toric 4-

fold, where X ′ is a projective nonsingular toric 3-fold. Suppose that x1 and x2 correspond

to the class of fibers of the first projection X → P1, where G(Σ) = {x1, x2, . . . , xn}. Then

the following holds.

Proposition 2.3.11 Suppose that there exists a totally nondegenerate finite morphism

ϕ : A→ X. We define a subgraph Γ′ of Γϕ as follows: The vertex set of Γ′ is {3, . . . , n},
and {i, j} (3 ≤ i < j ≤ n) is an edge of Γ′ if {i, j} is an edge of Γϕ. Then Γ′ is not

complete.

Proof. Since each fiber of the second projection p2 : X → X ′ is P1, each fiber of p2

is not contained in the abelian surface A. So p2 ◦ϕ is a finite morphism. Therefore, for an

ample divisor E =
∑n
i=3 aiEi on the projective variety X ′, where E3, . . . , En are the toric

divisors corresponding to x3, . . . , xn, respectively, (p2 ◦ϕ)∗(E) =
∑n
i=3 ai(p2 ◦ϕ)∗Di is also

an ample divisor on A. So, there exist 3 ≤ i < j ≤ n such that ((p2◦ϕ)∗Di)((p2◦ϕ)∗Dj) �=
0. Since {i, j} is not an edge of Γ′, the graph Γ′ is not complete. q.e.d.
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Example 2.3.12 Let X be the nonsingular projective toric 4-fold corresponding to the

fan Σ with primitive relations

x1 + x8 = 0, x2 + x3 = 0, x4 + x5 = ax3 and x6 + x7 = ax3,

where G(Σ) = {x1, . . . , x8} and a is a positive integer. D1D8 = D2D3 = D4D5 = D6D7 =

0 on X, and by a basis {x1, x2, x4, x6} of N , we have

(1) D1 −D8 = 0, (2) D2 −D3 − aD5 − aD7 = 0, (3) D4 −D5 = 0 and (4) D6 −D7 = 0

in Pic(X), respectively. X is isomorphic to P1 ×X ′, where X ′ is a toric 3-fold, and D1

and D8 are fibers of the first projection X → P1. Suppose that there exists a totally

nondegenerate finite morphism ϕ : A → X. By (2), we have C2
3 + aC3C5 + aC3C7 =

C2C3 = 0, and hence C3C5 = C3C7 = 0. Consequently, C3C4 = C3C6 = 0 by (3) and (4).

Thus, the graph Γ′ as in Proposition 2.3.11 is connected, a contradiction to Proposition

2.3.11. Therefore, X admits no totally nondegenerate finite morphism.

Remark 2.3.13 In Example 2.3.12, if a = 1, then X is the nonsingular toric Fano 4-fold

of type L5. So there exist no totally nondegenerate finite morphism to the nonsingular

toric Fano 4-fold of type L5.

For the main theorem of this chapter, we show some results for the non-existence of

totally nondegenerate finite morphisms using Remark 2.3.5 and Proposition 2.3.11.

Proposition 2.3.14 Let X be an Fa-bundle over P2, where Fa is the Hirzebruch surface

of degree a (a ≥ 0), and G(Σ) = {x1, . . . x7}. We introduce a coordinate in N so that the

coordinates of x1, x2, x3, x4, x5, x6 and x7 are
1

0

0

0

 ,


0

1

0

0

 ,

−1

−1

s

t

 ,


0

0

1

0

 ,


0

0

−1

a

 ,


0

0

0

1

 and


0

0

0

−1

 ,

respectively, where s and t are integers. In this situation, the following hold:

(1) If s = t = 0, then X is isomorphic to P2 × Fa.

(2) In the case s �= 0 or t �= 0, if one of the following conditions is satisfied, then X

admits no totally nondegenerate finite morphism.
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(a) a = 0.

(b) a > 0 and t ≥ 0.

(c) a > 0, s > 0, t < 0 and as+ t ≥ 0.

Proof. Suppose that there exists a totally nondegenerate finite morphism ϕ : A →
X. (i) is obvious. So, let s �= 0 or t �= 0. By a basis {x1, x2, x4, x6} of N , we have

(1) D1−D3 = 0, (2) D2−D3 = 0, (3) sD3+D4−D5 = 0 and (4) tD3+aD5+D6−D7 = 0

in Pic(X), respectively. Moreover, we have D4D5 = D6D7 = 0 on X, and C2
4 = C2

5 =

C2
6 = C2

7 = 0 on A.

(a) Let a = 0. In this case, X is isomorphic to P1 ×X ′, where X ′ is a toric 3-fold.

If s = 0 and t �= 0, then D4 and D5 are in the class of fibers of the first projection

X → P1. Since tD3 +D6−D7 = 0 by (4), we have tC3C6 = −C2
6 +C6C7 = 0. Therefore,

C3C6 = 0, and hence C1C6 = C2C6 = 0 by (1) and (2). This contradicts Proposition

2.3.11.

If s �= 0 and t = 0, then D6 and D7 are in the class of fibers of the first projection

X → P1. Since sC3C4 = −C2
4 +C4C5 = 0 by (3), we have C3C4 = 0. On the other hand,

C1C4 = C2C4 = 0 by (1) and (2). This contradicts Proposition 2.3.11.

(b) Let a > 0 and t ≥ 0. Since

(5) tC3C6 + aC5C6 = −C2
6 + C6C7 = 0

by (4), we have C5C6 = 0.

If t > 0, then C3C6 = 0 by (5). Moreover C1C6 = C2C6 = 0 by (1) and (2). So Γϕ is

connected, a contradiction to Remark 2.3.5.

Let t = 0. Then s �= 0 by assumption. So, we have C3C4 = 0 as above, and hence

C1C4 = C2C4 = 0 by (1) and (2). So, Γϕ is connected, a contradiction to Remark 2.3.5.

(c) Let a > 0, s > 0, t < 0 and as + t ≥ 0. Then we have C3C4 = C1C4 = C2C4 = 0

as above. On the other hand, by (3) and (4), we have

(6) − tD4 + (as+ t)D5 + sD6 − sD7 = 0

in Pic(X). So, −tC4C6 +(as+ t)C5C6 = −sC2
6 +sC6C7 = 0, and hence we have C4C6 = 0

by the assumptions t < 0 and as + t ≥ 0. Therefore, Γϕ is connected, a contradiction to

Remark 2.3.5. q.e.d.
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Remark 2.3.15 By Proposition 2.3.14, there exist no totally nondegenerate finite mor-

phism to the nonsingular toric Fano 4-folds of types D1, D2, D3, D5, D6, D8, D9, D12 and

D16. The corresponding a, s and t are as follows:

D1 D2 D3 D5 D6 D8 D9 D12 D16

a 1 1 1 0 1 1 0 0 1

s 0 2 1 2 0 1 1 1 1

t 2 0 1 0 1 0 1 0 -1

2.4 2-blow-up

The following is useful for deriving the main result in Section 2.6.

Proposition 2.4.1 Let X and X̃ be nonsingular projective toric 4-folds and ψ : X̃ → X

a 2-blow-up, where a “2-blow-up” means an equivariant blow-up along a TN -invariant

subvariety of codimension 2. If X admits no totally nondegenerate finite morphism, then

X̃ admits no totally nondegenerate finite morphism either.

Proof. If there exists a totally nondegenerate finite morphism ϕ : A → X̃, then

ψ ◦ϕ : A→ X is also a totally nondegenerate finite morphism (see Mumford [24], p. 88).

This is a contradiction. q.e.d.

In particular, we have the following.

Corollary 2.4.2 Let X1 ← X2 ← · · · ← Xn−1 ← Xn be a sequence of 2-blow-ups among

nonsingular projective toric 4-folds. If X1 admits no totally nondegenerate finite mor-

phism, then Xn admits no totally nondegenerate finite morphism either.

We close this section by proposing the following conjecture.

Conjecture 2.4.3 Let X and X̃ be nonsingular projective toric 4-folds and ψ : X̃ → X

a 2-blow-up. If X admits no totally nondegenerate embedding, then X̃ admits no totally

nondegenerate embedding either.
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2.5 Certain examples

In this section, to describe the main result in Section 2.6, we show the non-existence

of totally nondegenerate embeddings for certain nonsingular toric Fano 4-folds.

(a) “type I’s” Let X be the nonsingular projective toric 4-fold corresponding to the

fan Σ defined as follows: Let G(Σ) = {x1, . . . , x8} ⊂ N such that the coordinates of

x1, . . . , x8 are
1

0

0

0

 ,

−1

b

0

c

 ,


0

1

0

0

 ,


0

0

1

0

 ,


0

−1

−1

a+ 1

 ,


0

0

0

−1

 ,


0

1

0

−1

 ,


0

0

0

1

 ,

respectively, and that the primitive collections of Σ are {x3, x4, x5}, {x4, x5, x7}, {x7, x8},
{x3, x6}, {x6, x8} and {x1, x2}. For certain values of a, b and c, X becomes the nonsingular

toric Fano 4-fold of type I. The corresponding a, b and c are as follows:

I4 I6 I12 I15

a 1 0 0 1

b 1 1 0 0

c -1 0 -1 -1

D7D8 = D3D6 = D6D8 = D1D2 = 0 on X, and by a basis {x1, x3, x4, x8} of N , we have

(1) D1 −D2 = 0, (2) bD2 +D3 −D5 +D7 = 0,

(3) D4 −D5 = 0 and (4) cD2 + (a+ 1)D5 −D6 −D7 +D8 = 0

in Pic(X), respectively. Moreover, we have

(5) (b+ c)D2 +D3 + aD5 −D6 +D8 = 0

by (2) and (4). Suppose that there exists a totally nondegenerate finite morphism ϕ :

A→ X.

If b = 0 and c = −1, then C5C6 = C3C6 + C6C7 = 0 by (2). On the other hand,

by (4), we have C2C5 = C5C8 + (a + 1)C2
5 − C5C6 − C5C7 = 0. Hence Γϕ is connected,

a contradiction to Remark 2.3.5. Therefore, X admits no totally nondegenerate finite
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morphism. In particular, the nonsingular toric Fano 4-folds of types I12 and I15 admit

no totally nondegenerate finite morphism.

In the case b = 1, if a = 1 and b + c = 0, then C3C5 = −C2
3 + C3C6 − C3C8 = 0

by (5), and C2C3 = −C2
3 + C3C5 −C3C7 = 0 by (2). On the other hand, if a = 0 and

b + c = 1, then C2C3 = 0 by (5), and C3C5 = 0 by (2). In any case, Γϕ is connected,

a contradiction to Remark 2.3.5. Therefore, X admits no totally nondegenerate finite

morphism. In particular, the nonsingular toric Fano 4-folds of types I4 and I6 admit no

totally nondegenerate finite morphism.

(b) “type J2” Let X be the nonsingular projective toric 4-fold corresponding to the

fan Σ with primitive relations

x3 + x6 = x7, x1 + x2 + x8 = x4 + x5, x4 + x5 + x6 = x1 + x2, x7 + x8 = x3, x6 + x8 = 0,

x3 + x4 + x5 = x8, x4 + x5 + x7 = 0, x1 + x2 + x3 = 0 and x1 + x2 + x7 = x6,

where G(Σ) = {x1, . . . , x8}. X is the nonsingular toric Fano 4-fold of type J2. D3D6 =

D7D8 = D6D8 = 0 on X, and by a basis {x1, x2, x4, x5} of N , we have

(1) D1 −D3 +D6 −D8 = 0, (2) D2 −D3 +D6 −D8 = 0,

(3) D4 −D6 −D7 +D8 = 0 and (4) D5 −D6 −D7 +D8 = 0

in Pic(X), respectively. So, we have D1 = D2 and D4 = D5. Suppose that there exists

a totally nondegenerate finite morphism ϕ : A → X. By (1), we have C1C3 = C2
3 −

C3C6 +C3C8 = 0. On the other hand, by (3), we have C3C4 = C3C6 +C3C7−C3C8 = 0.

Hence Γϕ is connected, a contradiction to Remark 2.3.5. Therefore, X admits no totally

nondegenerate finite morphism.

(c) “type L’s” Let X be the nonsingular projective toric 4-fold corresponding to the

fan Σ defined as follows: Let G(Σ) = {x1, . . . , x8} ⊂ N such that the coordinates of

x1, . . . , x8 are
0

1

0

0

 ,

−1

1

0

0

 ,


1

0

0

0

 ,


0

0

1

0

 ,

a

b

−1

0

 ,


0

0

0

1

 ,


c

d

0

−1

 ,


0

−1

0

0

 ,
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respectively, and that the primitive collections of Σ are {x1, x8}, {x2, x3}, {x4, x5} and

{x6, x7}. For certain values of a, b, c and d, X becomes the nonsingular toric Fano 4-fold

of type L. The corresponding a, b, c and d are as follows:

L1 L2 L10

a 0 1 1

b 1 0 0

c 0 1 -1

d 1 0 1

D1D8 = D2D3 = D4D5 = D6D7 = 0 on X, and by a basis {x1, x3, x4, x6} of N , we have

(1) D1 +D2 + bD5 + dD7 −D8 = 0, (2) −D2 +D3 + aD5 + cD7 = 0,

(3) D4 −D5 = 0 and (4) D6 −D7 = 0

in Pic(X), respectively. Suppose that there exists a totally nondegenerate finite morphism

ϕ : A → X. By (1) and (2), we have C1C2 + bC1C5 + dC1C7 = −C2
1 + C1C8 = 0 and

aC3C5 + cC3C7 = −C2
3 + C2C3 = 0, respectively, and hence we have C1C2 = 0.

If either a > 0 and c > 0 or b > 0 and d > 0, then either C3C5 = C3C5 = 0 or

C1C5 = C1C7 = 0, respectively. In any case, Γϕ is connected, a contradiction to Remark

2.3.5. Therefore, X admits no totally nondegenerate finite morphism. In particular, the

nonsingular toric Fano 4-folds of types L1 and L2 admit no totally nondegenerate finite

morphism.

Let X be of type L10. Since b ≥ 0 and d > 1, we have C1C7 = 0. Moreover, by (2),

we have C1C5 = −C1C3 + C2C3 + C1C7 = 0. Hence Γϕ is connected, a contradiction to

Remark 2.3.5. Therefore, the nonsingular toric Fano 4-fold of type L10 admits no totally

nondegenerate finite morphism.

(d) “type L12” This case is special. Let X be the nonsingular projective toric 4-fold

corresponding to the fan Σ with primitive relations

x1 + x8 = 0, x2 + x3 = x1, x4 + x5 = x8 and x6 + x7 = x4,

where G(Σ) = {x1, . . . , x8}. X is the nonsingular toric Fano 4-fold of type L12. D1D8 =

D2D3 = D4D5 = D6D7 = 0 on X, and by a basis {x1, x2, x4, x6} of N , we have

(1) D1 +D3 −D5 −D8 = 0, (2) D2 −D3 = 0,
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(3) D4 −D5 +D7 = 0 and (4) D6 −D7 = 0

in Pic(X), respectively. So we have D2
2 = D2

3 = D2
6 = D2

7 = 0,

(5) D2
8 = D3D8 −D5D8 and (6) D2

5 = D5D7

on X. Suppose that there exists a totally nondegenerate embedding ϕ : A ↪→ X. Then by

(3), we have D4D7A = −(D4A)2+D4D5A = 0. Moreover, since D1A is an effective divisor

on A and D3D8A − D5D8A = 0 by (5), we have (D1A)2 = (−D3A + D5A + D8A)2 =

−2D3D5A − 2D3D8A + 2D5D8A = −2D3D5A ≥ 0. Therefore, we have D3D5A = 0.

On the other hand, {D3D5, D3D7, D3D8, D5D7, D5D8, D7D8} generates A2(X) by the

equalities (5) and (6). So, we can express the class of A in A2(X) as

A = a1D3D5 + a2D3D7 + a3D3D8 + a4D5D7 + a5D5D8 + a6D7D8 ∈ A2(X).

Since D3D
2
5D7 = D3(D4 + D7)D5D7 = 0, D3D

2
5D8 = D3(D4 + D7)D5D8 = 1 and

D2
5D7D8 = (D4 +D7)D5D7D8 = 0, we have the following:

(7)


D3D5A = a4D3D

2
5D7 + a5D3D

2
5D8 + a6D3D5D7D8 = a5 + a6 = 0,

D3D7A = a5D3D5D7D8 = a5 = 0 and

D5D7A = a1D3D
2
5D7 + a3D3D5D7D8 + a5D

2
5D7D8 = a3 = 0.

By these equalities, we have a3 = a5 = a6 = 0. So, A2 = a1D3D5A + a2D3D7A +

a4D5D7A = 0. Therefore, by the following, we have c2(X)A = 0.

Lemma 2.5.1 (Van de Ven [34], Proposition 3) Let A ↪→ X be an embedding from

an abelian surface A to a 4-dimensional nonsingular projective toric variety X. Then, we

have c2(X)A = A2 in the group A4(X) of codimension four cycles on X modulo rational

equivalence.

Since

c2(X) =
∑

1≤i<j≤n
DiDj,

Γϕ is connected. This contradicts Remark 2.3.5. So, X admits no totally nondegenerate

embedding.

(e) “type M’s” Let X be the nonsingular projective toric 4-fold corresponding to

the fan Σ defined as follows: Let G(Σ) = {x1, . . . , x7} ⊂ N such that the coordinates of
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x1, . . . , x7 are
1

0

0

0

 ,


0

1

0

0

 ,

−1

−1

1

1

 ,


0

0

1

0

 ,


a

0

−1

0

 ,


0

0

0

1

 ,

ac+ b

0

−c
−1

 ,

−1

0

0

0

 ,

respectively, and that the primitive collections of Σ are {x1, x8}, {x1, x2, x3}, {x4, x6, x8},
{x4, x5}, {x6, x7}, {x2, x3, x5} and {x2, x3, x7}. For certain values of a, b and c, X becomes

the nonsingular toric Fano 4-fold of typeM. The corresponding a, b and c are as follows:

M1 M2 M3 M4

a 0 1 1 1

b 0 1 0 0

c 0 0 1 0

D1D8 = D4D5 = D6D7 = 0 on X, and by a basis {x1, x2, x4, x6} of N , we have

(1) D1 −D3 + aD5 + (ac+ b)D7 −D8 = 0, (2) D2 −D3 = 0,

(3) D3 +D4 −D5 − cD7 = 0 and (4) D3 +D6 −D7 = 0

in Pic(X), respectively. Suppose that there exists a totally nondegenerate finite morphism

ϕ : A→ X. By (4), we have C3C6 = −C2
6 + C6C7 = 0. By (1), (3) and (4), we have

(5) D1 +(a−1)D3 +aD4 +bD7−D8 = 0 and (6) D1 +aD5 +D6 +(ac+b−1)D7−D8 = 0.

Let a ≥ 0, b ≥ 0 and c ≥ 0.

If a = 1 and c = 0, then, by (3), we have C3C4 = −C2
4 + C4C5 = 0. On the

other hand, by (5), we have C1C4 + bC1C7 = −C2
1 + C1C8 = 0, and hence C1C4 = 0.

Hence Γϕ is connected, a contradiction to Remark 2.3.5. Therefore, X admits no totally

nondegenerate finite morphism. In particular, the nonsingular toric Fano 4-folds of types

M2 and M4 admit no totally nondegenerate finite morphism.

If a = b = c = 0, then C3C4 = 0 as above. On the other hand, by (5), we have

C1C3 = C2
1 − C1C8 = 0, and hence C1C3 = 0. Hence Γϕ is connected, a contradiction

to Remark 2.3.5. Therefore, X admits no totally nondegenerate finite morphism. In

particular, the nonsingular toric Fano 4-fold of typeM1 admits no totally nondegenerate

finite morphism.

62



If a = c = 1, then C1C4 = 0 as above. On the other hand, by (6), we have

C1C5 + C1C6 + bC1C7 = −C2
1 + C1C8 = 0, and hence C1C6 = 0. Hence Γϕ is con-

nected, a contradiction to Remark 2.3.5. Therefore, X admits no totally nondegenerate

finite morphism. In particular, the nonsingular toric Fano 4-fold of type M3 admits no

totally nondegenerate finite morphism.

(f) “typeM5” Let X be the nonsingular projective toric 4-fold corresponding to the

fan Σ with primitive relations

x1 + x8 = x5, x4 + x5 = x7, x6 + x7 = x1, x1 + x2 + x3 = x6, x2 + x3 + x5 = x6 + x8

x2 + x3 + x7 = 0 and x4 + x6 + x8 = 0,

where G(Σ) = {x1, . . . , x8}. X is the nonsingular toric Fano 4-fold of type M5. D1D8 =

D4D5 = D6D7 = 0 on X, and by a basis {x1, x2, x4, x6} of N , we have

(1) D1 −D3 +D5 +D7 = 0, (2) D2 −D3 = 0,

(3) D4 −D5 −D8 = 0 and (4) D3 −D5 +D6 −D7 −D8 = 0

in Pic(X), respectively. Suppose that there exists a totally nondegenerate finite morphism

ϕ : A → X. By (1), (3) and (4), we have C5C8 = −C4C5 + C2
5 = 0 and C6C8 =

−C1C8 + C2
8 = 0. On the other hand, by Lemma 2.3.2, we have C1C5 = C1C7 = 0. So,

by (1), we have C1C3 = C2
1 + C1C5 + C1C7 = 0. Hence Γϕ is connected, a contradiction

to Remark 2.3.5. Therefore, X admits no totally nondegenerate finite morphism.

Remark 2.5.2 Kajiwara [13], [14] showed that the pseudo del Pezzo 4-fold Ṽ 4 admits

no totally nondegenerate finite morphism similarly as above.

2.6 The main results

By Examples 2.3.7 and 2.3.12, Propositions 2.3.9 and 2.3.14, the results (a), (b), (c),

(d), (e) and (f) in Section 2.5, and Remark 2.5.2, the nonsingular toric Fano 4-folds of

types B1, B2, B3, D1, D2, D3, D5, D6, D8, D9, D12, D16, G1, I4, I6, I12, I15, J2, L1, L2,

L5, L10, L12,M1,M2,M3,M4,M5 and Ṽ 4 admit no totally nondegenerate embedding.

Moreover, by Corollary 2.4.2, any nonsingular projective toric 4-fold admits no totally

nondegenerate embedding, if it is obtained by finite successions of 2-blow-ups from one

of them.
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Remark 2.6.1 Kajiwara [14] and Sankaran [31] showed that the nonsingular toric Fano

4-folds of types B5, D19, G2 and G6 admit no totally nondegenerate embedding using

more complicated methods (see Kajiwara [14] for types D19, G2 and G6, Sankaran [31] for

type B5). Since their method differs from ours, we cannot determine whether nonsingular

projective toric 4-folds obtained by finite successions of 2-blow-ups from one of these types

admit a totally nondegenerate embedding or not.

To describe the main result, we need the following proposition.

Proposition 2.6.2 If X is a nonsingular toric Fano 4-fold such that X ∼= X1 × X2,

where X1 and X2 are nonsingular toric del Pezzo surfaces, then there exists a totally

nondegenerate embedding.

Proof. A smooth element E1 in | −KX1 | (resp. E2 in | −KX2 |) is an elliptic curve.

By an easy calculation of intersection numbers, E1 × E2 ↪→ X is obviously a totally

nondegenerate embedding. q.e.d.

Remark 2.6.3 In Proposition 2.6.2, if there exists an abelian surface embedding A ↪→ X,

then A is isomorphic to the direct product of two elliptic curves as stated in the proof of

Proposition 2.6.2, by the results of Kajiwara [13] and [14].

By these results and Table 1 in Sato [33], we get the following:

Theorem 2.6.4 Let X be a nonsingular toric Fano 4-fold. Then, one of the following

holds.

(1) X admits no totally nondegenerate embedding.

(2) X ∼= P4 or X ∼= P1 × P3. There exists a totally nondegenerate embedding in this

case (see Horrocks-Mumford [11] and Lange [19]).

(3) X ∼= X1 × X2, where X1 and X2 are nonsingular toric del Pezzo surfaces. There

exists a totally nondegenerate embedding in this case (see Proposition 2.6.2).

(4) X is of one of the types C1, C2, C3, D7, D10, D11, D14, D17, D18, G3, G4, G5, L11,

L13, I9, Q16, U8, V
4, Z1, Z2 and W.
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Remark 2.6.5 For the nonsingular toric Fano 4-fold X of type C1, Sankaran [31] showed

that there exists a totally nondegenerate embedding A ↪→ X. However, his paper seems

to contain gaps unfortunately. So, we do not yet know whether X admits a totally

nondegenerate embedding or not.

2.7 Table of nonsingular toric Fano 4-folds

In this section, we give the table of nonsingular toric Fano 4-folds classified in Batyrev

[6] and Sato [33] with 2-blow-up relations among them. We describe the results about

totally nondegenerate embeddings obtained in the previous sections. In the third column,

we show whether the nonsingular toric Fano 4-fold admits a totally nondegenerate embed-

ding or not. The symbol “∃” means that there exists a totally nondegenerate embedding,

while the symbol “×” means that there does not exist a totally nondegenerate embed-

ding. We omit a reference in the case where the noningular toric Fano 4-fold is obtained

by finite successions of 2-blow-ups from one of the nonsingular toric Fano 4-folds of types

B1, B2, B3, D1, D2, D3, D5, D6, D8, D9, D12, D16, G1, I4, I6, I12, I15, J2, L1, L2, L5, L10,

L12, M1, M2, M3, M4, M5 and Ṽ 4 (see Corollary 2.4.2).

Table 1: nonsingular toric Fano 4-folds

2-blow-up of embedding notation

(1) none ∃ (See Horrocks-Mumford [11]) P4

(2) none × (See Proposition 2.3.9) B1

(3) none × (See Proposition 2.3.9) B2

(4) none × (See Proposition 2.3.9) B3

(5) none ∃ (See Lange [19]) B4

(6) P4 × (See Sankaran [31]) B5

(7) none unknown C1
(8) none unknown C2
(9) none unknown C3
(10) none ∃ (See Proposition 2.6.2) C4
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(11) B1, B2 × E1
(12) B2, B3 × E2
(13) B3, B4 × E3
(14) none × (See Proposition 2.3.14) D1

(15) C1 × (See Proposition 2.3.14) D2

(16) none × (See Proposition 2.3.14) D3

(17) B2 × D4

(18) none × (See Proposition 2.3.14) D5

(19) C3 × (See Proposition 2.3.14) D6

(20) none unknown D7

(21) C2 × (See Proposition 2.3.14) D8

(22) none × (See Proposition 2.3.14) D9

(23) B5 unknown D10

(24) B5, C2 unknown D11

(25) none × (See Proposition 2.3.14) D12

(26) none ∃ (See Proposition 2.6.2) D13

(27) B4 unknown D14

(28) C4 ∃ (See Proposition 2.6.2) D15

(29) C3 × (See Proposition 2.3.14) D16

(30) B5 unknown D17

(31) C1 unknown D18

(32) C2 × (See Kajiwara [14]) D19

(33) none × (See Example 2.3.7) G1

(34) C2 × (See Kajiwara [14]) G2

(35) none unknown G3

(36) C2 unknown G4

(37) C3 unknown G5

(38) C4 × (See Kajiwara [14]) G6

(39) D2 × H1

(40) D3 × H2

(41) D1, D5 × H3
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(42) D8, D9 × H4

(43) D6, D12, D16 × H5

(44) D3, D9 × H6

(45) D2, D5, D18 × H7

(46) D13, D15 ∃ (See Proposition 2.6.2) H8

(47) D8, D12, D19 × H9

(48) D9, D16 × H10

(49) none × (See (c) in Section 2.5) L1

(50) D7 × (See (c) in Section 2.5) L2

(51) D6 × L3

(52) D8, D10, D11 × L4

(53) none × (See Example 2.3.12) L5

(54) D12, D14 × L6

(55) D15 ∃ (See Proposition 2.6.2) L7

(56) none ∃ (See Proposition 2.6.2) L8

(57) D13 ∃ (See Proposition 2.6.2) L9

(58) D10, D17 × (See (c) in Section 2.5) L10

(59) D14 unknown L11

(60) D11, D17, D19 × (See (d) in Section 2.5) L12

(61) D7 unknown L13

(62) D4 × I1
(63) D1, D6 × I2
(64) D3, D8 × I3
(65) D10 × (See (a) in Section 2.5) I4
(66) E2, D4, D10 × I5
(67) D10 × (See (a) in Section 2.5) I6
(68) D5, D12 × I7
(69) D8, D16, G4 × I8
(70) D14 unknown I9
(71) D6, D15, G5 × I10

(72) D9, D12 × I11
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(73) D15, D19, G6 × (See (a) in Section 2.5) I12

(74) D12, D13 × I13

(75) E3, D10, D14 × I14

(76) D18, D19, G2 × (See (a) in Section 2.5) I15

(77) none × (See (e) in Section 2.5) M1

(78) none × (See (e) in Section 2.5) M2

(79) G3, G5 × (See (e) in Section 2.5) M3

(80) G3 × (See (e) in Section 2.5) M4

(81) G4, G6 × (See (f) in Section 2.5) M5

(82) G1, G3 × J1

(83) G3 × (See (b) in Section 2.5) J2

(84) L2 × Q1

(85) H4, L4 × Q2

(86) L1, L5 × Q3

(87) L3 × Q4

(88) H5, L3, L6 × Q5

(89) L6 × Q6

(90) L7 × Q7

(91) L5, L9 × Q8

(92) L3, L7, I10 × Q9

(93) H8, L7, L9 ∃ (See Proposition 2.6.2) Q10

(94) L8, L9 ∃ (See Proposition 2.6.2) Q11

(95) L10, L12, I6 × Q12

(96) L2, L5, L13 × Q13

(97) H9, L4, L6, L12, I14 × Q14

(98) L6, L9, L11, I13 × Q15

(99) L11, L13, I9 unknown Q16

(100) L7, L12, I12 × Q17

(101) H1, H3, H7 × K1

(102) H2, H6, H10 × K2

(103) H4, H5, H9 × K3
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(104) H8 ∃ (See Proposition 2.6.2) K4

(105) M3 × R1

(106) M2, M4 × R2

(107) M1, M4 × R3

(108) I11, I13 × P
(109) Q1, Q3, Q13 × U1

(110) Q2, Q5, Q14, K3 × U2

(111) Q4, Q9 × U3

(112) Q10, K4 × U4

(113) Q11 ∃ (See Proposition 2.6.2) U5

(114) Q6, Q8, Q15 × U6

(115) Q7, Q12, Q17 × U7

(116) Q16 unknown U8

(117) none × (See Kajiwara [13] and [14]) Ṽ 4

(118) none unknown V 4

(119) Q10, Q11 ∃ (See Proposition 2.6.2) S2 × S2

(120) U4, U5, S2 × S2 ∃ (See Proposition 2.6.2) S2 × S3

(121) S2 × S3 ∃ (See Proposition 2.6.2) S3 × S3

(122) G6 unknown Z1

(123) G4 unknown Z2

(124) Z1 unknown W

69



Chapter 3

The classification of smooth toric

weakened Fano 3-folds

3.1 Introduction

A Fano (resp. weak Fano) variety X is a smooth projective variety whose anti-

canonical divisor −KX is ample (resp. nef and big). Minagawa [20] introduce the concept

of a weakened Fano variety in connection with “Reid’s Fantasy” for weak Fano 3-folds. A

weak Fano variety X is called a weakened Fano variety if it is not Fano but is deformed

to Fano under a small deformation (see Definition 3.4.1). In this chapter, we consider the

classification problem of weakened Fano 3-folds for the case of toric varieties. As a result,

we can determine the structures of toric weakened Fano 3-folds using a result of Minagawa

[20], [21]. There exist exactly 15 toric weakened Fano 3-folds up to isomorphisms (see

Theorem 3.4.17). There are three cases: (1) P1 ×X ′, where X ′ is a toric weak del Pezzo

surface but not a del Pezzo surface, (2) toric del Pezzo surface bundles over P1 and (3)

toric weakened del Pezzo surface bundles over P1.

The content of this chapter is as follows: Section 3.2 is a section for preparation. We

review the basic concepts such as the toric Mori theory, primitive collections and primitive

relations. In Section 3.3, we give the classification of toric weak del Pezzo surfaces. This

is necessary for the classification of smooth toric weakened Fano 3-folds. In Section 3.4,

we give the classification of smooth toric weakened Fano 3-folds.

The author wishes to thank Professor Tatsuhiro Minagawa for advice and encourage-
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ment. The problem of the classification of toric weakened Fano 3-folds was posed by

Professor Shihoko Ishii. The author also thanks her for advice.

3.2 Primitive collections and primitive relations

In this section, we review the concepts of smooth complete toric varieties using the

notion of primitive collections and primitive relations. See Batyrev [5], [6] and Sato [33]

more precisely. For fundamental properties of the toric geometry, see Fulton [9] and Oda

[26]. We work over the complex field C throughout this chapter.

Definition 3.2.1 Let X be a smooth complete toric d-fold, Σ the corresponding fan in

N := Zd and G(Σ) ⊂ N the set of primitive generators of 1-dimensional cones in Σ. A

subset P ⊂ G(Σ) is called a primitive collection of Σ if P does not generate a cone in

Σ, while any proper subset of P generates a cone in Σ. We denote by PC(Σ) the set of

primitive collections of Σ.

Let P = {x1, . . . , xm} be a primitive collection of Σ. Then, there exists a unique cone

σ(P ) in Σ such that x1 + · · · + xm is contained in the relative interior of σ(P ), because

X is complete. So, we get an equality

x1 + · · ·+ xm = a1y1 + · · ·+ anyn,

where y1, . . . , yn are the generators of σ(P ), that is, σ(P ) ∩ G(Σ) = {y1, . . . , yn} and

a1, . . . , an are positive integers. We call this equality the primitive relation of P . Thus,

we get an element r(P ) in A1(X) for any primitive collection P ∈ PC(Σ), where A1(X)

is the group of 1-cycles on X modulo rational equivalences. We define the degree of P as

degP := (−KX · r(P )) = m− (a1 + · · ·+ an). The following is important.

Proposition 3.2.2 (Batyrev [5], Reid [30]) Let X be a smooth projective toric vari-

ety and Σ the corresponding fan. Then

NE(X) =
∑

P∈PC(Σ)

R≥0r(P ),

where NE(X) is the Mori cone of X.

A primitive collection P is called an extremal primitive collection when r(P ) is con-

tained in an extremal ray of NE(X).
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3.3 Toric weak Fano varieties

In this section, we review the concepts of toric Fano varieties and toric weak Fano

varieties. In particular, we give the classification of toric weak del Pezzo surfaces.

Definition 3.3.1 Let X be a smooth projective algebraic variety. Then, X is called a

Fano variety (resp. weak Fano variety), if its anti-canonical divisor −KX is ample (resp.

nef and big).

In the toric case, Fano varieties and weak Fano varieties are characterized as follows.

Proposition 3.3.2 (Batyrev [6], Sato [33]) Let X be a smooth projective toric variety

and Σ the corresponding fan. Then, X is Fano (resp. weak Fano) if and only if degP > 0

(resp. degP ≥ 0) for any primitive collection P ∈ PC(Σ).

By Propositions 3.2.2 and 3.3.2, the following holds. This is very useful in Section 3.4.

Corollary 3.3.3 Let X be a toric weak Fano variety and Σ the corresponding fan. Then,

for any primitive collection P = {x1, x2} ∈ PC(Σ), the corresponding primitive relation

is one of the following.

(1) x1 + x2 = 0.

(2) x1 + x2 = ay (y ∈ G(Σ), and either a = 1 or 2).

(3) x1 + x2 = y1 + y2 (y1, y2 ∈ G(Σ)).

There exists a one-to-one correspondence between smooth toric weak del Pezzo sur-

faces, that is, 2-dimensional smooth toric weak Fano varieties and Gorenstein toric del

Pezzo surfaces (see Section 6 in Sato [33]). Since Gorenstein toric del Pezzo surfaces

are classified (see Koelman [16]), we can completely classify smooth toric weak del Pezzo

surfaces. We give all the smooth toric weak del Pezzo surfaces by giving the elements of

G(Σ) (see Table 1). This classification is necessary in the following section.
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Table 1: Smooth toric weak del Pezzo surfaces

G(Σ) notation

(1)

(
1

0

)
,

(
0

1

)
,

(−1

−1

)
. P2

(2) ±
(

1

0

)
, ±

(
0

1

)
. P1 ×P1

(3) ±
(

1

0

)
,

(
0

1

)
,

(
1

−1

)
. F1

(4) ±
(

1

0

)
,

(
1

±1

)
. F2

(5) ±
(

1

0

)
, ±

(
0

1

)
,

(
1

1

)
. S7

(6) ±
(

1

0

)
,

(
1

±1

)
,

(
0

1

)
. W3

(7) ±
(

1

0

)
, ±

(
0

1

)
, ±

(
1

1

)
. S6

(8) ±
(

1

0

)
, ±

(
0

1

)
,

(
1

±1

)
. W 1

4

(9) ±
(

1

0

)
,

(
1

±1

)
,

(
0

1

)
,

(−1

1

)
. W 2

4

(10) ±
(

1

0

)
,

(
1

±1

)
,

(
0

1

)
,

(
1

2

)
. W 3

4

(11) ±
(

1

0

)
, ±

(
0

1

)
,

(
1

±1

)
,

(−1

1

)
. W 1

5

(12) ±
(

1

0

)
, ±

(
0

1

)
,

(
1

±1

)
,

(
1

−2

)
. W 2

5

(13) ±
(

1

0

)
, ±

(
0

1

)
,

(
1

±1

)
,

(−1

±1

)
. W 1

6

(14) ±
(

1

0

)
, ±

(
0

1

)
,

(
1

±1

)
,

(
1

−2

)
,

(−1

1

)
. W 2

6

(15) ±
(

1

0

)
, ±

(
0

1

)
,

(
1

±1

)
,

(
1

±2

)
. W 3

6

(16) ±
(

1

0

)
, ±

(
0

1

)
,

(
1

±1

)
,

(
1

−2

)
,

(−1

1

)
,

(−2

1

)
. W7

In Table 1, we denote by Fa the Hirzebruch surface of degree a, while we denote by

Sn the del Pezzo surface of degree n.
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3.4 Classification

Minagawa defined the following concept in connection with “Reid’s fantasy” for weak

Fano 3-folds.

Definition 3.4.1 (Minagawa [20]) Let X be a weak Fano variety. Then, X is called a

weakened Fano variety if

(1) X is not a Fano variety and

(2) there exists a small deformation ϕ : X → ∆ε := {t ∈ C | |t| < ε << 1} such that

X0 := ϕ−1(0) ∼= X, while Xt := ϕ−1(t) is a Fano variety for any t ∈ ∆ε \ {0}.

Remark 3.4.2 Let X be a weak del Pezzo surface. If X is not a del Pezzo surface, then

X is a weakened del Pezzo surface.

Remark 3.4.3 Weakened Fano 3-folds of Picard number two are studied in Minagawa

[20].

The main purpose of this chapter is to classify toric weakened Fano 3-folds.

Minagawa characterized weakened Fano 3-folds using the notion of primitive contrac-

tions.

Theorem 3.4.4 (Minagawa [20], [21]) Let X be a weak Fano 3-fold and not a Fano 3-

fold. Then, X is a weakened Fano 3-fold if and only if every primitive crepant contraction

f : X → X is a divisorial contraction which contracts a divisor E ⊂ X to a curve C ⊂ X

such that

(1) f |E : E → C is a P1-bundle structure,

(2) C ∼= P1 and

(3) (−KX · C) = 2.

Such contractions are called (0, 2)-type contractions.

We study contractions of (0, 2)-type for the case of toric varieties. Let X be a toric

weakened Fano 3-fold and Σ the corresponding fan in N ∼= Z3. By the assumptions f is
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crepant and f contracts a divisor to a curve, without loss of generalities, we can assume

that Σ contains four 3-dimensional cones

σ1 = R≥0x0 + R≥0x+ + R≥0y+, σ2 = R≥0x0 + R≥0x+ + R≥0y−,

σ3 = R≥0x0 + R≥0x− + R≥0y+ and σ4 = R≥0x0 + R≥0x− + R≥0y−,

where

x0 =


1

0

0

 , x+ =


1

1

0

 , x− =


1

−1

0

 , y+ =


0

0

1

 and y− =


α

β

−1


for some integers α and β. In this case, E is the toric divisor corresponding to the 1-

dimensional cone R≥0x0 in Σ. The conditions (1) and (2) are automatically satisfied. On

the other hand, the set of maximal cones of the fan Σ corresponding to X is

({the maximal cones of Σ} \ {σ1, σ2, σ3, σ4}) ∪ {σ1 := σ1 ∪ σ3, σ2 := σ2 ∪ σ4} .

C is the torus invariant curve corresponding to the 2-dimensional cone R≥0x+ + R≥0x−

in Σ. Put C be the torus invariant curve corresponding to the cone R≥0x0 + R≥0x+ on

X. Then, we have
(
−KX · C

)
= (−KX · f∗C) = (f∗(−KX) · C) = (−KX · C), because

C = f∗C in A1(X), while f∗KX = KX in Pic(X). Let D0, D+, D−, H+ and H− be

the toric divisors on X corresponding to x0, x+, x−, y+ and y−, respectively. Then, the

equalities

D0 +D+ +D− + αH− +D1 = 0, D+ −D− + βH− +D2 = 0 and

H+ −H− +D3 = 0

hold in Pic(X), where D1, D2 and D3 are linear combinations of prime toric devisors on

X other than D0, D+, D−, H+ and H−. Note (H+ · C) = (H− · C) = 1 and (D− · C) =

(D1 · C) = (D2 · C) = (D3 · C) = 0. By these equalities, we have (D+ · C) = −β and

(D0 ·C) = β − α. Thus, we have
(
−KX · C

)
= (−KX · C) = (D0 ·C) + (D+ ·C) + (D− ·

C)+(H+ ·C)+(H− ·C) = (β−α)−β+2 = 2−α. So, by the assumption
(
−KX · C

)
= 2,

we have α = 0 and E is isomorphic to the Hirzebruch surface Fβ of degree β. Moreover,

since X is a weak Fano 3-fold, we have −2 ≤ β ≤ 2. We may assume 0 ≤ β ≤ 2. As a

result, we get the following.
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Proposition 3.4.5 Let X be a toric weak Fano 3-fold and Σ the corresponding fan.

There exists a (0, 2)-type contraction f : X → X if and only if, by some automorphism

of N = Z3, Σ contains four 3-dimensional cones

σ1 = R≥0x0 + R≥0x+ + R≥0y+, σ2 = R≥0x0 + R≥0x+ + R≥0y−,

σ3 = R≥0x0 + R≥0x− + R≥0y+ and σ4 = R≥0x0 + R≥0x− + R≥0y−,

where

x0 =


1

0

0

 , x+ =


1

1

0

 , x− =


1

−1

0

 , y+ =


0

0

1

 and y− =


0

a

−1

 ,
and 0 ≤ a ≤ 2. In particular, the exceptional divisor E of f corresponds to R≥0x0 ∈ Σ

and E ∼= Fa.

The following is fundamental to study the classification of toric weakened Fano 3-folds.

Lemma 3.4.6 Let X be a toric weakened Fano 3-fold and Σ the corresponding fan. Then,

for any primitive collection P = {x1, x2} ∈ PC(Σ) with primitive relation x1+x2 = y1+y2,

where σ(P ) ∩G(Σ) = {y1, y2}, we have R≥0x1 + R≥0x2 ⊃ R≥0y1 + R≥0y2.

Proof. Suppose that x1, x2, y1, y2 generates a 3-dimensional cone. If P is extremal,

then the corresponding primitive contraction is a small contraction. So, by Theorem 3.4.4,

P is not extremal. Therefore, there exist extremal primitive collections P1, . . . , Pn such

that

r(P ) =
n∑
i=1

air(Pi),

where a1, . . . , an are positive integers and n ≥ 2. Since degP = (−KX ·r(P )) = 0, for any

1 ≤ i ≤ n, we have degPi = (−KX · r(Pi)) = 0 and the corresponding primitive crepant

contractions are (0, 2)-type by Theorem 3.4.4. Let x′i + x′′i = 2y′i be the corresponding

primitive relation of Pi for any 1 ≤ i ≤ n. Then, there exist 1 ≤ j, k ≤ n such that

y1 = y′j and y2 = y′k. This is impossible because Pj and Pk are extremal. Thus, we have

R≥0x1 + R≥0x2 ⊃ R≥0y1 + R≥0y2. q.e.d.

Corollary 3.4.7 Let X be a toric weakened Fano 3-fold and Σ the corresponding fan.

For any primitive collecion P = {x1, x2} ∈ PC(Σ) such that x1 + x2 �= 0, there exists an

element z ∈ G(Σ) such that z is contained in the relative interior of R≥0x1 + R≥0x2.
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Proof. This is obvious by Corollary 3.3.3 and Lemma 3.4.6. q.e.d.

Now, we can start the classification of toric weakened Fano 3-folds.

Let X be a toric weakened Fano 3-fold and Σ the corresponding fan. Since X is not

Fano, there exists a (0, 2)-type contraction. We use the notation as in Proposition 3.4.5.

Put

S+ =
{
αx0 + βx+ ∈ NR := N ⊗Z R ∼= R3

∣∣∣ α, β ∈ R, β ≥ 0
}
,

S− = {αx0 + βx− ∈ NR | α, β ∈ R, β ≥ 0} ,

T+ = {αx0 + βy+ ∈ NR | α, β ∈ R, β ≥ 0} ,

T− = {αx0 + βy− ∈ NR | α, β ∈ R, β ≥ 0} ,

S = S+ ∪ S− and T = T+ ∪ T−.

S+, S−, T+, T−, S and T are connected subsets in NR. The following holds.

Lemma 3.4.8 I := G(Σ) \ {x0, x+, x−, y+, y−} is contained in either S or T .

Proof. First, we show G(Σ) ⊂ S ∪ T . Suppose that there exists z ∈ I such that

z �∈ S ∪ T . Since {x0, z} is a primitive collection, there exists z′ ∈ G(Σ) such that z′ is

contained in the relative interior of R≥0x0 + R≥0z by Corollary 3.4.7. We can replace z

by z′ and do this discussion again. This contradicts the fact G(Σ) is a finite set. So, we

have G(Σ) ⊂ S ∪ T .

Next, suppose that there exist z1 and z2 ∈ I such that x0 + z1 �= 0, x0 + z2 �= 0,

z1 ∈ S+ and z2 ∈ T+ (the other cases are similar). By the similar discussion as above,

we can choose such z1 and z2 as {x+, z1} and {y+, z2} generate 2-dimensional cones in Σ.

On the other hand, {z1, z2} generates a 2-dimensional cone in Σ by Corollary 3.4.7 and

the above discussion. Therefore, either {x+, z2} or {y+, z1} is a primitive collection. By

Corollary 3.4.7, this contradicts the fact G(Σ) ⊂ S ∪ T . q.e.d.

Lemma 3.4.9 If {y+, y−} (resp. {x+, x−}) is a primitive collection and I ⊂ S (resp.

I ⊂ T ), then, for any primitive collection P ∈ PC(Σ) such that P �= {y+, y−} (resp.

P �= {x+, x−}), we have P ∩ {y+, y−} = ∅ (resp. P ∩ {x+, x−} = ∅).

Proof. We show this lemma for the case I ⊂ S. Another case is similar.
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Let P ∈ PC(Σ) be a primitive collection such that P �= {y+, y−}. By Corollary 3.4.7

and Lemma 3.4.8, we have #P = 3. So, without loss of generalities, we may assume

P = {y+, z1, z2}, where z1, z2 ∈ I. Since y+, z1 and z2 are linearly independent over R,

there exists a element of G(Σ) in the interior of R≥0y+ +R≥0z1 +R≥0z2. This contradicts

Lemma 3.4.8. q.e.d.

Remark 3.4.10 In Lemma 3.4.9, the condition {x+, x−} is a primitive collection holds

automatically. Moreover, if E ∼= P1 × P1 or E ∼= F2, that is, a = 0 or a = 2, then

the condition {y+, y−} is a primitive collection also holds automatically. In these cases,

y+ + y− = 0 and y+ + y− = 2z (z ∈ G(Σ)) are the corresponding primitive relations,

respectively.

Corollary 3.4.11 Under the assumption in Lemma 3.4.9, if the Picard number of X is

not three, then one of the following holds.

(1) I ⊂ S. Moreover, X is a toric surface bundle over P1 such that the fan correspond-

ing to a fiber is in S.

(2) I ⊂ T and E ∼= P1 ×P1. Moreover, X is a toric surface bundle over P1 such that

tha fan corresponding to a fiber is in T .

Proof. See Proposition 4.1, Theorem 4.3 and Corollary 4.4 in Batyrev [5]. q.e.d.

By these results, we can complete the classification of toric weakened Fano 3-folds.

We split the classification into three cases, that is, (I) E ∼= P1×P1, (II) E ∼= F1 and (III)

E ∼= F2.

(I) E ∼= P1 ×P1 (a = 0).

If I ⊂ S, then X is isomorphic to P1×X ′ by (1) in Corollary 3.4.11, where X ′ is a toric

weak del Pezzo surface but not a toric del Pezzo surface. In this case, by the classification

of toric weak del Pezzo surfaces in Section 3.3, there exist exactly 11 toric weakened Fano

3-folds up to isomorphisms: P1 × F2, P1 ×W3, P1 ×W 1
4 , P1 ×W 2

4 , P1 ×W 3
4 , P1 ×W 1

5 ,

P1 ×W 2
5 , P1 ×W 1

6 , P1 ×W 2
6 , P1 ×W 3

6 and P1 ×W7 (see Table 1 in Section 3.3).

If I ⊂ T , then X is a toric surface bundle over P1 by (2) in Corollary 3.4.11. A fiber

X ′ of this bundle structure corresponds to the 2-dimensional fan in T and X ′ is a toric
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weak del Pezzo surface. Therefore, by the classification of toric weak del Pezzo surfaces

in Section 3.3, in this case, we obtain two new toric weakened Fano 3-folds X0
3 and X0

4

whose Picard numbers are 3 and 4, respectively. The other cases are impossible because

there exists a crepant contraction which is not of (0, 2)-type. Put

z1 =


−1

0

1

 , z2 =


−1

0

0

 ,
Σ0

3 the fan corresponding to X0
3 and Σ0

4 the fan corresponding to X0
4 . Then G(Σ0

3) =

{x0, x+, x−, y+, y−, z1}, while G(Σ0
4) = {x0, x+, x−, y+, y−, z1, z2}. In particular, X0

3 is a

F1-bundle over P1, while X0
4 is a S7-bundle over P1. Moreover, we have

(
−KX0

3

)3
= 52 and

(
−KX0

4

)3
= 38.

There exists a sequence of equivariant blow-ups along curves

X0
4 −→ X0

3 −→ PP1 (OP1 ⊕OP1 ⊕OP1(2)) .

On the other hand, there exists a sequence of blow-ups along curves

Y 0
4 −→ Y 0

3 −→ PP1 (OP1 ⊕OP1(1)⊕OP1(1)) ,

where Y 0
3 is a toric Fano 3-fold of Picard number 3 and of type no.31 on the table in

Mori-Mukai [23], while Y 0
4 is a Fano 3-fold, which is not toric, of Picard number 4 and

of type no.8 on the table in Mori-Mukai [23]. X0
3 and X0

4 are deformed to Y 0
3 and Y 0

4

under small deformations, respectively. Moreover, PP1 (OP1 ⊕OP1 ⊕OP1(2)) is deformed

to PP1 (OP1 ⊕OP1(1)⊕OP1(1)), though PP1 (OP1 ⊕OP1(1)⊕OP1(1)) is not Fano (see

Ashikaga-Konno [2], Harris [10] and Nakamura [25]).

Corollary 3.4.12 Let X be a toric weakened Fano 3-fold. If there exists a (0, 2)-type con-

traction whose exceptional divisor is isomorphic to P1×P1, then the exceptional divisors

of other (0, 2)-type contractions are also isomorphic to P1 ×P1.

(II) E ∼= F1 (a = 1).

In this case, we have to consider the following (see Remark 3.4.10).
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Lemma 3.4.13 {y+, y−} is a primitive collection. Moreover, z := y+ + y− is contained

in G(Σ) and the primitive relation of {y+, y−} is y+ + y− = z.

To prove Lemma 3.4.13, we need the following.

Lemma 3.4.14 Let X be a toric weakened Fano 3-fold and Σ the corresponding fan.

Any primitive collection P = {x1, x2} such that its primitive relation is x1 + x2 = 2y

(y ∈ G(Σ)) and {x1, y} is a part of a Z-basis of N is extremal.

Proof. If P is not extremal, by the same argument as in the proof of Lemma 3.4.6,

there exists an extremal primitive relation x′ + x′′ = 2y whose corresponding contraction

is (0, 2)-type, where x′, x′′ ∈ G(Σ). By the assumption {x1, y} is a part of a Z-basis of

N , R≥0x1 + R≥0x2 does not contain R≥0x
′ + R≥0x

′′. This is impossible, because X is a

weak Fano variety and x′ + x′′ = 2y corresponds to a (0, 2)-type contraction. q.e.d.

Proof of Lemma 3.4.13. Suppose that {y+, y−} is not a primitive collection. Then,

we have two primitive relations

x− + y+ + y− = x0 and x0 + y+ + y− = x+.

By the completeness of X, there exists

z =


α

β

γ

 ∈ I
such that α < 0. Obviously, {x+, z} is a primitive collection. If I ⊂ S, then, by the same

argument as in the proof of Lemma 3.4.8, the corresponding primitive relation have to be

x+ + z = 0. So, we have

x− + z = 2


0

−1

0

 ,


0

−1

0

 ∈ G(Σ).

By Lemma 3.4.14, this primitive collection is extremal. However, the corresponding con-

traction is not of (0, 2)-type. So, suppose that I ⊂ T . This case is also impossible by

the same argument as in the proof of Lemma 3.4.8. Therefore, {y+, y−} is a primitive

collection. q.e.d.
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Since the Picard number of X is not three, we have I ⊂ S, and hence X is a toric sur-

face bundle over P1 by (1) in Corollary 3.4.11 and Lemma 3.4.13. The fan corresponding

to a fiber of this bundle structure is in S. By the classification of toric weak del Pezzo

surfaces in Section 3.3, in this case, we obtain two new toric weakened Fano 3-folds X1
4

and X1
5 whose Picard numbers are 4 and 5, respectively. The other cases are impossible

since there exists a crepant contraction which is not of (0, 2)-type. Put

z1 =


0

1

0

 , z2 =


−1

0

0

 , z3 =


0

−1

0

 ,
Σ1

4 the fan corresponding to X1
4 and Σ1

5 the fan corresponding to X1
5 . Then, G(Σ1

4) =

{x0, x+, x−, y+, y−, z1, z2}, while G(Σ1
5) = {x0, x+, x−, y+, y−, z1, z2, z3}. In particular, X1

4

is a W3-bundle over P1, while X1
5 is a W 1

4 -bundle over P1 (see Table 1 in Section 3.3).

Moreover, we have (
−KX1

4

)3
= 46 and

(
−KX1

5

)3
= 36.

There exists an equivariant blow-up along a curve

X1
5 −→ X1

4 .

On the other hand, there exists a blow-up along a curve

Y 1
5 −→ Y 1

4 ,

where Y 1
4 is a toric Fano 3-fold of Picard number 4 and of type no.12 on the table in

Mori-Mukai [23], while Y 1
5 is a Fano 3-fold, which is not toric, of Picard number 5 and of

type no.2 on the table in Mori-Mukai [23]. X1
4 and X1

5 are deformed to Y 1
4 and Y 1

5 under

small deformations, respectively.

Corollary 3.4.15 Let X be a toric weakened Fano 3-fold. If there exists a (0, 2)-type

contraction whose exceptional divisor is isomorphic to F1, then X is isomorphic to either

X1
4 or X1

5 .

(III) E ∼= F2 (a = 2).
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We have a primitive relation y+ + y− = 2z, where

z =


0

1

0

 ∈ G(Σ).

So, the Picard number of X is not three. Therefore, I ⊂ S, and hence X is a toric

surface bundle over P1 by (1) in Corollary 3.4.11. The fan corresponding to a fiber of

this bundle structure is in S. On the other hand, by Lemma 3.4.14, the primitive relation

y+ + y− = 2z is extremal. Therefore, the corresponding contraction is of (0, 2)-type.

Moreover, its exceptional divisor have to be isomorphic to F2 by Corollaries 3.4.12 and

3.4.15. This is impossible. Thus, there exists no (0, 2)-type contraction whose exceptional

divisor is isomorphic to F2 on any toric weakened Fano 3-fold.

Remark 3.4.16 There is an example of a general weakened Fano 3-fold which has a

(0, 2)-type contraction whose exceptional divisor is isomorphic to F2 (see Minagawa [20]).

Thus, we obtain the classification of toric weakened Fano 3-folds.

Theorem 3.4.17 There exist exactly 15 smooth toric weakened Fano 3-folds up to iso-

morphisms. There are following three cases:

(1) P1 × X ′, where X ′ is a toric weak del Pezzo surface but not a del Pezzo surface,

that is, toric weakened del Pezzo surface: P1 × F2, P1 ×W3, P1 ×W 1
4 , P1 ×W 2

4 ,

P1 ×W 3
4 , P1 ×W 1

5 , P1 ×W 2
5 , P1 ×W 1

6 , P1 ×W 2
6 , P1 ×W 3

6 and P1 ×W7.

(2) Toric del Pezzo surface bundles over P1 : X0
3 and X0

4 .

(3) Toric weakened del Pezzo surface bundles over P1 which are not decomposed into a

direct product of P1 and a toric weakened del Pezzo surface: X1
4 and X1

5 .

82



Chapter 4

Jumping deformations of complete

toric varieties

4.1 Introduction

It is well-known that the Hirzebruch surface Fa (a ≥ 0) of degree a is deformed in a one-

parameter family to Fa−2k, where k is a positive integer such that a−2k ≥ 0. In particular,

if a ≡ a′ (mod 2), then Fa and Fa′ are homeomorphic. In this chapter, we generalize this

classical result to certain nonsingular complete toric varieties. Namely, for a nonsingular

complete toric d-fold V which have a toric fibration onto P1 such that its general fiber

is isomorphic to either Pd−1 or a toric bundle over P1, we construct a complex analytic

family {Vt}t∈C such that V0
∼= V and that {Vt}t�=0 are mutually isomorphic. Moreover,

under appropriate assumptions, the general fiber of this family is explicitly described by

the data of the fan corresponding to V .

As an application of this construction of families, we construct a deformation family

for a certain toric weakened Fano variety, that is, a nonsingular toric weak Fano varieties

which is not Fano but is deformed to Fano varieties. Toric weakened Fano d-folds are

classified for d ≤ 3 (see Sato [32]). Moreover, we obtain certain examples of toric weakened

Fano 4-folds.

The content of this chapter is as follows: In Section 4.2, we review the homogeneous

coordinate of a toric varietiy, which is a key to our main result. In Section 4.3, we construct

complex analytic families of nonsingular complete varieties over C as stated above. In

83



Section 4.4, as an application of the construction, we study deformations among Pd−1-

bundles over P1. In Section 4.5, we give certain examples of toric weakened Fano 3-folds

and 4-folds using the families constructed in Section 4.3.

The author wishes to thank Professors Tadao Oda, Masa-Nori Ishida, Tadashi Ashik-

aga, Takeshi Kajiwara and Yasuhiro Nakagawa for advice and encouragement.

4.2 Homogeneous coordinates of toric varieties

In this section, we recall homogeneous coordinates of toric varieties (see Cox [7] and

Oda [26]).

Let N = Zd with elements regarded as column vectors, M := HomZ(N,Z), NR :=

N ⊗R, MR := M ⊗R and Σ a fan in N . Throughout this chapter, we mean by a cone a

nonsingular rational cone, and by a fan in N a nonsingular fan which contains at least one

d-dimensional cone. For 0 ≤ i ≤ d, we put Σ(i) := {σ ∈ Σ | dimσ = i}. Each τ ∈ Σ(1)

determines a unique element e(τ) ∈ N which generates the semigroup τ ∩N . We call

G(Σ) := {e(τ) ∈ N | τ ∈ Σ(1)}

the set of primitive generators of Σ. Put G(σ) := σ ∩ G(Σ). We introduce variables

{Xρ | ρ ∈ G(Σ)} and consider the polynomial ring S := C [Xρ | ρ ∈ G(Σ)], which we call

the homogeneous coordinate ring of the nonsingular toric d-fold V corresponding to Σ.

Put

Z :=

X = (Xρ)ρ∈G(Σ) ∈ CG(Σ)

∣∣∣∣∣∣
∏

ρ∈G(Σ)\G(σ)

Xρ = 0 for any σ ∈ Σ

 ⊂ CG(Σ).

On the other hand, by the exact sequence

0→M → ZG(Σ) → Pic(V )→ 0,

we have an exact sequence

1→ G := HomZ

(
Pic(V ),C×)→ (

C×)G(Σ)
→ TN → 1.

Since (C×)G(Σ)
acts naturally on CG(Σ), the subgroup G ⊂ (C×)G(Σ)

acts on CG(Σ) as

gt := (g ([Dρ]) tρ)ρ∈G(Σ) ,

where g ∈ G, t = (tρ)ρ∈G(Σ) ∈ CG(Σ) and [Dρ] ∈ Pic(V ) is the class of the TN -invariant

prime divisor Dρ corresponding to ρ. In this setting, the following holds.
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Proposition 4.2.1 (Cox [7], Theorem 2.1) The subset CG(Σ)\Z ⊂ CG(Σ) is invariant

under the action of G, and V is the geometric quotient of CG(Σ) \ Z by G. We denote

CG(Σ) \ Z by U(Σ).

We need the following proposition for this description.

Proposition 4.2.2 (Cox [7], Theorem 2.1) For any σ ∈ Σ, we have

Uσ ∼=
U(Σ)σ :=

X = (Xρ)ρ∈G(Σ) ∈ U(Σ)

∣∣∣∣∣∣
∏

ρ∈G(Σ)\G(σ)

Xρ �= 0


/G,

where Uσ ⊂ V is the affine toric subvariety corresponding to σ.

4.3 Constructions of families

In this section, we construct one-parameter complex analytic families whose fibers

are nonsingular complete varieties. Especially, the special fibers are nonsingular complete

toric varieties. This is a generalization of the classical results on deformations among

Hirzebruch surfaces.

Let Ñ := {n ∈ N | the d-th coordinate of n is 0} and Σ̃ a complete fan in Ñ . For a

complete fan Σ in N containing Σ̃ as a subfan, we define subfans of Σ as follows:

Σ+ := {σ ∈ Σ | the d-th coordinate of n is nonnegative for any n ∈ σ}

Σ− := {σ ∈ Σ | the d-th coordinate of n is nonpositive for any n ∈ σ}

Then, we have Σ̃ = Σ+ ∩ Σ−. We denote by V (resp. V +, V −, Ṽ ) the nonsingular toric

variety corresponding to the fan Σ (resp. Σ+, Σ−, Σ̃).

Remark 4.3.1 V has a toric fibration V → P1 whose general fiber is isomorphic to Ṽ .

In the above situation, let

G(Σ̃) = {e1, . . . , ed−1, a1, . . . , aρ} , G(Σ+) = {b1, . . . ,bm} ∪G(Σ̃),

G(Σ−) = {c1, . . . , cn} ∪G(Σ̃),

{e1, . . . , ed−1,b1} the standard basis for N , and

(a1, . . . , aρ,b2, . . . ,bm, c1, . . . , cn) =
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
a1,1 · · · aρ,1 b2,1 · · · bm,1 c1,1 · · · cn,1

...
. . .

...
...

. . .
...

...
. . .

...

a1,d · · · aρ,d b2,d · · · bm,d c1,d · · · cn,d

 .
Suppose that Ṽ is isomorphic to either Pd−1 or a toric bundle over P1. If Ṽ is isomorphic

to a toric bundle over P1, suppose that the TN -invariant prime divisors on Ṽ corresponding

to e1 and a1 correspond to fibers. Suppose further that {e1, . . . , ed−1,b1} generates a d-

dimensional cone in Σ+, while {e1, . . . , ed−1, c1} generates a d-dimensional cone in Σ−.

For a nonnegative integer k, we construct a complex analytic family.

Since {a1, . . . , aρ} ⊂ G(Σ̃), we have a1,d = · · · = aρ,d = 0. We have c1,d = −1, by the

assumption that {e1, . . . , ed−1, c1} generates a d-dimensional cone in Σ−.

Let D1, . . . , Dd−1, A1, . . . , Aρ, B1, . . . , Bm, C1, . . . , Cn be the TN -invariant prime divi-

sors corresponding to e1, . . . , ed−1, a1, . . . , aρ,b1, . . . ,bm, c1, . . . , cn, respectively. Then, by

computing the divisors of the rational functions e(e∗
1), . . . , e(e∗

d−1), e(b∗
1) ∈ C(V ), where

{e∗
1, . . . , e

∗
d−1,b

∗
1} ⊂M is the dual basis of {e1, . . . , ed−1,b1}, we have

D1 + a1,1A1 + · · ·+ aρ,1Aρ + b2,1B2 + · · ·+ bm,1Bm + c1,1C1 + · · ·+ cn,1Cn = 0,

D2 + a1,2A1 + · · ·+ aρ,2Aρ + b2,2B2 + · · ·+ bm,2Bm + c1,2C1 + · · ·+ cn,2Cn = 0,

...

Dd−1 +a1,d−1A1 + · · ·+aρ,d−1Aρ+b2,d−1B2 + · · ·+bm,d−1Bm+c1,d−1C1 + · · ·+cn,d−1Cn = 0,

B1 + b2,dB2 + · · ·+ bm,dBm − C1 + c2,dC2 + · · ·+ cn,dCn = 0

in Pic(V ), respectively. Using these equalities, we calculate the homogeneous coordinates

of V , V +, V − and Ṽ .

Let (X1, . . . , Xd−1, Y1, . . . , Yρ, Z1, . . . , Zm,W1, . . . ,Wn) ∈ U(Σ) be the homogeneous

coordinate of V corresponding to e1, . . . , ed−1, a1, . . . , aρ,b1, . . . ,bm, c1, . . . , cn, respec-

tively. Then the action of G := HomZ(Pic(V ),C×) on U(Σ) is as follows: g ∈ G acts

as

(g (− (a1,1A1 + · · ·+ aρ,1Aρ + b2,1B2 + · · ·+ bm,1Bm + c1,1C1 + · · ·+ cn,1Cn))X1,(4.1)

. . . , g (− (a1,d−1A1 + · · ·+ aρ,d−1Aρ + b2,d−1B2 + · · ·+ bm,d−1Bm+

c1,d−1C1 + · · ·+ cn,d−1Cn))Xd−1,

g(A1)Y1, . . . , g(Aρ)Yρ,
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g (− (b2,dB2 + · · ·+ bm,dBm − C1 + c2,dC2 + · · ·+ cn,dCn))Z1,

g(B2)Z2, . . . , g(Bm)Zm, g(C1)W1, · · · , g(Cn)Wn) .

Let ϕ : (X1, . . . , Xd−1, Y1, . . . , Yρ, Z1, . . . , Zm,W1, . . . ,Wn) �→ (X+
1 , . . . , X

+
d−1, Y

+
1 , . . . , Y

+
ρ ,

Z+
1 , . . . , Z

+
m) be a surjective morphism from

⋃
σ∈Σ+ U(Σ)σ ⊂ U(Σ) to U(Σ+) given by

(
X+

1 , . . . , X
+
d−1, Y

+
1 , . . . , Y

+
ρ , Z

+
1 , . . . , Z

+
m

)
=(4.2)

(
X1W

c1,1

1 · · ·W cn,1
n , . . . , Xd−1W

c1,d−1

1 · · ·W cn,d−1
n ,

Y1, . . . , Yρ, Z1W
c1,d

1 · · ·W cn,d
n , Z2, . . . , Zm

)
,

where
(
X+

1 , . . . , X
+
d−1, Y

+
1 , . . . , Y

+
ρ , Z

+
1 , . . . , Z

+
m

)
is the homogeneous coordinate of V + ∼=

U(Σ+)/G+ with G+ := HomZ(Pic(V +),C×) corresponding to e1, . . . , ed−1, a1, . . . , aρ,b1,

. . . ,bm, respectively. ϕ is well-defined, since W1, . . . ,Wn �= 0 on
⋃
σ∈Σ+ U(Σ)σ. Moreover,

since ϕ is compartible with the action of G and G+ by (4.1), ϕ induces the isomorphism ϕ̃ :

(
⋃
σ∈Σ+ U(Σ)σ) /G ⊂ V → V +. Similarly, the morphism ψ : (X1, . . . , Xd−1, Y1, . . . , Yρ, Z1,

. . . , Zm,W1, . . . ,Wn) �→ (X−
1 , . . . , X

−
d−1, Y

−
1 , . . . , Y

−
ρ ,W

−
1 , . . . ,W

−
n ) from

⋃
σ∈Σ− U(Σ)σ ⊂

U(Σ) to U(Σ−) given by

(
X−

1 , . . . , X
−
d−1, Y

−
1 , . . . , Y

−
ρ ,W

−
1 , . . . ,W

−
n

)
=(4.3)

(
X1Z

c1,1

1 Z
b2,dc1,1+b2,1

2 · · ·Zbm,dc1,1+bm,1
m , . . . ,

Xd−1Z
c1,d−1

1 Z
b2,dc1,d−1+b2,d−1

2 · · ·Zbm,dc1,d−1+bm,d−1
m , Y1, . . . , Yρ,

Z−1
1 Z

−b2,d

2 · · ·Z−bm,d
m W1,W2, . . . ,Wn

)
induces the isomorphism ψ̃ : (

⋃
σ∈Σ− U(Σ)σ) /G ⊂ V → V − ∼= U(Σ−)/G−, where G− :=

HomZ(Pic(V −),C×) and
(
X−

1 , . . . , X
−
d−1, Y

−
1 , . . . , Y

−
ρ ,W

−
1 , . . . ,W

−
n

)
is the homogeneous

coordinate of V − corresponding to e1, . . . , ed−1, a1, . . . , aρ, c1, . . . , cn, respectively.

g+ ∈ G+ and g− ∈ G− act on U(Σ+) and U(Σ−) as

(
g+ (− (a1,1A1 + · · ·+ aρ,1Aρ + b2,1B2 + · · ·+ bm,1Bm))X+

1 , . . . ,(4.4)

g+ (− (a1,d−1A1 + · · ·+ aρ,d−1Aρ + b2,d−1B2 + · · ·+ bm,d−1Bm))X+
d−1,

g+(A1)Y
+
1 , . . . , g

+(Aρ)Y
+
ρ , g

+ (− (b2,dB2 + · · ·+ bm,dBm))Z+
1 ,

g+(B2)Z
+
2 , . . . , g

+(Bm)Z+
m

)
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and(
g− (− (a1,1A1 + · · ·+ aρ,1Aρ + (c2,1 + c1,1c2,d)C2 + · · ·+ (cn,1 + c1,1cn,d)Cn))X−

1 , . . . ,

g− (− (a1,d−1A1 + · · ·+ aρ,d−1Aρ + (c2,d−1 + c1,d−1c2,d)C2 + · · ·+

(cn,d−1 + c1,d−1cn,d)Cn))X−
d−1, g

−(A1)Y
−
1 , . . . , g

−(Aρ)Y
−
ρ ,

g− (−(c2,dC2 + · · ·+ cn,dCn))W−
1 , g

−(C2)W
−
2 , · · · , g−(Cn)W−

n

)
,

respectively. So, similarly as (4.2) and (4.3), we have isomorphisms (X+
1 , . . . , X

+
d−1, Y

+
1 ,

. . . , Y +
ρ , Z

+
1 , . . . , Z

+
m) �→ (x+

1 , . . . , x
+
d−1, y

+
1 , . . . , y

+
ρ , z) from

(⋃
σ∈Σ̃

U(Σ+)σ
)
/G+ ⊂ V + to

Ṽ × C× and (X−
1 , . . . , X

−
d−1, Y

−
1 , . . . , Y

−
ρ , W

−
1 , . . . ,W

−
n ) �→ (x−1 , . . . , x

−
d−1, y

−
1 , . . . , y

−
ρ , w)

from
(⋃

σ∈Σ̃
U(Σ−)σ

)
/G− ⊂ V − to Ṽ ×C× given by

(
x+

1 , . . . , x
+
d−1, y

+
1 , . . . , y

+
ρ , z

)
=(4.5)

(
X+

1 (Z+
2 )b2,1 · · · (Z+

m)bm,1 , . . . , X+
d−1(Z

+
2 )b2,d−1 · · · (Z+

m)bm,d−1 ,

Y +
1 , . . . , Y

+
ρ , Z

+
1 (Z+

2 )b2,d · · · (Z+
m)bm,d

)
and (

x−1 , . . . , x
−
d−1, y

−
1 , . . . , y

−
ρ , w

)
=(4.6) (

X−
1 (W−

2 )c2,1+c1,1c2,d · · · (W−
n )cn,1+c1,1cn,d , . . . ,

X−
d−1(W

−
2 )c2,d−1+c1,d−1c2,d · · · (W−

n )cn,d−1+c1,d−1cn,d , Y −
1 , . . . , Y

−
ρ ,

W−
1 (W−

2 )−c2,d · · · (W−
n )−cn,d

)
,

respectively, where (x+
1 , . . . , x

+
d−1, y

+
1 , . . . , y

+
ρ ) and (x−1 , . . . , x

−
d−1, y

−
1 , . . . , y

−
ρ ) are homoge-

neous coordinates of Ṽ , while z, w ∈ C×. These two coordinates are related as follows:

x+
1 = x−1 w

c1,1 , . . . , x+
d−1 = x−d−1w

c1,d−1 , y+
1 = y−1 , . . . , y

+
ρ = y−ρ , z = 1/w.

We construct a one-parameter family of complete varieties parameterized by t ∈ C by

changing this relation: Let {Vt}t∈C be the family we obtain by patching V + and V − along

Ṽ by the automorphism (x−1 , . . . , x
−
d−1, y

−
1 , . . . , y

−
ρ , w) �→ (x+

1 , . . . , x
+
d−1, y

+
1 , . . . , y

+
ρ , z) de-

fined by

x+
1 = x−1 w

c1,1 + ty−1 w
k, x+

2 = x−2 w
c1,2 , . . . , x+

d−1 = x−d−1w
c1,d−1 ,(4.7)

y+
1 = y−1 , . . . , y

+
ρ = y−ρ , z = 1/w.
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This is well-defined, since D1 = A1 in Pic(Ṽ ) and the combinatorial structures of the

neighborhoods of e1 and a1 in Σ̃ are equivalent by the assumption Ṽ is isomorphic to

either Pd−1 or a toric bundle over P1. Thus, we have the following.

Theorem 4.3.2 {Vt}t∈C is a complex analytic family whose special fiber V0 is isomorphic

to V .

Next, we calculate the general fibers of this family under appropriate assumptions.

We introduce some notation.

For any q = (q1, . . . , qd−1) ∈ Zd−1, we define a complete fan q−Σ in N as follows:

q−Σ := Σ+ ∪
{
q−σ | σ ∈ Σ−} ,

where q−σ is the image of σ under the automorphism of NR corresponding to the matrix

1 0 · · · 0 q1

0 1 · · · 0 q2
...

...
. . .

...
...

0 0 · · · 1 qd−1

0 0 · · · 0 1


acting from the left on the elements of N = Zd regarded as column vectors. We denote

by q−V the nonsingular toric d-fold corresponding to the fan q−Σ.

Theorem 4.3.3 For any t in C× := C \ {0}, we have

Vt ∼= (2k,−ka1,2, . . . ,−ka1,d−1)− V,

if the following conditions are satisfied:

(1) b2,1 = · · · = bm,1 = 0 and

(2) kc1,d + c1,1 ≥ 0, . . . , kcn,d + cn,1 ≥ 0.

Proof. Let t �= 0.

We can define an automorphism (x+
1 , . . . , x

+
d−1, y

+
1 , . . . , y

+
ρ , z) �→ (x̂+

1 , . . . , x̂
+
d−1, ŷ

+
1 ,

. . . , ŷ+
ρ , ẑ) of Ṽ ×C× by

x̂+
1 := x+

1 z
k − ty+

1 , x̂
+
2 := x+

2 , . . . , x̂
+
d−1 := x+

d−1,(4.8)
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ŷ+
1 := tx+

1 , ŷ
+
2 := y+

2 , . . . , ŷ
+
ρ := y+

ρ , ẑ := z.

In fact, since Ṽ is isomorphic to either Pd−1 or a toric bundle over P1, this is a mor-

phism, and we can easily construct the inverse of this morphism. By the automorphism

(x−1 , . . . , x
−
d−1, y

−
1 , . . . , y

−
ρ , w) �→ (x+

1 , . . . , x
+
d−1, y

+
1 , . . . , y

+
ρ , z) given by the relations (4.7),

we have

x̂+
1 = (x−1 w

c1,1 + ty−1 w
k)w−k − ty−1 = x−1 w

c1,1−k,

x̂+
2 = x−2 w

c1,2 , . . . , x̂+
d−1 = x−d−1w

c1,d−1 ,

ŷ+
1 = t(x−1 w

c1,1 + ty−1 w
k), ŷ+

2 = y−2 , . . . , ŷ
+
ρ = y−ρ , ẑ = 1/w.

By considering the action of G̃ on x+
1 , . . . , x

+
d−1, y

+
1 , these relations are equivalent to

x̂+
1 = x−1 w

c1,1−2k, x̂+
2 = x−2 w

c1,2+ka1,2 , . . . , x̂+
d−1 = x−d−1w

c1,d−1+ka1,d−1 ,(4.9)

ŷ+
1 = t(x−1 w

c1,1−k + ty−1 ), ŷ+
2 = y−2 , . . . , ŷ

+
ρ = y−ρ , ẑ = 1/w.

Let

x̂−1 := x−1 , . . . , x̂
−
d−1 := x−d−1,(4.10)

ŷ−1 := t(x−1 w
c1,1−k + ty−1 ), ŷ−2 := y−2 , . . . , ŷ

−
ρ := y−ρ , ŵ := w.

Then (x−1 , . . . , x
−
d−1, y

−
1 , . . . , y

−
ρ , w) �→ (x̂−1 , . . . , x̂

−
d−1, ŷ

−
1 , . . . , ŷ

−
ρ , ŵ) determines an auto-

morphism of Ṽ×C×, and in terms of this new coordinate, the automorphism (x−1 , . . . , x
−
d−1,

y−1 , . . . , y
−
ρ , w) �→ (x̂+

1 , . . . , x̂
+
d−1, ŷ

+
1 , . . . , ŷ

+
ρ , ẑ) given by the relations (4.9) is described as

the automorphism (x̂−1 , . . . , x̂
−
d−1, ŷ

−
1 , . . . , ŷ

−
ρ , ŵ) �→ (x̂+

1 , . . . , x̂
+
d−1, ŷ

+
1 , . . . , ŷ

+
ρ , ẑ) given by

x̂+
1 = x̂−1 ŵ

c1,1−2k, x̂+
2 = x̂−2 ŵ

c1,2+ka1,2 , . . . , x̂+
d−1 = x̂−d−1ŵ

c1,d−1+ka1,d−1 ,(4.11)

ŷ+
1 = ŷ−1 , . . . , ŷ

+
ρ = ŷ−ρ , ẑ = 1/ŵ.

We can show that the automorphisms (x+
1 , . . . , x

+
d−1, y

+
1 , . . . , y

+
ρ , z) �→ (x̂+

1 , . . . , x̂
+
d−1, ŷ

+
1 ,

. . . , ŷ+
ρ , ẑ) in (4.8) and (x−1 , . . . , x

−
d−1, y

−
1 , . . . , y

−
ρ , w) �→ (x̂−1 , . . . , x̂

−
d−1, ŷ

−
1 , . . . , ŷ

−
ρ , ŵ) in

(4.10) of Ṽ × C× are extended to automorphisms of V + and V −, respectively as fol-

lows: Put

X̂+
1 := X+

1 (Z+
1 )k(Z+

2 )kb2,d−b2,1 · · · (Z+
m)kbm,d−bm,1 − tY +

1 (Z+
2 )−b2,1 · · · (Z+

m)−bm,1 ,

X̂+
2 := X+

2 , . . . , X̂
+
d−1 := X+

d−1, Ŷ
+
1 := tX+

1 (Z+
2 )b2,1 · · · (Z+

m)bm,1 ,
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Ŷ +
2 := Y +

2 , . . . , Ŷ
+
ρ := Y +

ρ , Ẑ
+
1 := Z+

1 , . . . , Ẑ
+
m := Z+

m.

By the assumption b2,1 = · · · = bm,1 = 0, this defines an automorphism (X+
1 , . . . , X

+
d−1,

Y +
1 , . . . , Y

+
ρ , Z

+
1 , . . . , Z

+
m) �→ (X̂+

1 , . . . , X̂
+
d−1, Ŷ

+
1 , . . . , Ŷ

+
ρ , Ẑ

+
1 , . . . , Ẑ

+
m) of V +, and, obvi-

ously, the restriction of this automorphism through the isomorphisms (X+
1 , . . . , X

+
d−1, Y

+
1 ,

. . . , Y +
ρ , Z

+
1 , . . . , Z

+
m) �→ (x+

1 , . . . , x
+
d−1, y

+
1 , . . . , y

+
ρ , z) and (X̂+

1 , . . . , X̂
+
d−1, Ŷ

+
1 , . . . , Ŷ

+
ρ , Ẑ

+
1 ,

. . . , Ẑ+
m) �→ (x̂+

1 , . . . , x̂
+
d−1, ŷ

+
1 , . . . , ŷ

+
ρ , ẑ) defined by the equalities (4.5) from U(Σ̃)/G+ ⊂

V + to Ṽ ×C× is the automorphism (x+
1 , . . . , x

+
d−1, y

+
1 , . . . , y

+
ρ , z) �→ (x̂+

1 , . . . , x̂
+
d−1, ŷ

+
1 , . . . ,

ŷ+
ρ , ẑ) corresponding to the equalities (4.8). Similarly, by the assumption kc1,d + c1,1 ≥

0, . . . , kcn,d + cn,1 ≥ 0, by putting

X̂−
1 := X−

1 , . . . , X̂
−
d−1 := X−

d−1,

Ŷ −
1 := tX−

1 (W−
1 )kc1,d+c1,1 · · · (W−

n )kcn,d+cn,1 ,

Ŷ −
2 := Y −

2 , . . . , Ŷ
−
ρ := Y −

ρ , Ŵ
−
1 := W−

1 , . . . , Ŵ
−
n := W−

n ,

we get an automorphism (X−
1 , . . . , X

−
d−1, Y

−
1 , . . . , Y

−
ρ ,W

−
1 , . . . ,W

−
n ) �→ (X̂−

1 , . . . , X̂
−
d−1,

Ŷ −
1 , . . . , Ŷ

−
ρ , Ŵ

−
1 , . . . , Ŵ

−
n ) of V − whose restriction through the isomorphisms (X−

1 , . . . ,

X−
d−1, Y

−
1 , . . . , Y

−
ρ ,W

−
1 , . . . ,W

−
n ) �→ (x−1 , . . . , x

−
d−1, y

−
1 , . . . , y

−
ρ , w) and (X̂−

1 , . . . , X̂
−
d−1, Ŷ

−
1 ,

. . . , Ŷ −
ρ , Ŵ

−
1 , . . . , Ŵ

−
n ) �→ (x̂−1 , . . . , x̂

−
d−1, ŷ

−
1 , . . . , ŷ

−
ρ , ŵ) defined by the equalities (4.6) from

U(Σ̃)/G− ⊂ V − to Ṽ ×C× is the automorphism (x−1 , . . . , x
−
d−1, y

−
1 , . . . , y

−
ρ , w) �→ (x̂−1 , . . . ,

x̂−d−1, ŷ
−
1 , . . . , ŷ

−
ρ , ŵ) corresponding to the equalities (4.10).

Next, to show Vt ∼= (2k,−ka1,2, . . . ,−ka1,d−1)− V for any t �= 0, we have to investigate

the action of G− on U(Σ−). However, the action (4.4) is obviously equivalent to the

following: (
g− (− (a1,1A1 + · · ·+ aρ,1Aρ + (−c2,1 − c1,1c2,d)C2 + · · ·(4.12)

+(−cn,1 − c1,1cn,d)Cn))X−
1 , . . . ,

g− (− (a1,d−1A1 + · · ·+ aρ,d−1Aρ + (−c2,d−1 − c1,d−1c2,d)C2 + · · ·+

(−cn,d−1 − c1,d−1cn,d)Cn))X−
d−1, g

−(A1)Y
−
1 , . . . , g

−(Aρ)Y
−
ρ ,

g− (−(c2,dC2 + · · ·+ cn,dCn))W−
1 , g

−(C2)W
−
2 , · · · , g−(Cn)W−

n

)
,

because B1 + b2,dB2 + · · · + bm,dBm − C1 + c2,dC2 + · · · + cn,dCn = 0 on V . So, by the

automorphism (x̂−1 , . . . , x̂
−
d−1, ŷ

−
1 , . . . , ŷ

−
ρ , ŵ) �→ (x̂+

1 , . . . , x̂
+
d−1, ŷ

+
1 , . . . , ŷ

+
ρ , ẑ) given by the

relations (4.11) and the action (4.12), we have Vt ∼= (2k,−ka1,2, . . . ,−ka1,d−1)− V for any

t �= 0. q.e.d.
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4.4 Projective space bundles over the projective line

The classical results for deformations among Hirzebruch surfaces are well-known. As a

generalization of this results, for P2-bundles over P1, Nakamura [25] showed the following.

Proposition 4.4.1 (Nakamura [25]) For integers a, b, c, a′, b′, c′, let

V = PP1(O(a)⊕O(b)⊕O(c)) and V ′ = PP1(O(a′)⊕O(b′)⊕O(c′)).

Then, the following are equivalent.

(1) a+ b+ c ≡ a′ + b′ + c′ (mod 3).

(2) There exist P2-bundles over P1 V0, . . . , Vm such that V0
∼= V , Vm ∼= V ′, and that

Vi−1 is deformed to Vi for any 1 ≤ i ≤ m.

(3) V and V ′ are homeomorphic.

We generalize the case (1) =⇒ (2) of Proposition 4.4.1 for Pd−1-bundles over P1 using

the one-parameter families constructed in Theorem 4.3.2. Harris [10] studied this case.

For fundamental properties of primitive collections and primitive relations, see Batyrev

[5], [6] and Sato [33]. We use the notation as in Section 4.3.

Let V be a Pd−1-bundle over P1, that is,

V = V (p1, . . . , pd−1) := PP1 (O ⊕O(p1)⊕ · · · ⊕ O(pd−1)) ,

where p1, . . . , pd−1 are nonnegative integers. Then, the primitive relations of the corre-

sponding fan Σ are

e1 + · · ·+ ed−1 + a1 = 0 and b1 + c1 = p1e1 + · · ·+ pd−1ed−1,

where G(Σ) = {e1, . . . , ed−1, a1,b1, c1}. For a nonnegative integer k such that a1−k ≥ 0,

the conditions in Theorem 4.3.3 are satisfied. Therefore, there exists a one-parameter

complex analytic family {Vt}t∈C such that

(1) Vt ∼=

 V if t = 0

(2k, k, . . . , k)− V if t �= 0.

We show that, for V (p1, . . . , pd−1) and V (p′1, . . . , p
′
d−1), if p1 + · · · + pd−1 ≡ p′1 + · · · +

p′d−1 (mod d), then there exist nonsingular toric d-folds V0, . . . , Vm such that each Vi is a
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Pd−1-bundle over P1, V0
∼= V (p1, . . . , pd−1), Vm ∼= V (p′1, . . . , p

′
d−1), and Vi−1 is deformed

by a one-parameter family to Vi for any 1 ≤ i ≤ m.

Let k = 1. Suppose that there exists 1 ≤ i ≤ d − 1 such that pi ≥ 2. So we may

assume p1 ≥ p2 ≥ · · · ≥ pl > pl+1 = · · · = pd−1 = 0 by changing the order of the indices,

where p1 ≥ 2 . Then by the family (1), V is deformed to (2, 1, . . . , 1)−V . The primitive

relations of (2, 1, . . . , 1)−Σ are

e1 + · · ·+ ed−1 + a1 = 0 and

b1 + c′1 =



p1 − 2

p2 − 1
...

pl − 1

pl+1 − 1
...

pd−1 − 1

0



=

 (p1 − 1)e1 + p2e2 + · · ·+ plel + a1 if l < d− 1

(p1 − 2)e1 + (p2 − 1)e2 + · · ·+ (pl − 1)el if l = d− 1,

where G ((2, 1, . . . , 1)−Σ) = {e1, . . . , ed−1, a1,b1, c
′
1} . We can replace V by (2, 1, . . . , 1)−V

and carry out this operation again. This operation terminates in finite steps and V

becomes V (p1, . . . , pd−1) such that p1 ≤ 1, . . . , pd−1 ≤ 1. In each step, p1 + · · · + pd−1 ∈
Z/dZ does not change. Thus, we have the following.

Proposition 4.4.2 For integers a1, . . . , ad, a
′
1, . . . , a

′
d, let V = PP1(O(a1)⊕ · · · ⊕O(ad))

and V ′ = PP1(O(a′1)⊕ · · · ⊕ O(a′d)). If a1 + · · ·+ ad ≡ a′1 + · · ·+ a′d (mod d), then there

exist Pd−1-bundles over P1 V0, . . . , Vm such that V0
∼= V , Vm ∼= V ′ and Vi−1 is deformed

to Vi for any 1 ≤ i ≤ m. In particular, V and V ′ are homeomorphic.

4.5 Weakened Fano varieties

The following definition is important for the birational geometry.

Definition 4.5.1 Let V be a nonsingular projective variety. V is called a Fano (resp.

weak Fano) variety if its anti-canonical divisor −KV is ample (resp. nef and big).

The following definition was proposed by Minagawa [20] in connection with “Reid’s

fantasy” for weak Fano 3-folds.
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Definition 4.5.2 (Minagawa [20]) Let V be a nonsingular weak Fano d-fold over C

and ∆ε := {t ∈ C | |t| < ε} for a sufficiently small real number ε > 0. Then, V is called

a weakened Fano d-fold if V is not a nonsingular Fano d-fold, and there exists a small

deformation ϕ : V → ∆ε such that V0 := ϕ−1(0) ∼= V , while Vt := ϕ−1(t) is a nonsingular

Fano d-fold for any t ∈ ∆ε \ {0}.

In this section, we construct a deformation family for a certain toric weakened Fano

3-fold using the families constructed in Section 4.3. Toric weakened Fano 3-folds are

completely classified by Sato [32]. Moreover, we give certain examples of toric weakened

Fano 4-folds. We use the notation as in Section 4.3.

Example 4.5.3 Let V be the nonsingular toric weakened Fano 3-fold of type X3
0 in the

sense of Sato [32], that is, the primitive relations of Σ are

e1 + a1 = e2, e2 + a2 = 0 and b1 + c1 = 2e1,

where G(Σ) = {e1, e2, a1, a2,b1, c1}. V is a F1-bundle over P1, where F1 is the Hirzebruch

surface of degree 1. Therefore, by Theorems 4.3.2 and 4.3.3, there exists a complex

analytic family {Vt}t∈C such that V0
∼= V, while

Vt ∼= (2,−1)−V (t �= 0).

The primitive relations of (2,−1)−Σ are

e1 + a1 = e2, e2 + a2 = 0 and b1 + c′1 = e2,

where G(Σ) = {e1, e2, a1, a2,b1, c
′
1}. (2,−1)−V is the toric Fano 3-fold we want (see

Section 4 in Sato [32]).

In the same way as in Example 4.5.3, we obtain certain examples of toric weakened

Fano 4-folds which does not decomposed into direct products of lower-dimensional va-

rieties. In the following, put G(Σ) = {x1, x2, . . .}, and the fans corresponding to toric

weakened Fano 4-folds are described in terms of primitive relations. We also give the

types of general fibers. The types of nonsingular toric Fano 4-folds are in the sense of

Batyrev [6] and Sato [33].
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(1) x1 + x4 = x2, x2 + x3 + x5 = 0 and x6 + x7 = 2x1 (type D7).

(2) x1 + x4 = x2, x2 + x6 = 0, x3 + x5 = x2 and x7 + x8 = 2x1 (type L1).

(3) x1 + x4 = x2, x2 + x6 = 0, x3 + x5 = x6 and x7 + x8 = 2x1 (type L13).

(4) x1 + x4 = x2, x2 + x5 = x3, x3 + x6 = 0 and x7 + x8 = 2x1 (type L2).

(5) x5 + x6 = 0, x3 + x7 = 0, x2 + x3 = x5, x5 + x7 = x2, x2 + x6 = x7, x1 + x4 =

x2 and x8 + x9 = 2x1 (type Q1).

(6) x5 + x6 = 0, x3 + x7 = 0, x2 + x3 = x5, x5 + x7 = x2, x2 + x6 = x7, x1 + x4 =

x3 and x8 + x9 = 2x1 (type Q13).

(7) x5 + x6 = 0, x3 + x7 = 0, x2 + x3 = x5, x5 + x7 = x2, x2 + x6 = x7, x1 + x4 =

x5 and x8 + x9 = 2x1 (type Q8).

(8) x5 + x6 = 0, x3 + x7 = 0, x2 + x3 = x5, x5 + x7 = x2, x2 + x6 = x7, x1 + x4 =

0 and x8 + x9 = 2x1 (type Q11).

(9) x5 + x8 = 0, x2 + x5 = x3, x3 + x8 = x2, x3 + x6 = x5, x3 + x7 = 0, x2 + x6 =

0, x6 + x8 = x7, x2 + x7 = x8, x5 + x7 = x6, x1 + x4 = x2 and x9 + x10 = 2x1 (type

U1).
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