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Introduction

Let φ: S −→ ∆ be a proper surjective holomorphic map from a complex surface S to a

small disk ∆ = {t ∈ C| |t| < ε} such that φ−1(t) is a smooth curve of genus g ≥ 2 for

any t ∈ ∆∗ = ∆ \ {0}. We call (φ, S, ∆) a degeneration of curves. If all φ−1(t) for t ∈ ∆∗

are hyperelliptic curves, we call (φ, S, ∆) a hyperelliptic family. If the reduced scheme of

the special fiber has normal crossing and any (−1)-curve in the special fiber intersects

the other components at at least three points, we call (φ, S, ∆) normally minimal. Two

degenerations (φ, S, ∆) and (φ′, S ′, ∆) are said to be topologically equivalent if there exists

an orientation-preserving homeomorphism ψ: S −→ S ′ which satisfies φ′ ◦ ψ = φ. Let

Tg := { normally minimal degenerations of genus g }/∼, where ∼ is the topological

equivalent relation. For an element of Tg, we can uniquely determine the topological

monodromy (sometimes called monodromy, for short) as a conjugacy class in the mapping

class group of genus g. The monodromy of a degeneration is a conjugacy class of a pseudo-

periodic map of negative type (cf. [MM1], [Ni1], [Ni2], [Im], [ES], [ST], [AMO] etc.).

Conversely, any conjugacy class of a pseudo-periodic map of negative type is realized as the

monodromy of a certain degeneration (cf. [MM2]). In [AI], we classified the monodromies

of degenerations of curves of genus three with their topological types of moduli points. In

this paper, we classify the monodromies of degenerations of genus three which are realized

as the monodromies of certain hyperelliptic families. In Section 1, we review the results of

Matsumoto-Montesinos theory (cf. [MM1], [MM2]). In Section 2, we review the results of

classification of degenerations of curves of genus three via Matsumoto-Montesinos theory

(cf. [AI]) and introduce several symbols which are used in Section 3 and Section 4. In

Section 3 we classify the monodromies which cannot be realized as the monodromy of

any hyperelliptic family of genus three (Theorems 3.2, 3.3, 3.6). Let M3 be the Deligne-

Mumford compactification of the moduli space of curves of genus three. Theorem 3.2

also states that the closure of hyperelliptic locus in M3 has no intersection with the part

of boundaries of the loci of the stable curves whose topological types are (D), (H), (I),

(M) and (O) in Table 2. In Section 4, for each monodromy which can be realized as the

topological monodromy of a hyperelliptic family of genus three, we give an example of

the equation of the hyperelliptic family.

Acknowledgement. The author thanks Professors Tadashi Ashikaga, Kazuhiro Konno,

Masanori Ishida, Tatsuya Arakawa, Takeshi Kajiwara, and Shigeru Takamura, for their

useful advice and valuable discussions. He wishes to express his special thanks to Professor

Tadao Oda for his encouragement.
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1 Matsumoto-Montesinos theory

In this section, we review Matsumoto-Montesinos theory for later use.

Let f : Σg −→ Σg be an orientation-preserving homeomorphism of a closed surface (real

two dimensional manifold) of genus g. We call f a pseudo-periodic map if f is isotopic to

a homeomorphism f ′: Σg −→ Σg such that the following conditions are satisfied:

(i) There exists a disjoint union of simple closed curves C = C1 ∪ C2 ∪ . . . ∪ Cr on the

interior of Σ such that f ′(C) = C (C might be empty).

(ii) Set B = Σg −C. Then the restriction f ′|B:B → B is isotopic to a periodic map, i.e.,

there is a positive integer N such that (f ′|B)N is isotopic to the identity map.

Suppose f is a pseudo-periodic map by a system of simple closed curves C = C1 ∪ C2 ∪
. . . ∪Cr. C is called admissible if each connected component of Σg \ C has negative Euler

number. If g ≥ 2, such a system always exists. We sometimes write
−→
C i to emphasize

its orientation. For each component Ci of C, there exists a minimal integer αi such that

fαi(
−→
C i) =

−→
C i. There also exists a minimal positive integer Li such that fLi|Ci

is a Dehn

twist of ei times (ei ∈ Z). We set s(Ci) = eiαi/Li and call it the screw number of f at Ci

(cf. [Ni2]). An admissible system C is precise if s(Ci) 6= 0 for each Ci. A precise system

always exists and is unique up to isotopy. We say that a pseudo-periodic map f is of

negative twist if s(Ci) < 0 for each curve Ci in a precise system C. A curve Ci is said to

be amphidrome if αi is even and fαi/2(
−→
C i) = −−→C i.

For a degeneration (φ, S, ∆) of genus g, by fixing a base point t0 ∈ ∆ \ {0}, the

canonical generator of π(∆ \ {0}, t0) ' Z acts naturally on the Riemann surface φ−1(t0),

i.e., there exists an orientation preserving homeomorphism Fφ,t0 : φ
−1(t0) −→ φ−1(t0) and

Fφ,t0 is uniquely determined up to isotopy. We see that Fφ,t0 is a pseudo-periodic map of

negative twist by the result of Imayoshi [Im], Shiga and Tanigawa [ST], and Earle and

Sipe [ES]. Since a change of the base point corresponds to a conjugation in the mapping

class group Mg, a degeneration (φ, S, ∆) uniquely determines an element m(φ) of the set

of conjugacy classes M̂g of Mg. We call m(φ) the topological monodromy of (φ, S, ∆).

Let P−g denote the subset of M̂g represented by pseudo-periodic map of negative twist.

Since m(φ) is determined by the class of (φ, S, ∆) in Tg, we have well-defined map

γ: Tg −→ P−g .

Theorem 1.1 ([MM2, Theorem 1]) If g > 1, then γ: Tg −→ P−g is bijective.
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In the case of g = 1, γ is surjective but not injective. Let (φi, Si, ∆) (i = 1, 2) be

degeneration of curves of genus one and let Fi be the special fibers of (φi, Si, δ). If there

exists a positive integer m such that F1 is equal to mF2 as the numerical chorizo space

(the topological space considering the multiplicities of their components), γ(φ1, S1, ∆) =

γ(φ2, S2, ∆).

Corollary 1.2 [MM2, Corollary 1.2] Given a pseudo-periodic map f : Σg −→ Σg of neg-

ative twist, there exists a degeneration (φ, S, ∆) whose monodromy is the conjugacy class

of f in the mapping class group Mg.

The outline of the proof of Theorem 1.1 is as follows:

Step 1 For a pseudo-periodic map of negative twist f , they construct a numerical chorizo

space Sf called generalized quotient. Note that there is a natural projection π: Σg −→ Sf .

Step 2 Let Cπ = {Σg × [0, 1] ∪ Sf}/(x, 0) ∼ π(x) be the mapping cylinder of π. The

super standard form F of f : Σg −→ Σg can be extended to an automorphism of Cπ (cf.

[MM1]). They construct an open book M = {[0, 2π] × Cπ}/ ∼, where the equivalent

relation “∼” is defined as follows (cf. [Ta], [W]):

(2π, c) ∼ (0, F (c)) (c ∈ Cπ), (θ, c) ∼ (0, c) (c ∈ Sf , θ ∈ [0, 2π])

Note that there is the canonical map φ: M −→ ∆, where ∆ = {t ∈ C||t| ≤ 1}.
Step 3 M := φ−1(∆) has a complex structure, and we obtain a degeneration (φ,M, ∆)

whose monodromy is the conjugacy class of f in Mg.

Note that the special fiber of (φ,M, ∆) is Sf . Since the configuration of the special

fiber is very important to classify the monodromies which are realized as the monodromies

of certain hyperelliptic families, we introduce the construction of the generalized quotient

Sf of a pseudo-periodic map f of negative twist.

Let A be the union of annular neighborhoods of the curves in the precise system C such

that f(A) = A and let B be the closure of Σ \ A. We may assume that f |B:B −→ B is

periodic, i.e., there exists a positive integer N such that f |NB is isotopic to the identity of B.

The quotients space B/(f |B) is an orbifold. We call p ∈ B/(f |B) a cone point if the number

of points of f |−1
B (p) is not N . Let p ∈ B/(f |B) and (m,λ, σ) be a cone point and the valency

of p, respectively (cf. [Ni1]). The valency (m,λ, σ) of p has the following topological

meaning: If x ∈ f |−1
B (p) and m is the smallest positive integer such that fm(x) = x,

fm is the rotation around x through the angle 2πδ/λ (0 < δ < λ, gcd(λ, δ) = 1) and σ

is the integer determined by δσ ≡ 1 (mod λ), 0 < σ < λ. By the Euclidean algorithm
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we obtain a sequence of integers n0 > n1 > · · · > nl = 1 such that n0 = λ, n1 = λ − σ,

ni−1 + ni+1 ≡ 0 (mod ni), i = 1, 2, · · · , l − 1. Set mi = mni (i = 0, 1, · · · , l). Let Ch(B)

be the chorizo space constructed from B/(f |B) by replacing a neighborhood of each cone

point with the numerical chorizo space shown in Figure A, which consists of a disk and

l spheres. Let Ai(⊂ A) be an annular neighborhood of Ci. The boundary curves S1 and

S2 of Ai have their valencies (m(1), λ(1), σ(1)) and (m(2), λ(2), σ(2)), respectively, when we

regard them as boundary curves of the periodic part B (cf. [Ni1]).

Suppose Ci is not amphidrome. Then m(1) = m(2) = α(Ci). Let m be this common

value.

Lemma 1.3 ([MM1 Theorem 6.1]) There exists uniquely a sequence of positive integers

n0, n1, · · · , nl (l ≥ 1) satisfying the following conditions:

(i) n0 = λ(1) and nl = λ(2),

(ii) n1 ≡ σ(1) (mod λ(1)) and n2 ≡ σ(2) (mod λ(2)),

(iii) ni−1 + ni+1 ≡ 0 (mod ni) (i = 1, 2, · · · , l − 1),

(iv) (ni−1 + ni+1)/ni ≥ 2 (i = 1, 2, · · · , l − 1),

(v)
∑l−1

i=1 1/nini+1 = |s(Cj)|.

Let Ch(Ai) be the chorizo space shown in Figure B, which consists of two disks and

l− 1 spheres. The multiplicity mi of each components is defined to be mni. We consider

that the spaces are Ch(f jAi) (j = 0, 1, · · · ,m−1) are identical, i.e., Ch(Ai) = Ch(fAi) =

· · · = Ch(fm−1Ai). Suppose Ci is amphidrome. Then S1 and S2 have the same valency

(2m,λ, σ), where 2m = α(Cj). We can determine a sequence of positive integers n0 ≥
n1 ≥ · · · ≥ nl = 1 in similar way in the case of non-amphidrome and let Ch(Ai) be

the chorizo space shown in Figure C, which consists of a disk and l + 2 spheres. We

also consider that the spaces Ch(f jAi) (i = 0, 1, · · · , (m/2) − 1) are identical. Now the

generalized quotient Sf is defined to be the union of Ch(B) and Ch(Ai)’s.

2 Classification of monodromies of genus three

In this section, we introduce the result of [AI] and define the symbols which we use in

Section 3 and Section 4.
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2.1 Algorithm for classification

We classified degenerations of curves of genus three in [AI]. Our basic tools are Corollary

1.2 and the following theorem:

Theorem 2.1 [MM2, Theorem 2] The conjugacy class of a pseudo-periodic map of

negative type f : Σg −→ Σg of genus g is determined by the following data: A precise

admissible system of cut curves C =
∐

Ci on Σg, the action of f on the weighted oriented

graph GC induced by C, the screw numbers of f at each Ci and the valency data of the

periodic maps which stabilize the connected components of Σg − C.

The classification is divided into the following four steps:

Step 1 We classify admissible systems C of cut curves on Σ3 (cf. [AI, Lemma 3.2], Table 2

of this paper). This is equivalent to classifying the stable curves of genus three, which is

well-known. We disregard the orientations of edges in Table 2 in this step.

Step 2 We classify cyclic automorphisms of the weighted oriented graphs GC in Table 2

(cf. [AI, Lemma 3.4]). This is equivalent to classifying cyclic automorphisms of the dual

graphs of stable curves of genus three. In order to study the amphidrome action of a

pseudo-periodic map, we must care about the orientations of edges in Table 2.

Step 3 We classify periodic homeomorphisms modulo isotopy of a Riemann surface with

boundary, which is realized as a connected component of Σ3 − C. This is equivalent to

classifying cyclic automorphisms of an irreducible n-pointed stable curve of genus at most

three which admit permuting marked points. For this purpose, we first classify the valency

data of the cyclic automorphisms of a closed Riemann surface of genus at most three by

using Nielsen’s theorem, and Harvey’s formula (cf. [AI, Lemma 1.4]). The sufficiency of

these conditions is proved in [AI, §4.4].

Step 4 For each cyclic automorphism of the graph GC classified in Step 2, we determine

the compatible periodic homeomorphisms of “parts” of a Riemann surface described in

Step 3. In this way, we classify all conjugacy classes of pseudo-periodic maps of negative

type of genus 3 (cf. [AI, Proposition 3.8]).

Table 2 is introduced for Step 1. The weighted graphs (A) through (O) in Table 2

are the dual graphs of stable curves of genus three (cf. [AI, Lemma 3.2]). A vertex

v corresponds to a component of a stable curve and an edge connecting two vertices

corresponds to an intersection point of the two components. Let g(v) be the genus of v

and let ρ(v) be the number of singular points of the component. The number inside a
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small circle of the graph is the arithmetic genus g(v) + ρ(v) of v. We omit the number

when it is zero. For instance, the graph (B) represents six kinds of stable curves, that is,

v1 has genus i1 and 2− i1 singular points while v2 has genus i2 and 1− i2 singular points

(0 ≤ i1 ≤ 2, 0 ≤ i2 ≤ 1). We write these stable curves Bi1i2 (0 ≤ i1 ≤ 2, 0 ≤ i2 ≤ 1) for

short. Remark that considering that an edge corresponds to a component of an admissible

system, we see that Table 2 gives the classification of the decomposition of Σ3 by a precise

admissible system.

For Step 2, we must define some symbols. For an example, consider the graph of type

E11. We have two non-trivial automorphisms σ as follows:

(1) σ fixes the vertices v1 and v2, and interchanges the edges e1 and e2 preserving their

orientations.

(2) σ interchanges v1 and v2 , and fixes e1 and e2 as a set, but changes their orientations.

(3) σ interchanges the vertices v1 and v2 and interchanges the edges e1 and e2.

We express by 〈(e1, e2)〉 the cyclic group generated by the automorphism (1), express

by 〈(v1, v2)(e1,−e1)(e2,−e2)〉 the cyclic group generated by the automorphism (2), and

express by 〈(v1, v2)(e1,−e2)(e2,−e1)〉 the cyclic group generated by the automorphism

(3). This is equivalent to the following: We consider the symmetric group S6 of formally

independent six elements v1, v2, e1, −e1, e2, −e2. Then the group 〈(e1, e2)〉 is the sub-

group of S6 generated by (e1, e2)(−e1,−e2). The group 〈(v1, v2)(e1,−e1)(e2,−e2)〉 is the

subgroup generated by (v1, v2)(e1,−e1)(e2,−e2).

In order to express all cyclic automorphism groups of each weighted oriented graphs

in Table 2, we introduce the subgroups II(0,1) through V(1,1) of the symmetric group S17

of seventeen variables v1, . . . , v5,±e1, . . . ,±e6;

II(0,1)= 〈(e1, e2)〉,
II(0,2)= 〈(e1, e2)(e3, e4)〉,
II(1,1)= 〈(v1, v2)(e1, e2)〉,
II(1,2)= 〈(v1, v2)(e1,−e2)〉,
II(1,3)= 〈(v1, v2)(e1,−e1)(e2,−e2)〉,
II(1,4)= 〈(v1, v2)(e1,−e2)(e3, e4)〉,
II(1,5)= 〈(v1, v2)(e1,−e2)(e3,−e4)〉,
II(1,6)= 〈(v1, v2)(e1,−e1)(e2,−e2)(e3, e4)〉,
II(1,7)= 〈(v1, v2)(e1,−e1)(e2,−e2)(e3,−e4)〉,
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II(1,8)= 〈(v1, v2)(e1,−e1)(e2,−e2)(e3,−e3)(e4,−e4)〉,
II(1,9)= 〈(v1, v2)(e1, e3)(e2, e4)(e5,−e5)〉,
II(1,10)= 〈(v1, v2)(e1, e2)(e4,−e4)(e5, e6)〉,
II(2,1)= 〈(v1, v2)(v3, v4)(e1,−e2)(e3, e4)〉,
II(2,2)= 〈(v1, v2)(v3, v4)(e1,−e1)(e2,−e2)(e3, e4)〉,
II(2,3)= 〈(v1, v2)(v3, v4)(e1,−e2)(e3,−e4)(e5, e6)〉,
II(2,4)= 〈(v1, v2)(v3, v4)(e1,−e1), (e2,−e2)(e3,−e3)(e4,−e4)(e5, e6)〉,
II(2,5)= 〈(v1, v2), (v3, v4), (e1,−e2), (e3,−e3)(e4,−e4)(e5, e6)〉,
II(2,6)= 〈(v1, v2)(v3, v4)(e1,−e5), (e2,−e6)(e3,−e3)(e4,−e4)〉,
II(2,7)= 〈(v1, v4)(v2, v3)(e5,−e6), (e1,−e3)(e2,−e4)〉,
II(2,8)= 〈(v1, v3)(v2, v4)(e1, e3), (e2, e4)(e5,−e5)(e6,−e6)〉,
III(0,1)= 〈(e1, e2, e3)〉,
III(1,1)= 〈(v1, v2, v3)(e1, e2, e3)〉,
III(1,2)= 〈(v1, v2, v3)(e1, e2, e3)(e4, e5, e6)〉,
IV(0,1)= 〈(e1, e2, e3, e4)〉,
IV(1,1)= 〈(v1, v2)(e1,−e2, e3,−e4)〉,
IV(1,2)= 〈(v1, v2)(e1, e2, e3, e4)(e5, e5)〉,
IV(1,3)= 〈(v1, v3, v4, v2)(e6, e3,−e2, e4)(e1, e5,−e1,−e5)〉,
IV(2,1)= 〈(v1, v4)(v2, v3)(e1,−e3, e2,−e4)(e5,−e6)〉,
IV(2,2)= 〈(v1, v3)(v2, v4)(e1, e3, e2, e4)(e5,−e5)(e6,−e6)〉,
VI(1,1)= 〈(v1, v2)(e1,−e2)(e3,−e1)(e2,−e3)(e4,−e4)〉,

Consider the type E00 and E11. Then the non-trivial cyclic automorphism groups of

them are II(1, 2) or II(1, 3). For simplicity, we express it as

Eij (0 ≤ i, j ≤ 1) : II(0, 1), II(1, 2), II(1, 3).

Then, we have the following lemma.

Lemma 2.2 ([AI, Lemma 3.4])

The non-trivial cyclic automorphism groups of the weighted oriented graphs in Table 2

are classified as follows:

(1) Ciij (0 ≤ i, j ≤ 1): II(1,1).

(2) Diij (0 ≤ i, j ≤ 1): II(1,1), Diii (0 ≤ i ≤ 1): III(1,1).

(3) Eij (0 ≤ i, j ≤ 1): II(0,1), Eii (0 ≤ i ≤ 1): II(0,1), II(1,2), II(1,3).

(4) Fij (0 ≤ i, j ≤ 1): II(0,1), Fii (0 ≤ i ≤ 1): II(0,1), II(2,1), II(2,2).

(5) Gij (0 ≤ i ≤ 1): II(0,1).
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(6) Hi (0 ≤ i ≤ 1): II(0,1), III(0,1).

(7) Ii (0 ≤ i ≤ 1): II(0,1), III(0,1).

(8) J (0 ≤ i ≤ 1): II(0,1), II(1,4), II(1,6).

(9) K (0 ≤ i ≤ 1): II(0,1), II(1,4), II(1,6).

(10) L: II(0,1), II(0,2), II(1,5), II(1,7), II(1,8), III(0,1), IV(0,1), IV(1,1), VI(1,1).

(11) M: II(0,1), II(0,2), II(1,9), IV(1,2).

(12) N: II(0,1), II(0,2), II(2,3), II(2,4), II(2,5), II(2,7), II(2,8), IV(2,1), IV(2,2).

(13) O: II(1,10), II(2,6), III(1,2), IV(1,3)

2.2 Classification of periodic map

For Step 3, we classified the periodic automorphism of curves with r nodes and k bound-

aries (cf. [AA §2]).

First, we classify the periodic map of curves of genus at most three. In the isotopy class

of a periodic map of Σg, one can choose a representative which is an analytic automorphism

under a certain complex structure on Σg ([Ni1], [B2, Theorem 1] or in more generalized

form [Ke]). Thus, it suffices to classify the cyclic analytic automorphism of curves of

genus at most three. Let f : Σg → Σg be a cyclic analytic automorphism of order n, and

let Π: Σ → Σ′ be the corresponding n-fold cyclic covering. Let g′ be the genus of Σ′.

By Nielsen’s theorem [Ni1, §11], it suffices to classify the order of the map and the

valencies of cone points and the valencies of boundaries. For brevity’s sake, if we have

the data of valencies (n/λi, λi, σi) (1 ≤ i ≤ l), we symbolically write σ1/λ1 + . . . + σl/λl

which we call the total valency. We also write the order n of the map and the genus g′ of

Σ′. However, if g′ = 0, the genus is omitted.

First, we classify the periods and total valencies of curves of genus at most two.

Lemma 2.3 [AI, Lemma 1.4]

Non-identical conjugacy classes of periodic maps of closed surfaces of genus g (1 ≤
g < 3) are classified followings:

(I) g = 1:

(1) n = 6; 1/6 + 1/3 + 1/2, 5/6 + 2/3 + 1/2.

(2) n = 4; 1/4 + 1/4 + 1/2, 3/4 + 3/4 + 1/2.

(3) n = 3; 1/3 + 1/3 + 1/3, 2/3 + 2/3 + 2/3.

(4) n = 2; 1/2 + 1/2 + 1/2 + 1/2.

(5) g′ = 1, n is arbitrary and Π: Σ → Σ′ is an unramified covering.
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(II) g = 2:

(1) n = 10; 1/10 + 2/5 + 1/2, 3/10 + 1/5 + 1/2, 7/10 + 4/5 + 1/2, 9/10 + 3/5 + 1/2.

(2) n = 8; 1/8 + 3/8 + 1/2, 5/8 + 7/8 + 1/2.

(3) n = 6; 1/6 + 1/6 + 2/3, 5/6 + 5/6 + 1/3, 1/3 + 2/3 + 1/2 + 1/2.

(4) n = 5; 1/5 + 1/5 + 3/5, 1/5 + 2/5 + 2/5, 2/5 + 4/5 + 4/5, 3/5 + 3/5 + 4/5.

(5) n = 4; 1/4 + 3/4 + 1/2 + 1/2.

(6) n = 3; 1/3 + 1/3 + 2/3 + 2/3.

(7) n = 2; 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2.

(8) g′ = 1, n = 2 and 1/2 + 1/2.

Let Σ be a real surface of genus g with k boundary curves ∂1, · · · , ∂k. Let f : Σ −→ Σ

be an orientation-preserving homeomorphism which satisfies (1) there is a disjoint union

of simple closed curves C =
∐r

j=1 Cj such that C and ∂Σ =
∐k

j=1 ∂j do not intersect each

other, (2) Σ− C is connected and (3) f |Σ−C is periodic.

Let Σ̃ be the closed surface containing Σ obtained by pasting disks Dj (1 ≤ j ≤ k)

along ∂j and let f̃ : Σ̃ −→ Σ̃ be the extension of f to the homeomorphism of closed surface.

We can consider the natural projection Π: Σ̃ −→ Σ̃′ corresponding to f̃ and let g′ be the

genus of Σ̃′. Let Aj be an annular neighborhood of Cj and let C ′
j and C ′′

j be boundaries

of Aj. We set A :=
⋃r

j Aj. We use the following notation. We write the valency data

of ∂j by bold face characters. We enclose by the double parenthesis the valency data

of the boundary curves C ′
j and C ′′

j of Aj. If f permutes the components of ∂Σ or the

components of C or the components of the boundary curves of A, then we use the symbol

of permutation. For example, if f(∂1) = ∂2, f(∂2) = ∂3 and f(∂3) = ∂1, then we write

(∂1, ∂2, ∂3). If C1, · · · , Cs (s ≤ r) is amphidrome, we write Amp{C1, · · · , Cs}. We denote

the order of f by ord(f). We sometimes omit it if there is no fear of confusion. For

each f̃ which is classified in the following tables, we construct a generalized quotient S
f̃
.

Moreover, we add arrows at the top of the trees of S
f̃

corresponding to the center of the

disks Dj (see for instance (ii2) of Table 1). We also denote this space by Sf and called

the marked generalized quotient space of f . We draw the figure of marked generalized

quotient space of f which are classified in the following table (ii) through (xv). Note

that the sequences of integers in Table 1 mean the sequences of multiplicities of chains

of nonsingular rational curves and that the thick lines mean a chain of (−2)-curves (cf.

[AI]).

(i) Assume g = 3 and r = k = 0. In this case, we classify the periodic maps of curves

of genus three (cf. [AI, Lemma 1.4]).
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(1)n = 14, 11/14 + 5/7 + 1/2, (2)n = 14, 3/14 + 2/7 + 1/2,

(3)n = 14, 13/14 + 4/7 + 1/2, (4)n = 14, 1/14 + 3/7 + 1/2,

(5)n = 14, 9/14 + 6/7 + 1/2, (6)n = 14, 5/14 + 1/7 + 1/2,

(7)n = 12, 11/12 + 7/12 + 1/2, (8)n = 12, 1/12 + 5/12 + 1/2,

(9)n = 12, 11/12 + 3/4 + 1/3, (10)n = 12, 1/12 + 1/4 + 2/3,

(11)n = 12, 7/12 + 3/4 + 2/3, (12)n = 12, 5/12 + 1/4 + 1/3,

(13)n = 9, 8/9 + 4/9 + 2/3, (14)n = 9, 1/9 + 5/9 + 1/3,

(15)n = 9, 7/9 + 5/9 + 2/3, (16)n = 9, 2/9 + 4/9 + 1/3,

(17)n = 9, 8/9 + 7/9 + 1/3, (18)n = 9, 1/9 + 2/9 + 2/3,

(19)n = 8, 7/8 + 3/8 + 3/4, (20)n = 8, 1/8 + 5/8 + 1/4,

(21)n = 8, 5/8 + 5/8 + 3/4, (22)n = 8, 3/8 + 3/8 + 1/4,

(23)n = 8, 7/8 + 7/8 + 1/4, (24)n = 8, 1/8 + 1/8 + 3/4,

(25)n = 7, 6/7 + 6/7 + 2/7, (26)n = 7, 1/7 + 1/7 + 5/7,

(27)n = 7, 6/7 + 5/7 + 3/7, (28)n = 7, 1/7 + 2/7 + 4/7,

(29)n = 7, 6/7 + 4/7 + 4/7, (30)n = 7, 1/7 + 3/7 + 3/7,

(31)n = 7, 5/7 + 5/7 + 4/7, (32)n = 7, 2/7 + 2/7 + 3/7,

(33)n = 6, 5/6 + 1/6 + 1/2 + 1/2, (34)n = 6, 5/6 + 1/3 + 1/3 + 1/2,

(35)n = 6, 1/6 + 2/3 + 2/3 + 1/2, (36)n = 4, 3/4 + 3/4 + 3/4 + 3/4,

(37)n = 4, 1/4 + 1/4 + 1/4 + 1/4, (38)n = 4, 3/4 + 3/4 + 1/4 + 1/4,

(39)n = 4, 3/4 + 3/4 + 1/2 + 1/2 + 1/2, (40)n = 4, 1/4 + 1/4 + 1/2 + 1/2 + 1/2,

(41)n = 3, 2/3 + 2/3 + 2/3 + 2/3 + 1/3, (42)n = 3, 1/3 + 1/3 + 1/3 + 1/3 + 2/3,

(43)n = 2, 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2,

(44)n = 4, g′ = 1, 1/2 + 1/2, (45)n = 3, g′ = 1, 2/3 + 1/3

(46)n = 2, g′ = 1, 1/2 + 1/2 + 1/2 + 1/2,

(47)n = 2, g′ = 1 and Π: Σg −→ Σg′ is an unramified covering.

(ii) Assume g = 2, r = 0 and k = 1.

(1) f̃ = id
Σ̃
. (2) 7/10 + 4/5 + 1/2. (3) 3/10 + 1/5 + 1/2.

(4) 9/10 + 3/5 + 1/2. (5) 1/10 + 2/5 + 1/2. (6) 7/8 + 5/8 + 1/2.

(7) 7/8 + 5/8 + 1/2. (8) 1/8 + 3/8 + 1/2. (9) 1/8 + 3/8 + 1/2.

(10) 5/6 + 5/6 + 1/3. (11) 1/6 + 1/6 + 2/3. (12) 4/5 + 4/5 + 2/5.

(13) 4/5 + 4/5 + 2/5. (14) 1/5 + 1/5 + 3/5. (15) 1/5 + 1/5 + 3/5.

(16) 3/5 + 3/5 + 4/5. (17) 3/5 + 3/5 + 4/5. (18) 2/5 + 2/5 + 1/5.

(19) 2/5 + 2/5 + 1/5. (20) 3/4 + 1/4 + 1/2 + 1/2. (21) 3/4 + 1/4 + 1/2 + 1/2.

(22) 2/3 + 2/3 + 1/3 + 1/3. (23) 2/3 + 2/3 + 1/3 + 1/3.
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(24) 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2

(25) g′ = 1, 1/2 + 1/2.

(iii) Assume g = 3, r = 1 and k = 0. Suppose that C1 is non-amphidrome. Then we

may consider any two valencies of the fixed points of in the list of Lemma 2.3, (II) as the

valencies at C ′
1 and C ′′

1 for f . Then:

(1) f̃ |Σ−C = id. (2) ((7/8)) + ((5/8)) + 1/2. (3) ((3/8)) + ((1/8)) + 1/2.

(4) ((5/6)) + ((5/6)) + 1/3. (5) ((1/6)) + ((1/6)) + 2/3. (6) ((4/5)) + ((4/5)) + 2/5.

(7) ((4/5)) + 4/5 + ((2/5)). (8) ((1/5)) + ((1/5)) + 3/5. (9) ((1/5)) + 1/5 + ((3/5)).

(10) ((3/5)) + ((3/5)) + 4/5. (11) ((3/5)) + 3/5 + ((4/5)). (12) ((2/5)) + ((2/5)) + 1/5.

(13) ((2/5))+ 2/5 +((1/5)). (14) ((3/4))+((1/4))+ 1/2 + 1/2.

(15) ((2/3))+((2/3))+ 1/3 + 1/3. (16) ((2/3))+ 2/3+((1/3))+ 1/3.

(17) ((1/3))+((1/3))+ 2/3 + 2/3. (18) ((1/2)) + ((1/2)) + 1/2 + 1/2 + 1/2 + 1/2.

(19) g′ = 1, ((1/2)) + ((1/2)).

Suppose C1 is amphidrome. Then:

(20) 7/10 + ((4/5)) + 1/2. (21) 3/10 + ((1/5)) + 1/2. (22) 9/10 + ((3/5)) + 1/2.

(23) 1/10 + ((2/5)) + 1/2. (24) 5/6 + 5/6 + ((1/3)). (25) 1/6 + 1/6 + ((2/3)).

(26) ((1/3)) + 2/3 + 1/2 + 1/2. (27) 1/3 + ((2/3)) + 1/2 + 1/2.

(28) 3/4 + 1/4 + ((1/2)) + 1/2.

(29) Π: Σ̃ −→ Σ̃′ is a double covering with six branch points such that the disks D′
1 and

D′′
1 do not contain any branch points, f̃(C ′

1) = C ′
2 and the valency at C ′

1, C
′′
1 is (2, 1, 1).

In this case, we write the total valency data as 1/2 +1/2 +1/2 +1/2 +1/2 +1/2 +((1)).

From now on, we use the same notation in a similar situation.

(30) g′ = 1, 1/2 + 1/2 + ((1)).

We write the figures of Sf of (iii)(1) ∼ (30) in (iii1) ∼ (iii30) of Table 1.

(iv) Assume g = 1, r = 0 and k = 1. Then:

(1) f̃ = id. (2) 5/6 + 2/3 + 1/2. (3) 1/6 + 1/3 + 1/2.

(4) 2/3 + 2/3 + 2/3. (5) 1/3 + 1/3 + 1/3. (6) 3/4 + 3/4 + 1/2.

(7) 1/4 + 1/4 + 1/2. (8) 1/2 + 1/2 + 1/2 + 1/2.

(v) Assume g = 1, r = 0 and k = 2.

(a) Suppose f(∂i) = ∂i (i = 1, 2). Then:

(a1) f̃ = id. (a2) 3/4 + 3/4 + 1/2. (a3) 1/4 + 1/4 + 1/2.

(a4) 2/3 + 2/3 + 2/3. (a5) 1/3 + 1/3 + 1/3. (a6) 1/2 + 1/2 + 1/2 + 1/2.

(b) Suppose (∂1, ∂2). Then:
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(b1) 5/6 + 2/3 + 1/2. (b2) 1/6 + 1/3 + 1/2. (b3) 3/4 + 3/4 + 1/2.

(b4) 1/4 + 1/4 + 1/2. (b5) 1/2 + 1/2 + 1/2 + 1/2 + 1.

(b6) f̃ is an unramified double cover.

(vi) Assume g = 1, r = 0 and k = 3.

(a) Suppose f̃(∂i) = ∂i (i = 1, 2, 3). Then:

(a1) f̃ = id. (a2) 2/3+2/3+2/3. (a3) 1/3+1/3+1/3. (a4) 1/2+1/2+1/2+ 1/2.

(b) Suppose (∂1, ∂2) and f̃(∂3) = ∂3. Then:

(b1) 5/6 + 2/3 + 1/2. (b2) 1/6 + 1/3 + 1/2. (b3) 3/4 + 3/4 + 1/2.

(b4) 1/4 + 1/4 + 1/2. (b5) 1/2 + 1/2 + 1/2 + 1/2 + 1.

(c) Suppose (∂1, ∂2, ∂3). Then:

(c1) 5/6+2/3+1/2. (c2) 1/6+1/3+1/2. (c3) 2/3+2/3+2/3+1. (c4) 1/3+1/3+1/3+1.

(c5) f comes from an unramified triple covering.

(vii) Assume g = 2, r = 1 and k = 1.

Suppose C1 is non-amphidrome. Then;

(1) f̃ |Σ−C = id. (2) ((2/3)) + ((2/3)) + 2/3. (3) ((1/3)) + ((1/3)) + 1/3.

(4) ((1/2)) + ((1/2)) + 1/2 + 1/2.

Suppose Amp{C1}. Then:

(5) 5/6 + ((2/3)) + 1/2. (6) 1/6 + ((1/3)) + 1/2. (7) 3/4 + 3/4 + ((1/2)).

(8) 1/4 + 1/4 + ((1/2)). (9) 1/2 + 1/2 + 1/2 + 1/2 + ((1)).

(viii) Assume g = 3, r = 2 and k = 0. Then;

(1) f̃ |Σ−C = id. (2) ((3/4)) + ((3/4)) + ((1/2)). (3) ((1/4)) + ((1/4)) + ((1/2)).

(4) ((1/2)) + ((1/2)) + ((1/2)) + ((1/2)). (5) ((1/2)) + ((1/2)) + 1/2 + 1/2 + ((1)).

(6) 1/2 + 1/2 + 1/2 + 1/2 + ((1)) + ((1))

(7) Π: Σ̃ → Σ̃ is an unramified double covering. Amp{C1), C2}.
(8) (C1, C2), 1/2 + 1/2 + 1/2 + 1/2 + ((1)) + ((1)).

(9) (C1, C2), Amp{C1, C2}, 1/4 + 1/4 + 1/2 + ((1)) + ((1)).

(10) (C1, C2), Amp{C1, C2}, 3/4 + 3/4 + 1/2 + ((1)) + ((1)).

(11) Π: Σ̃ → Σ̃ is an unramified double covering. (C1, C2).

(12) Amp{C1, C2}, (C1, C2) and f comes from an unramified four-fold covering.

(ix) Assume g = r = 0 and k = 3. Then:

(a) f̃ = id.

(b) ord(f) = 2, (∂1, ∂2), f(∂3) = ∂3, 1/2 + 1/2 + 1.

(c) ord(f) = 3, (∂1, ∂2, ∂3), 1/3 + 2/3 + 1.
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(x) Assume g = r = 0 and k = 4. Then:

(a) f̃ = id.

(b) ord(f̃) = 2, (∂1, ∂2), f(∂i) = ∂i (i = 3, 4), 1/2 + 1/2 + 1.

(c) ord(f̃) = 2, (∂1, ∂2), (∂3, ∂4), 1/2 + 1/2 + 1 + 1.

(d1) ord(f̃) = 3, (∂1, ∂2, ∂3), f(∂4) = ∂4, 2/3 + 1/3 + 1.

(d2) ord(f̃) = 3, (∂1, ∂2, ∂3), f(∂4) = ∂4, 2/3 + 1/3 + 1 .

(e) ord(f̃) = 4, (∂1, ∂2, ∂3, ∂4), 3/4 + 1/4 + 1.

(xi) Assume g = r = 1 and k = 1. Then:

(1) f̃ |Σ−C = id.

(2) ord(f̃) = 2, Amp{C1}, 1/2 + 1/2 + ((1)).

(xii) Assume g = r = 1 and k = 2. Then;

(a1) f̃ |Σ−C = id.

(a2) ord(f̃) = 2, Amp{C1}, 1/2 + 1/2 + ((1)).

(b1) ord(f̃) = 2, Amp{C1}, (∂1, ∂2), 1/2 + 1/2 + ((1)) + 1.

(b2) ord(f̃) = 2, (∂1, ∂2), ((1/2)) + ((1/2)) + 1.

(xiii) Assume g = r = 1 and k = 3. Then:

(a) f̃ |Σ−C = id.

(b) ord(f̃) = 2, Amp{C1}, 1/2 + 1/2 + 1 + ((1)).

(c) ord(f̃) = 3, (∂1, ∂2, ∂3), ((1/3)) + ((2/3)) + 1.

(xiv) Assume g = r = 2 and k = 1. Then:

(1) f̃ |Σ−C = id.

(2) ord(f̃) = 2, Amp{C1, C2}, 1/2 + 1/2 + ((1)) + ((1)).

(3) ord(f̃) = 2, (C1, C2), 1/2 + 1/2 + ((1)) + ((1)).

(4) ord(f̃) = 4, Amp{C1, C2}, (C ′
1, C

′
2, C

′′
1 , C ′′

2 ), 3/4 + 1/4 + ((1)).

(5) ord(f̃) = 4, Amp{C1, C2}, (C ′
1, C

′
2, C

′′
1 , C ′′

2 ), 3/4 + 1/4 + ((1)).

(xv) Assume g = r = 3 and k = 0. Then:

(1) f̃ |Σ−C = id.

(2) ord(f̃) = 2, Amp{C1, C2}, f(C3) = C3, ((1/2)) + ((1/2)) + ((1)) + ((1)).

(3) ord(f̃) = 2, Amp{C1, C2, C3}, 1/2 + 1/2 + ((1)) + ((1)) + ((1)).

(4) ord(f̃) = 2, Amp{C3}, (C1, C2) 1/2 + 1/2 + ((1)) + ((1)) + ((1)).

(5) ord(f̃) = 2, (C1, C2), f(C3) = C3, ((1/2)) + ((1/2)) + ((1)) + ((1)).

(6) ord(f̃) = 3, (C1, C2, C3), 1/3 + 2/3 + ((1)).
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(7) ord(f̃) = 4, Amp{C1, C2}, f̃(C3) = C3, (C ′
1, C

′
2, C

′′
1 , C ′′

2 ), ((1/4)) + ((3/4)) + ((1)).

(8) ord(f̃) = 6, Amp{C1, C2, C3}, (C ′
1, C

′
2, C

′
3, C

′′
1 , C ′′

2 , C ′′
3 ), 1/6 + 5/6 + ((1)).

2.3 Monodromies and their generalized quotients

For Step 4, we introduce the definition of the quotient graphs and the notion of “substi-

tution”

Let X and G = 〈σ〉 be a weighted oriented graph and a cyclic automorphism group

of X described in Lemma 2.2. We define the quotient graph Y of X with respect to G

as follows (cf. [MM1, §7]): Y is a weighted graph which may have loops and satisfies the

following properties:

(i) There exists a map h: X −→ Y of graphs.

(ii) Let |X| and |Y | be the underlying 1-dimensional cell complex of X and Y , respec-

tively. Then the map h naturally induces a finite covering map |h|: |X| −→ |Y | such that

the covering transformation group of |h| coincides with G.

(iii) Let v̄ be a vertex of Y . Then h−1(v̄) consists of a finite number, say l(v̄), of

vertices vi (1 ≤ i ≤ l(v̄)) such that their weights (g(vi), ρ(vi)) coincide with each other,

and denoted by (g(v̄), ρ(v̄)). In this sense, v̄ has the triple weight (l(v̄), g(v̄), ρ(v̄)).

(iv) Let ē be an edge of Y . Then h−1(ē) consists of a finite number, say ξ(ē) of edges

of X. We put ξ(ē) on ē as the weight.

We remark that, if the vertices v, v′ which are ends of an edge e satisfies h(v) = h(v′),

then h(e) is a loop of Y starting from and ending at h(v).

Next we define the resolution Ỹ of Y . Suppose that there exists an edge e of X and

an positive integer m which satisfy σm(v) = v′ and σm(v′) = v, where v and v′ are the

vertices at both ends of e. Then we replace σ(e) by a line with weight 2m where the top

part is branched into two lines with weight m (see for instance Graph(6) in Table 3). We

call the sum of these three lines D-edge of weight 2m. After completing this process for

every edge with the above property, we obtain a weighted graph Ỹ , which we denote by

Ỹ = X/G.

In Table 3 , the number inside a small circle (i.e., a vertex v̄) means g(v̄) + ρ(v̄), and

the number beside the circle means l(v̄). The number beside an edge ē means ξ(ē). A

loop is written with two arrows (see for instance Graph(5)). If g(v̄)+ρ(v̄) = 0 or l(v̄) = 1

or ξ(ē) = 1, then it is omitted. Note that one graph might represent several weighted

graphs Ỹ as in the case of Table 2. Then we have;
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Lemma 2.4 [AI, Lemma 3.6] For each weighted oriented graph X and each automorphism

group G of X in Lemma 2.2, the resolution X/G of quotient graph are as in Table 2.

For a graph Ỹ = X/G, we introduce the notion of substitution of marked generalized

quotient in the following way: Since Ỹ is planer, we have an embedding ι: Ỹ ↪→ E2 into

Euclidean plane E2. We fix ι. Let v be a vertex of Ỹ . Let B(v, ε) be a closed ball of

small radius ε in E2 with center v, and we set

V = Ỹ ∩B(v, ε).

Suppose e1, . . . , es, es+1, . . . , es+s′ are the edges of Ỹ containing v as end with each of

es+1, . . . , es+s′ being a loop. Then V consists of a vertex v and s+2s′ segments e′1, . . . , e
′
s,

e′s+1, e
′′
s+1 . . . , e′s+s′ , e

′′
s+s′ (ei ∩ B(v, ε) = e′i for 1 ≤ i ≤ s, ei ∩ B(v, ε) = e′i ∪ e′′i for

s + 1 ≤ i ≤ s + s′). Moreover, V has a natural weighted graph structure induced by Ỹ ,

i.e., the vertex v has triple weight (l(v), g(v), ρ(v)) and the edge e′i (1 ≤ i ≤ s + s′) has

weight ξ(ei), which the edge e′′i (s + 1 ≤ i ≤ s + s′) has weight ξ(ei).

On the other hand, let Σ be a surface of genus at most three with k boundaries. Let

f : Σ −→ Σ be one of the pseudo-periodic maps whose admissible system consists of r

curves classified in § 2.2, and satisfies the following conditions:

(i) g = g(v), r = ρ(v) and k = (
∑s+s′

i=1 ξ(e′i) +
∑s+s′

i=s+1 ξ(e′′i ))/l(v).

(ii) Sf has s+2s′ arrows. Set Sf =
∑

j mjEj +
∑

i ni
−→
F i where Ej is a component of Sf and

−→
F i is an arrow of Sf (mi, mj are their multiplicities). Changing the order if necessary,

we have

ξ(e′i) = l(v)ni (1 ≤ i ≤ s + s′), ξ(e′′i ) = l(v)ni (s + s′ + 1 ≤ i ≤ s + 2s′).

We denote by E(
−→
F i) the component of

∑
Ej which intersect

−→
F i. We substitute Sf for V

in Ỹ in the following way: we replace the vertex v by
∑

j l(v)mjEj and connect each edge

e′i (or e′′i ) to
∑

j l(v)mjEj so that e′i (or e′′i ) intersect E(
−→
F i) transversally.

We perform this process for each part V of Ỹ , and replace each edge e of Ỹ by trees of

spheres. We also substitute each D-edge by a tree of spheres of Dynkin diagram of type D

(see [MM2, p.73 Figure 3]). In this way, we obtain the generalized quotient space Sf for a

certain pseudo-periodic map f : Σ3 −→ Σ3 of negative type. The map f has the following

properties: The graph of the admissible system of cut curves of f coincides with X, the

action to X of f coincides with G, and the stabilizer of G for each connected component

Bi of Σ3 − C coincides with one of the periodic maps in §2.2 whose marked generalized

quotient space is just substituted to Vi corresponding to Bi.
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For an example, let X = K1 and G = II(1, 4). Then the parts of K1/II(1, 4) in Table

3 (19) consist of

V1 = {v1, e
′
1; l(v1) = g(v1) = 1, ρ(v1) = 0, ξ(e′1) = 1}

V2 = {v2, e
′
1, e

′
2; l(v2) = 1, g(v2) = ρ(v2) = 0, ξ(e′1) = ξ(e′2) = 1}

V3 = {v3, e
′
2, e

′
3, e

′′
3; l(v3) = 2, g(v3) = ρ(v3) = 0, ξ(e′2) = ξ(e′3) = ξ(e′′3) = 2}.

By our rule, we substitute (iv1) ∼ (iv8) in Table 1 for V1, (ixb) for V2 and (ixa) for V3.

We write this result as

K1, II(1, 4), V1 = (iv), V2 = (ixb), V3 = (ixa).

Now we classify the conjugacy classes of the pseudo-periodic maps of negative type of

genus three. By Matsumoto-Montesinos [MM2, Theorem 2], it is equivalent to classifying

triples (X,G, Sf ) in our notation.

Since the replacement by (ixa) or (xa) is trivial, we omit it in the following theorem.

Theorem 2.5 [AI, Proposition 3.8]

The conjugacy classes of the pseudo-periodic maps of negative type of genus three are

classified as follows: (1) A3 : Id, V1 = (i) in § 2.2.

(2) A2 : Id, V1 = (iii).

(3) A1 : Id, V1 = (viii).

(4) A0 : Id, V1 = (xv).

(5) B21 : Id, V1 = (ii), V2 = (iv).

(6) B20 : Id, V1 = (ii), V2 = (xi).

(7) B11 : Id, V1 = (vii), V2 = (iv).

(8) B10 : Id, V1 = (vii), V2 = (xi).

(9) B01 : Id, V1 = (xiv), V2 = (iv).

(10) B00 : Id, V1 = (xiv), V2 = (xi).

(11) C111 : Id, V1 = V2 = (iv), V3 = (va). II(1,1), V1 = (iv), V2 = (vb).

(12) C110 : Id, V1 = V2 = (iv), V3 = (xiia). II(1,1), V1 = (iv), V2 = (xiib).

(13) C101 : Id, V1 = (iv), V2 = (xi), V3 = (va).

(14) C100 : Id, V1 = (iv), V2 = (xi), V3 = (xiia).

(15) C001 : Id, V1 = V2 = (xi), V3 = (va). II(1,1), V1 = (xi), V2 = (vb).

(16) C000 : Id, V1 = V2 = (xi), V3 = (xiia). II(1,1), V1 = (xi), V2 = (xiib).

(17) D111 : Id, V1 = V2 = V3 = (iv). II(1,1), V1 = V3 = (iv), V2 = (xb).

III(1,1), V1 = (iv), V2 = (ixc).
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(18) D110 : Id, V1 = V2 = (iv), V3 = (xi). II(1,1), V1 = (iv), V2 = (xb), V3 = (xi).

(19) D100 : Id, V1 = (iv), V2 = V3 = (xi). II(1,1), V1 = (xi), V2 = (xb), V3 = (iv).

(20) D000 : Id, V1 = V2 = V3 = (xi). II(1,1), V1 = V3 = (xi), V2 = (xb).

III(1,1), V1 = (xi), V2 = (ixc).

(21) E11 : Id, V1 = V2 = (va). II(0,1), V1 = V2 = (vb). II(1,2), V1 = (va).

III(1,3), V1 = (va).

(22) E10 : Id, V1 = (va), V2 = (viia). II(0,1), V1 = (vb), V2 = (xiib).

(23) E00 : Id, V1 = V2 = (viia). II(0,1), V1 = V2 = (viib). II(1,2), V1 = (xiia).

III(1,3), V1 = (xiia).

(24) F11 : Id, V1 = V2 = (iv). II(0,1), V1 = V4 = (iv), V2 = V3 = (ixb).

II(2,1), V1 = (iv). II(2,2), V1 = (iv).

(25) F10 : Id, V1 = (iv), V2 = (xi). II(0,1), V1 = (iv), V2 = V3 = (ixb), V4 = (xi).

(26) F00 : Id, V1 = V2 = (xi). II(0,1), V1 = V4 = (xi), V2 = V3 = (ixb).

II(2,1), V1 = (xi). II(2,2), V1 = (xi).

(27) G11 : Id, V1 = (va), V2 = (iv). II(0,1), V1 = (vb), V2 = (ixb), V3 = (iv).

(28) G10 : Id, V1 = (va), V2 = (xi). II(0,1), V1 = (vb), V2 = (ixb), V3 = (xi).

(29) G01 : Id, V1 = (xiia), V2 = (iv). II(0,1), V1 = (xiib), V2 = (ixb), V3 = (iv).

(30) G00 : Id, V1 = (xiia), V2 = (xi). II(0,1), V1 = (viib), V2 = (ixb), V3 = (xi).

(31) H1 : Id, V1 = (via). II(0,1), V1 = (vib), V2 = (ixb).

III(0,1), V1 = (vic), V2 = (ixc).

(32) H0 : Id, V1 = (xiiia). II(0,1), V1 = (xiiib), V2 = (ixb).

III(0,1), V1 = (xiiic), V2 = (ixc).

(33) I1 : Id, V1 = (iv). II(0,1), V1 = (ixb), V2 = (xb), V3 = (iv).

III(0,1), V1 = (ixc), V2 = (xd), V3 = (iv).

(34) I0 : Id, V1 = (xi). II(0,1), V1 = (ixb), V2 = (xb), V3 = (xi).

III(0,1), V1 = (ixc), V2 = (xd), V3 = (xi).

(35) J1 : Id, V3 = (va). II(0,1), V1 = (va), V2 = V3 = (ixb).

II(1,4), V1 = (vb). II(1,6), V1 = (vb).

(36) J0 : Id V3 = (xiia). II(0,1), V1 = (xiia), V2 = V3 = (ixb).

II(1,4), V1 = (xiib). II(1,6), V1 = (xiib).

(37) K1 : Id, V4 = (vi). II(0,1), V1 = V2 = (ixb), V4 = (iv).

II(1,4), V1 = (iv), V2 = (ixb). II(1,6), V1 = (iv), V2 = (ixb).

(38) K0 : Id, V4 = (xi). II(0,1), V1 = V2 = (ixb), V4 = (xi).

II(1,4), V1 = (xi), V2 = (ixb). II(1,6), V1 = (xi), V2 = (ixb).
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(39) L : Id. II(0,1), V1 = V2 = (xb). II(0,2), V1 = V2 = (xc). II(1,5).

II(1,7). II(1,8). III(0,1), V1 = V2 = (xd). IV(0,1), V1 = V2 = (xe).

IV(1,1), V1 = (xc). VI(1,1), V1 = (xd).

(40) M : Id. II(0,1), V1 = (ixb), V3 = (xb). II(0,2), V1 = (xc), V2 = V3 = (ixb).

II(1,9), V1 = (xc). IV(1,2), V1 = (xe), V2 = (ixb).

(41) N : Id. II(0,1), V1 = V3 = (ixb). II(0,2), V1 = V2 = V3 = V4 = (ixb).

IV(0,1). II(2,4). II(2,5). II(2,7). II(2,8).

IV(2,1), V1 = V2 = (ixb). IV(2,2), V1 = V2 = (ixb).

(42) O : Id. II(1,10), V1 = V2 = (ixb). II(2,6). III(1,2), V1 = (ixc). IV(1,3).

3 Possibility of the existence.

3.1 Non-periodic case

First, we introduce Horikawa’s canonical resolution of singularities which appear in double

coverings of a surface (cf. [Ho1, §2]).

Let (W0, B0) be a pair of nonsingular surface and its divisor which is free from multiple

components. We sometimes regard B0 as a line bundle on W0. Assume that there exists a

line bundle F0 on W0 such that B0 ' F⊗2
0 . Let {Ui} be a finite open covering of W0 and let

bi = 0 and {fij} are local defining equation of B0 on each {Ui} and a system of transition

functions of F0, respectively. We may assume that bi = f 2
ijbj on Ui ∩ Uj. Let wi denote

fiber coordinates of the line bundle F0 over Ui and define a subvariety S0 of F0 whose

defining equations are w2
i − bi = 0. This is well-defined because w2

i − bi = f 2
ij(w

2
j − bj)

over Ui∩Uj. Since B0 has no multiple component, S0 is a normal variety. Moreover, if B0

is nonsingular, S0 is also nonsingular. We shall call S0 the double covering with branch

locus B0. Let τ1: W1 −→ W0 be a blowing-up with center at a singular point P1 of B0 and

let E1 be the exceptional divisor of τ1 which we sometimes regard as a line bundle on W1.

We set B1 = τ ∗1 B0 − 2[m1/2]E1 and F1 = τ ∗F0 − [m1/2]E1, where m1 is the multiplicity

of B0 at P1 and [m1/2] denotes the greatest integer not exceeding m1/2. Since we have

linear equivalence B1 ∼ F⊗2
1 , there exists a double covering S1 of W1 with branch locus

B1. Letting U1 be a coordinate neighborhood on W0 whose center is P1, we may assume

that w2
1 = b1 is the defining equation of S0 over U1.

τ−1
1 (U1) is covered by a finite number of coordinate neighborhoods {Vi} on W1 and S1

is defined by the equation w̃2
i = b̃i over each Vi, where w̃i and b̃i are the fiber coordinate

on F1 and the equation of B1 on V1, respectively. Let ei be the equation of E1 on Vi.

19



Then we can define a birational holomorphic map S1 −→ S0 by

(z, wi) 7→ (q1(z), e
[m1/2]
i wi) ∈ U1.

Since a singular curve is resolved by a finite blowing-ups, we obtain a nonsingular model

Sn after a finite number of above process. We call Sn the canonical resolution of S0.

We apply above process to a hyperelliptic family of genus three. Let φ: S −→ ∆ be

a normally minimal hyperelliptic family of genus g. By the same argument in [Ho2, §1],

we see that S is bimeromorphic to a double covering ψ0: S0 −→ W0 := P1 ×∆ branched

along a divisor B0 of W0. More precisely, there is a line bundle F on P1×∆ which satisfies

B0 ∼ F⊗2 and S0 is realized in F as a double covering of P1 ×∆. Let π0 be the second

projection of W0. We set Γt = π−1
0 (t), B̃0 := B0 − Γ0 when Γ0 is a component of B0, and

B̃0 := B0 otherwise. (S0, B0) satisfies the following conditions:

(i) (B0. Γt) = 2g + 2 for t ∈ ∆, where (B0. Γt) is the intersection number of B0 and Γt.

(ii) If a point P satisfies IP (B̃0, π
−1
0 (t))≥ 2, then P is on Γ0, where IP (B̃0, Γt) is the

local intersection number of B̃0 and Γt at P .

Let τ1: W1 −→ W0 be the blowing-up at a point P which satisfies IP (B0, Γ0)≥ 2 and let

π1: W1 −→ ∆ be the composite π0 ◦ τ1. We set E1 := τ−1
1 (P ), B1 := τ ∗1 (B0)− 2[mP /2]E1

and F1 := τ ∗1 F0 − [mp/2]E1, where mP is the multiplicity of B0 at P and [mP /2] is the

greatest integer not exceeding mP /2. Since [B1] = 2F1, there exists a double covering

ψ1: S1 −→ W1 branched along B1. By the same argument in [Ho1, §2], we can construct a

bimeromorphic map τ̃1: S1 −→ S0 which satisfies ψ0 ◦ τ̃1 = τ1 ◦ψ1 and π0 ◦ψ0 ◦ τ̃1 = π1 ◦ψ1.

We call a point P on Bi a bad point if Bi is singular at P or IP ((τ1◦· · · τi)
∗(Γ0)red, B̃i) ≥ 2,

where B̃i is the strict transform of B̃0 by τ1 ◦· · ·◦τi. Repeating this process at bad points,

we obtain a sequence of blowing-ups Wr
τr−→ · · · −→ W1

τ1−→ W0 which satisfies the

following properties:

(i) (Br)red is nonsingular.

(ii) Θ := (τ1 ◦ · · · ◦ τr)
∗(Γ0) and the strict transform of B̃0 intersect each other transver-

sally.

Sr is nonsingular by (i). The reduced scheme of the special fiber of Sr is a normal crossing

divisor by (ii) and φ: S −→ ∆ is the normally minimal model of φr = πr ◦ ψr: Sr −→ ∆

which satisfies φ ◦ τ̃ = φr, where τ̃ is the composite of blowing-downs of suitable (−1)-

curves. We call above process Horikawa’s canonical resolution.
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Lemma 3.1 Let E be a component of (τ1 ◦ · · · ◦ τi)
∗(Γ0) whose multiplicity α is greater

than or equal to 2. Assume that E intersects three different components Ej1, Ej2, Ej3 of

(τ1 ◦ · · · ◦ τi)
∗(Γ0). Let Êji

(i = 1, 2, 3) be the maximal connected subdivisors of (τ1 ◦ · · · ◦
τi)

∗(Γ0) such that their supports do not contain E and that Êji
≥ Eji

. If α does not divide

the greatest common divisor of the multiplicities of the components of Êji
(i = 1, 2), then

there exists a subdivisor D of (τ1 ◦ · · · ◦ τi)
∗(Γ0) such that Êj3 is equal to αD.

Proof If there exists no divisor D such that Êj3 is equal to αD, then there exists

r′ (1 ≤ r′ ≤ r) such that three different exceptional sets of τ1 ◦ · · · ◦ τr′ meet at a point, a

contradiction to the process of Horikawa’s canonical resolution. q.e.d.

Let C be a prime divisor of S which is a component of φ−1(0) and let Z be the set of

points which are the images of (−1)-curves of τ̃ . We let Π(C) := ψr ◦ τ̃−1(C − Z) be the

closure of ψr ◦ τ̃−1(C − Z) in Wr. We also see Π(C) as a prime divisor on Wr.

Let C be a prime divisor of S which is a component of φ−1(0). Assume C ′ to be

another component of φ−1(0) which satisfies Π(C) 6= Π(C′) and Π(C) intersects Π(C′) at

a point. Since the dual graph of Θ is connected, there exists a subdivisor DCC′ =
∑

aiEi

of Θ which satisfies the following conditions:

(i) Θ ≥ DCC′ and Θ 6≥ DCC′ + Ei for all Ei (ai 6= 0).

(ii) Supp(Π(C)) ∩DCC′ 6= ∅ and Supp(Π(C ′)) ∩DCC′ 6= ∅.

(iii) DCC′ 6≥ Π(C) and DCC′ 6≥ Π(C ′).

(iv) Supp(DCC′) is connected.

We call the divisor DCC′ the bridge between Π(C) and Π(C ′). Since the dual graph of Θ

has no loop, the bridge is uniquely determined.

By semistable reduction theorem (cf. [DM]), for any degeneration (φ, S, ∆), there exists

a branched cover ∆′ −→ ∆ totally ramified over 0 such that the minimal resolution S ′ of

S×∆∆′ −→ ∆′ is a semistable family. We call S ′ −→ ∆′ the semistable model of (φ, S, ∆).

Let S ′ −→ S ′′ be a composite of blowing-downs of (−2)-curves and assume S ′′ to be free

from (−2)-curves. We call S ′′ −→ ∆′ the stable model of (φ, S, ∆). We sometimes call

the special fiber of the (semi)stable model of (φ, S, ∆) the (semi)stable model. Let Fss be

a semistable curve. If there exists no hyperelliptic family whose special fiber is Fss, there

neither exists a hyperelliptic family whose semistable model has Fss as the special fiber,
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because if (φ, S, ∆) is a hyperelliptic family, the (semi)stable model is also a hyperelliptic

family.

Figure (A) to (O) in Table 2 can be regarded as the dual graphs of stable curves of

genus three. Furthermore, if we replace each edge of these graphs by a chain of (−2)-

curves, these graphs can be regarded as the weighted dual graphs of semistable curves of

genus three. We call a chain of (−2)-curves a P1-chain at the edge and call the number

of components of a P1-chain the length of the P1-chain.

Theorem 3.2 There exists no hyperelliptic family of genus three whose topological type

of the special fiber of the semistable model is (D), (H), (I), (M), (O) in Table 2.

Proof We use the same notation as in the above paragraph. Since the degeneration

which is obtained by a base change of a hyperelliptic family is a hyperelliptic family, we

may assume the hyperelliptic family φ: S −→ ∆ to be semistable. Moreover, we only

consider the case of a stable family, because the case of a semistable family is similar.

The vertices of the graphs are regarded as the corresponding irreducible curve for the

simplicity of the notation.

Case (D). Note that Π(vi) (1 ≤ i ≤ 4) are not components of the branch locus,

because the multiplicity of each vi is one. Since vi (1 ≤ i ≤ 3) intersects v4 at a point, the

bridge between Π(vi) and Π(v4) intersects v4 at one point Pi, and Pi is contained within

the branch locus of ψr. It means that v4 is the double covering of P1 branched at least

at three points. This contradicts the fact that v4 is P1.

Case (H), (I). Π(v1) is not equal to Π(v2), because v1 is not homeomorphic to v2

in the case of (H) and v2 intersects v3 in the case of (I). Since v1 intersects v2 at three

points, there exists at least two bridges between Π(v1) and Π(v2), a contradiction.

Case (M). If Π(v1) 6= Π(v2), the dual graph of Θ has a loop. We may assume

Π(v1) = Π(v2). Since Π(v1) 6= Π(v3), there exists at least two bridges between Π(v3) and

Π(v1) = Π(v2), a contradiction.

Case (O). We may assume Π(v1) = Π(v2) and Π(v3) = Π(v4). In view of the config-

uration of (O), there exists at least two bridges between Π(v1) and Π(v3), a contradiction.

q.e.d.

Theorem 3.3 There exist (semi)stable families of hyperelliptic families whose topological

types of the special fibers are (A), (B), (C), (E), (F ), (G), (J), (K), (L), (N), if the following

conditions are satisfied:
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(i) The length of the P1-chains are the same at e1 and e2 in the cases of (E), (F ) and

(G).

(ii) The length of the P1-chains are the same at e3 and e4 in the cases of (F ), (J) and

(K).

(iii) The length of the P1-chains are the same at e5 and e6 in the case of (N).

There exist no hyperelliptic families if the above conditions are not satisfied.

Proof We prove the existence of the families in Section 4 by giving explicit examples

of the equations of the double coverings.

If there exists a family whose special fiber is (E) and which does not satisfy the

above condition (i), then there exist at least two bridges between Π(v1) and Π(v2), a

contradiction. The other cases are proved by the same argument. q.e.d.

In the following theorem, a screw number is said to be “special” if no example of

equation of the monodromies appears in Section 4.

Theorem 3.4 There exist no hyperelliptic families whose topological monodromies are

the following:

A2: (iii2), (iii3), (iii7), (iii9), (iii11), (iii13), (iii14), (iii16), (iii18), (iii28).

A1: (viii5), (viii12).

A0: (xv2), (xv7).

B1i (i = 0, 1) : V1 = {(vii4), (vii7), (vii8)}.
B0i (i = 0, 1) : V1 = (xiv3).

C111: Id, V3 = {(va4), (va5)}.
C111: II(1,1) V3 = {(vb1), (vb2)}.
C101: Id, V3 = {(va4), (va6)}.
C001: Id, V3 = {(va4), (va6)}.
C001: II(1,1), V3 = {(vb1), (vb2)}.
N : II(2,5), II(2,7), IV(2,1).

Eii (i = 0, 1): II(0,1), and the screw number at e1 is special.

Fii (i = 0, 1): II(0,1), and the screw number at e1 is special.

Gij (i = 0, 1): II(0,1), and the screw number at e1 is special.

Ji (i = 0, 1): II(1,4), and the screw number at e1 is special.

Ki (i = 0, 1): II(1,4), and the screw number at e1 is special.
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Proof Since there are too many cases, we write down the proof for only five typical

cases.

Case A2: (iii2). Assume that there exists a normally minimal hyperelliptic family

whose topological monodromy is A2: (iii2). The dual graph of its special fiber has a

loop, and the multiplicities of components of the loop are not the same. Hence there

exists a loop in the dual graph of Θ, a contradiction. The cases of A2: (iii3), (iii7), (iii9),

(iii11), (iii13), (iii14), (iii16), C111: Id, V3 = (va4, 5), C111: II(1,1), V3 = (vb1, 2), C101:

Id, V3 = (va4, 6), C001: Id, V3 = (va4, 6), C001: II(1,1), V3 = (vb1, 2), N : IV(2,1), can be

proved by the same argument.

Case A2: (iii18). If there exists a hyperelliptic family whose topological monodromy

is A: (iii18), then we have a contradiction to Lemma 3.1. The cases of A2: (iii28), A1:

(viii5), A0: (xv2), (xv7), B1i (i = 0, 1) : V1 = {(vii4), (vii7), (vii8)}, B0i (i = 0, 1) :

V1 = (xiv3), N : II(2,7), can be proved by the same argument.

Case A1: (viii12). If there exists a hyperelliptic family S whose monodromy is

A1: (viii12), the configuration of the special fiber is as shown in Figure 1. We consider

ψ0: S0 −→ ∆ × P1 as in §3.1. Since the greatest common divisor of multiplicities of the

components of the special fiber is equal to two, Γ0 has to be a component of the branch

locus of ψ0. Let Γ̃0 be the strict transform of Γ0 in Wr. Assume that Π(v1) is not a

component of the branch locus. Then Π(v1) intersects the bridge between Π(v1) and

Π(v4) at a point which is contained in the branch locus. If Π(v2) 6= Π(v3), then Π(v1)

intersects the bridge between Π(v1) and Π(vi) (i = 2, 3) at a point which is contained

in the branch locus, a contradiction to the fact that v1 is a nonsingular rational curves.

We may also assume that Π(v2) = Π(v3), it is not a component of the branch locus

and its multiplicity is equal to two. Since the multiplicity of double covering of Γ̃0 is

equal to two, there exists the bridge between Π(v2) and Γ̃0 which dose not contain Π(v1)

as a component. However, Γ̃0 is a component of branch locus, a contradiction to the

configuration of the special fiber. Assume that Π(v1) is a component of the branch locus.

Then the multiplicity of Π(v1) is equal to two and Π(v2) 6= Π(v3). Since the multiplicities

of Π(v4) and the bridge between Π(v4) and Π(v1) is greater than one and even, Π(v4) and

the bridge between Π(v4) and Π(v1) can be contracted to a point on Π(v1) by inverse of

Horikawa’s canonical resolution. Since the multiplicity of Π(v1) is equal to two, there is

two divisor E, E ′ whose multiplicity are equal to one and intersect Π(v1) transversally. If

E (or E ′) is not a component of the branch locus, it is a contradiction to the fact that Γ0

is the branch locus of ψr. Then we may assume E and E ′ are the component of branch

locus. However, in view of the configuration of the special fibre, there is no components
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whose multiplicity is three, a contradiction.

Case N : II(2,5). If there exists a hyperelliptic family S whose topological mon-

odromy is N : II(2,5), then the figure of the special fiber is as in Figure 2. The lines mean

nonsingular rational curves and the numbers beside them are their multiplicities. Since

there exists a loop containing C2, Π(C2) is not a component of the branch locus. Con-

sidering its stable model, the number of rational components between C1 and C3 are the

same as the number of rational components between C1 and C4. If Π(C1) is a component

of the branch locus, Π(C3) is not equal to Π(C4). Considering the inverse of the canonical

resolution, we can contract Π(C3) and Π(C4) to two distinct points P1 and P2 on Π(C1).

Moreover, in view of the figure of the special fiber, we may assume that the local equation

for the branch locus at Pi (i = 1, 2) is given by t(x2 − tp) (p ∈ N). Let P3 be a point

on Π(C1) at which the other components of Θ are contracted and let tF (x, t) be a local

equation for the branch locus at P3. We may assume that S0 is defined by the equation

y2 = tF (x, t){(x− 1)2 − tp}{(x + 1)2 − tp}.

The semistable model of S0 is given by the resolution of singularities of the surface which

is defined by the equation y2 = F (x, t2){(x− 1)2 − t2p}{(x + 1)2 − t2p}. Assume that the

special fiber of the stable model of S0 is (N). By an easy calculation, we see that the special

fiber of the stable model of the surface defined by the equation y2 = F (x, t2){(x− 1)2 −
t2p}{(x+1)2− t2p′} (p 6= p′) is also (N). However, the stable model of the surface defined

by y2 = tF (x, t){(x− 1)2− t2}{(x + 1)2− tp
′} is not (N), because the number of rational

components between C1 and C3 is different from that of C1 and C4, a contradiction. Hence

we may assume that Π(C1) is not a component of the branch locus and its multiplicity

is two. If Π(C3) is not equal to Π(C4), then we have a contradiction by Lemma 3.1. We

may also assume that Π(C3) is equal to Π(C4) and its multiplicity is two. In view of the

special fiber of S and Lemma 3.1, Θ has to be as in Figure 3. In Figure 3, the dotted

lines mean the components of Θ which are not components of the branch locus and the

solid lines mean the components of the branch locus. The waves mean the branch locus

which are not components of Θ. The monodromy of the family of the double covering of

the branch locus as in Figure 3 is F00: II(1,6).

Case E11: II(0,1), V1 = V2 = (iv3) and the screw number at e1 is special. In this case,

the special fiber is as in Figure 4. The screw number “special” in this case means that

the number of components of nonsingular rational curves between v1 and v2 is even.

If Π(v1) is equal to Π(v2), none of Π(vi) (1 ≤ i ≤ 8) are the components of the branch

locus, contradictory to Lemma 3.1. Assume that Π(v1) is not a component of the branch
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locus. Since Π(v5) is not a component of the branch locus, the bridge between Π(v1)

and Π(v5) intersects Π(v1) at a point which is contained in the branch locus. By the

same argument, the bridge between Π(v1) and Π(v7) intersects Π(v1) at a point which

is contained in the branch locus. Since v1 is a nonsingular rational curve, the bridge

between Π(v1) and Π(v3) intersects Π(v1) at a point which is not contained in the branch

locus, a contradiction to the configuration of the special fiber as in Figure 4. Thus, Π(v1)

is a component of the branch locus. By the same argument, Π(v2) is also a component

of the branch locus. If Π(v3) is the component of the branch locus, the configuration of

the components of Θ is as in Figure 5. Since the double covering of the bridge between

Π(v1) and Π(v3) contracts to a point at which v1 intersects v3, the multiplicities of the

components of the bridge between Π(v1) and Π(v3) are greater than four. Moreover,

since the multiplicity of Π(v3) is one and Θ has to be obtained by Horikawa’s canonical

resolution, there exists a composite of blowing-downs τ ′ of (−1)-curves such that the

divisor D as in Figure 5 has to be contracted to a point on τ ′(Π(v3)). It means that

Π(v1) cannot be contracted before all of the components of the bridge between Π(v1) and

Π(v3) by the inverse of Horikawa’s canonical resolution. We thus have a contradiction to

the assumption that the double covering of the bridge between Π(v1) and Π(v3) contracts

to a point. By the same argument, Π(v4) is not the component of the branch locus.

Assume that there is the bridge Dv1v3 between Π(v1) and Π(v3), i.e., Π(v1) and Π(v3)

do not intersects at a point. Note that in view of the configuration of the special fibre,

the multiplicities of the components of Dv1v3 are greater than four, i.e, the multiplicities

of the components of Dv1v3 are greater than that of Π(v1) and Π(v3) and Dv1v3 dose not

intersect the strict transform of B̃0 because of the configuration of the double covering

of the bridge. Considering the inverse of Horikawa’s canonical resolution, we see that

there exists Wj such that (τj ◦ · · · · · · τr)(Dv1v3) is a point, (τj ◦ · · · ◦ τr)(Π(v1)) intersects

(τj ◦ · · · ◦ τr)(Π(v3)) at a point P and the strict transform of B̃0 dose not contain P , a

contradiction to the process of Horikawa’s canonical resolution. Thus, Π(v1) intersects

Π(v3) at a point. By the same argument, Π(v1) intersects Π(vl) (l = 5, 7) at a point,

respectively and Π(v2) intersects Π(vl′) (l′ = 4, 6, 8) at a point, respectively. Then the

configuration of Θ is as in Figure 6, (a). Let
∑j=k

ij=1
aijEij be the bridge between Π(v3)

and Π(v4) such that Π(v3)Ei1 = 1, Π(v4)Eik = 1, EijEij+1
= 1 (1 ≤ j ≤ k − 1) and

EijEij′ = 0 (|j − j′| ≥ 2). Consider the inverse of Horikawa’s canonical resolution such

that all but Π(v8) are contracted to a point. First, we contract Π(v5) and Π(v6), then

contract Π(v1) and Π(v2). Then the configuration of the image of Θ by above contractions

is as in Figure 6, (b). We use the same name of the components of Θ after contractions.
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Assume ai1 not to be one. Since we cannot contract Π(v3) in the next step, there exists j′

such that aij′ = 1 and after sum steps of blowing-downs, Eij′ intersects Π(v3) at a point.

However,
∑j=k

ij=1
aijEij dose not intersects the strict transform of B̃0, a contradiction to

the process of Horikawa’s canonical resolution. Thus, ai1 is equal to one. By the same

argument we see that aik is equal to one. If ai2 is greater than two, ai3 is greater than

two. Then we have aij < aj′ for all j < j′, a contradiction to aik = 1. Thus we see that

ai2 = 2. Applying above consideration to ai2 in place of Π(v3), we obtain that aij = 1

when j is odd and aij = 2 when j is even. Then the number of components of nonsingular

rational curves between v1 and v2 is odd.

Other cases are proved by similar arguments. q.e.d.

3.2 Periodic case

Let Sd −→ ∆ be a degeneration of curves of genus g obtained by a base change of degree d

of S −→ ∆. Taking F as a representative of the monodromy of S (indeed, F is a pseudo-

periodic map and its conjugacy class [F ] in the mapping class group is the monodromy

of S), the monodromy of Sd is [F d].

In Lemma 1.4 of [AI], we classified the conjugacy class of periodic maps of genus

g (1 ≤ g ≤ 3). The data of the conjugacy class of a periodic map [f ] consist of two

invariants: the period and the total valency. The period n means that (f)n is isotopic

to the identity. If we take a suitable representative F of the isotopy class of f , the data

of period n and total valency n1/m1 + n2/m2 · · · + nk/mk has the following local data:

there exist n/mi points P1, P2, · · · , Pn/mi
such that F n/mi(Pj) = Pj (j = 1, 2, · · · , n/mi)

and F n/mi is isotopic to the rotation of angle 2π × δi/mi near Pj, where δi is the integer

which satisfies δini ≡ 1 (mod mi).

For instance, (iii)-(1) in [AI, Lemma 1.4], n = 14; 1/14+3/7+1/2 means that there

exist points Pk (1 ≤ k ≤ 10) which satisfy F (P1) = P1, F 2(Pi) = Pi (i = 2, 3), F 7(Pj) = Pj

(4 ≤ j ≤ 10), respectively. Moreover, F is isotopic to the rotation of angle 2π/14 near

P1, F 2 isotopic to the rotation of angle 2π × 5/7 near P2 and P3, and F 7 is isotopic to

the rotation of angle 2π × 1/2 near Pj (4 ≤ j ≤ 10). By an easy calculation, we see

that F 7 is a periodic map of n = 2; 1/2+1/2+1/2+1/2+1/2+1/2+1/2+1/2. Let S be a

family of genus three whose monodromy is a periodic map F , n = 14; 11/14+7/5+1/2.

Taking a base change of degree seven, we obtain a family Sd −→ ∆ whose monodromy is a

periodic map, n = 2; 1/2+1/2+1/2+1/2+1/2+1/2+1/2+1/2 by the above observations.

Repeating this calculations for all periodic maps of genus three, we obtain the following
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lemma:

Lemma 3.5 By taking a base change of suitable degree, all of periodic maps of genus

three are obtained from

(i1) n = 14, 11/14 + 3/7 + 1/2,

(i7) n = 12, 11/12 + 7/12 + 1/2,

(i9) n = 12, 11/12 + 3/4 + 2/3,

(i13) n = 9, 8/9 + 4/9 + 2/3,

(i20) n = 8, 1/8 + 5/8 + 1/4,

(i22) n = 8, 3/8 + 3/8 + 3/4,

(i28) n = 7, 1/7 + 2/7 + 4/7,

(i44) n = 4, g′ = 1, 1/2 + 1/2,

(i47) n = 2, g′ = 2 and Π: Σg −→ Σg′ is an unramified covering.

Proof Let h1: Σ3 −→ Σ3 be a homeomorphism whose conjugacy class in the map-

ping class group has data n = 14, 11/14 + 3/7 + 1/2. Using the same symbols in §2.2,

we write m1 = (i1), for short. We set m7 := (i7), m9 := (i9), m9 := (i9), m13 := (i13),

m20 := (i20), m22 := (i22), m28 := (i28), m44 := (i44), m47 := (i47). Then, by elementary

calculations, we obtain the following equations:

(m1)
2 = (i31), (m1)

3 = (i3), (m1)
4 = (i25), (m1)

5 = (i6), (m1)
6 = (i29),

(m1)
7 = (i43), (m1)

8 = (i30), (m1)
9 = (i5), (m1)

10 = (i26), (m1)
11 = (i4),

(m1)
12 = (i32), (m1)

13 = (i2), (m7)
2 = (i33), (m7)

3 = (i39), (m7)
4 = (i45),

(m7)
7 = (i8), (m7)

9 = (i40), (m9)
2 = (i34), (m9)

3 = (i36), (m9)
4 = (i41),

(m9)
5 = (i11), (m9)

6 = (i46), (m9)
7 = (i12), (m9)

8 = (i42), (m9)
10 = (i35),

(m9)
11 = (i10), (m13)

2 = (i16), (m13)
4 = (i18), (m13)

5 = (i17), (m13)
7 = (i15),

(m13)
8 = (i14), (m20)

3 = (i19), (m20)
2 = (i37), (m22)

3 = (i24), (m20)
6 = (i138)

(m22)
5 = (i23), (m22)

7 = (i21), (m28)
3 = (i27).

q.e.d.

Theorem 3.6 There exist hyperelliptic families whose topological monodromies are the

following:

(i1) n = 14, 11/14 + 3/7 + 1/2,

(i7) n = 12, 11/12 + 7/12 + 1/2,

(i22) n = 8, 3/8 + 3/8 + 3/4,

(i44) n = 4, g′ = 1, 1/2 + 1/2,

(i47) n = 2, g′ = 2 and Π: Σg −→ Σg′ is an unramified covering.
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For any hyperelliptic families, the topological monodromy is obtained by a base change of

suitable degree from one of the above monodromies.

Proof We prove the existence of the families by giving examples of the equations for

the families in Section 4. By Lemma 3.5, it suffices to prove that there exist no hyperellip-

tic families whose monodromies are the following: (i) n = 7; 1/7+2/7+4/7, (ii) n = 6;

1/6+2/3+2/3+1/2, (iii) n = 4; 1/4+1/4+1/4+1/4, (iv) n = 3; 1/3+1/3+1/3+1/3+2/3.

Case (i) Assume that there exists a hyperelliptic family S whose monodromy is (i).

Let C0, C1, C2, C3 be the components of the special fiber of S whose multiplicities are

7, 1, 2 and 4, respectively and C0 intersects C1, C2 and C3. Since Π(Ci) are all distinct,

Π(C0) intersects distinct three subdivisors of (τ1 ◦ · · · ◦ τr)
∗(π−1(0)), a contradiction to

Lemma 3.1, because the greatest common divisor of their multiplicities is one.

Case (ii) and Case (iv) are similar to Case (i).

Case (iii) Assume that there exists a hyperelliptic family S whose monodromy is (iii).

Let C0, Ci (i = 1, 2, 3, 4) be the components of the special fiber of S whose multiplicities

are 4 and 1, respectively. If Π(C0) is a component of the branch locus of φr, we have

a contradiction to Lemma 3.1. Thus we may assume that Π(C0) is not a component of

the branch locus, Π(C1) = Π(C2) and Π(C3) = Π(C4). We may also assume that Π(C0)

intersects Π(C1) and Π(C3) at one point, respectively, because the bridges between Π(C0)

and Π(Cj) (j = 1, 3) do not intersect the branch locus of φr. In this case, there exist no

components of (τ1◦· · ·◦τr)
∗(π−1(0)) whose self-intersection number is −1, a contradiction.

q.e.d.

4 Example of the equations

In this section, for each conjugacy class of pseudo-periodic maps [F ] which can be realized

as the monodromy of a certain hyperelliptic family, we give an examples of a hyperelliptic

family (φ, S, ∆) whose monodromy is [F ]. More precisely, we give an equation of a double

covering S0 of P1×∆, and S is the normally minimal model of S0. Indices which appear

in the table of symbols and equations are positive integers unless we mention their range.

Let α, αi (1 ≤ i ≤ 4) be real numbers which are not integers and mutually distinct. Let

(x, t) be a local coordinate of P1 × ∆. For example, we give an equation for S0 whose

topological monodromy is (A3) as follows:

(A3) y2 = x(x− 1)(x− 2)(x− 3)(x− 4)(x− 5)(x− 6)(x− 7).
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We introduce some symbols for simplicity.

F3(x, t, k) := x3 − tk,

F12(x, t, K1, K2) := (x− tK1)(x2 − tK2),

F̃3(x, t, K, L) := (x2 − t)3 − tKxL,

F̃4(x, t, K, L) := (x2 − t)4 − tKxL,

F̃12(x, t, K1, K2, L1, L2) := {(x2 − t)− tK1xL1}{(x2 − t)2 − tK2xL2},
F̃13(x, t, K1, L1, K2, L2) := {(x2 − t)− tK1xL1}{(x2 − t)3 − tK2xL2},
F̃22(x, t, K, L) := {(x2 − t)2 − tKxL}{(x2 − t)2 + tKxL}.

Let c be a positive integer. We fix a pair of integers (K ′, L′) which satisfies 2K ′ +

L′ − 6 = c, K ′ > 0 and 0 ≤ L′ < 5. We set F̃ c
3 := F̃3(x, t, K ′, L′). Similarly, fixing

a pair of (K ′, L′) which satisfies 2K ′ + L′ − 8 = c, K ′ > 0 and 0 ≤ L′ < 8, we set

F̃ c
4 := F̃4(x, t, K ′, L′). Fixing a pair of (K ′, L′), we set F̃ c

22 := F̃22(x, t, K ′, L′). Let c1 and

c2 be positive integers. We fix two pair of integers (K ′
1, L

′
1) and (K ′

2, L
′
2) which satisfy

2K ′
1+L′1−2 = c1, 2K ′

2+L′2−4 = c2, K ′
1 > 1, 0 ≤ L′1 ≤ 1, K ′

2 > 1 and 0 ≤ L′2 ≤ 3. We set

F̃ c1,c2
12 := F12(x, t, K ′

1, L
′
1, K

′
2, L

′
2). Fixing two pair of integers (K ′

1, L
′
1) and (K ′

2, L
′
2) which

satisfy 2K ′
1 + L′1 − 2 = c1 and 2K ′

2 + L′2 − 6 = c2, we set F̃ c1c2
13 := F̃13(x, t, K ′

1, L
′
1, K

′
2, L

′
2)

We define the following symbols using the above symbols.

f1(x, t, k, l) := x3 − α1t
6(k−1). f2(x, t, k, l) := F3(x, t, 6k + 3l − 1).

f3(x, t, k, l) := F3(x, t, 6k + 3l − 5). f4(x, t, k, l) := F3(x, t, 6k + 3l − 2).

f5(x, t, k, l) := F3(x, t, 6k + 3l − 4). f6(x, t, k, l) = F12(x, t, 2k + l, 4k + 2l − 1).

f7(x, t, k, l) := F12(x, t, 2k + l, 4k + 2l − 3). f8(x, t, k, l) := F3(x, t, 6k + 3l − 3).

g1(x, t, k) := x5 − α2t
10(k−1). g2(x, t, k) := x5 − t10k−7.

g3(x, t, k) := x5 − t10k−3. g4(x, t, k) := x5 − t10k−1.

g5(x, t, k) := x5 − t10k−9. g6(x, t, k) := x(x4 − t8k−1).

g7(x, t, k) := x(x4 − t8k−3). g8(x, t, k) := x(x4 − t8k−7).

g9(x, t, k) := x(x4 − t8k−5). g13(x, t, k) := x5 − t10k−4.

g15(x, t, k) := x5 − t10k−6. g17(x, t, k) := x5 − t10k−2.

g19(x, t, k) := x5 − t10k−8. g20(x, t, k) := x(x2 − t4k−1)(x2 + t4k−1).

g21(x, t, k) := x(x2 − t4k−3)(x2 + t4k−3). g24(x, t, k) := (x5 − t10k−5).

h1(x, t, k, l) := F12(x, t, 2l, k + 4l). h1(x, t, k, l) := F12(x, t, 2l − 1, k + 4l − 2).

σ1(x, t, k, l) := (x3 − t6l)(x2 − tk+4l). σ2(x, t, k, l) := (x3 − t6k−2)(x2 − t4k+l).

σ3(x, t, k, l) := (x3 − t6k−4)(x2 − t4k+l−1). σ5(x, t, k, l) := (x3 − t6k−1)(x2 − t4k+l).

σ6(x, t, k, l) := (x3 − t6k−5)(x2 − t4k+l−2). σ9(x, t, k, l) := (x3 − t6k−3)(x2 − t4k+l−2).

τ1(x, t, k1, k2) := F12(x, t, 2, k1 + 4){(x− t2)2 − tk2+2}.
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τ2(x, t, k1, k2) := (x− 2t)(x2 − tk1+2){(x− t)2 − tk2+2}.
τ4(x, t, k1, k2) := (x− t2){(x2 − t3)2 − tk1xk2}, (2k1 + k2 − 6 ≥ 1).

τ5(x, t, k1, k2) := x{(x2 − t)2 − tk1xk2} (2k1 + k2 − 4 ≥ 1).

θ1 := F̃ 6k+3
3 . θ′1(x, t, k) := F̃ 6k+6

3 . θ2(x, t, k) := F̃ 6k+2
3 .

θ3(x, t, k) := F̃ 6k−2
3 . θ′3(x, t, k) := F̃ 6k+1

3 . θ4(x, t, k) := F̃ 6k+1
3 .

θ′4(x, t, k) := F̃ 6k+4
3 . θ5(x, t, k) := F̃ 6k−1

3 . θ′5(x, t, k) := F̃ 6k+2
3 .

θ6(x, t, k) := F̃ 2k+1, 4k+1
12 . θ′6(x, t, k) := F̃ 2k+2, 4k+3

12 . θ7(x, t, k) := F̃ 2k+1, 4k−1
12 .

θ′7(x, t, k) := F̃ 2k+1, 4k+1
12 . θ8(x, t, k) := F̃ 6k

3 . θ′8(x, t, k) := F̃ 6k+3
3 .

ω1(x, t, k) := x4 − t4(k−1). ω′1(x, t, k) = F̃ 4k
4 . ω2(x, t, k) := x4 − t4k−1.

ω′2(x, t, k) := F̃ 4k+6
4 . ω3(x, t, k) := x4 − t4k−3. ω′3(x, t, k) := F̃ 4k+1

4 .

ω4(x, t, k) := (x− tk)(x3 − t3k−1). ω′4(x, t, k) := F̃ 3k+2
4 .

ω5(x, t, k) := (x− tk)(x3 − t3k−2). ω′5(x, t, k) := F̃ 2k+3
22 .

ω6(x, t, k) := (x2 − t2k+1)(x2 + t2k+1). ω′6(x, t, k) := F̃ k+1,3k+2
13 .

Γ1(x, t, k) = (x− tk)(x3 − t3k−2). Γ2(x, t, k) := (x− tk)(x3 − t3k−1).

Γ3(x, t, k) := x4 − t4k−3. Γ4(x, t, k) := x4 − t4k−1.

Γ5(x, t, k) := x4 − αt4k−4. Γ6(x, t, k) := x4 − t4k−2.

ρ1(x, t, k, l) := (x2 − αt2(l−1))(x2 − tk+2(l−1)). ρ′1(x, t, k, l) := ρ1(x, t, k, l + 1/2)

ρ2(x, t, k, l) := (x2 − t2l−1)(x2 − tk+2l−1). ρ′2(x, t, k, l) := ρ2(x, t, k, l + 1/2).

η1(x, t, k, l) = F̃ l,6k+3l−3
13 . η2(x, t, k, l) = F̃ l,6k+3l−4

13 . η3(x, t, k, l) = F̃ l,6k+3l−8
13 .

η4(x, t, k, l) = F̃ l,6k+3l−5
13 . η5(x, t, k, l) = F̃ l,6k+3l−7

13 .

η6(x, t, k, l) = F̃ l,4k−5
12 {(x2 − t)− tk1xl1}, (2k1 + l1 = l + 2).

η7(x, t, k, l) = F̃ l,4k−7
12 {(x2 − t)− tk1xl1}, (2k1 + l1 = l + 2). η8(x, t, k, l) = F̃

l,6(k−1)+3l
13 .

First we give examples of semistable curves. Next we give examples of hyperelliptic

families whose topological monodromies are periodic. According to Lemma 3.5, it is

sufficient to give only five examples listed in Theorem 3.6. At the end of this section,

we give examples of hyperelliptic families whose topological monodromies are neither

periodic nor semistable. We have to give two or three equations for the same symbol

of the topological monodromies classified in [AI] because of the difference of their screw

numbers.

The cases of semistable curves

(A3) y2 = x(x− 1)(x− 2)(x− 3)(x− 4)(x− 5)(x− 6)(x− 7).

(A2) y2 = (x2 − tk)(x− 1)(x− 2)(x− 3)(x− 4)(x− 5)(x− 6).

(A1) y2 = (x2 − tk1){(x− 1)2 − tk2}(x− 2)(x− 3)(x− 4)(x− 5).

(A0) y2 = (x2 − tk1){(x− 1)2 − tk2}{(x− 2)2 − tk3}(x− 3)(x− 4).
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(B21) y2 = (x3 − t6k)(x− 1)(x− 2)(x− 3)(x− 4)(x− 5).

(B20) y2 = (x− t2k)(x2 − t4k+l)(x− 1)(x− 2)(x− 3)(x− 4)(x− 5).

(B11) y2 = (x3 − t6k1){(x− 1)2 + tk2}(x− 2)(x− 3)(x− 4).

(B10) y2 = (x− t2k1)(x2 − t4k1+l){(x− 1)2 + tk2}(x− 2)(x− 3)(x− 4).

(B01) y2 = (x3 − t6k1){(x− 1)2 + tk2}{(x− 2)2 + tk3}(x− 3).

(B00) y2 = (x− t2k1)(x2 − t4k1+l)){(x− 1)2 + tk2}{(x− 2)2 + tk3}(x− 4).

(C111) y2 = (x3 − t6k1){(x− 1)3 − t6k2}(x− 3)(x− 4).

(C101) y2 = (x3 − t6k1){(x− 1)2 − tl}{(x− 2)3 − t6k2}.
(C011) y2 = (x− t2k1)(x2 − t4k1+l){(x− 1)3 − t6k2}(x− 3)(x− 4).

(C010) y2 = (x + t2k1)(x2 − t4k1+l1)(x− 2 + t2k2){(x− 2)2 − t2(2k1+l2)}(x− 3)(x− 4).

(C000) y2 = (x + t2k1)(x2 − t4k1+l1){(x− 2)2 − tl2}(x− 3 + t2k2){(x− 3)2 − t4k1+l3}.
(E11) y2 = (x4 − t4k)(x− 1)(x− 2)(x− 3)(x− 4).

(E01) y2 = (x2 − t2k)(x2 − αt2k+2l1+l2)(x− 1)(x− 2)(x− 3)(x− 4).

(E00) y2 = (x2 − t2k)(x2 − t2k+2l1+l2){(x− 1)2 − tl3}(x− 3)(x− 4).

(F11) y2 = (x− αtk2)(x3 − t3k2+3(2l+1)k3){(x− 1)3 − t6k1}(x− 2).

(F01) y2 = (x− αtk2)(x3 − t3k2+3(2l+1)k3)(x− 1 + t2k1){(x− 1)2 − t4k1+l1}(x− 2).

(F00) y2 = (x− 1 + t2k1){(x− 1)2 − t4k1+l1}(x− αtk2)(x− tk2+2k3)(x2 − t2k2+4k3+l2).

(G11) y2 = (x− tk1)(x3 − t3k1+6k2)(x− 1)(x− 2)(x− 3)(x− 4).

(G10) y2 = (x− αtk1)(x− tk1+2k2)(x2 − t2k1+2(2k2+l))(x− 1)(x− 2)(x− 3)(x− 4).

(G01) y2 = (x− tk1)(x3 − t3k1+6k2){(x− 1)2 − tl2}(x− 2)(x− 3).

(G00) y2 = (x− αtk1)(x− tk1+2k2)(x2 − t2k1+4k2+l1){(x− 1)2 − tl2}(x− 2)(x− 3).

(J1) y2 = (x4 − t4k1){(x− 1)2 − tk2}{(x− 2)2 − tk3}.
(J0) y2 = (x2 − t2k1)(x2 − t2k1+l1){(x− 1)2 − tk2}{(x− 2)2 − tk3}.
(K1) y2 = (x− tk3)(x3 − t3k3+3(2l+1)k4){(x− 1)2 − tk1}{(x− 2)2 − tk2}.
(K0) y2 = (x− αtk3)(x− tk3+2k4)(x2 − t2k3+4k4+l){(x− 1)2 − tk1}{(x− 2)2 − tk2}.
(L) y2 = (x2 − tk1){(x− 1)2 − tk2}{(x− 2)2 − tk3}{(x− 3)2 − tk4}.
(N) y2 = {(x− tk1)2 − t2k1+k2+1}{x2 − t2k1+k3+1}{(x− 1)2 − tk4}{(x− 2)2 − tk5}.
The periodic cases

(i1) y2 = (x7 − t11)(x− 1).

(i7) y2 = x(x6 − t11)(x− 1).

(i22) y2 = x8 + t3.

(i44) y2 = t{(x4 − t)(x4 + t)}.
(i47) y2 = t{(x2 − α1t)(x

2 − α2t)(x
2 − α3t)(x

2 − α4t)}.
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Next, we give examples of hyperelliptic families whose stable models are neither

smooth curves nor semistable curves. In this case, the equations are classified by the

types of the stable models (cf. Theorem 3.4).

The cases where the stable model is A2

(iii4) y2 = t(x6− t5)(x2− t), y2 = (x6− t5)(x− 1)(x− 2), y2 = (x6− t5){(x− 1)2− tk}.
(iii5) y2 = (x6 − t)(x− 1)(x− 2), y2 = (x6 − t){(x− 1)2 − tk}.
(iii6) y2 = x(x5 − t4)(x− 1)(x− 2), y2 = x(x5 − t4){(x− 1)2 − tk}.
(iii8) y2 = x(x5 − t)(x− 1)(x− 2), y2 = x(x5 − t){(x− 1)2 − tk}.
(iii10) y2 = x(x5 − t2)(x− 1)(x− 2), y2 = x(x5 − t2){(x− 1)2 − tk}.
(iii12) y2 = tx(x2−t)(x5−t3), y2 = x(x5−t3)(x−1)(x−2), y2 = x(x5−t3){(x−1)2−tk}.
(iii15) y2 = t(x3 + t2)(x3 − t2)(x2 − t), y2 = (x3 − t2)(x3 + t2)(x− 1)(x− 2),

y2 = (x3 − t2)(x3 + t2){(x− 1)2 − tk}.
(iii17) y2 = (x3 − t)(x3 + t)(x− 1)(x− 2), y2 = (x3 − t)(x3 + t){(x− 1)2 − tk}.
(iii19) y2 = (x2−t)(x2+t)(x2−2t)(x−1)(x−2), y2 = (x2−t)(x2+t)(x2−2t){(x−1)2−tk}.
(iii20) y2 = x(x5 − t2)(x− 1)(x− 2), y2 = x(x5 − t2){(x− 1)2 − tk}.
(iii21) y2 = t(x5 − t2)(x2 − t)(x− 1), y2 = x(x5 − t3)(x− 1)(x− 2),

y2 = x(x5 − t3){(x− 1)2 − tk}.
(iii22) y2 = tx(x5 − t)(x− 1)(x− 2), y2 = tx(x5 − t){(x− 1)2 − tk}.
(iii23) y2 = (x2 − t)(x5 − t)(x− 1), y2 = tx(x5 − t4)(x− 1)(x− 2),

y2 = tx(x5 − t4){(x− 1)2 − tk}.
(iii24) y2 = t(x6 − t)(x− 1)(x− 2), y2 = t(x6 − t){(x− 1)2 − tk}.
(iii25) y2 = (x2− t)(x6− t), y2 = t(x6− t5)(x− 1)(x− 2), y2 = t(x6− t5){(x− 1)2− tk}.
(iii26) y2 = t(x3 − t)(x3 + t)(x− 1)(x− 2), y2 = t(x3 − t)(x3 + t){(x− 1)2 − tk}.
(iii27) y2 = t(x3 − t)(x3 + t)(x2 − t), y2 = t(x3 − t2)(x3 + t2)(x− 1)(x− 2),

y2 = t(x3 − t2)(x3 + t2){(x− 1)2 − tk}.
(iii29) y2 = t(x2 − tk)(x− 1)(x− 2)(x− 3)(x− 4)(x− 5)(x− 6).

(iii30) y2 = t(x2 − t)(x2 + t)(x2 − t){(x− 1)2 − tk}.
The cases where the stable model is A1

(viii2) y2 = t(x4 − t)(x2 + tk1)(x− 1)(x− 2), y2 = t(x4 − t)(x2 + tk1){(x− 1)2 − tk2}.
(viii3) y2 = (x4 − t)(x2 − tk1)(x− 1)(x− 2), y2 = (x4 − t)(x2 − tk1){(x− 1)2 − tk2}.
(viii4) y2 = (x2 − t2k1)(x2 − t)(x2 + t)(x− 1)(x− 2), y2 = (x2 − t2k1)(x2 − t)(x2 + t)

{(x− 1)2 − tk2}.
(viii6) y2 = (x2 − tk1){(x− 1)2 − tk2}(x− 2)(x− 3)(x− 4)(x− 5).
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(viii7) y2 = t(x2 − t2k1)(x2 − t)(x2 + t)(x− 1)(x− 2), y2 = t(x2 − t2k1)(x2 − t)(x2 + t)

{(x− 1)2 − tk2}.
(viii8) y2 = (x2 − t)(x2 + t){(x2 − t)2 − tkxl}, (0 ≤ l ≤ 3).

(viii9) y2 = (x− 1)(x2 − t)(x− t){(x2 − t)2 − tkxl}, (0 ≤ l ≤ 3).

(viii10) y2 = t(x− 1)(x2 − t)(x− t){(x2 − t)2 − tkxl}, (0 ≤ l ≤ 3).

(viii11) y2 = t(x2 − t)(x2 + t){(x2 − t)2 − tkxl}, (0 ≤ l ≤ 3).

The cases where the stable model is A0

(xv3) y2 = (x2 − tk1){(x− 1)2 − tk2}{(x− 2)2 − tk3}(x− 3)(x− 4).

(xv4) y2 = t(x2 − t){(x2 − t)2 − tkxl}(x− 1)(x− 2),

y2 = t(x2 − t){(x2 − t)2 − tk1xl}{(x− 1)2 − tk2}.
(xv5) y2 = (x2 − t){(x2 − t)2 − tkxl}(x− 1)(x− 2),

y2 = (x2 − t){(x2 − t)2 − tk1xl}{(x− 1)2 − tk2}.
(xv6) y2 = tx(x− 1){(x3 − t)2 − tkxl} (0 ≤ l ≤ 5, 3k + l ≥ 7).

(xv8) y2 = x(x− 1){(x3 − t)2 − tkxl} (0 ≤ l ≤ 5, 3k + l ≥ 7).

The cases where the stable model is B21

B21: V1 = (iis1), V2 = (iis2). y2 = gs1(x, t, k1)fs2(x− 1, t, k2, 0).

In the case of B21: V1 = (iis1), V2 = (iis2), and the screw number is special (not appearing

in the above equation), examples of their equations are as follows (we write (ii2)-(iv2)

instead of writing V1 = (ii2), V2 = (iv2) for simplicity):

(ii2)-(iv2) y2 = t(x3 − t2)(x5 − t2). (ii2)-(iv6) y2 = tx(x2 − 1)(x5 − t2).

(ii3)-(iv2) y2 = t(x5− t2){(x− 1)3− t2}. (ii3)-(iv4) y2 = t(x5− t2){(x− 1)3− t}.
(ii3)-(iv5) y2 = t(x3− t2)(x5− t3). (ii3)-(iv6) y2 = t(x5− t2)(x−1){(x−1)2− t}.
(ii3)-(iv8) y2 = t(x5 − t2)(x− 1)(x− 2)(x− 3).

(ii4)-(iv2) y2 = t(x5 − t4){(x− 1)3 − t2}. (ii4)-(iv3) y2 = t(x3 − t)(x5 − t).

(ii4)-(iv4) y2 = t(x5 − t2){(x− 1)3 − t}. (ii4)-(iv5) y2 = t(x3 − t)(x5 − t3).

(ii4)-(iv6) y2 = t(x5− t4)(x− 1){(x− 1)2− t}. (ii4)-(iv7) y2 = tx(x2− t)(x5− t).

(ii4)-(iv8) y2 = t(x5 − t4)(x− 1)(x− 2)(x− 3).

(ii6)-(iv2) y2 = tx(x4−t3){(x−1)3−t2}. (ii6)-(iv4) y2 = t(x4−t3)(x3−t)(x−1).

(ii6)-(iv5) y2 = t(x4 − t)(x3 − t2)(x− 1).

(ii6)-(iv6) y2 = tx(x4 − t3)(x− 1){(x− 1)2 − t}.
(ii6)-(iv7) y2 = tx(x2 − t)(x4 − t)(x− 1)

(ii6)-(iv8) y2 = tx(x−2 −t3)(x− 1)(x− 2)(x− 3).

(ii7)-(iv2) y2 = tx(x−4−t){(x−1)3−t2}. (ii7)-(iv4) y2 = tx(x−4−t){(x−1)3−t}.
(ii7)-(iv5) y2 = tx(x4 − t)(x− 1){(x− 1)2 − t}.
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(ii7)-(iv8) y2 = tx(x4−t)(x−1)(x−2)(x−3). (ii9)-(iv2) y2 = tx(x4−t3)(x3−t).

(ii9)-(iv4) y2 = (x4 − t)(x3 − t)(x− 1).

(ii9)-(iv6) y2 = x(x4− t)(x2− t)(x−1). (ii13)-(iv2) y2 = t(x5− t){(x−1)3− t2}.
(ii13)-(iv4) y2 = t(x5 − t){(x− 1)3 − t}.
(ii13)-(iv6) y2 = t(x5 − t)(x− 1){(x− 1)2 − t}.
(ii13)-(iv8) y2 = t(x5− t)(x−1)(x−2)(x−3). (ii15)-(iv2) y2 = t(x5− t4)(x3− t).

(ii15)-(iv4) y2 = (x5 − t)(x3 − t). (ii15)-(iv6) y2 = t(x5 − t4)(x2 − t)(x− 1).

(ii17)-(iv2) y2 = t(x5− t2){(x−1)3− t}. (ii17)-(iv4) y2 = t(x5− t3){(x−1)3− t}.
(ii17)-(iv5) y2 = (x5− t3)(x3− t). (ii17)-(iv6) y2 = t(x5− t3)(x−1){(x−1)2− t}.
(ii17)-(iv7) y2 = (x5 − t3)(x2 − t)(x− 1).

(ii17)-(iv8) y2 = t(x5− t3)(x− 1)(x− 3)(x− 3). (ii19)-(iv2) y2 = t(x5− t2)(x3− t).

(ii20)-(iv2) y2 = tx(x2 − t)(x2 + t){(x− 1)3 − t2}.
(ii20)-(iv4) y2 = tx(x2 − t)(x2 + t){(x− 1)3 − t}.
(ii20)-(iv5) y2 = (x3 − t2)(x2 − t)(x2 + t)(x− 1).

(ii20)-(iv6) y2 = tx(x2 − t)(x2 + t)(x− 1){(x− 1)2 − t}.
(ii20)-(iv8) y2 = tx(x2 − t)(x2 + t)(x− 1)(x− 2)(x− 3).

(ii21)-(iv2) y2 = tx(x2−t)(x2+t)(x3−t). (ii24)-(iv2) y2 = tx(x2−t)(x2+t)(x3−t).

(ii24)-(iv4) y2 = t(x3 − t)(x− 1)(x− 2)(x− 3)(x− 4)(x− 5).

(ii24)-(iv6) y2 = tx(x2 − t)(x− 1)(x− 2)(x− 3)(x− 4)(x− 5).

The cases where the stable model is B20

B20: V1 = (iis1), V2 = (xis2) y2 = gs1(x, t, k1)hs2(x − 1, t, k2, l). In the case of special

values of the screw number at e1, examples of their equations are as follows:

(ii6)-(xi2) y2 = tx(x4 − t3){(x− 1)2 − tl}(x− 2).

(ii13)-(xi2) y2 = t(x5 − t){(x− 1)2 − tl}(x− 2).

(ii17)-(xi2) y2 = t(x5 − t3){(x− 1)2 − tl}(x− 2).

(ii20)-(xi2) y2 = tx(x2 − t)(x2 + t){(x− 1)2 − tl}(x− 2).

The cases where the stable model is B11

B11: V1 = (viis1), V2 = (ivs2). y2 = fs2(x− 1, t, k, 0)σs1(x, t, k1, l).

The cases where the stable model is B10

B10: V1 = (viis1), V2 = (xis2). y2 = σs1(x− 1, t, k1, l1)hs2(x, t, k2, l2).

The cases where the stable model is B01

B01: V1 = (xvis1), V2 = (ivs2). y2 = τs1fs2(x− 1, t, k3, 0).

The cases where the stable model is B00
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B00: V1 = (xvis1), V2 = (xis2). y2 = τs1hs2(x− 1, t, k3, 0).

The cases where the stable model is C111

C111: Id, V1 = (ivs1), V2 = (ivs2), V3 = (va1).

y2 = fs1(x, t, k1 + 1, 0)fs2(x− 1, t, k2 + 1, 0)(x− 2)(x− 3).

C111: Id, V1 = (ivs1), V2 = (ivs2), V3 = (va2).

y2 = (x2 − t3)fs1(x, t, k1 + 1, 1)fs2(x− 1, t, k2, 0) (0 ≤ k2).

C111: Id, V1 = (ivs1), V2 = (ivs2), V3 = (va3).

y2 = (x2 − t)fs1(x, t, k1, 1)fs2(x− 1, t, k2, 0).

C111: Id, V1 = (ivs1), V2 = (ivs2), V3 = (va6).

y2 = (x2 − t2)fs1(x, t, k1 + 1, 0)fs2(x− 1, t, k2, 0).

C111: II(1,1), V1 = V3 = (ivs1), V2 = (vb3).

y2 = tx(x− 1)θ′s1
(x, t, k)

C111: II(1,1) V1 = V3 = (ivs1), V3 = (vb4).

y2 = x(x− 1)θs1(x, t, k).

C111: II(1,1) V1 = V3 = (ivs1), V3 = (vb5).

y2 = (x2 − 2t− t2x)θ′s1
(x, t, k).

C111: II(1,1) V1 = V3 = (ivs1), V3 = (vb6).

y2 = t(x2 − 2t− t2x)θ′s1
(x, t, k).

The cases where the stable model is C110

C110: Id, V1 = (ivs1), V3 = (ivs2), V3 = (xiia1).

y2 = fs1(x, t, k1 + 1, 0)fs2(x− 2, t, k2 + 1, 0){(x− 1)2 − tk3}.
C110: Id, V1 = (ivs1), V3 = (ivs2), V3 = (xiia2).

y2 = tfs1(x, t, k1, 1)fs2(x− 2, t, k2, 1){(x− 1)2 − tk3}.
C110: II(1,1) V1 = V2 = (ivs1), V3 = (xiib1).

y2 = t(x2 − tk1+1)θ′s1
.

C110: II(1,1) V1 = V2 = (ivs1), V3 = (xiib2).

y2 = (x2 − tk1+1)θ′s1
.

The cases where the stable model is C101

C101: Id, V1 = (ivs1), V2 = (xis2), V3 = (va1).

y2 = fs1(x, t, k1 + 1, 0)hs2(x− 1, t, k2, l + 1)(x− 2)(x− 3).

C101: Id, V1 = (ivs1), V2 = (xis2), V3 = (va2).

y2 = (x2 − t3)hs2(x, t, k2, l − 1/2)fs1(x− 1, t, k1, 0).

C101: Id, V1 = (ivs1), V2 = (xis2), V3 = (va3).

y2 = (x2 − t)hs2(x, t, k2, l + 1)fs1(x− 1, t, k1, 0).
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C101: Id, V1 = (ivs1), V2 = (xis2), V3 = (va6).

y2 = (x2 − t2)hs2(x, t, k2, l + 1)fs1(x− 1, t, k1, 0).

The cases where the stable model is C100

C100: Id V1 = (ivs1), V2 = (xis2), V3 = (xiia1).

y2 = fs1(x− 1, t, k1 + 1, 0)hs2(x, t, k2, l){(x− 2)2 − tk3}.
C100: Id V1 = (ivs1), V2 = (xis2), V3 = (xiia2).

y2 = fs1(x− 1, t, k1, 1)hs2(x, t, k2, l − 1/2){(x− 2)2 − tk3}.
The cases where the stable model is C001

C001: Id, V1 = (xis1), V2 = (xis2), V3 = (va1).

y2 = hs1(x− 1, t, k1, l)hs2(x, t, k2, l)(x− 2)(x− 3).

C001: Id, V1 = (xis1), V2 = (xis2), V3 = (va2).

y2 = t(x2 − t)hs1(x, t, k1, l)hs2(x− 1, t, k2, l − 1/2).

C001: Id, V1 = (xis1), V2 = (xis2), V3 = (va3).

y2 = (x2 − t)hs1(x, t, k1, l − 1/2)hs2(x− 1, t, k2, l).

C001: Id, V1 = (xis1), V2 = (xis2), V3 = (va5).

y2 = (x2 − t2)hs1(x, t, k1, l)hs2(x− 1, t, k2, l).

C001: II(1,1), V1 = V2 = (xi1), V3 = (vb3). y2 = tx(x− 1)F̃ 2l−1,k+4l−2
1,2 .

C001: II(1,1), V1 = V2 = (xi2), V3 = (vb3) y2 = tx(x− 1)F̃ 2l−2,k+4l−4
1,2 .

C001: II(1,1), V1 = V2 = (xi1), V3 = (vb4). y2 = tx(x− 1)F̃ 2l−1,k+4l−2
1,2 .

C001: II(1,1), V1 = V2 = (xi2), V3 = (vb4). y2 = tx(x− 1)F̃ 2l−2,k+4l−4
1,2 .

C001: II(1,1), V1 = V2 = (xi1), V3 = (vb5). y2 = {(x2 − 2t)− t2x}F̃ 2l,k+4l
1,2 .

C001: II(1,1), V1 = V2 = (xi2), V3 = (vb5). y2 = {(x2 − 2t)− t2x}F̃ 2l−1,k+4l−2
1,2 .

C001: II(1,1), V1 = V2 = (xi1), V3 = (vb6). y2 = t{(x2 − 2t)− t2x}F̃ 2l,k+4l
1,2 .

C001: II(1,1), V1 = V2 = (xi2), V3 = (vb6). y2 = t{(x2 − 2t)− t2x}F̃ 2l−1,k+4l−2
1,2 .

The cases where the stable model is C000

C000: Id, V1 = (xis1), V2 = (xis2), V3 = (xiia1).

y2 = hs1(x, t, k1, l)hs2(x− 1, t, k2, l){(x− 3)2 − tk}.
C000: Id, V1 = (xis1), V2 = (xis2), V3 = (xiia2).

y2 = ths1(x, t, k1, l − 1/2)hs2(x− 1, t, k2, l − 1/2){(x− 3)2 − tk}.
C000: II(1,1), V1 = V2 = (xi1), V3 = (xiib1). y2 = t(x2 − tk1+2)F̃ 2l,k2+4l

12 .

C000: II(1,1), V1 = V2 = (xi2), V3 = (xiib1). y2 = t(x2 − tk1+2)F̃ 2l+1,k2+4l
12 .

C000: II(1,1), V1 = V2 = (xi1), V3 = (xiib2). y2 = (x2 − tk1+2)F̃ 2l,k2+4l
12 .

C000: II(1,1), V1 = V2 = (xi2), V3 = (xiib2). y2 = (x2 − tk1+2)F̃ 2l+1,k2+4l
12 .

The cases where the stable model is E11
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E11: Id, V1 = (vas1), V2 = (vas2). y2 = ωs1(x, t, k1)ωs2(x− 1, t, k2).

E11: II(0,1), V1 = (vbs1), V2 = (vbs2). y2 = tΓs1(x, t, k1)Γs2(x− 1, t, k2).

We have to give more examples when the screw number at e1 is special.

E11: II(0,1), V1 = (vb1),V2 = (vb4). y2 = x(x4 − t)(x3 − t).

E11: II(0,1), V1 = V2 = (vb2). y2 = x(x3 − t2)(x3 − t)(x− 1).

E11: II(0,1), V1 = (vb2),V2 = (vb4). y2 = (x4 − t3)(x3 − t)(x− 1).

E11: II(0,1), V1 = (vb2), V2 = (vb6). y2 = (x4 − t2)(x3 − t)(x− 1).

E11: II(1,2), V1 = V2 = (vas). y2 = tω′s.

E11: II(1,3), V1 = V2 = (vas). y2 = ω′s.

The cases where the stable models is E10

E10: Id, V1 = (vas1), V2 = (xiias2). y2 = ωs1(x, t, k1)ρs2(x− 2, t, k2, l).

E10: II(0,1), V1 = (vbs1), V2 = (xiibs2). y2 = tΓs1(x, t, k1)ρ
′
s2

(x− 1, t, k2, l).

We have to give more examples when the screw number at e1 is special.

V1 = (vb2), V2 = (xiib2) y2 = x(x3 − t2)(x2 − t){(x− 1)2 − tk−1}.
V1 = (vb4), V2 = (xiib2) y2 = x(x3 − t2)(x2 − t){(x− 1)2 − tk−1}.
The cases where the stable model is E00

E00: Id, V1 = (xiias1), V2 = (xiias2). y2 = ρs1(x, t, k1, l1)ρs2(x− 1, t, k2, l2).

E00: II(0,1), V1 = (xiibs1), V2 = (xiibs2). y2 = ρ′s1
(x, t, k1, l1)ρ

′
s2

(x− 1, t, k2, l2).

E00: II(1,2), V1 = V2 = (xiia1).

y2 = t{(x2 − t)2 − tk1xl1}{(x2 − 2t)2 − tk2xl2}, (2ki + li − 4 ≥ 1, i = 1, 2).

E00: II(1,2), V1 = V2 = (xiia2).

y2 = t{(x2− t)2− tk1xl1}{(x2−2t)2− tk2xl2}, (2k1 + l1−4 = 2l−1, 2k2 + l2−4 = k +2l).

E00: II(1,3), V1 = V2 = (xiia1).

y2 = {(x2 − t)2 − tk1xl1}{(x2 − 2t)2 − tk2xl2}, (2k1 + l1 − 4 = 2l, 2k2 + l2 − 4 = k + 2l).

E00: II(1,3), V1 = V2 = (xiia2).

y2 = {(x2− t)2− tk1xl1}{(x2− 2t)2− tk2xl2}, (2k1 + l1− 4 = 2l− 1, 2k2 + l2− 4 = 2l + k).

The cases where the stable model is F11

F11: Id, V1 = (ivs1), V2 = (ivs2).

y2 = (x− αtl)(x− 2)fs2(x, t, k1 + 1, l − 1)fs1(x− 1, t, k2 + 1, 0).

F11: II(0,1), V1 = (ivs1), V2 = (ivs2).

y2 = t(x− αtl)(x− 2)fs2(x, t, k1 + 1, l − 1)fs1(x− 1, t, k2 + 1, 0).

F11: II(2,1), V1 = V2 = (ivs). y2 = ηs.

F11: II(2,2), V1 = V2 = (ivs). y2 = tηs.

The cases where the stable model is F10
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F10: Id, V1 = (ivs1), V2 = (xis2).

y2 = (x− tl1)fs1(x, t, k1, 0)hs2(x− 1, t, k2 + 1, l + l1/2)(x− 2).

F10: II(0,1), V1 = (ivs1), V2 = (xis2).

y2 = (x− tl1)fs1(x, t, k1, l1)hs2(x− 1, t, k2, l − 1/2)(x− 2).

The cases where the stable model is F00

F00: Id, V1 = (xis1), V2 = (xis2).

y2 = (x− tl1)fs1(x, t, k1, l)hs2(x− 1, t, k2, l)(x− 2).

F00: II(0,1), V1 = (xis1), V2 = (xis2).

y2 = (x− tl)hs1(x, t, k1, l1 + l/2)hs2(x− 1, t, k2, l − 1/2)(x− 2).

F00: II(2,1), V1 = V2 = (xi1). y2 = F̃
2l1+l+1,k+4(l1+l)+2
12 (x2− tk2xl2), (2k2 + l2−4 = l +1).

F00: II(2,1), V1 = V2 = (xi2). y2 = F̃
2l1+l+1,k+4(l1+l)
12 (x2 − tk2xl2), (2k2 + l2 − 4 = l + 1).

F00: II(2,2), V1 = V2 = (xi1). y2 = tF̃
2l1+l+1,k+4(l1+l)+2
12 (x2− tk2xl2), (2k2 + l2−4 = l+1).

F00: II(2,2), V1 = V2 = (xi2). y2 = tF̃
2l1+l+1,k+4(l1+l)
12 (x2 − tk2xl2), (2k2 + l2 − 4 = l + 1).

The cases where the stable model is G11

G11: Id, V1 = (vas1), V3 = (ivs2). y2 = fs2(x, t, k1 + 1, 0)(x− 1)ωs1(x− 2, t, k2 + 1).

G11: II(0,1), V1 = (vbs1), V3 = (ivs2). y2 = tΓs1(x, t, k1)(x− 1)fs2(x, t, k2, 1).

The cases where the stable model is G10

G10: Id, V1 = (vas1), V3 = (xis2). y2 = ωs1(x, t, k1 + 1)(x− 1)hs2(x− 2, t, k2, l).

G10: II(0,1), V1 = (vbs1), V3 = (xis2). y2 = Γs1(x, t, k1+1)(x−1)hs2(x−2, t, k2, l−1/2).

The cases of the stable models are G00

G00: Id, V1 = (xiias1), V3 = (xis2). y2 = ρs1(x, t, k1, l + 1)(x− 1)hs2(x− 2, t, k2, l).

G00: II(0,1), V1 = (xiias1), V3 = (xis2). y2 = tρ′s1
(x, t, k1, l)(x−1)hs2(x−2, t, k2, l−1/2).

The cases of the stable models are G01

G00: Id, V1 = (xiias1), V3 = (ivs2). y2 = ρs1(x, t, k1, l + 1)(x− 1)fs2(x− 2, t, k2, l).

G00: II(0,1), V1 = (xiias1), V3 = (ivs2). y2 = tρ′s1
(x, t, k1, l)(x−1)fs2(x−2, t, k2, l−1/2).

The cases where the stable model is J1

J1: Id, V1 = (vas). y2 = ωs(x, t, k1 + 1){(x− 1)2 − tk2}{(x− 2)2 − tk3}.
J1: II(0,1), V1 = (vas). y2 = ωs(x, t, k1 + 1){(x2 − t)2 − tk2xl}, (2k2 + l − 4 ≥ 1).

J1: II(1,4), V1 = (vbs). y2 = tΓs(x− 1, t, k1){(x2 − t)2 − tk2xl}, (2k2 + l − 4 ≥ 1).

J1: II(1,6), V1 = (vbs). y2 = tΓs(x, t, k1){(x− 1)2 − tk2}{(x− 2)2 − tk3}.

The cases where the stable models is J0
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J0: Id, V1 = (xiias). y2 = ρs(x, t, k1 + 1){(x− 1)2 − tk2}{(x− 2)2 − tk3}.
J0: II(0,1), V1 = (xiias). y2 = ρs(x, t, k1 + 1){(x2 − t)2 − tk2xl} (2k2 + l − 4 ≥ 1).

J0: II(1,4), V1 = (xiibs). y2 = tρ′s(x− 1, t, k1){(x2 − t)2 − tk2xl} (2k2 + l − 4 ≥ 1).

J0: II(1,6), V1 = (xiibs). y2 = tρ′s(x, t, k1){(x− 1)2 − tk2}{(x− 2)2 − tk3}.

The cases where the stable model is K1

K1: Id, V4 = (ivs), y2 = (x− t)fs(x, t, k1 + 1, 1){(x− 1)2 − tk2}{(x− 2)2 − tk3}.
K1: II(0,1), V4 = (ivs).

y2 = {(x2 − t)2 − tk1xl1}(x− 1)fs(x− 2, t, k + 1, 0), (2k1 + l1 − 4 ≥ 1).

K1: II(1,4), V4 = (ivs).

y2 = t{(x2 − t)2 − tk1xl1}{(x− 1)− t2l2−2}fs(x− 1, t, k2 + l2 − 1, 1), (2k1 + l1 − 4 ≥ 1).

K1: II(1,6), V4 = (ivs). y2 = t(x2− tk1){(x−1)2− tk2}{(x−2)− t2l}fs(x−3, t, k3 + l, 1).

The cases where the stable model is K0

K0: Id, V4 = (xis). y2 = (x− t)hs(x, t, k1, l){(x− 1)2 − tk2}{(x− 2)2 − tk3}.
K0: II(0,1), V4 = (xis).

y2 = {(x2 − t)2 − tk1xl1}(x− 1)fs(x− 2, t, k, l) (2k1 + l1 − 4 ≥ 1)

K0: II(1,4), V4 = (ivs).

y2 = t{(x2 − t)2 − tk1xl1}{(x− 1)− t2l2−2}hs(x− 1, t, k2, l2 − 1/2) (2k1 + l1 − 4 ≥ 1).

K0: II(1,6), V4 = (ivs).

y2 = t(x2 − tk1){(x− 1)2 − tk2}{(x− 2)− t2l}hs(x− 3, t, k3, l − 1/2).

The cases where the stable model is L

L: II(0,1), V1 = V2 = (xb). y2 = (x2 − tk1+1){(x2 − t)2 − tk2xl}{(x− 1)2 − tk3)}.
L: II(0,2), V1 = V2 = (xc). y2 = {(x2 − t)2 − tk1xl1}{(x2 − t)2 − tk2xl2}.
L: II(1,2). y2 = t{(x2 − t)2 − tk1xl1}{x2 − tl2+1}{(x− 1)2 − tl3−1}.
L: II(1,5). y2 = t{(x2 − t)2 − tk1xl1}{(x2 − t)2 − 2tk2xl2}.
L: II(1,8). y2 = t(x2 − tk1){(x− 1)2 − tk2}{(x− 2)2 − tk3}{(x− 3)2 − tk4}.
L: III(0,1), V1 = (vds) y2 = {(x3 − t)2 − tk1xl1}{(x− 1)2 − tk2−1} (3k1 + 2l1 − 6 ≥ 0).

y2 = {(x3 − t)2 − tk1xl1}{x2 − tk2+1} (3k1 + 2l1 − 6 ≥ 0).

L: IV(0,1), V1 = (ve). y2 = {(x4 − t)2 − tk1xl1} (3k1 + 3l1 − 8 ≥ 0).

L: VI(1,1), V1 = (vds). y2 = t{(x3− t)2− tk1xl1}{(x− 1)2− tk2−1} (3k1 + 2l1− 6 ≥ 0).

The cases where the stable model is N

N : II(0,1).

y2 = {(x2 − t)2 − tk1xl1}{(x− 1)2 − tk2+2(l2−1)}{(x− 1− tl2−1)2 − tk3+2(l2−1)}.
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N : II(0,2). y2 = {(x2 − t2l−1)2 − tk1+2(l−1)xl1}{(x2 − 2x + 1− t)2 − tk2xl2}.
N : II(2,3). y2 = t{(x2 − t)2 − tk1xl1}[{(x− 1)2 − t}2 − tk2xl2 ].

N : II(2,4).

y2 = t{(x− tk1)2 − t2(k1+1)+k2}{x2 − t2(k1+1)+k3}{(x− 1)2 − tk4}{(x− 2)2 − tk5}.
N : II(2,8).

y2 = {((x2 − t)− tk1xl1)2 − tk2xl2}{(x2 − t)2 − tk3xl3},
(2k1 + l1 − 2 = l, 2k2 + l2 − 4 = K1 + 2l, 2k3 + l3 − 4 = K2 + 2l, ).

N : IV(2,2).

y2 = (x2 − t)4 − 2(x2 − t)2xp1tp2 + xq1tq2 + (x2 − t)Lxm1tm2 . (L ≤ 3, 2p1 + 4p2 − 8 =

q1 + 2q2 − 8 = 4l + 1, m1 + 2m2 − 2 = k1 + 4l − l1, 2k1 + l1 − 4 is positive even integer.)
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Table 1 Marked generalized quotient

genus 2

(ii1) (ii2)

7, 4, 1 8, 6, 4, 2

5

10

7, 6, 5, 4, 3, 2, 1

5, 2, 1 4

8

(ii3)

9, 8, 7, 6, 5, 4, 3, 2, 1

6, 2 5

10

(ii4)

4, 2

5

10

(ii5) (ii6)

3, 2, 1 2

5

10

7, 6, 5, 4, 3, 2, 1

5, 2, 1
4

8

(ii7)

3, 1
4

8

(ii8)

(ii9)

3, 1

4

8

2, 1

4, 3, 2, 1

5

(ii10)

4, 2
6

(ii11)

4, 3, 2, 1

2, 1
5

(ii12)

(ii13)

5, 4, 3, 2, 1 2
6

3, 1
5

(ii14)

5, 4, 3, 2, 1

4, 3, 2, 1

4, 3, 2, 1

3, 1
5

(ii15)

3, 1

3, 1
5

(ii16)

4, 3, 2, 1

(ii17)

3, 1 3, 1

4, 3, 2, 1,

5

3, 2, 1

2
4

(ii18)

2, 1
5

(ii19)

2 2

4

(ii20)

(ii21)

2, 1
5

2, 1
3

(ii22)

2, 1

3, 2, 1

2

2, 1

3

(ii23)

2

(ii24)

2, 1

2, 1 2, 1

(ii25)

elliptic2
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4, 3, 2, 1

3, 1

5

(iii9)

3, 1

1, . . . , 1

5

3, 1

1, . . . , 1

(iii8)

3, 1 3, 1
5

4, 3, 2, 1

1, . . . , 1

(iii10)

4, 3, 2, 1

2, 1
5

3, 2, 1

1, . . . , 1

(iii7)

5

1, . . . , 1

3

(iii11)

2, 1 2, 1
5

1, . . . , 1

(iii12)

1, . . . , 1

genus 2

7, 6, 5, 4, 3, 2, 1

5, 2, 1
8

(iii1) (iii2)
4

1, . . . , 1

3
8

4

1, . . . , 1

(iii3)

5, 4, 3, 2, 1

5, 4, 3, 2, 1
6

2

1, . . . , 1

(iii4)

6

4, 2

1, . . . , 1

(iii5)

4, 3, 2, 1

4, 3, 2, 1

5

2, 1

1, . . . , 1

(iii6)

3
2, 1

1, . . . , 1

(iii14)

2, 1 2, 1
3

1, . . . , 1

(iii15)

2, 1
5

2, 1

1, . . . , 1

(iii13)

(iii17) (iii18)

3, 2, 1
4

2

1, . . . , 1

2

2, 1
3

1, . . . , 1

(iii16)

2, 1

2, 1

1, . . . , 1

2
1, . . . , 1

2
elliptic

(iii19)

2, . . . , 2

8, 6, 4, 2

7, 4, 15
10

(iii20)

2, . . . , 2

2

3, 2, 1

5

10

(iii21)

2, . . . , 2

6, 2

9, 8, 7, 6, 5, 4, 3, 2, 1

5

10

(iii22)

2, . . . , 2

4, 2

5
10

(iii23)

2, . . . , 2

2
6

(iii24)

5, 4, 3, 2, 1

5, 4, 3, 2, 1

(iii25) (iii26) (iii27)

2, . . . , 2

2

(iii29)

2, . . . , 2

4, 2
6

2, . . . , 2

2
6

4, 2

3

3

2, . . . , 2

2
6

4, 2 3

3

2, . . . , 2

2
4

3, 2, 1

2

(iii28)

2, . . . , 2

2

(iii30)

elliptic
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elliptic

(iv1)

6
4, 2

3

5, 4, 3, 2, 1

(iv2)

6
3 2

(iv3) (iv4)

3
2, 12, 1

3

(iv5)

4
3, 2, 1

2

3, 2, 1

(iv6)

4

(iv7)

2
2

(iv8)

2, 1

elliptic

(va1) (va2) (va3) (va4)

3
2, 1 2, 1

3

(va5)

4
3, 2, 1

2

3, 2, 1

(va6)

4

(vb1)

2

2

(vb2)

elliptic

6
4, 2

3

5, 4, 3, 2, 1 6
32

4
3, 2, 1

2

3, 2, 1
4

2
2

(vb3) (vb4) (vb5) (vb6)
2

2

2

2, 1

2

2

2 2

elliptic

(via1) (via2) (via3) (via4)

3
2, 12, 1

2

(vib1)

3
2

2

2

(vib2)

3

(vib3) (vib4)

6
4, 2

3

5, 4, 3, 2, 1
6

32 4
3, 2, 1

2

3, 2, 1 4
2

2

(vib5) (vic1) (vic2) (vic3)

2

2, 1

2

6

4, 2 3

5, 4, 3, 2, 1
3

6
32

3

3

(vic4)

3

3

2 2
2

3

elliptic3

(vic5)
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(vii1) (vii2) (vii3) (vii4)

(vii5)

3
2, 1

2

2, 1

(vii6)

3

(vii7) (vii8)

6

4, 2

35, 4, 3, 2, 1

6
32

4
3, 2, 1

2

3, 2, 1 4
2

2

1, . . . , 1 1, . . . , 1 1, . . . , 1

2, . . . , 2

2, . . . , 2 2, . . . , 2 2, . . . , 2

(vii9)

2
2, . . . , 2

1, . . . , 1

elliptic

(viii1) (viii2) (viii4)

4
3, 2, 1

2

3, 2, 1

(viii5)

4
2

2

(viii3)

1, . . . , 1

1, . . . , 1
2, . . . , 2

(viii6)

2, . . . , 2 1, . . . , 1
1, . . . , 1

2
2

2

1, . . . , 1

2

(viii7)

elliptic

1, . . . , 1

1, . . . , 1

elliptic

2, . . . , 22, . . . , 2 2, . . . , 22, . . . , 2

(viii11)(viii8) (viii9) (viii10)

2

2 2
2 2

2 elliptic

2

4, · · · , 42, · · · , 2

4 3, 2, 1

3, 2, 1
2

4
2, · · · , 2

(viii12)

elliptic

4, · · · , 4

2
2

4, · · · , 4

4
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(ixa) (ixb) (ixc)

2

2 3

3
2, 1

(xa) (xb) (xc)

2
2 3

3
2, 1

(xd1)

2

2 2
(xd2)

3
3

2, 1

(xe)

4
3, 2, 14

(xi1) (xi2)

2

2, . . . , 2

1, . . . , 1

(xiia1) (xiia2)

2

2, . . . , 2

(xiib2)

2

1, . . . , 1

2
(xiib1)

2

2, . . . , 2

2
1, . . . , 1

(xiiia) (xiiib)

2

2, . . . , 2

(xiiic)

3

1, . . . , 1

3

2, 1

1, . . . , 1
2

(xiv1) (xiv2)

2, . . . , 2

2, . . . , 2

(xiv3)

2
2, . . . , 2

2

1, . . . , 1

1, . . . , 1

(xiv4)

4

4, . . . , 4
2 2

3, 2, 1

(xiv5)

4

4, . . . , 4

2 2

3, 2, 1
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(xv1) (xv2)

2

2, . . . , 2

(xv3)

3
2, 1

1, . . . , 1

1, . . . , 1

1, . . . , 1

1, . . . , 1

2, · · · , 2
2, . . . , 2

2, . . . , 2

2, . . . , 2
(xv4)

2, . . . , 22, . . . , 2

2

2, . . . , 2

2

(xv5)

1, . . . , 1

(xv6)

3, . . . , 3

(xv7)

4

4, . . . , 4

1, . . . , 1

3, 2, 1

(xv8)

6, . . . , 6
3 3

5, 4, 3, 2, 1

6

2 2

2
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Table 2 Admissible system of cut curves

e1

e2

v1 v4 v3

v2

e2

e3

v1 v4 v3

v2

e1

v1 v2

2 1 e1 e2
v1 v3 v2

1 1 1
v1

3

(A) (B) (C) (D)

1

1

1

e1 e2

e3

e4

e5

v1

v2

v3

v4

e1

e2

e3 e4

v1 v3 v4 v2
11

e1
e2

e3

v1 v2 v3

e1e2
e3 e4v1 v2 v3

1
e1

e2

e3 e4

v3

v1 v2

1

e1

e2 v2v1

11

e1
e2
e3v1 v2

1

e1

e2

e3

e4

v1 v2

e1 e2e3

e4

e5v1 v2

v3

(E) (F ) (G)

(H) (I) (J)

(K) (L) (M)

11

1

e1

e2

e3

e4

e5 e6

v1

v3

v2

v4

e1

e2 e3

e4

e5

e6

v1

v2 v3

v4

(N) (O)
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Table 3 Resolution of quotient graph

(1) (2) (3)

1 1 1 1 1

2
2

2
2

Ciij/II(1, 1) Diij/II(1, 1) Diii/III(1, 1)

v1 v2 v2 v2v1 v1v3

3
3

(4) (5) (6)

1 1 1 12 2 2 2
2

2

Eij/II(0, 1) Eii/II(1, 2) Eii/II(1, 3)

v1 v1 v1v2

(7) (8)

1 1 12
2

2
2

2

Fij/II(0, 1) Fii/II(2, 1)

v1 v2 v3 v4 v1 v2

(9) (11)(10)

1 1 1 1
2

2 2

Fii/II(2, 2) Gij/II(0, 1) Hi/II(0, 1)

2

2

2

12

v1 v1 v1v2 v2 v2v3

(12) (13) (14)

1
3

Hi/III(0, 1)

1
2

Ii/II(0, 1)

13

Ii/III(0, 1)

v1 v1 v1v2 v2 v2 v3v3

1 2 2

2

Ji/II(1, 4)(16)(15)

2

1

Ji/II(0, 1)

v1

v2 v3

v1 v2

(17)

1
2

Ji/II(1, 6)

2

22

v1 v2
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(19)(18) Ki/II(0, 1) Ki/II(1, 4)

1

2

12
2

2

(20) Ki/II(1, 6)

1

2

2
2

2

v1

v2

v3 v4
v1 v2 v3 v1 v2 v3

(21) (22)

2

L/II(0, 1) L/II(0, 2)

2

2

(23)

2

2

L/II(1, 5)

2

v1 v2 v1 v2 v1
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56



[Ni2] J.Nielsen, Surface transformation classes of algebraically finite type, Mat.-Fys. Medd.

Danske Vid. Selsk. 21 (1944), 3–89. English translation: in Collected Papers 2, Birkhäuser,
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