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Abstract

We study a pair of commuting difference operators arising from the elliptic solution of
the dynamical Yang-Baxter equation of type C2. The operators act on the space of
meromorphic functions on the weight space of sp4(C). We show that these operators
can be identified with the system obtained by van Diejen and by Komori-Hikami with
special parameters. It turns out that our case can be related to a pair of difference Lamé
operators (two-body Ruijsenaars operators) and thereby we diagonalize the system on

the finite dimensional space spanned by the level one characters of the C
(1)
2 -affine Lie

algebra.
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Introduction

0.1 Calogero-Moser systems and Lax pair

The Calogero-Moser dynamical systems are widely studied Hamiltonian systems with
amazingly rich structure. In the simplest case, it is the classical one-dimensional n-
body system given by the Hamiltonian

H =
1

2

n∑
j=1

p2
j + g2

∑
j<k

v(xj − xk), (0.1)

where xj are coordinates, pj are momenta and g is the coupling constant. Here the
mass is set to be 1. The potential v(x) is given by the following:

I. v(x) =
1

x2
, II. v(x) =

a2

sinh2(ax)
, III. v(x) =

a2

sin2(ax)
, (0.2)

IV. v(x) = ℘(x),

where ℘(x) denotes the Weierstrass ℘-function. The ℘-function potential IV is the
most general case of these potentials and the other three can be obtained by letting
one or two of the double periods of ℘-function tend to infinity. Incidentally, the systems
with potential I is called the Calogero model and III the Sutherland model. Putting
pj = ẋj, the equations of motion are given by

ẋj = {xj, H}, ṗj = {pj, H}, (0.3)

where { , } is the Poisson bracket.
A Hamiltonian system with a 2n-dimensional phase space is said to be Liouville

integrable if (i) it has n independent Poisson-commuting integrals of motion {Ij} (One
of the Ij is the Hamiltonian H) and (ii) they are in involution, that is,

(i) {H, Ij} = 0, (ii) {Ij, Ik} = 0. (0.4)

In 1975, Moser considered the systems (0.1) with potentials I and III of (0.2) [Mo].
Using the Lax method, he has found n independent integrals of motion explicitly, and
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for the case I, he has also shown that these integrals are in involution. Moser’s method
was used to investigate analogous systems with potentials II [CMR] and IV [Ca] by
Calogero et al.

We review the Lax method briefly. Suppose that we find a pair of matrices L and
M (called the Lax pair), whose elements depend on xj’s and pj’s, so that the matrix
equation (called the Lax equation)

i
dL

dt
= i{L, H} = [M,L] (0.5)

is equivalent to the Hamiltonian equation (0.3). Then,

Ik := TrLk =
∑

j

(Lk)jj, (k = 1, 2, . . . , n) (0.6)

are integrals of motion, since we obtain

d

dt
TrLk = −iTr[M,Lk]

= −iTr(MLk − LkM) = 0.

Here we have used (d/dt)Lk = [M,Lk] (this can be shown by induction) and TrAB =
TrBA. For the Hamiltonian (0.1), Calogero and Moser considered the following matri-
ces:

Ljk = pjδjk + ig(1 − δjk)w(xj − xk), (0.7)

Mjk = g(1 − δjk)y(xj − xk) + gδjk

∑
l �=j

z(xj − xl). (0.8)

Here the condition that the function w(x) is odd and y(x), z(x) are even, are assumed.
Substituting L and M into the Lax equation (0.5) together with (0.3), we find cer-
tain functional equations for w(x), y(x), z(x) and v(x). They solved these functional
equations and get the potentials (0.2).

It was pointed out by Olshanetsky and Perelomev that one can quantize the Calogero-
Moser system in such a way that the integrability is preserved, namely, such that the
integrals of motion go over into commuting operators. We put

pj = −i
∂

∂xj

.

Here the Plank constant is set to be 2π. Then the Hamiltonian of the resulting quantum
Calogero-Moser system is given by the Schrödinger operator

Ĥ = −1

2

n∑
j=1

∂2
j + g(g − 1)

∑
j<k

v(xj − xk),

(
∂j :=

∂

∂xj

)
(0.9)
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where the potential v(x) is equal to the classical case (0.2). Note that the parameter g2

in the classical Hamiltonian (0.1) is replaced by g(g − 1). This is due to contributions
which arise when the partial derivations in (0.9) act on the potentials. In the quantum
mechanics, the equations of motion are given by

dxj

dt
= i[xj, H]

dpj

dt
= i[pj, H],

and a Hamiltonian system is called (Liouville) integrable if there exist conserved oper-
ators {Ik} (1 ≤ k ≤ n) such that

( i ) [H, Ik] = 0, (ii) [Ik, Il] = 0. (0.10)

The Lax method is also useful in quantum cases. We choose the quantum Lax matrices
L and M , which have quite the same form as (0.7) and (0.8), and consider the quantum
Lax equation

−i
dL

dt
= [H,L] = [L,M ].

For the elliptic potential IV in (0.2), the Lax matrix L was introduced by Krichever
[Kr] as follows:

Ljk = pjδjk + ig(1 − δjk)
σ(xj − xk + µ)

σ(µ)σ(xj − xk)
, (0.11)

where σ is the Weierstrass σ-function and µ ∈ C an auxiliary parameter.

In 1987, Ruijsenaars [R] considered the difference analogue (the so-called “relativis-
tic analogue”) of the Calogero-Moser systems. In the quantum elliptic case (potential
(0.2) of type IV), the system is given by the following difference operators:

Mk =
∑

I⊂{1,...,n}
|I|=k

∏
i∈I
j /∈I

σ(xi − xj + β�)

σ(xi − xj)
TI , (0.12)

where TI :=
∏

i∈I Ti and Ti are the shift operators defined by

Tif(x1, . . . , xn) = f(x1, . . . , xi + �, . . . , xn),

and β ∈ C is a parameter. The rational (I), hyperbolic (II), trigonometric (III)
cases are obtained by appropriate degeneration of (0.12). Ruijsenaars has shown the
commutativity of the operators {Mk} directly, and proposed the corresponding Lax
matrix. By sending the step size � to zero, the difference operators Mk go over into
the system of differential operators containing Ĥ (0.9). In the trigonometric case, the
eigenvalue problem of the system {Mk} has been solved by Macdonald [M]. Their
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eigenfunctions, called Macdonald polynomials, are deeply investigated as q-orthogonal
polynomial theory.

These models are in fact related to the type A simple Lie algebra sln(C). In the
present thesis, we are interested in the Ruijsenaars-type elliptic difference extension of
the Calogero-Moser system corresponding to the root system other than type A.

For the trigonometric case, the Macdonald difference system allows at least two
theoretical understanding so that we can regard the model as certainly of type A. One
is the work by Etingof and Kirillov [EK], who obtained these operators as the image of
central elements of the quantum enveloping algebra Uq(sln) (q = eπi�) acting on vector
valued characters. The other is the work by Cherednik [Ch2], who used the affine
Hecke algebra of type A, its representation via q-difference operators, and the center
of the algebra. Among these approaches, the former is more close and important for
us. However, we will utilize yet another understanding of the system, namely, the idea
of the transfer matrix which we will explain in the next section. In fact, as is shown
by Hasegawa’s work on Ruijsenaars model, the transfer matrix will give the proper
difference analogue of the Lax matrix of Krichever’s type (0.11), and we can recover
the commuting operators {Mk} as commuting transfer matrices.

0.2 Yang-Baxter equation and transfer matrix

Originally, in Baxter’s study of two-dimensional lattice statistical models, the Yang-
Baxter equation arose as a condition to provide sufficiently many commuting operators.
This is done by taking the trace of the so-called transfer matrix T , the operator which
satisfies the “RTT = TTR” relation (0.15). Here, in the lattice model situation, the
matrix R (“the R-matrix”) stands for the local Boltzmann weight of the model.

In the “vertex” type 2-dimensional lattice model, the Boltzmann weight is given as
a set of quantities {Rij

kl}, where i, j, k, l take value in {1, 2, . . . , n} and n is fixed once
for all (Fig. 0.1) [JM]. Let us explain the notion of the transfer matrix, which plays
a key role in this thesis. We introduce an n-dimensional vector space V with basis
{v1, . . . , vn} and define the matrix R ∈ End(V ⊗ V ) by

R(vi ⊗ vj) =
∑
k,l

Rij
klvk ⊗ vl. (0.13)

Assume that R depends on a parameter u ∈ C, (u is called the “spectral parameter”
in the context of the inverse scattering method [FT]), and define T (�u, u′) ∈ End(V ⊗N⊗
V ) by

T (�u, u′)(vi1 ⊗ · · · ⊗ viN ⊗ vj1)

:=
∑

k1,...,kN ,j′1

T i1,...,iN ,j1
k1,...,kN ,j′1

(u1, . . . , uN , u′)vk1 ⊗ · · · ⊗ vkN
⊗ vj′1 ,
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k

i

l j = Rij
kl

Figure 0.1: R-matrix or a Boltzmann weight of a vertex model. The indices i, j, k, l
run from 1 to n, where n is the number of freedom at each vertices.

where �u = (u1, . . . , uN ) and

T i1,...,iN ,j1
k1,...,kN ,j′1

(u1, . . . , uN , u′)

:=
∑

l1,...,lN−1

Ri1,l1
k1,j′1

(u1 − u′)Ri2,l2
k2,l1

(u2 − u′) . . . RiN ,j1
kN ,lN−1

(uN − u′).

This is the naive version of the transfer matrix of the model. In the physics viewpoint,
it is natural to assume the “periodic boundary condition”, that is, j1 = j′1. This
means to take the summation of T i1,...,iN ,j1

k1,...,kN ,j′1
(u1, . . . , uN , u′) over j1 = j′1. The resulting

endomorphism traceV (T (�u, u′)) ∈ End(V ⊗n) is called the row-to-row transfer matrix:

traceV (T (�u, u′))(vi1 ⊗ · · · ⊗ viN )

:=
∑

k1,...,kN ,j1

T i1,...,iN ,j1
k1,...,kN ,j1

(u1, . . . , uN , u′)vk1 ⊗ · · · ⊗ vkN
⊗ vj1 .

Consider the following condition for the matrix R(u) ∈ End(V ⊗ V):

R12(u − u′)R13(u − u′′)R23(u
′ − u′′) = R23(u

′ − u′′)R13(u − u′′)R12(u − u′)

: V ⊗ V ⊗ V → V ⊗ V ⊗ V, (0.14)

where Rij means R acting in the ith and jth factors of the tensor product V ⊗ V ⊗ V
and u, u′, u′′ are arbitrary complex numbers. This is called the Yang-Baxter equation.

Because of the construction of the transfer matrix, if R(u) is invertible for all u, we
have

R(u − u′)T1(u)T2(u
′)R(u − u′)−1 = T2(u

′)T1(u). (0.15)

Then taking the trace on V ⊗ V on both sides gives

traceV T (u)traceV T (u′) = traceV T (u′)traceV T (u), (0.16)
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that is, [T (u), T (u′)] = 0. This resembles (0.10). To sum up, the Yang-Baxter equation
(0.14) will give a one-parameter family of commuting operators.

Solutions of the equation (0.14) were classified by Belavin-Drinfeld [BD] under a
certain non-degeneracy condition, and yield three families: rational, trigonometric and
elliptic. Let us recall the elliptic solution (Belavin’s R-matrix [Bel]) here, which is
actually relevant for the Ruijsenaars model (0.12) due to Hasegawa. Fix τ, � ∈ C and
assume Imτ > 0. Put

θm,l(u, τ) :=
∑

µ∈m+l�

exp

[
2πi

(
µu +

µ2

2l
τ

)]

and θ(j)(u) := θ1/2−j/n,1(u + 1/2, nτ). The zeros of θ(j)(u) are given by Z + (j + nZ)τ .
Then Belavin’s solution R(u) to (0.13) is given by

R(u)ij
kl = δi+j,k+l mod n

θ(k−l)(u + �)

θ(k−i)(�)θ(i−l)(u)

∏n−1
k=0 θ(k)(u)∏n−1
k=1 θ(k)(0)

. (0.17)

Generally speaking, each solution of the Yang-Baxter equation corresponds to a
certain bialgebra (a quantum group) and its representation. As for Belavin’s R-matrix
(0.17), the relevant algebraic structure is known as the Sklyanin algebra [Sk1], and the n
dimensional vector space V should be regarded as its vector representation, which is an
analogue of the vector representation of the type A simple Lie algebra sln(C). Similarly,
in the trigonometric case, the solution of the Yang-Baxter equation corresponds to the
affine quantum universal enveloping algebra Uq(ŝln(C)) and its vector representation.
According to the Belavin-Drinfeld classification, the elliptic solutions of the vertex-type
Yang-Baxter equation (0.14) exist only for sln(C). This is in contrast with the situation
of elliptic Calogero-type models, which can be generalized to any type of root systems
(0.27).

However, there is another type of the Yang-Baxter equation, known as the face type
Yang-Baxter equation, which admits more elliptic solutions. In the face-type statistical
model, or the interaction-round-a-face model (abbrev. IRF or face model) [Ba2], the
Boltzmann weight with spectral parameter u is assigned to each λ, µ, ν, κ ∈ S, where
S is the set of freedom of the model (Fig. 0.2): Let us denote the weight by

W

(
λ µ
κ ν

∣∣∣∣ u) . (0.18)

To obtain the commutativity of the transfer matrices of this model in the same way as in
the vertex model, the following equation should be assumed instead of the vertex-type
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κ

λ µ

ν

u = W

(
λ µ
κ ν

∣∣∣∣u) .

Figure 0.2: A Boltzmann weight of a face model. For each square with states λ, µ, ν, κ
at each corners, the assigned quantity have the meaning as the local energy of the
configuration.

equation (0.14).∑
η

W

(
ρ η
σ κ

∣∣∣∣ u − v

)
W

(
λ µ
ρ η

∣∣∣∣ u − w

)
W

(
µ ν
η κ

∣∣∣∣ v − w

)
=

∑
η

W

(
λ η
ρ σ

∣∣∣∣ v − w

)
W

(
η ν
σ κ

∣∣∣∣ u − w

)
W

(
λ µ
η ν

∣∣∣∣ u − v

)
. (0.19)

This is the face-type Yang-Baxter equation.
Actually, as we will see in the body of this thesis, the variables λ, µ, ν, . . . in

the Boltzmann weight acquire the meaning as dynamical variables in the context of
Calogero type systems. That is, λ corresponds to x = (x1, . . . , xn) in the previous for-
mulas. Accordingly, this equation is also called the “dynamical” Yang-Baxter equation
[Fe1],[Fe2].

To be more precise, let us recall an elliptic solution of this equation corresponding
to sln(C) after Jimbo-Miwa-Okado [JMO1]. Let h be the Cartan subalgebra of sln(C)
and h∗ its dual. We realize h∗ in the n-dimensional vector space Cn as follows. Let
{ei}n

i=1 be the orthonormal basis with respect to the inner product 〈 , 〉 of C, and put
ε̄i := ei − (e1 + · · · + en)/n and h∗ :=

∑n
i=1 Cε̄i. For an element λ ∈ h∗ we define

W

(
λ λ + �ε̄i

λ + �ε̄i λ + 2�ε̄i

∣∣∣∣u) =
[u + �]

[�]
, (0.20)

W

(
λ λ + �ε̄i

λ + �ε̄i λ + �(ε̄i + ε̄j)

∣∣∣∣ u) =
[λij − u]

[λij]
(i �= j), (0.21)

W

(
λ λ + �ε̄i

λ + �ε̄j λ + �(ε̄i + ε̄j)

∣∣∣∣u) =
[u]

[�]

[λij + �]

[λij]
(i �= j). (0.22)
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Here λij := 〈λ, ε̄i − ε̄j〉, and

[u] := θ1/2,1

(
u +

1

2

)
= ip1/8 sin πu

∞∏
m=1

(1 − 2pm cos 2πu + p2m)(1 − pm) (0.23)

(p := e2πiτ ) denotes Jacobi’s first theta function. This is an odd function and has the
following quasi-periodicity:

[u + m] = (−1)m[u], [u + mτ ] = (−1)me−πim2τ−2πimu[u] (m ∈ Z). (0.24)

For the other configurations of λ, µ, ν, κ ∈ h∗, we set

W

(
λ µ
κ ν

∣∣∣∣u) = 0. (0.25)

Then (0.20), (0.21), (0.22) and (0.25) solve the equation (0.19). It is known that the
above face Boltzmann weight and the Belavin’s R-matrix are related in the following
way. Define the outgoing intertwining vector φ(u)µ

λ,j as

φ(u)µ
λ,j :=

{
ϑj(u/n − 〈λ, ε̄k〉)/iη(τ) (if there exists k such that µ = λ + �ε̄k)

0 (otherwise)

(0.26)

where

ϑj = θn/2−j,n

(
u +

1

2
, τ

)
=

∑
µ∈n/2−j+n�

exp

[
2πi

(
µ

(
u +

1

2

)
+

µ2

2n
τ

)]
,

and η(τ) := p1/24
∏∞

m=1(1 − pm) denotes the Dedekind eta function with p = e2πiτ .
Then we have

n∑
i,j=1

R(u − v)i,j
k,lφ(u)µ

λ,i ⊗ φ(v)ν
µ,j =

∑
κ

φ(v)κ
λ,l ⊗ φ(u)ν

κ,kW

(
λ µ
κ ν

∣∣∣∣u − v

)
.

This is the vertex-IRF correspondence we mentioned in Section 0.1, which is a special
feature of type A models. Hasegawa used this relation to obtain the difference extension
of Krichever’s Lax matrix, or an L-operator, that satisfies the equation (0.15).

0.3 The aim and the plan of this paper

In the Hamiltonian system (0.1) or (0.9), the coordinate space of dynamical variables
{(x1, x2, . . . , xn)} has an obvious action of the symmetric group Sn, and the Hamil-
tonian is Sn-invariant. We can regard the symmetric group Sn as the Weyl group
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associated to the root system of type An−1. From this point of view, Olshanetsky and
Perelomov generalized the system with Hamiltonian (0.1) or (0.9) to arbitrary root
systems [OP2], [OP3]. For the root system BCn, their Hamiltonian takes the form

H =
n∑

j=1

p2
j + g

∑
j<k

(v(xj − xk) + v(xj + xk))

+
n∑

j=1

(g1v(xj) + g2v(2xj)) , (0.27)

where the potential v(x) is the same as (0.2). Setting the parameter g1 = 0 (resp.
g2 = 0, g1 = g2 = 0), the Hamiltonian corresponds to the root system Bn (resp. Cn,
Dn). These systems also have been studied broadly. The classical Lax pair for the
system (0.27) is constructed by Inozemtsev et al.[IM], [I], and the quantum conserved
quantities or commuting differential operators are presented by Ochiai, Oshima and
Sekiguchi [OOS]. The aim of this thesis is to take a step toward the difference extension
of the Hamiltonian of this type and the understanding thereof.

A generalization of the quantum system with Hamiltonian (0.27) to a difference
operator, or equivalently, a generalization of Ruijsenaars difference system to BCn case,
is studied by van Diejen [vD2] and Komori-Hikami [KH1], [KH2]. A brief history of this
system is as follows. First, van Diejen constructed two elliptic commuting difference
operators, one is of the first order and the other is of the n-th order. In particular,
he obtained an elliptic extension of the difference Calogero-Moser system of type BC2

[vD1]. Extending this work by van Diejen, Komori and Hikami obtained a general
family of n commuting difference operators with elliptic function coefficients. Besides
the step parameter of difference operators and the modulus of elliptic functions, the
family contains nine arbitrary parameters. Their construction uses Shibukawa-Ueno’s
elliptic R-operator [SU] together with the elliptic K-operators [KH3], [KH4], that is, the
elliptic solution to the reflection equation [Sk2], [Ch1]. This method can be regarded as
an elliptic generalization of the affine Hecke algebra approach to Macdonald systems,
which have been extensively used by Cherednik (see [N] for BCn case).

Comparing to these works, what is characteristic in the present thesis is in the
method to construct the commuting operators: We will generalize Hasegawa’s con-
struction of Ruijsenaars system as transfer matrix to the root systems other than the
type A. As we mentioned before and will review in Appendix B, his transfer matrix
L̃ can be regarded as the difference analogue of Krichever’s Lax matrix, so that his
construction of commuting operators can be regarded as the direct generalization of
the classical construction (0.6). However, in the construction used in [H1] and [H3], a
relation between Belavin’s elliptic quantum R-matrix (0.17) and the face-type solution
of the Yang-Baxter equation (0.20), (0.21), (0.22), especially the intertwining vector
(0.26), played a central role. For the root systems other than type A, it is known that
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there are no vertex-type R-matrices nor the intertwining vectors. Nevertheless, the
face-type solutions of the Yang-Baxter equation are known for all classical Lie algebras
and their vector representations [JMO2]. We will utilize this type of solution to intro-
duce our difference operators. For type A case this approach was pursued by Felder
and Varchenko [FV2], but it is nontrivial for the other cases. It turns out that for type
C2 the method works quite satisfactory.

We define a C2 analogue of Hasegawa’s operator L̃ (Appendix B) by using the
fused Boltzmann weights for the anti-symmetric representation of C2 type Lie algebra
to obtain a pair of difference operators. Then an argument similar to derive (0.16)
works.

Theorem. The following two difference operators commute:

M̃1 =
∑

i∈{±1,±2}

∏
j∈{±1,±2}

j �=±i

[λi + λj − �]

[λi + λj]
T �

i , (0.28)

M̃2 =
∑
i=±1
j=±2

(
[λi + λj − �]

[λi + λj + �]
T �

i T �

j +
[λi + λj − �] [λi + λj + 2�]

[λi + λj] [λi + λj + �]

)
. (0.29)

We also show that the space spanned by the level one characters of the affine Lie
algebra ŝp4(C) is invariant under the action of the difference operators. Moreover, we
will give a simultaneous diagonalization of the system on this space.

Now we explain the plan of this thesis. This thesis consists of four chapters.
In Chapter 1, we present explicit expressions for the system of Boltzmann weights

for the vector representation of Bn, Cn and Dn type Lie algebras. Originally, the
Boltzmann weight of this type was given by Jimbo, Miwa and Okado [JMO2], but
their solution was expressed in terms of square roots of theta functions. Our Boltzmann
weights and the original ones can be conjugated by a similarity transformation, which
we will give in Appendix A. Since this transformation does not affect the validity of the
Yang-Baxter equation, one can see that our Boltzmann weights solve the Yang-Baxter
equation. However, a problem arises when we choose the branch of the square roots.
In fact, there are at least two ways to choose the sign of products of the square roots
which solve the Yang-Baxter equation. Consequently, in this thesis, we will give a
proof of the Yang-Baxter equation for our Boltzmann weights directly without using
the similarity transformation (Theorem 1). In fact, the properties of our Boltzmann
weight such as crossing symmetry, take a slightly different form from the original ones
(Proposition 1). Nevertheless, the functional identities we must prove are mostly the
same as those in the original paper. Therefore, we show the sketch of the proof, and
describe in detail the less written part of the proof given in [JMO2].
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In Chapter 2, we study the fusion procedure for the Boltzmann weight of type C2.
First, we introduce a vector space called the path space on which the Boltzmann weights
act naturally as a linear operator. This operator should be regarded as a building block,
and we will use these blocks to compose more general face operator satisfying the Yang-
Baxter equation. We call the matrix coefficients of these composite operators as the
fused Boltzmann weight. Their explicit formulas are given in Section 2.2

In Chapter 3, we construct the difference operators by using the fused Boltzmann
weights. This is the first main result (Theorem 2) of this thesis. The commutativity of
these operators relies on the Yang-Baxter equation of the face type (0.19). In Section
3.2, we will explain how our system can be identified with van Diejen-Komori-Hikami
system with special choice of parameters (Theorem 3). We also calculate the differential
operators in the limit in Section 3.3. The way to construct the difference operators is
applicable to the An and Bn cases as well. We deal with these cases in appendix B.

In Chapter 4, we will give the simultaneous diagonalization of our C2 type difference
operators. In Section 4.1, we introduce a finite dimensional space of theta functions
invariant under the action of the (affine) Weyl group and its basis after Kac-Peterson
[KP]. We show that the difference operators constructed in Section 3.1 preserve this
space (Theorem 4). Then our second main theorem states the diagonalization of our
operators on this space (Theorem 5). This is an elliptic analogue of the eigenvalue
problem of Macdonald operators on the space of symmetric polynomials. It turns out
that our operators split into two A1 operators (difference Lamé operators), and the
eigenvalue problem can be reduced to the eigenvalue problem of A1 type operators.

12



Chapter 1

Solution of the face-type
Yang-Baxter equation of types
Bn,Cn, and Dn

1.1 The elliptic solutions of the face-type Yang-

Baxter equation

Let g be the finite dimensional simple Lie algebra of type Xn, where Xn denotes one
of the Bn, Cn, or Dn, h its Cartan subalgebra and h∗ the dual space of h. We denote
by �j (0 ≤ j ≤ n) the fundamental weights, and P the set of weights that belongs
to the vector representation L(�1) of g. To express these objects, we introduce the
n-dimensional Euclidean space with basis ε1, . . . , εn and bilinear form ( , ) as listed
below. We give also the root system R ⊂ h∗ of g (Fix the square length of the long
roots is two).

Bn (n ≥ 1) : g = so2n+1(C).

• (εj, εk) := δjk,

• R := {±(εj ± εk),±εl | 1 ≤ j < k ≤ n, 1 ≤ l ≤ n},

• �j =

{
ε1 + · · · + εj (1 ≤ j ≤ n − 1),

(ε1 + · · · + εn)/2 (j = n),

• P = {±ε1,±ε2, . . . ,±εn, 0}.

Cn (n ≥ 2) : g = sp2n(C).

• (εj, εk) :=
1

2
δjk,
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• R := {±(εj ± εk),±2εl | 1 ≤ j < k ≤ n, 1 ≤ l ≤ n},

• �j = ε1 + · · · + εj,

• P = {±ε1,±ε2, . . . ,±εn}.

Dn (n ≥ 3): g = so2n(C),

• (εj, εk) := δjk,

• R := {±(εj ± εk) | 1 ≤ l ≤ n},

• �j =


ε1 + · · · + εj (1 ≤ j ≤ n − 2),

(ε1 + · · · + εn−1 − εn)/2 (j = n − 1),

(ε1 + . . . εn−1 + εn)/2 (j = n),

• P = {±ε1,±ε2, . . . ,±εn}.

Fix a complex parameter �. For p ∈ P, we shall use the following notation fre-
quently,

p̂ = 2�p for Cn,

= �p for Bn, Dn,

and we denote P̂ := {p̂ | p ∈ P}.
The system of Boltzmann weights for the face model is given by a set of functions

for any quadruple (λ, µ, ν, κ) of elements of h∗. Let us denote the functions by

W

(
λ µ
κ ν

∣∣∣∣ u) ,

that depend on the spectral parameter u ∈ C. They satisfy the condition

W

(
λ µ
κ ν

∣∣∣∣u) = 0 unless µ − λ, ν − µ, κ − λ, ν − κ ∈ P̂ .

Under the setting above, Jimbo-Miwa-Okado found a solution of the Yang-Baxter
equation ((0.19) in Introduction) [JMO2]. The solutions are parameterized in terms
of the elliptic theta function [u] (0.23) just like the An-type solution (See Section 0.2).
Explicitly the solutions are given by the following formulas. For λ ∈ h∗ and p ∈ P, we
put

λp := (λ, p) (p �= 0) and λ0 = −�

2
.

14



We will write

p
s u q

r
= W

(
λ λ + p̂
λ + ŝ λ + p̂ + q̂

∣∣∣∣u)
for p, q, r, s ∈ P such that p + q = r + s.

p
p u p

p
=

[c − u] [u + �]

[c] [�]
(p �= 0), (1.1)

p
p u q

q
=

[c − u] [λp − λq − u]

[c] [λp − λq]
(p �= ±q), (1.2)

q
p u p

q
=

[c − u] [u] [λp − λq + �]

[c] [�] [λp − λq]
(p �= ±q), (1.3)

q
p u −q
−p

=
[u] [λp + λq + � + c − u]

[c] [λp + λq + �]

g(λ + p̂, λ)

g(λ, λ + q̂)
(p, q �= 0, p �= q), (1.4)

p
p u −p
−p

=
[c − u] [2λp + � − u]

[c] [2λp + �]
+

[u] [2λp + � + c − u]

[c] [2λp + �]
Gλp (p �= 0). (1.5)

Only for the Bn type, the next patterns appear:

0
p u 0
−p

=
[u] [λp + λ0 + � + c − u]

[c] [λp + λ0 + �]

g(λ + p̂, λ)

g(λ, λ)
(p �= 0), (1.6)

q
0 u −q

0
=

[u] [λ0 + λq + � + c − u]

[c] [λ0 + λq + �]

g(λ, λ)

g(λ, λ + q̂)
(q �= 0), (1.7)

0
0 u 0

0
=

[c + u] [2c − u]

[c] [2c]
− [u] [c − u]

[c] [2c]

(∑
q �=0

[λq + �/2 + 2c]

[λq + �/2]
Gλq

)
. (1.8)
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type Bn Cn Dn

c −(2n − 1)�/2 −(n + 1)� −(n − 1)�
h(λ) [λ] [2λ] 1

Table 1.1: The crossing parameter c, the function h(λ).

In the above formulas, we used the following notations. The crossing parameter c is
fixed as in Table 1.1. The function g(λ, µ) is given by

g(λ, µ) = aph(µp)
∏
r∈P

r �=±p,0

[µp − µr] (µ = λ + p̂, p ∈ P − {0}), (1.9)

g(λ, λ) = (−1)n
∏
r �=0

[λ0 − λr]. (1.10)

Here h(λ) is given in Table 1.1, and ap = 1 (p = ε1, . . . , εn), = −1 (p = −ε1, . . . ,−εn)
for type Bn and ap = 1 in the remaining cases. We denote further

Gλq =
g(λ + q̂, λ)

g(λ, λ + q̂)
= ε

h(λq + �)

h(λq)

∏
r �=±q,0

[λq + λr + �]

[λq + λr]
, (1.11)

where ε = −1 for Cn and ε = 1 otherwise.
We adopted a slightly different formulas (1.3), (1.4), (1.6), and (1.7) from the

original ones (see (1.42),(1.43) in Appendix A). In Appendix A, we will give a similarity
transformation (1.44) which transforms our Boltzmann weights into the original ones.

Theorem 1 The Boltzmann weights W

(
λ µ
κ ν

∣∣∣∣u) (1.1)-(1.8) solve the face-type

Yang-Baxter equation (0.19, Fig.1.1).

1.2 Proof of the face-type Yang-Baxter equation

This section is devoted to the proof of Theorem 1.

Proposition 1 The Boltzmann weights (1.1)-(1.8) enjoy the following properties.

• Initial condition :

W

(
λ µ
κ ν

∣∣∣∣ 0) = δµκ. (1.12)
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Figure 1.1: The face-type Yang-Baxter equation.

• Inversion relation :∑
η

W

(
λ η
κ ν

∣∣∣∣u)W

(
λ µ
η ν

∣∣∣∣− u

)
= δµκ

[c + u] [c − u] [� + u] [� − u]

[c]2 [�]2
.

(1.13)

• Crossing symmetry :

W

(
λ µ
κ ν

∣∣∣∣ u) =
g(λ, κ)

g(µ, ν)
W

(
κ λ
ν µ

∣∣∣∣ c − u

)
. (1.14)

Here g(λ, µ) is given in (1.9),(1.10).

• Reflection symmetry :

W

(
λ µ
κ ν

∣∣∣∣ u) =
g(λ, κ)g(κ, ν)

g(λ, µ)g(µ, ν)
W

(
λ κ
µ ν

∣∣∣∣ u) . (1.15)

Before going to the proof we need to prepare three lemmas.

Lemma 1 If f(u) is entire, not identically zero and satisfies

f(u + 1) = e−2πiBf(u), f(u + τ) = e−2πi(A1+A2u)f(u),

then A2 is a non-negative integer, f(u) has A2 zeros mod Z + Zτ and
∑

(zeros) =
Bτ + A2/2 − A1.
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Lemma 2 For any λ, µ, ν, u, v, w, c with u + v + w = c, we have the identity

0 = − [c − u] [c − v] [c − w]
[µ + ν + u] [ν + λ + v] [λ + µ + w]

[µ + ν] [ν + λ] [λ + µ]

+ [c − u] [v] [w]
[2λ − u] [λ + µ + c − v] [λ + ν + c − w]

[2λ] [λ + µ] [λ + ν]

+ [u] [c − v] [w]
[µ + λ + c − u] [2µ − v] [µ + ν + c − w]

[µ + λ] [2µ] [µ + ν]

+ [u] [v] [c − w]
[ν + λ + c − u] [ν + µ + c − v] [2ν − w]

[ν + λ] [ν + µ] [2ν]

+ [u] [v] [w]
∑

ω

1

2

[λ + c − u + ω] [µ + c − v + ω] [ν + c − w + ω]

[λ + ω] [µ + ω] [ν + ω]
e2πiϕ(ω) (1.16)

Here the summation
∑

ω is over the half periods ω = 0, 1/2, τ/2, (1 + τ)/2, and

ϕ(ω) =

{
0, ω = 0, 1/2,

c, ω = τ/2, (1 + τ)/2.
(1.17)

Proof . Let f(λ) be the right hand side of (1.16), regarded as a function in λ. This
satisfies

f(λ + 1) = f(λ), f(λ + τ) = e−2πi(v+w)f(λ).

Its apparent poles are located at λ ≡ −µ,−ν, 0,−ω modulo 1 and τ . But the residue
at λ = −µ,

Res
λ=−µ

f(λ)dλ = − [c − u] [c − v] [w]

(
[c − w] [µ + ν + u] [ν − µ + v]

[µ + ν] [ν − µ]

+
[v] [−2µ − u] [−µ + ν + c − w]

[−2µ] [−µ + ν]
+

[u] [2µ − v] [µ + ν + c − w]

[2µ] [µ + ν]

)
is vanishing by the following three-term identity:

[u + x] [u − x] [v + y] [v − y] − [u + y] [u − y] [v + x] [v − x]

= [x + y] [x − y] [u + v] [u − v] (1.18)

(u, v, x, y ∈ C). The identity Res
λ=−ν

f(λ)dλ = 0 holds in the same way. Also we have

Res
λ=0

f(λ)dλ =[c − u] [v] [w]
[−u] [µ + c − v] [ν + c − v]

[µ] [ν]
lim
λ→0

λ

[2λ]

+ [u] [v] [w]
1

2

[c − u] [µ + c − v] [ν + c − w]

[µ] [ν]
lim
a→0

λ

[λ]
= 0,
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and

Res
λ=τ/2

f(λ)dλ =[c − u] [v] [w]
[τ − u] [τ/2 + µ + c − v] [τ/2 + ν + c − v]

2 [τ/2 + µ] [τ/2 + ν]

+ [u] [v] [w]
1

2

[τ + c − u] [µ + c − v + τ/2] [ν + c − w + τ/2]

[τ/2 + µ] [τ/2 + ν]
e2πic = 0.

Therefore f(λ) does not have any pole. Next we apply Lemma 1, taking A1 = v +
w,A2 = B = 0. �

Lemma 3 Set

φ(u) =
d

du
log[u],

we have then

φ(u + �) + φ(u − �) − 2φ(u) =
[�]2[2u][0]′

[u]2[u − �][u + �]
. (1.19)

Proof of Proposition 1 . The initial condition (1.12) is trivial. The crossing symmetry
(1.14) and the reflection symmetry (1.15) are easily checked by the explicit form.

Let us prove the inversion relation (1.13). The case of λ = ν is the following identity

∑
r∈P

 r
p u −r
−p

q
r −u −q

−r

 = δp,q
[c + u] [c − u] [� + u] [� − u]

[c]2 [�]2
. (1.20)

If p, q �= 0, then the equation (1.20) is reduced to∑
r∈P

[λp + λr + � + c − u] [λq + λr + � + c + u]

[λp + λr + �] [λq + λr + �]
Gλr

+
[c − u] [2λp + � − u] [λp + λq + � + c + u]

[u] [2λp + �] [λp + λq + �]

− [c + u] [2λq + � + u] [λp + λq + � + c − u]

[u] [2λq + �] [λp + λq + �]

=δp,q
[c − u] [c + u] [2λp] [2λq + 2�]

[�]2 [2λp + �]2
G−1

λp . (1.21)

Set

Fpq(z) :=
[λp + z + � + c − u] [λq + z + � + c + u]

[λp + z + �] [λq + z + �]

εh(z + �) [2z]

[�] h(z) [2z + �]

∏
r �=0

[z − λr + �]

[z − λr]

= F (1)
pq (z)F (2)

pq (z)F (3)
pq (z),
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where

F (1)
pq (z) :=

[λp + z + � + c − u] [λq + z + � + c + u]

[λp + z + �] [λq + z + �]
,

F (2)
pq (z) :=

εh(z + �) [2z]

[�] h(z) [2z + �]
and F (3)

pq (z) :=
∏
r �=0

[z − λr + �]

[z − λr]
.

Fpq(z) is a doubly periodic function

Fpq(z + 1) = Fpq(z + τ) = Fpq(z),

because F
(1)
pq (z + τ) = −e−2πi(2c)Fpq(z), F

(3)
pq (z + τ) = −e−2πi(2n)Fpq(z) and F

(2)
pq (z +

τ) = −e−2πiXFpq(z), where c is given in Table 1.1 and

X = −� for Bn,

= 2� for Cn,

= −2� for Dn.

If p �= q, then the poles of Fpq(z) are located at

z = λr (r �= 0), −�

2
+ ω

(
ω = 0,

1

2
,
τ

2
,
1 + τ

2

)
.

If p = q, then Fpq(z) has an additional pole at z = −λp − � because of the first factor

F
(1)
pq (z). The residue can be calculated as follows.

Res
z=−λr

Fpq(z)dz =
[λp + λr + � + c − u] [λq + λr + � + c + u]

[λp + λr + �] [λq + λr + �]

× εh(λr + �) [2λr]

[�] h(λr) [2λr + �]

[�] [2λr + �]

[0]′ [2λr]

∏
s �=0,r

[λr − λs + �]

[λr − λs]

=
[λp + λr + � + c − u] [λq + λr + � + c + u]

[0]′ [λp + λr + �] [λq + λr + �]
Gλr.

We also have

Res
z=−�/2+ω

Fpq(z)dz =
[λp + ω + �/2 + c − u] [λq + ω + �/2 + c + u]

[λp + ω + �/2] [λq + ω + �/2]

× εh(ω + �/2) [2ω − �]

[�] h(ω − �/2)

∏
r �=0

[ω − λr + �/2]

[ω − λr − �/2]
lim

z→ω−�/2

(z − ω + �/2)

[2z + �]
,

and the values of the factors herein is listed in Table 1.2. From this table, we conclude
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ω 0 1/2 τ/2 (1 + τ)/2

lim
z→ω−�/2

(z − ω + �/2)

[2z + �]

1

2[0]′
− 1

2[0]′
− eπiτ

2[0]′
eπiτ

2[0]′
[2ω − �] [−�] −[−�] −e−πiτ+2πi�[−�] e−πiτ+2πi�[−�]

F
(3)
pq (ω − �

2
) 1 1 e−2πin� e−2πin�

h(ω + �/2)

h(ω − �/2)
(for Bn) −1 1 −e−πi� e−πi�

h(ω + �/2)

h(ω − �/2)
(for Cn) −1 −1 −e−4πi� −e−4πi�

Table 1.2: The values of the factors of Resz=−�/2+ωFpq(z)dz.

Res
z=−�/2+ω

Fpq(z)dz = −1

2

[λp + ω + �/2 + c − u] [λq + ω + �/2 + c + u]

[0]′ [λp + ω + �/2] [λq + ω + �/2]
e2πiϕ(ω),

where ϕ(ω) is given in (1.17). For p = q case we have the additional residue

Res
z=−λp−�

Fpp(z)dz =[c − u] [c + u]
εh(−λp) [−2λp − 2�]

[�] h(−λp − �) [−2λp − �]

[−2λp]

[0]′ [−2λp − �] [−�]

×
∏

r �=0,±p

[−λp − λr]

[−λp − λr − �]

= − [c − u] [c + u]

[0]′ [�]2
[2λp] [2λp + 2�]

[2λp + �]2
G−1

λp .

Then the relation
∑

ResFpq(z)dz = 0 gives rise to∑
r �=0

[λp + λr + � + c − u] [λq + λr + � + c + u]

[0]′ [λp + λr + �] [λq + λr + �]
Gλr

− 1

2

∑
ω

[λp + ω + �/2 + c − u] [λq + ω + �/2 + c + u]

[λp + ω + �/2] [λq + ω + �/2]
e2πiϕ(ω)

− δp,q
[c − u] [c + u]

[�]2
[2λp] [2λp + 2�]

[2λp + �]2
G−1

λp = 0

Now we can use Lemma 2 specialized as λ = λp + �/2, µ = λq + �/2, v = −u, and
w = c to rewrite this formula into (1.21). This completes the case p, q �= 0.

The case of p = q = 0. Put

f(u) :=
∑
r∈P

 r
0 u −r

0

0
r −u 0

−r

− [c + u] [c − u] [� + u] [� − u]

[c]2 [�]2
, (1.22)
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and we can check f(0) = f(±c) = f(±�) = 0. To show f(�) = 0 needs lengthy
computation, which we will omit here. On the other hand, we can deduce that f(u)
should have four zeros because of its transformation property. This is a contradiction,
hence f(u) = 0.

The case of p = 0 and q �= 0 is quite similar. Putting

f(u) =
∑
r∈P

 r
0 u −r

0

q
r −u −q

−r

 , (1.23)

we have f(0) = f(±c) = 0. This completes the case λ = ν.
The cases ν = λ + 2p̂ (p ∈ P) are trivial. The remaining cases of the inversion

relation (1.13) are easily checked by using the three-term identity (1.18). �
Proof of Theorem 1. Set

X(λ,µ, ν, κ, σ, ρ |u, v)

:=
∑

η

W

(
ρ η
σ κ

∣∣∣∣ u)W

(
λ µ
ρ η

∣∣∣∣ u + v

)
W

(
µ ν
η κ

∣∣∣∣ v) , (1.24)

Y (λ,µ, ν, κ, σ, ρ |u, v)

:=
∑

η

W

(
λ η
ρ σ

∣∣∣∣ v)W

(
η ν
σ κ

∣∣∣∣ u + v

)
W

(
λ µ
η ν

∣∣∣∣u) , (1.25)

and

Z(λ, µ, ν, κ, σ, ρ |u, v) := X(λ, µ, ν, κ, σ, ρ |u, v) − Y (λ, µ, ν, κ, σ, ρ |u, v). (1.26)

Regarding Z(λ, µ, ν, κ, σ, ρ |u, v) as a function of u, we denote it by Z(u). The initial
condition (1.12) and the inversion relation (1.13) implies Z(0) = Z(−v) = 0. We have

Z(λ, µ, ν, κ, σ, ρ |u, v) = −g(λ, ρ)

g(ν, κ)
Z(ρ, λ, µ, ν, κ, σ | c − u − v, u) (1.27)

by the crossing symmetry (1.14). This shows Z(c − v) = Z(c) = 0 also. Thus we have
found the four zeros at u = 0,−v, c, c − v of Z(u).

We use the quasi-periodicity property:

W

(
λ µ
κ ν

∣∣∣∣ u + 1

)
= W

(
λ µ
κ ν

∣∣∣∣u) ,

W

(
λ µ
κ ν

∣∣∣∣ u + τ

)
= e−2πiτ−2πi(2u−c+ξ)W

(
λ µ
κ ν

∣∣∣∣u) ,
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Figure 1.2: The function Z(λ, λ + p̂, λ, λ + p̂, λ, λ + p̂ |u, v).

where ξ = � for (1.1), −λp + λq for (1.2), 0 for (1.3), −λp − λq − � for (1.4, 1.6, 1.7)
and −2λp − � for (1.5, 1.8). From these we have for Z(u):

Z(u + 1) = Z(u), Z(u + τ) = e−2πiτ−2πi(2τ+4u+2v−2c+ζ)Z(u),

where ζ is given by a summation of three ξ’s. From Lemma 1, we have
∑

(zeros) =
2 − 2τ − 2v + 2c − ζ. On the other hand, we have

∑
(zeros) = 2c − 2v. Therefore, if

ζ �≡ 0 mod Z + Zτ , then Z(u) = 0.
Let us verify ζ = 0 cases. Thanks to the symmetry (1.27) and the following sym-

metry (this follows from the reflection symmetry (1.15))

Z(λ, µ, ν, κ, σ, ρ |u, v) =
g(λ, ρ)g(ρ, σ)g(σ, κ)

g(λ, µ)g(µ, ν)g(ν, κ)
Z(λ, ρ, σ, κ, ν, µ | v, u),

we can reduce the remaining cases (ζ �≡ 0) to the following four special cases:

Z(λ, λ + p̂, λ + p̂ + q̂, λ + p̂ + q̂ + r̂, λ + q̂ + r̂, λ + r̂ |u, v) = 0, (1.28)

(r �= ±p,±q, p �= ±q),

Z(λ, λ + p̂, λ, λ + p̂, λ, λ + p̂ |u, v) = 0 (p �= 0), (1.29)

Z(λ, λ, λ, λ, λ, λ |u, v) = 0, (1.30)

Z(λ, λ, λ + p̂, λ + p̂, λ + p̂, λ |u, v) = 0 (p �= 0). (1.31)

In (1.28), each side of the Yang-Baxter equation contains only one term, and they
are manifestly the same. Equation (1.30) follows straightforwardly.

A proof of the case (1.29) can be found in the original literature [JMO2]. However,
since the proof is sketchy and seems to contain some typographical errors, we will
describe its details here for readers’ convenience.
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Regarding Y (λ, λ + p̂, λ, λ + p̂, λ, λ + p̂ |u, v) as a function of λp, let us denote it by
f(λp). It reads as

f(λp) =Gλ p
[u][v][w]

[c]3

∑
q∈P

[λq + λp + � + ũ][λq + λp + � + ṽ][λq + λp + � + w̃]

[λq + λp + �]3
Gλ q

+ G−1
λ p

[ũ][ṽ][w̃]

[c]3
[2λp + � − u][2λp + � − v][2λp + � − w]

[2λp + �]3

+
∑

cyclic

[u][ṽ][w̃]

[c]3
[2λp + � + ũ][2λp + � − v][2λp + � − w]

[2λp + �]3

+ Gλ p

∑
cyclic

[ũ][v][w]

[c]3
[2λp + � − u][2λp + � + ṽ][2λp + � + w̃]

[2λp + �]3

=:f1 + f2 + f3 + f4, (1.32)

where we put w = c−u−v, ũ = c−u, ṽ = c−v, w̃ = c−w and the summation
∑

cyclic
is over the cyclic permutations of the three variables (u, v, w). From the explicit form,
one can see that X(λ, λ + p̂, λ, λ + p̂, λ, λ + p̂ |u, v) = f(−λp − �). Therefore we will
show f(λp) = f(−λp − �) to prove (1.29).

Consider the function

Φ(z) :=
[z + λp + � + ũ] [z + λp + � + ṽ] [z + λp + � + w̃]

[z + λp + �]3

× [0]′

[�]

εh(z + �) [2z]

h(z) [2z + �]

∏
r �=0

[z + λr + �]

[z + λr]
.

One sees that Φ(z) is doubly periodic with the periods 1 and τ . Its poles are located
at z ≡ −λp −�, λq (q ∈ P), −�/2+ω (ω = 0, 1/2, τ/2, (1+ τ)/2) modulo 1 and τ . The
pole at z = −λp − � is of the second order, and the others are simple.

Let fi(λp) (i = 1, 2, 3, 4) be the i-th term of the above function f(λp). The residue
theorem

∑
ResΦ(z)dz = 0 together with the formula

Res
z=λq

Φ(z)dz = − [λq + λp + � + ũ][λq + λp + � + ṽ][λq + λp + � + w̃]

[λq + λp + �]3
Gλ q

will give the following expression for f1(λp):

f1(λp) = a(λp) + b(λp),

where

a(λp) := Gλ p
[u][v][w]

[c]3

∑
ω

Res
z=−�/2+ω

Φ(z)dz, (1.33)

b(λp) := Gλ p
[u][v][w]

[c]3
Res

z=−λp−�
Φ(z)dz. (1.34)
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Here the summation
∑

ω is over the half periods ω = 0, 1/2, τ/2, (1 + τ)/2.
From the quasi-periodicity of the theta function (0.24) and the values of the crossing

parameters (Table 1.1), we have for ω = 0, 1/2, τ/2, (1 + τ)/2

Res
z=−�/2+ω

Φ(z)dz =
1

2

[λp + �/2 + ω + ũ][λp + �/2 + ω + ṽ][λp + �/2 + ω + w̃]

[λp + �/2 + ω]3
e2πiϕ(ω),

(1.35)

where ϕ is given in (1.17). Combining (1.33), (1.35) and Lemma 2, we can verify

a(λp) + f4(λp) − f2(−λp − �) = −a(−λp − �) + f2(λp) − f4(−λp − �) = 0. (1.36)

Set φ(u) = (d/du) log[u], then the residue Res
z=−λp−�

Φ(z)dz can be expressed as

Res
z=−λp−�

Φ(z)dz = G−1
λ p

[ũ][ṽ][w̃]

[0]′[�]2
[2λp + 2�][2λp]

[2λp + �]2

( ∑
cyclic

φ(ũ) − 3φ(2λp) + 3φ(2λp + �)

+ φ(�) +
∑
q∈P
q �=±p

{φ(−λp + λq) − φ(−λp + λq − �)}
)

. (1.37)

Since φ(u) is an odd function, we have from (1.34) and (1.37)

b(λp) − b(−λp − �) = − 3
[u][v][w]

[c]3
[ũ][ṽ][w̃]

[0]′[�]2
[2λp + 2�][2λp]

[2λp + �]2

× {φ(2λp) + φ(2λp + 2�) − 2φ(2λp + �)} . (1.38)

On the other hand, using the identity (see (1.18))

[2λp + � + ũ][2λp + � − v][2λp + � − w] − [2λp + � − ũ][2λp + � + v][2λp + � + w]

= [ũ][v][w]
[4λp + 2�]

[2λp + �]

and its cyclic permutations of (u, v, w), we have

f3(λp) − f3(−λp − �) = 3
[u][v][w][ũ][ṽ][w̃]

[c]3
[4λp + 2�]

[2λp + �]4
. (1.39)

Now from (1.38) and (1.39), we have

b(λp) + f3(λp) = b(−λp − �) + f3(−λp − �), (1.40)

where we used Lemma 3. Combining (1.36) and (1.40), we have obtained f(λp) =
f(−λp − �). This completes the proof of (1.28).
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As for (1.31), the proof reduces to the identity

Hλ0 − Hλ+p̂ 0 =
[�]2 [2c] [2λp + �]

[λp − �/2] [λp + �/2]2 [λp + 3�/2]
, (1.41)

where

Hλ0 :=
∑
q �=0

[λq + �/2 + 2c]

[λq + �/2]
Gλq.

The function Hλ0 is doubly periodic in each variable λε1 , . . . , λεn . Therefore we can
evaluate the left hand side of (1.41) at some special point. �

Appendix A: The similarity transformation

The formulas for our Boltzmann weights in Section 1.1 are slightly different from the
original formula in Ref.[JMO2]. The original form of type (1.3) and (1.4) are given as
follows:

q
p u p

q
=

[c − u] [u]

[c] [�]

(
[λp − λq + �] [λp − λq − �]

[λp − λq]2

)1/2

(p �= ±q), (1.42)

q
p u −q
−p

=
[u] [λp+q + � + c − u]

[c] [λp+q + �]
(GλpGλq)

1/2 (p �= q). (1.43)

We note that in the Bn case, types (1.6) and (1.7) are included in type (1.43). All
the other Boltzmann weights (namely, (1.1),(1.2) and (1.5)) are the same as the ones

we adopted in Section 1.1. We denote these weights by WJMO

(
λ µ
κ ν

∣∣∣∣ u). Our

Boltzmann weights are obtained from these in the following way. We introduce an
ordering on the set P as

ε1 ≺ · · · ≺ εn ≺ 0 ≺ −εn ≺ · · · ≺ −ε1 for Bn,

ε1 ≺ · · · ≺ εn ≺ −εn ≺ · · · ≺ −ε1 for Cn, Dn.

For λ, µ ∈ h∗, such that µ − λ = p̂ ∈ P̂ , we define the function s(λ, µ) as follows:
Bn:

s(λ, µ) =
∏
r≺p

[λr − λp] [µr − µp] (p ≺ 0)

= [−λp] [−µp]
∏
r≺p

r �=0,−p

[λr − λp] [µr − µp] (p � 0)

=
∏
r≺0

[λr − λ0] [λr + λ0] (p = 0),
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Cn:

s(λ, µ) :=
∏
r∈P
r≺p

[λr − λp] [µr − µp],

Dn:

s(λ, µ) =
∏
p≺p

r �=−p

[λr − λp] [µr − µp].

Then the relation between the Boltzmann weights W in Section 1.1 and the ones in
[JMO2] is given by

W

(
λ µ
κ ν

∣∣∣∣u) =

{
s(λ, κ)s(κ, ν)

s(λ, µ)s(µ, ν)

}1/2

WJMO

(
λ µ
κ ν

∣∣∣∣ u) . (1.44)
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Chapter 2

Fusion procedure for the face model
of type C2

2.1 Path space and face operator

In the previous chapter, we introduced the Boltzmann weights and proved that they
satisfy the YBE. In what follows, we treat only the case of type C2. Let g be the
Lie algebra sp4(C), h its Cartan subalgebra and h∗ the dual space of h. We recall
that the root system R for (g, h) and nondegenerate bilinear form ( , ) are given by
R := {±(ε1 ± ε2),±2ε1,±2ε2} ⊂ h∗ and

(εj, εk) =
1

2
δjk, (2.1)

respectively. Note that the square length of the long roots ±2εi is two. We will identify
the space h and its dual h∗ via the form ( , ). The fundamental weights are given by
�1 = ε1, �2 = ε1 + ε2. Let Pd (d = 1, 2) be the set of weights for the fundamental
representation L(�d). We have

P1 = {±ε1,±ε2}, P2 = {±(ε1 ± ε2), 0}. (2.2)

To construct commuting difference operators, we need the general types of the Boltz-
mann weights, which we call the fused Boltzmann weights.

First let us introduce the notion of the path space. For any u ∈ C and λ, µ ∈ h∗

such that µ − λ ∈ 2�P1, we introduce a formal symbol eµ
λ(u) and the complex vector

space

P̂(�u
1 )µ

λ :=

{
C eµ

λ(u) : µ − λ ∈ 2�P1

0 : otherwise.
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P̂(�u
1 )µ

λ = �λ µu W (�u
1 , �v

1) =

λ νµ

�
���

��
�

���
��

� �

� �
� �

u − v

Figure 2.1: Path space and face operator.

We define the path space from λ to µ of type (u1, . . . , uk) by

P̂(�u1
1 ⊗ · · · ⊗ �uk

1 )ν
λ

:=
⊕

µ1,··· ,µk−1∈�∗
P̂(�u1

1 )µ1

λ ⊗ P̂(�u2
1 )µ2

µ1
⊗ · · · ⊗ P̂(�uk

1 )ν
µk−1

. (2.3)

The following set of paths

{eµ1

λ (u1) ⊗ eµ2
µ1

(u2) ⊗ · · · ⊗ eν
µk−1

(uk) | µi − µi−1 ∈ 2�P1(1 ≤ i ≤ k), µ0 = λ, µk = ν}

forms a basis of the space (2.3). Set also

P̂(�u1
1 ⊗ · · · ⊗ �uk

1 )λ :=
⊕
ν∈�∗

P̂(�u1
1 ⊗ · · · ⊗ �uk

1 )ν
λ

and
P̂(�u1

1 ⊗ · · · ⊗ �uk
1 ) :=

⊕
λ∈�∗

P̂(�u1
1 ⊗ · · · ⊗ �uk

1 )λ.

We define the face operator W (�u
1 , �v

1) : P̂(�u
1 ⊗ �v

1) → P̂(�v
1 ⊗ �u

1 ) by

W (�u
1 , �v

1) eµ
λ(u) ⊗ eν

µ(v) :=
∑
κ∈�∗

W

(
λ µ
κ ν

∣∣∣∣ u − v

)
eκ

λ(v) ⊗ eν
κ(u)

(Fig.2.1). With these definitions, the Yang-Baxter equation (0.19) reads as follows:

(id ⊗ W (�u
1 , �v

1)) (W (�u
1 , �w

1 ) ⊗ id) (id ⊗ W (�v
1 , �

w
1 ))

= (W (�v
1 , �

w
1 ) ⊗ id) (id ⊗ W (�u

1 , �w
1 )) (W (�u

1 , �v
1) ⊗ id)

: P̂(�u
1 ⊗ �v

1 ⊗ �w
1 ) → P̂(�w

1 ⊗ �v
1 ⊗ �u

1 ). (2.4)

We will recall the fusion procedure. First we consider the composition of the face
operators:

W (�u1
1 ⊗ �u2

1 ⊗ · · · ⊗ �uk
1 , �v

1)

:= W 1,2 (�u1
1 , �v

1) W 2,3 (�u2
1 , �v

1) · · ·W k,k+1 (�uk
1 , �v

1)

: P̂(�u1
1 ⊗ �u2

1 ⊗ · · · ⊗ �uk
1 ⊗ �v

1) → P̂(�v
1 ⊗ �u1

1 ⊗ �u2
1 · · · ⊗ �uk

1 ),

29



u1 u2 uk· · · v

· · ·

�
��

� � � �
�

�

�

�

�
�

�

�

�

�

�

�
��

�
��

�
��

�
��

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
��

u1 − v

u2 − v

uk − v

Figure 2.2: The face operator W (�u1
1 ⊗ �u2

1 ⊗ · · · ⊗ �uk
1 , �v

1).

where the operators W
(
�

uj

1 , �v
1

)j,j+1
are defined by the formula

W
(
�

uj

1 , �v
1

)j,j+1
:= id⊗(j−1) ⊗ W

(
�

uj

1 , �v
1

)
⊗ id⊗(k−j)

: P̂(�u1
1 ⊗ · · · ⊗ �

uj−1

1 ⊗ �
uj

1 ⊗ �v
1︸ ︷︷ ︸⊗�

uj+1

1 ⊗ · · · ⊗ �uk
1 )

→ P̂(�u1
1 ⊗ · · · ⊗ �

uj−1

1 ⊗ �v
1 ⊗ �

uj

1︸ ︷︷ ︸⊗�
uj+1

1 ⊗ · · · ⊗ �uk
1 )

(Fig. 2.2). Also we set

W (�u1
1 ⊗ �u2

1 ⊗ · · · ⊗ �uk
1 , �v1

1 ⊗ �v2
1 ⊗ · · · ⊗ �vl

1 )

:=

←−∏
1≤j≤l

W
(
�u1

1 ⊗ �u2
1 ⊗ · · · ⊗ �uk

1 , �
vj

1

)[j,k+j]

: P̂(�u1
1 ⊗ · · · ⊗ �uk

1 ⊗ �v1
1 ⊗ · · · ⊗ �vl

1 ) → P̂(�v1
1 ⊗ · · · ⊗ �vl

1 ⊗ �u1
1 ⊗ · · · ⊗ �uk

1 ),

where

W (�u1
1 ⊗ · · · ⊗ �uk

1 , �
vj

1 )[j,k+j] := id⊗(j−1) ⊗ W (�u1
1 ⊗ · · · ⊗ �uk

1 , �
vj

1 ) ⊗ id⊗(l−j)

: P̂(�v1
1 ⊗ · · · ⊗ �

vj−1

1 ⊗ �u1
1 ⊗ · · · ⊗ �uk

1 ⊗ �
vj

1︸ ︷︷ ︸⊗�
vj+1

1 ⊗ · · · ⊗ �vl
1 )

→ P̂(�v1
1 ⊗ · · · ⊗ �

vj−1

1 ⊗ �
vj

1 ⊗ �u1
1 ⊗ · · · ⊗ �uk

1︸ ︷︷ ︸⊗�
vj+1

1 ⊗ · · · ⊗ �vl
1 )

(Fig. 2.3).
Let us introduce the fusion projector π�u

2
by specializing the parameter in W (�u

1 , �v
1):

π�u
2

:= W (�u−�
1 , �u

1 ) : P̂(�u−�
1 ⊗ �u

1 ) → P̂(�u
1 ⊗ �u−�

1 ). (2.5)
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Figure 2.3: The face operator W (�u1
1 ⊗ �u2

1 ⊗ · · · ⊗ �uk
1 , �v1

1 ⊗ �v2
1 ⊗ · · · ⊗ �vl

1 ).

Lemma 4 The space π�u
2
(P̂(�u−�

1 ⊗ �u
1 )λ) has a basis {fλ+�r

λ (u)}r∈P2 given by

fλ+�p+�q
λ (u) :=[λp−q + �]eλ+�p

λ (u) ⊗ eλ+�p+�q
λ+�p (u − �)

+ [λq−p + �]eλ+�q
λ (u) ⊗ eλ+�p+�q

λ+�q (u − �), (2.6)

where p = ±ε1, q = ±ε2 , and

fλ
λ (u) :=

∑
p∈P1

[2λp + 2�]eλ+�p
λ (u) ⊗ eλ

λ+�p(u − �). (2.7)

Proof . For p, q ∈ P1, q �= ±p, we have

π�u
2

(
eλ+�p

λ (u − �) ⊗ eλ+2�p
λ+�p (u)

)
=

 p

p −� p
p

 eλ+�p
λ (u) ⊗ eλ+2�p

λ+�p (u − �) = 0,

π�u
2

(
eλ+�p

λ (u − �) ⊗ eλ+�p+�q
λ+�p (u)

)
=

 p

p −� q
q

 eλ+�p
λ (u) ⊗ eλ+�p+�q

λ+�p (u − �) +

 p

q −� q
p

 eλ+�q
λ (u) ⊗ eλ+�p+�q

λ+�q (u − �)

=
[−2�]

[−3�] [λp−q]

(
[λp−q + �]eλ+�p

λ (u) ⊗ eλ+�p+�q
λ+�p (u − �)

+ [λq−p + �]eλ+�q
λ (u) ⊗ eλ+�p+�q

λ+�q (u − �)
)

,

31



and

π�u
2

(
eλ+�p

λ (u − �) ⊗ eλ
λ+�p(u)

)
=

∑
r∈P1

 p

r −� −p
−r

 eλ+�r
λ (u) ⊗ eλ

λ+�r(u − �)

=
[−�] [λp+q − �] [λp−q − �]

[−3�] [λp+q] [λp−q] [2λp]

(∑
r∈P1

[2λr + 2�]eλ+�r
λ (u) ⊗ eλ

λ+�r(u − �)

)
.

Here we have used the identity

p

p −� −p
−p

=
[−2�] [2λp + 2�]

[−3�] [2λp + �]
− [−�] [2λp − �]

[−3�] [2λp + �]

[2λp + 2�]

[2λp]

[λp+q + �] [λp−q + �]

[λp+q] [λp−q]

=
[2λp + 2�]

[−3�] [2λp + �]

[−2�] [2λp] [λp+q] [λp−q] − [−�] [2λp − �] [λp+q + �] [λp−q + �]

[2λp] [λp+q] [λp−q]

=
[−�]

[−3�]

[2λp + 2�]

[2λp]

[λp+q − �] [λp−q − �]

[λp+q] [λp−q]

which follows from the three-term identity (1.18). �
We define

P̂(�u
2 )λ := π�u

2
(P̂(�u−�

1 ⊗ �u
1 )λ)

and P̂(�u
2 )µ

λ := P̂(�u−�
1 ⊗�u

1 )µ
λ ∩ P̂(�u

2 )λ. Note that dimP̂(�u
2 )µ

λ ≤ 1 and the equality

holds when µ−λ ∈ 2�P2. We can also define P̂(�u1

d1
⊗ · · ·⊗�uk

dk
)ν
λ similarly as in (2.3)

(d1, . . . , dk = 1 or 2).

Proposition 2 Define the operators W̃dd′(u − v) (d, d′ = 1, 2) by

W̃21(u − v) := W (�u
1 ⊗ �u−�

1 , �v
1), W̃12(u − v) := W (�u

1 , �v
1 ⊗ �v−�

1 ) (2.8)

and

W̃22(u − v) := W (�u
1 ⊗ �u−�

1 , �v
1 ⊗ �v−�

1 ).

We have

W̃dd′(u − v)(P̂(�u
d ⊗ �v

d′)
µ
λ) ⊂ P̂(�v

d′ ⊗ �u
d)µ

λ,
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Figure 2.4: W21(u), W12(u) and W22(u).

Proof . From the definition of π�u
2

(2.5) and the YBE (0.19),

W 1,2(u − v)W 2,3(u − v − �)(π�u
2
⊗ id)

= (id ⊗ π�u
2
)W 1,2(u − v − �)W 2,3(u − v). (2.9)

Applying this to the definition of W̃21(u − v), we get

W̃21(u − v)(P̂(�u
2 ⊗ �v

1)
µ
λ) ⊂ P̂(�v

1 ⊗ �u
2 )µ

λ.

By the same argument, we have

W 2,3(u − v + �)W 1,2(u − v)(id ⊗ π�u
2
)

= (π�u
2
⊗ id)W 2,3(u − v)W 1,2(u − v + �), (2.10)

and

W̃12(u − v)(P̂(�u
1 ⊗ �v

2)
µ
λ) ⊂ P̂(�v

2 ⊗ �u
1 )µ

λ.

Together with the equations (2.9),(2.10) and the definition of W̃22(u − v), we obtain

W̃22(u − v)(P̂(�u
2 ⊗ �v

2)
µ
λ) ⊂ P̂(�v

2 ⊗ �u
2 )µ

λ.

�
We denote by Wdd′(u − v) the restricted operators W̃dd′(u − v)|

�P(�u
d⊗�v

d′ )
. By the

construction, the operators Wdd′(u − v) clearly satisfy the YBE in the operator form

(2.4) on P̂(�d ⊗ �d′ ⊗ �d′′). We introduce their matrix coefficients by the following
equation

Wdd′(u − v) gµ
λ(u) ⊗ gν

µ(v) =
∑
κ∈�∗

Wdd′

(
λ µ
κ ν

∣∣∣∣ u − v

)
gκ

λ(v) ⊗ gν
κ(u). (2.11)
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then, their coefficients Wdd′

(
λ µ
κ ν

∣∣∣∣ u − v

)
satisfies the following type of YBE:

∑
η

Wdd′

(
ρ η
σ κ

∣∣∣∣u − v

)
Wdd′′

(
λ µ
ρ η

∣∣∣∣u − w

)
Wd′d′′

(
µ ν
η κ

∣∣∣∣ v − w

)
=

∑
η

Wd′d′′

(
λ η
ρ σ

∣∣∣∣ v − w

)
Wdd′′

(
η ν
σ κ

∣∣∣∣ u − w

)
Wdd′

(
λ µ
η ν

∣∣∣∣ u − v

)
. (2.12)

Remark. In general, one can think of more general fused weights WV V ′ , where V, V ′

stands for some finite dimensional representations of g. In the above we treated the
case V = L(�d), V ′ = L(�d′) for g (d, d′ = 1 or 2). In this setting, for λ, µ ∈ h∗, we
have

dimP̂(�d)
µ
λ ≤ 1 (d = 1, 2).

However, for the general representation of g, the fused Boltzmann weights depend not
only on the difference of elements in h∗ attached at the both ends of the path, but
also on the path which connects the ends. In general, for a representation V of g, the
dimension of the corresponding path space P̂(V )µ

λ is equal to the multiplicity of weight
µ− λ in V . If the multiplicity for V or V ′ is greater than one for some weight(s), then

for the fused weights WV V ′ , the “matrix coefficients” WV V ′

(
λ µ
η ν

∣∣∣∣u − v

)
, which

can be defined similarly as in (2.11), becomes an matrix rather than a scalar:

WV V ′

(
λ µ
η ν

∣∣∣∣ u − v

)
: P̂(V )µ

λ ⊗ P̂(V ′)ν
µ → P̂(V ′)κ

λ ⊗ P̂(V )ν
κ.

In this situation, the YBE written in terms of the “matrix coefficients” also becomes
an equation of matrices, whereas the equation (2.12) is an equation of scalar functions.

2.2 Formula for the fused Boltzmann weight

For p, r ∈ Pd and s, q ∈ Pd′ (d, d′ = 1, 2) such that p + q = r + s we write for brevity
(as far as confusion will not arise)

p
s u q

r
= Wdd′

(
λ λ + p̂
λ + ŝ λ + p̂ + q̂

∣∣∣∣ u) . (2.13)
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2.2.1 (2, 1) case

We calculate the coefficients of the operator W21(u).

W21

(
λ µ
κ ν

∣∣∣∣ u) =

λ µ

κ ν

� �
�

�

�
�

�

u u − �

In what follows, we will often omit the dependence of gµ
λ(u) ∈ P̂(�u

d ) on u (the spectral

parameter) for brevity. Let p ∈ P1. From the definitions of fλ
λ and W̃21 (2.7,2.8) we

have

W21(u) fλ
λ ⊗ eλ+�p

λ = W̃21(u) fλ
λ ⊗ eλ+�p

λ

=W̃21(u)

(∑
r∈P1

[2λr + 2�] eλ+�r
λ ⊗ eλ

λ+�r ⊗ eλ+�p
λ

)

=
∑
q∈P1

eλ+�q
λ ⊗

 ∑
s,t∈P1

s+t=p−q

Vq(λ; s, t;u)eλ+�q+�s
λ+�q ⊗ eλ+�p

λ+�q+�s

 ,

where we denote by Vq(λ; s, t;u) the following function∑
r∈P1

[2λr + 2�] W11

(
λ λ + r̂
λ + q̂ λ + q̂ + ŝ

∣∣∣∣u) W11

(
λ + r̂ λ
λ + q̂ + ŝ λ + p̂

∣∣∣∣ u − �

)
.

If q ∈ P1 satisfies q �= ±p, then the functions Vq(λ; s, t;u) vanish except for (s, t) =
(p,−q) or (−q, p), and one can easily show that

Vq(λ; p,−q; u)

[(λ + q̂)p+q + �]
=

Vq(λ;−q, p; u)

[(λ + q̂)−q−p + �]
. (2.14)

This equation implies that the vector

Vq(λ; p,−q; u) eλ+�q+�p
λ+�q ⊗ eλ+�p

λ+�q+�p + Vq(λ;−q, p; u) eλ
λ+�q ⊗ eλ+�p

λ

is proportional to fλ+�p
λ+�q and its coefficient (the both hands sides of (2.14)) is calculated

as
[u − �] [u + �] [u + 3�] [2�]

[−3�]2 [�]2
[λq−p − � − u] [2λq + 2�]

[λq−p − �] [λq+p + �]

by using the three term identity (1.18). This function will be denoted as (see (2.13))

0
q u p

p − q
(q �= ±p).
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Let us consider the term for q = p. For all s ∈ P1 we have from the three term
identity

Vp(λ; s,−s; u)

[2(λ + p̂)s + 2�]
=

[u − �] [u + �] [u + 3�]

[−3�]2 [�]

[u + �]

[�]

∏
r∈P1
r �=±p

[λp+r + 2�]

[λp+r + �]
. (2.15)

The right hand side of this equation is independent of s ∈ P1. Thus we see that the
vector ∑

s∈P1

Vp(λ; s,−s; u)eλ+�p+�s
λ+�p ⊗ eλ+�p

λ+�p+�s

is proportional to fλ+�p
λ+�p and its coefficient is equal to the right hand side of (2.15), which

is labeled by
0

p u p
0

.

Here we write all fused Boltzmann weights (the coefficients of the operator W21(u)).
They are obtained by the three term identity (1.18). We assume p, q ∈ P1 satisfy
p �= ±q. The common factor

[u − �] [u + �] [u + 3�]

[−3�]2 [�]
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is denoted by C(u).

p + q
q u q

p + q
= C(u)

[u + 2�]

[�]
,

p − q
q u q

p − q
= C(u)

[u]

[�]

[2λq + 2�]

[2λq]

[λp−q − �]

[λp−q + �]
,

0
q u q

0
= C(u)

[u + �]

[�]

∏
r∈P1
r �=±q

[λq+r + 2�]

[λq+r + �]
, (2.16)

q − p
q u p

0
= C(u)

[λq−p − u] [λq+p + 2�]

[2λp] [λq−p + �]
, (2.17)

0
q u p

p − q
= C(u)

[2�]

[�]

[λq−p − � − u] [2λq + 2�]

[λq−p − �] [λq+p + �]
, (2.18)

p + q
q u −q

p − q
= C(u)

[2�]

[�]

[2λq − u] [λp−q − �]

[2λq] [λp+q + �]
.

2.2.2 (1, 2) case

Next we give the example of W12.

W12

(
λ µ
κ ν

∣∣∣∣ u) =

λ µ

κ ν

� �

�

� �
�

�

u + �

u

In this case, let us denote the common factor

[u] [u + 2�] [u + 4�]

[−3�]2 [�]
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by D(u). To obtain these results, we use only the three-term identity (1.18).

p
p+q u p+q

p
= D(u)

[u + 3�]

[�]
,

p
q−p u q−p

p
= D(u)

[u + �]

[�]

[2λp − 2�]

[2λp]

[λq−p + 2�]

[λq−p]
,

p
0 u 0

p
= D(u)

[u + 2�]

[�]

∏
r∈P1
r �=±p

[λp+r − �]

[λp+r]
, (2.19)

p
0 u q−p

q
= D(u)

[λp−q − 2� − u] [λp+q − �]

[2λp] [λq−p]
,

p
p−q u 0

q
= D(u)

[2�]

[�]

[λp−q − � − u] [2λq − 2�]

[λq−p] [λp+q]
,

p
p+q u q−p

−p
= D(u)

[2�]

[�]

[2λp − � − u] [λp+q + 2�]

[2λp] [λq−p]
.

2.2.3 (2, 2) case

Finally we give the example of W22.

W22

(
λ µ
κ ν

∣∣∣∣ u) =

λ µ

κ ν

� �

� � �

�

�

�

�

�

�

�

u + �

u

u

u − �

They are equivalent to the Boltzmann weights associated to the vector representation
of the type B2 Lie algebra. We write only two cases as example, which will be used to
define the difference operator M2(u). We set

G(u) :=
[u − �] [u]2 [u + �] [u + 2�] [u + 3�]2 [u + 4�]

[−3�]4 [�]4
. (2.20)

p + q
0 u 0

p + q
= G(u)

[λp+q − �]

[λp+q + �]
, (2.21)
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0
0 u 0

0
=G(u)

[2�]

[6�]

×

 ∑
r=±ε1
s=±ε2

[2λr + 2�] [2λs + 2�]

[2λr] [2λs]

[λr+s − 5�] [λr+s + 2�]

[λr+s] [λr+s + �]
− [u + 6�] [u − 3�]

[u] [u + 3�]

 .

(2.22)

The formulas (2.19), (2.21) and (2.22) together give the explicit form of M̃d (Theorem
2 (ii)).

We explain how to calculate the fused Boltzmann weight
0

0 u 0
0

. According to the

definition of the operator W22(u) and the vector fλ
λ (2.7), the coefficient of W22(u)fλ

λ ⊗
fλ

λ with respect to fλ
λ ⊗ fλ

λ is equal to

1

[2λp + 2�]

∑
r∈P1

[2λr + 2�] W21

(
λ λ
λ + p̂ λ + r̂

∣∣∣∣u)W21

(
λ + p̂ λ + r̂
λ λ

∣∣∣∣u + �

)
.

(2.23)

In this summation, if r is equal to −p, then W21

(
λ λ
λ + p̂ λ − p̂

∣∣∣∣ u) = 0 and therefore

(2.23) can be rewritten as

W 21

(
λ λ
λ + p̂ λ + p̂

∣∣∣∣u)W21

(
λ + p̂ λ + p̂
λ λ

∣∣∣∣ u + �

)
+

∑
q∈P1
q �=±p

[2λq + 2�]

[2λp + 2�]
W21

(
λ λ
λ + p̂ λ + q̂

∣∣∣∣ u)W21

(
λ + p̂ λ + q̂
λ λ

∣∣∣∣u + �

)
.

By means of (2.16), (2.17) and (2.18), this function is equal to

[u − �] [u] [u + �] [u + 2�] [u + 3�] [u + 4�] [2�]

[−3�]3 [�]4

×

 [u + �] [u + 2�]

[2�] [−3�]

∏
q∈P1
q �=±p

[λp+q − �][λp+q + 2�]

[λp+q][λp+q + �]

+
[�]

[−3�]

∑
q∈P1
q �=±p

[2λq − 2�]

[2λq]

[λp+q + 2� + u] [λp+q − � − u] [λp−q − �]

[λp+q] [λp+q − �] [λp−q + �]

 .
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To obtain the formula (2.22), we use the following lemma.

Lemma 5 For any p ∈ P1, we have

[u + �] [u + 2�]

[2�] [−3�]

∏
q∈P1
q �=±p

[λp+q − �]

[λp+q]

[λp+q + 2�]

[λp+q + �]

+
[�]

[−3�]

∑
q∈P1
q �=±p

[2λq − 2�]

[2λq]

[λp+q + 2� + u] [λp+q − � − u] [λp−q − �]

[λp+q] [λp+q − �] [λp−q + �]

=
[u][u + 3�]

[6�][−3�]

∑
r=±ε1
s=±ε2

[2λr + 2�][2λs + 2�]

[2λr][2λs]

[λr+s − 5�][λr+s + 2�]

[λr+s][λr+s + �]
+

[u + 6�][u − 3�]

[6�][u + 3�]
.

(2.24)

Proof . Let f(λp) be (the left hand side) − (the right hand side) of (2.24), regarded as
a function of λp. It is doubly periodic function with the periods 1, τ . Let us show that
it is entire. The apparent poles of f(λp) are located at

λp = λq, λp = λq ± � (p, q ∈ P1, p + q �= 0), λp = 0 (p ∈ P1).

Note that the left hand side of (2.24) is clearly invariant under λq �→ −λq, and the right-
hand side is W -invariant. In view of the symmetry, it suffices to check the regularity
at λp = λq, λp = λq − � and λp = 0. By the three-term identity (1.18), it is easy to see
that the residue of f(λp) at λp = λq − � vanishes. Manifestly, the point λp = λq and
λp = 0 is regular.

Now we have proved that f(λp) is independent of λp. We will show f(−λq−2�) = 0.
This can be directly checked by using the identity (1.18) twice, and the proof completes.
�

To conclude this section, we will give another expression of the weight
0

0 u 0
0

, which

is found after the publication of [HIK].

Lemma 6 We have∑
p=±ε1
q=±ε2

U(λp, λq) −
∑

p=±ε1
q=±ε2

[λp+q − �] [λp+q + 2�]

[λp+q] [λp+q + �]
= K, (2.25)

where K is a constant given by

K =
[8�] [�]

[6�] [5�]
+

[5�] [2�]

[4�] [3�]
+

[6�] [3�]

[5�] [4�]
+

[4�] [�]

[3�] [2�]
.
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Proof . Let f(λp) be the left hand side of (2.25), regarded as a function of λp (p ∈ I).
It is doubly periodic function of the periods 1, τ . Let us show that it is entire. The
apparent poles of f(λp) are located at

λp = λq, λp = λq − � (p, q ∈ I, p + q �= 0), λp = 0 (p ∈ I).

Note that f(λp) is W -invariant, then the points λp = λq and λp = 0 are regular. Also,
the residue of f(λp) at λp = −λq − � is

[2�]

[6�]

[−2λq] [2λq + 2�]

[−2λq − 2�] [2λq]

[−6�] [�]

[−�]
− [−2h] [�]

[−�]
= 0.

Now we have proved that f(λp) is independent of λp, then we consider g(λq) =
f(−λq − 2�) as a function of λq (q �= p ∈ I):

g(λq) =
[2�]

[6�]

(
[2λq + 2�] [2λq − 2�] [2λq + 7�]

[2λq + 4�] [2λq + 2�] [2λq + �]

+
[2λq + 6�] [2λq + 2�] [2λq − 3�]

[2λq] [2λq + 2�] [2λq + 3�]

+
[2λq + 6�] [2λq − 2�] [−3�] [4�]

[2λq + 4�] [2λq] [2�] [3�]

)
− [−2λq − 3�] [−2λq]

[−2λq − 2�] [−2λq − �]
− [2λq + �] [2λq + 4�]

[2λq + 2�] [2λq + 3�]
− [�] [4�]

[2�] [3�]
.

By the same argument we can show that g(λq) is independent of λq. Therefore we get
K by putting λq = � in g(λq) and the proof completes. �
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Chapter 3

The difference operators of type C2

3.1 Construction of the commuting difference op-

erators of type C2

From now on, the Jacobi’s first theta function is denoted by θ1(u) instead of [u] (See
Appendix C). We define the difference operators Md(u) (u ∈ C, d = 1, 2) acting on the
functions on h∗ by means of the Boltzmann weights of type (1, 2) and (2, 2).

(Md(u)f)(λ) :=
∑
p∈Pd

Wd2

(
λ λ + 2�p
λ λ + 2�p

∣∣∣∣u) T �

2pf(λ). (3.1)

Here the shift operator T �

2p is defined as

T �

2pf(λ) := f(λ + 2�p ).

We recall that for λ ∈ h∗ and p ∈ Pd (d = 1, 2), we put

λp := (λ, p).

Note that if we denote λi = (λ, εi) (i = 1, 2) and f(λ) = f(λ1, λ2), then

T �

±2ε1
f(λ1, λ2) = f(λ1 ± �, λ2), T �

±2ε2
f(λ1, λ2) = f(λ1, λ2 ± �).

Theorem 2 (i) For each u, v ∈ C, we have Md(u)Md′(v) = Md′(v)Md(u) (d, d′ = 1, 2).
(ii) The explicit form of Md(u) are as follows :

M1(u) = F (u)
∑
p∈P1

∏
q∈P1
q �=±p

θ1(λp+q − �)

θ1(λp+q)
T �

2p, (3.2)
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M2(u) = G(u)

 ∑
p=±ε1
q=±ε2

(
θ1(λp+q − �)

θ1(λp+q + �)
T �

2pT
�

2q + U(λp, λq)

)
− H(u)

 . (3.3)

Here U(λp, λq) is given by :

U(λp, λq) =
θ1(2�)

θ1(6�)

θ1(2λp + 2�) θ1(2λq + 2�)

θ1(2λp) θ1(2λq)

θ1(λp+q − 5�) θ1(λp+q + 2�)

θ1(λp+q) θ1(λp+q + �)
,

G(u) is given in (2.20) and F (u), H(u) are the following functions depend only on u
and � :

F (u) :=
θ1(u) θ1(u + 2�)2 θ1(u + 4�)

θ1(−3�)2 θ1(�)2
,

and H(u) :=
θ1(u + 6�) θ1(u − 3�) θ1(2�)

θ1(u) θ1(u + 3�) θ1(6�)
.

Proof . The explicit formulas (ii) are given directly by (2.19), (2.21) and (2.22). Now we
show the commutativity condition (i). For t ∈ Pd +Pd′ we will introduce the matrices
At(λ|u, v) and Bt(λ|v, u) whose index set is It := {(p, q) ∈ Pd ×Pd′ | p + q = t} :

At(λ|u, v)
(p,q)
(r,s) := Wd2

(
λ λ + p̂
λ λ + r̂

∣∣∣∣u)Wd′2

(
λ + p̂ λ + t̂

λ + r̂ λ + t̂

∣∣∣∣ v) ,

Bt(λ|v, u)
(p,q)
(r,s) := Wd′2

(
λ λ + q̂
λ λ + ŝ

∣∣∣∣ v)Wd2

(
λ + q̂ λ + t̂

λ + ŝ λ + t̂

∣∣∣∣ u) .

With these matrices, we can write down both the left and right hand sides as

Md(u)Md′(v) =
∑

t∈Pd+Pd′

trace At(λ|u, v) T �

2t,

Md′(v)Md(u) =
∑

t∈Pd+Pd′

trace Bt(λ|v, u) T �

2t.

Let us also define the matrix Wt(λ|u − v) with the same index set:

Wt(λ|u − v)
(p,q)
(r,s) := Wdd′

(
λ λ + p̂

λ + ŝ λ + t̂

∣∣∣∣ u − v

)
.

The YBE (2.12) implies

Wt(λ|u − v)At(λ|u, v) = Bt(λ|v, u)Wt(λ|u − v)

(Fig. 3.1). By the inversion relation (1.13), it can be seen that Wt(λ|u−v) is invertible
for generic u, v ∈ C. It follows that trace At(λ|u, v) = trace Bt(λ|v, u) for all u, v ∈ C.
Hence we have Md(u)Md′(v) = Md′(v)Md(u) for all u, v ∈ C. �
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Figure 3.1: The left hand side is the matrix element Wt(λ|u− v)At(λ|u, v)
(p,q)
(r,s) and the

right hand side is Bt(λ|v, u)Wt(λ|u − v)
(p,q)
(r,s) .

3.2 Identification with van Diejen’s system

Thanks to the formula (2.25) for U(λp, λq), our operators Md(u) (d = 1, 2) looks quite
similar to the operator obtained in van Diejen’s work. Here we will establish the exact
formula among these operators.

We define the difference operators M̃d to be the components of Md(u) independent
of u:

M̃1 =
∑
p∈P1

∏
q∈P1
q �=±p

θ1(λp+q − �)

θ1(λp+q)
T �

2p, (3.4)

M̃2 =
∑

p=±ε1
q=±ε2

(
θ1(λp+q − �)

θ1(λp+q + �)
T �

2pT
�

2q +
θ1(λp+q − �) θ1(λp+q + 2�)

θ1(λp+q) θ1(λp+q + �)

)
(3.5)

More general commuting difference operators H1,H2 are obtained by van Diejen
[vD2] and later by Komori-Hikami [KH2] in a different way. The operators H1,H2

in [vD2] depend on nine complex parameters µ, µr, µ
′
r (r = 0, 1, 2, 3) satisfying the

condition ∑
r

(µr + µ′r) = 0 (3.6)

and are defined by

H1 =
∑
ε=±1

w(εx1)v(εx1 + x2)v(εx1 − x2)T
γ
ε1

+
∑
ε=±1

w(εx2)v(εx2 + x1)v(εx2 − x1)T
γ
ε2 + U{1,2},1,
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H2 =
∑

ε,ε′=±1

w(εx1)w(ε′x2)v(εx1 + ε′x2)v(εx1 + ε′x2 + γ)T γ
ε1T

γ
ε′2

+ U{2},1
∑
ε=±1

w(εx1)v(εx1 + x2)v(εx1 − x2)T
γ
ε1

+ U{1},1
∑
ε=±1

w(εx2)v(εx2 + x1)v(εx2 − x1)T
γ
ε2 + U{1,2},2.

Here T γ
±i (i = 1, 2) stand for the shift operators

T γ
±1f(x1, x2) = f(x1 ± γ, x2), T γ

±2f(x1, x2) = f(x1, x2 ± γ)

and

v(z) :=
σ(z + µ)

σ(z)
, w(z) :=

∏
0≤r≤3

σr(z + µr) σr(z + µ′r + γ/2)

σr(z) σr(z + γ/2)
, (3.7)

where σ(z) = σ0(z) denotes the Weierstrass sigma function with two quasi periods
ω1, ω2 and σr(z) (r = 1, 2, 3) the associated function obtained by the shift of argument
by the half periods (See Appendix C for more detail). The functions U{j},1, U{1,2},j (j =
1, 2) are defined as follows :

U{j},1 = −w(xj) − w(−xj) (j = 1, 2),

U{1,2},1 =
∑

0≤r≤3

cr

∏
j=1,2

σr(µ − γ/2 + xj) σr(µ − γ/2 − xj)

σr(−γ/2 + xj) σr(−γ/2 − xj)
,

where

cr =
2

σ(µ) σ(µ − γ)

∏
0≤s≤3

σs(µπr(s) − γ/2) σs(µ
′
πr(s)),

with πr denoting the permutation π0 = id, π1 = (01)(23), π2 = (02)(13), π3 = (03)(12).

U{1,2},2 =
∑

ε,ε′∈{1,−1}
w(εx1)w(ε′x2)v(εx1 + ε′x2)v(−εx1 − ε′x2 − γ) (3.8)

We mention that the Komori-Hikami system in [KH2] is of more complicated form
and has nine arbitrary parameters, that is, they removed the condition (3.6).

To identify our operators with H1 and H2, we specialize parameters µ, µr, µ
′
r (r =

0, 1, 2, 3) in H1, H2 as µ = −γ, µr = µ′r = 0. Then w(z) = 1 and U{1,2},1 = 0. Let us
denote these specialized operators by H̄1, H̄2 respectively. Because of these simplifica-
tions, we immediately obtain the following from Lemma 6, giving the identification of
our system {M̃1, M̃2} and van Diejen’s {H̄1, H̄2}.
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Theorem 3 For a function f(λ) = f(λ1, λ2) on h, define σ(f)(x) = σ(f)(x1, x2) by

σ(f)(x) := exp
η1(x

2
1 + x2

2)

ω1

f(
x1

2ω1

,
x2

2ω1

),

and set γ = 2ω1�. Then we have

σ(M̃1f)(x) = e2η1γ2/ω1H̄1σ(f)(x),

σ(M̃2f)(x) = e2η1γ2/ω1
(
H̄2 + 2H̄1

)
σ(f)(x).

Proof . Use the connection between the theta function and sigma function in Appendix
C (4.8) and (2.25) to compare (3.3) and (3.8). �

3.3 Differential limit

In this section, let us clarify the connection between our system of difference operators
and a quantization of the Inozemtsev Hamiltonian [IM], [I]. By expanding in � one
infers that

M̃1 = 4 + M1,2�
2 + M1,4�

4 + O(�5),

M̃2 = 8 + M2,2�
2 + M2,4�

4 + O(�5).

We will abbreviate a function f(λε1±ε2) as f(±), ∂i = ∂/∂λi (i = 1, 2), and θ′1(z) =
dθ1/dz(z) etc. We have

M1,2 =∂2
1 + ∂2

2

− 2

(
θ′1
θ1

(+) +
θ′1
θ1

(−)

)
∂1 − 2

(
θ′1
θ1

(+) − θ′1
θ1

(−)

)
∂2

+ 2

(
θ′′1
θ1

(+) +
θ′′1
θ1

(−)

)
,

M2,2 =2M1,2,
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and

M2,4 − 2M1,4

= ∂2
1∂

2
2

− 2

(
θ′1
θ1

(+) − θ′1
θ1

(−)

)
∂2

1∂2 − 2

(
θ′1
θ1

(+) +
θ′1
θ1

(−)

)
∂1∂

2
2

+

{
2

((
θ′1
θ1

)2

(+) +

(
θ′1
θ1

)2

(−)

)
−

(
θ′′1
θ1

(+) + 2
θ′1
θ1

(+)
θ′1
θ1

(−) +
θ′′1
θ1

(−)

)}
∂2

1

+

{
2

((
θ′1
θ1

)2

(+) +

(
θ′1
θ1

)2

(−)

)
−

(
θ′′1
θ1

(+) − 2
θ′1
θ1

(+)
θ′1
θ1

(−) +
θ′′1
θ1

(−)

)}
∂2

2

+ 4

((
θ′1
θ1

)2

(+) −
(

θ′1
θ1

)2

(−)

)
∂1∂2

+

{
2

(
θ′1θ
′′
1

θ2
1

(+) +
θ′1θ
′′
1

θ2
1

(−)

)
+ 2

(
θ′′1
θ1

(+)
θ′1
θ1

(−) +
θ′1
θ1

(+)
θ′′1
θ1

(−)

)
− 4

((
θ′1
θ1

)3

(+) +

(
θ′1
θ1

)3

(−)

)}
∂1

+

{
2

(
θ′1θ
′′
1

θ2
1

(+) − θ′1θ
′′
1

θ2
1

(−)

)
− 2

(
θ′′1
θ1

(+)
θ′1
θ1

(−) − θ′1
θ1

(+)
θ′′1
θ1

(−)

)
− 4

((
θ′1
θ1

)3

(+) −
(

θ′1
θ1

)3

(−)

)}
∂2

+
1

2

(
θ

(4)
1

θ1

(+) +
θ

(4)
1

θ1

(−)

)
− 4

(
θ′′′1 θ′1
θ2
1

(+) +
θ′′′1 θ′1
θ2
1

(−)

)
+ 2

(
θ′′1θ
′
1
2

θ3
1

(+) +
θ′′1θ
′
1
2

θ3
1

(−)

)
− 2

θ′′1
θ1

(+)
θ′′1
θ1

(−),

We set ∆ = θ1(+)θ1(−), then

∆−1 · M2,2 · ∆ = ∂2
1 + ∂2

2 + 4

((
θ′′1
θ1

− θ′1
2

θ2
1

)
(+) +

(
θ′′1
θ1

− θ′1
2

θ2
1

)
(−)

)
= ∂2

1 + ∂2
2 + 4 ((log θ1)

′′(+) + (log θ1)
′′(−)) , (3.9)
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∆−1 · (M2,4 − 2M1,4) · ∆
= ∂2

1∂
2
2

+4

((
θ′′1
θ1

+
θ′1

2

θ2
1

)
(+) −

(
θ′′1
θ1

+
θ′1

2

θ2
1

)
(−)

)
∂1∂2

+2

((
θ′′′1
θ1

− 3
θ′′1θ
′
1

θ2
1

+ 2
θ′1

3

θ3
1

)
(+) +

(
θ′′′1
θ1

− 3
θ′′1θ
′
1

θ2
1

+ 2
θ′1

3

θ3
1

)
(−)

)
∂1

+2

((
θ′′′1
θ1

− 3
θ′′1θ
′
1

θ2
1

+ 2
θ′1

3

θ3
1

)
(+) −

(
θ′′′1
θ1

− 3
θ′′1θ
′
1

θ2
1

+ 2
θ′1

3

θ3
1

)
(−)

)
∂2

+2

(
θ

(4)
1

θ1
(+) +

θ
(4)
1

θ1
(−)

)
− 8

(
θ′′′1 θ′1
θ2
1

(+) +
θ′′′1 θ′1
θ2
1

(−)

)

−2

((
θ1′′1
θ11

)2

(+) +

(
θ′′1
θ1

)2

(−)

)
− 8

θ′′1
θ1

(+)
θ′′1
θ1

(−)

+16

(
θ′′1θ
′
1
2

θ3
1

(+) +
θ′′1θ
′
1
2

θ3
1

(−)

)
+ 8

(
θ′1

2

θ2
1

(+)
θ′′1
θ1

(−) +
θ′′1
θ1

(+)
θ′1

2

θ2
1

(−)

)
−8

((
θ′1
θ1

)4

(+) +

(
θ′1
θ1

)4

(−)

)
+ 8

(
θ′1
θ1

)2

(+)

(
θ′1
θ1

)2

(−)

= ∂2
1∂

2
2

+4{(log θ1)
′′(+) − (log θ1)

′′(−)}∂1∂2

+2 {(log θ1)
′′′(+) + (log θ1)

′′′(−)} ∂1 + 2{(log θ1)
′′′(+) − (log θ1)

′′′(−)}∂2

+2{(log θ1)
(4)(+) + (log θ1)

(4)(−)}
+4{(log θ1)

′′(+) − (log θ1)
′′(−)}2

= {∂1∂2 + 2 ((log θ1)
′′(+) − (log θ1)

′′(−))}2
.

The completely integrable Hamiltonian of type BCn is introduced by Olshanetsky-
Perelomov [OP1], and later generalized Inozemtsev-Meshcheryakov [IM] [I]. In the rank
two case, the Hamiltonian is given by

H = − 1

2
(∂2

1 + ∂2
2) + g(g − 1) (℘(x1 + x2) + ℘(x1 − x2))

+
∑

0≤r≤3

gr(gr − 1)(℘(ωr + x1) + ℘(ωr + x2)),

where ℘(x) denotes the Weierstrass ℘-function with two periods 2ω1 and 2ω2, and ω0 =
0, ω3 = −ω1 − ω2. By the connection between the theta function and the ℘ function
(4.9) in Appendix C, our differential limit (3.9) is identified with this Hamiltonian for
the special coupling constants g(g − 1) = 2, and gr(gr − 1) = 0 (0 ≤ r ≤ 3).
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Appendix B: Commuting difference systems of type

An−1, Bn

As we have seen in Section 3.1, if we construct the system of difference operators by
using the fused Boltzmann weights (3.1), the commutativity of these operators relies
on the Yang-Baxter equation (2.12). One more key is the fact that the multiplicity
of the weight zero subspace in the representation L(�2) is one. If we take general
representation V instead of L(�2), the resulting commuting operators will become
operators for V0-valued functions on h∗, where V0 denotes the weight 0 subspace of V .
Thus, if we choose the representation satisfying dimV0 = 1, the commuting system for
scalar functions can be constructed by the same manner. There are two other well-
known cases satisfying this property. One is the symmetric tensor representation for
type An−1 and the other is the vector representation for type Bn. For type An−1 case,
Felder-Varchenko constructed the Ruijsenaars operators (difference operators (0.12)
in Introduction) by the same method [FV2]. Actually it turns out that Hasegawa’s

operator L̃ (formula (38) in [H3]) coincides with the fused Boltzmann weight in Felder-
Varchenko method when the parameters involved are set appropriately. For reader’s
convenience, the explicit formula for L̃ is as follows:

L̃(c|u)i
j =

n∑
k=1

φ̄(u)
λ+�ε̄j ,k
λ φ(u + c�)λ+�ε̄i

λ,k T �

i

=

(
θ(c�/n + u + λji)

θ(u)

∏
k �=j

θ(c�/n + λki)

θ(λkj)

)
T �

i . (3.10)

Here φ(u)µ+�ε̄k
µ,j is the intertwining vector (0.26) and φ̄(u)µ+�ε̄k,j

µ is the elements of the

inverse matrix to [φ(u)µ+�ε̄k
µ,j ]j,k=1,...,n:

n∑
j=1

φ̄(u)µ+�ε̄k,j
µ φ(u)

µ+�ε̄′k
µ,j = δk,k′ ,

n∑
j=1

φ(u)µ+�ε̄k
µ,j φ̄(u)µ+�ε̄k,j′

µ = δj,j′ ,

Let us consider the Bn case. We use the Boltzmann weights of type (1.3) and (1.8):

p
0 u 0

p
=

[c − u] [u]

[c] [�]

[λp − �/2]

[λp + �/2]
, (p �= 0)

0
0 u 0

0
=

[c + u] [2c − u]

[c] [2c]
− [u] [c − u]

[c] [2c]

(∑
q �=0

[λq + �/2 + 2c]

[λq + �/2]
Gλq

)
.
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With these functions, we set

M1(u) =
∑
p∈P

λ

p

p

0 0u T �

p

=
[c − u] [u]

[c] [�]

∑
p∈P−{0}

(
[λp − �/2]

[λp + �/2]
Tp −

[�] [λp + �/2 + 2c]

[2c] [λp + �/2]
Gλp

)
+ F (u).

F (u) =
[c + u] [2c − u] [�]

[c − u] [u] [2c]

P := {±ε1, · · · ,±εn, 0}, Tpf(λ) := f(λ + �p).

This operator also corresponds to van Diejen’s operator with special coupling constants.
By the following lemma, we see the operator M1(u) separate to the difference operators
which depend on one variable.

Lemma 7 ∑
p�=0

[�] [λp + �/2 + 2c]

[2c] [λp + �/2]
Gλp +

∑
p�=0

[λp − �/2] [λp + �]

[λp + �/2] [λp]
= K. (3.11)

Here K is a constant independent of λp (p ∈ P):

Proof . The left-hand side, regarded as a function of λp (p ∈ P), is doubly periodic
function of the periods 1, τ . It is W -invariant, then the point λp = λq and λp = 0 is
regular. The residue at λp = −�/2 is 0. �

We define

M̃1 :=
∑

p∈P−{0}

(
[λp − �/2]

[λp + �/2]
Tp −

∑
p�=0

[λp − �/2] [λp + �]

[λp + �/2] [λp]

)
.

By sending the step size � to zero, we obtain the differential operator in the same
way as in C2 case. First we have

[λp − �/2]

[λp + �/2]
f(. . . , λp + �, . . . )

= f +

(
∂p −

θ′

θ
(λp)

)
f · � +

(
1

2
∂2

p −
θ′

θ
(λp)∂p +

1

2

θ′2

θ2
(λp)

)
f · �

2 + O(�3).
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Then,

[λp − �/2]

[λp + �/2]
f(. . . , λp + �, . . . ) +

[−λp − �/2]

[−λp + �/2]
f(. . . , λp − �, . . . )

= 2f +

(
∂2

p − 2
θ′

θ
(λp)∂p +

θ′2

θ2
(λp)

)
f · �

2 + O(�3).

We put

∆ :=
∏

p

θ(λp).

Then we have

∆−1 ·
(

∂2
p − 2

θ′

θ
(λp)∂p +

θ′2

θ2
(λp)

)
· ∆ = ∂2

p +

(
θ′′

θ
− θ′2

θ2

)
(λp)

= ∂2
p + (log θ)′′(λp).

Moreover, the function multiplication term of M̃1 goes over to

[λp − �/2] [λp + �]

[λp + �/2] [λp]
= 1 +

1

2

(
θ′′

θ
− θ′2

θ2

)
(λp) · �

2 + O(�3).

Then we have

M̃1 + K =
∑
p�=0

(
[λp − �/2]

[λp + �/2]
T �

p +
[λp − �/2] [λp + �]

[λp + �/2] [λp]

)
= 4n + M

(2)
1 �

2 + O(�3),

where

∆−1 · M (2)
1 · ∆ =

∑
p

(
∂2

p + 2(log θ)′′(λp)
)
.
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Chapter 4

Diagonalization of the system

4.1 The space of theta functions

Let Q and Q∨ be the root and coroot lattice, P and P∨ the weight and coweight lattice
respectively. Under the identification h = h∗ via the form ( , ), they are given by

P =
∑
j=1,2

Zεj, Q∨ =
∑
j=1,2

Z2εj, (4.1)

and

P∨ = Q = Z2ε1 + Z2ε2 + Z(ε1 + ε2).

For β ∈ h∗, we introduce the following operators Sτβ, Sβ acting on the functions on h∗:

(Sβf)(λ) := f(λ + β),

(Sτβf)(λ) := exp

[
2πi

(
(λ, β) +

(β, β)

2
τ

)]
f(λ + τβ)

They satisfy Heisenberg’s relations

SβSγ = SγSβ, SτβSτγ = SτγSτβ, SγSτβ = e2πi(γ,β)SτβSγ (4.2)

(γ, β,∈ h∗). We define the space of theta functions (of level 1) by

Th1 := {f is holomorphic on h∗ | Sταf = Sαf = f (∀α ∈ Q∨)} .

For each µ ∈ P and fixed τ ∈ H+, we define the classical theta function Θµ(λ) of λ ∈ h∗

by

Θµ(λ) :=
∑

γ∈µ+Q∨
exp

[
2πi

(
(γ, λ) +

(γ, γ)

2
τ

)]
.
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It is easy to see that the set

{Θµ(λ) | µ ≡ 0, ε1, ε2, ε1 + ε2 modQ∨}

gives a basis for Th1 over C [KP].
Let W ⊂ GL(h∗) denote the Weyl group for (g, h), and consider the W -invariants

in Th1:

ThW
1 := {f ∈ Th1 | f(wλ) = f(λ) (∀w ∈ W )} .

Theorem 4 The operators M̃1, M̃2 preserves ThW
1 .

Lemma 8 For all β ∈ P∨ and d = 1, 2, we have

[Sτβ,Md(u)] = [Sβ,Md(u)] = 0. (4.3)

Proof . Note that if p, q ∈ P1 (q �= ±p) and β ∈ P∨ then βp+q ∈ Z. By the quasi-
periodicity (4.1),(4.2), we have

θ1((λ + β)p+q − �)

θ1((λ + β)p+q)
=

θ1(λp+q − �)

θ1(λp+q)
,

θ1((λ + τβ)p+q − �)

θ1((λ + τβ)p+q)
= e2πiβp+q�

θ1(λp+q − �)

θ1(λp+q)
.

Using these equations, we have for all p ∈ P1

Sτβ

∏
q �=±p

θ1(λp+q − �)

θ1(λp+q)
T �

2pf(λ)

= e2πi((λ,β)+τ(β,β)/2)
∏

q �=±p

θ1((λ + τβ)p+q − �)

θ1((λ + τβ)p+q)
f(λ + τβ + p̂)

= e2πi((λ,β)+τ(β,β)/2+2βp�)
∏

q �=±p

θ1(λp+q − �)

θ1(λp+q)
f(λ + τβ + p̂)

=
∏

q �=±p

θ1(λp+q − �)

θ1(λp+q)
T �

2pSτβf(λ),

and

Sβ

∏
q �=±p

θ1(λp+q − �)

θ1(λp+q)
T �

2pf(λ) =
∏

q �=±p

θ1((λ + β)p+q − �)

θ1((λ + β)p+q)
f(λ + β + p̂)

=
∏

q �=±p

θ1(λp+q − �)

θ1(λp+q)
f(λ + β + p̂) =

∏
q �=±p

θ1(λp+q − �)

θ1(λp+q)
T �

2pSβf(λ).
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Note that 2βp� = (p̂, β) etc. Hence we have [Sτβ,M1(u)] = [Sβ,M1(u)] = 0. In the

same way, we can see that the principal part of M̃2 commutes with Sτβ and Sβ, using
the equations

θ1((λ + β)p+q − �)

θ1((λ + β)p+q + �)
=

θ1(λp+q − �)

θ1(λp+q + �)
,

θ1((λ + τβ)p+q − �)

θ1((λ + τβ)p+q + �)
= e2πi(2βp+q�)

θ1(λp+q − �)

θ1(λp+q + �)
.

Using (4.1) and (4.2), it is easy to see that the function

Cp,q(λ) :=
θ1(2�)

θ1(6�)

θ1(2λp + 2�)

θ1(2λp)

θ1(2λq + 2�)

θ1(2λq)

θ1(λp+q − 5�)

θ1(λp+q + �)

θ1(λp+q + 2�)

θ1(λp+q)

(p, q ∈ P1, p + q �= 0) satisfies Cp,q(λ + β) = Cp,q(λ + τβ) = Cp,q(λ) (∀β ∈ P∨). This
means that Sτβ, Sβ(β ∈ P∨) commute with the multiplication by Cp,q(λ). �

Lemma 9 For all γ ∈ P∨, we have

SτγThW ⊂ ThW , SγThW ⊂ ThW . (4.4)

Proof . Let f ∈ ThW and γ ∈ P∨. Since the bilinear form ( , ) is W -invariant, we have
(Sτγf)(wλ) = (Sτw−1(γ)f)(λ). Using (4.2), we can write this as (SτγSτ(w−1(γ)−γ)f)(λ),
which is equal to Sτγf(λ) because w−1(γ) − γ ∈ Q∨. In the same way, we can show
that (Sγf)(wλ) = (Sγf)(λ).

Evidently Sτγf and Sγf are holomorphic. For all α ∈ Q∨, using (4.2) and (γ, α) ∈ Z,
it can be seen that the operators Sα, Sτα commute with Sγ, Sτγ . Hence Sτγf or Sγf are
fixed by Sτα and Sα. �

Now we prove Theorem 4.
Let f be any function in ThW . In view of (4.3), we have SαM̃df = SταM̃df = M̃df

for all α ∈ Q∨ ⊂ P∨. It is clear from the explicit form of M̃d that (M̃df)(wλ) =

(M̃d)f(λ) for all w ∈ W .

Let us show that the function M̃df is holomorphic on h∗. For µ ∈ h∗ and z ∈ C,
we denote by Dz

µ the line in h∗ defined by

Dz
µ := {λ ∈ h∗ | (λ, µ) + z = 0}.

The coefficients of the difference operators M̃d have their possible simple poles along
D + P∨ + τP∨, where we put

D :=
⋃

p∈R+

D0
p ∪

⋃
q∈P2−{0}

D�

q
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and R+ is a fixed set of positive roots.

Next we will show that for any function f in ThW , M̃df is regular along D. Let us

consider the meromorphic function g :=
(∏

p∈R+
θ1(λp)

)
M̃df , which is regular along

D0 :=
⋃

p∈R+
D0

p. Since M̃df is W -invariant, it is clear that g is W -anti-invariant. This

implies that g has zero along D0 and hence M̃df is regular along D0.
The holomorphy along

⋃
q∈P2−{0}D

�

q is somewhat nontrivial. Let p = ±ε1, q = ±ε2.

Clearly, M̃1f is regular along D�

p+q. Let us consider the function M̃2f. It suffices to show
that the following function is regular along D�

p+q:

θ1(λp+q − �)

θ1(λp+q + �)
T �

2pT
�

2qf(λ)

+
θ1(2�)

θ1(6�)

θ1(2λp + 2�)

θ1(2λp)

θ1(2λq + 2�)

θ1(2λq)

θ1(λp+q − 5�)

θ1(λp+q + �)

θ1(λp+q + 2�)

θ1(λp+q)
f(λ).

We note that, for any W -invariant function f , we have
(
T �

2pT
�

2qf − f
)
|D�

p+q
= 0. In

view of this fact, the residue of the above function along D�

p+q is easily seen to vanish.

Thus we have proved that for any function f in ThW , the functions M̃df(d = 1, 2) are
regular along D.

For β, γ ∈ P∨, we have, by the definitions of Sτβ, Sγ and (4.3),

M̃df(λ + βτ + γ) = e−2πi((λ,β)+τ(β,β)/2)SτβSγM̃df(λ)

= e−2πi((λ,β)+τ(β,β)/2)M̃dSτβSγf(λ). (4.5)

Since SτβSγf belongs to ThW by (4.4), M̃dSτβSγf is regular along D. Then (4.5) implies

that M̃df is regular along D + βτ + γ. The proof is completed. �
For µ ∈ P , we define Wµ := {w ∈ W | wµ = µ} and introduce the following

symmetric sum of theta functions [KP],

Sµ(λ) :=
1

|Wµ|
∑
w∈W

Θw(µ)(λ).

Then
{Sµ(λ) | µ ≡ 0, �1 (= ε1), �2 (= ε1 + ε2) modQ∨}

forms a basis for ThW
1 over C.

It is known that ThW
1 is also spanned by the level 1 characters of the affine Lie

algebra ŝp4(C). Note that Θ−µ = Θµ and Θε1+ε2 = Θε1−ε2. We have

S0 = Θ0, S�1 = 2(Θε1 + Θε2), S�2 = 4Θε1+ε2.
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4.2 Diagonalization of M̃d

Now we are in the position to diagonalize the operators M̃d (3.4, 3.5) on the space
ThW

1 . We set

f1 := Θ0 + Θε1+ε2, f2 := Θε1 + Θε2, and f3 := Θ0 − Θε1+ε2 .

They are linearly independent in the space ThW
1 .

Theorem 5 The functions fi(λ) (i = 1, 2, 3) are common eigenfunctions of M̃d :

M̃dfi(λ) = Ed,ifi(λ) (d = 1, 2, i = 1, 2, 3).

The eigenvalues are given by

E1,i =
θ1(2�)θi+1(0)

θ1(�)θi+1(�)

and E2,i = 2E1,i, where the Jacobi theta functions θ(z) = θi(z|τ) (i = 2, 3, 4) are defined
as in Appendix C.

We will prove this theorem by using the following three lemmas. First, we show
that the operators M̃d (surprisingly) split into two A1-type components.

Lemma 10 Let us denote λ± := (λ, ε1 ± ε2) and define

H± :=
θ1(λ± − �)

θ1(λ±)
T �

ε1±ε2
+

θ1(−λ± − �)

θ1(−λ±)
T �

−(ε1±ε2)
.

Then we have

M̃1 = H+H−, M̃2 = H2
+ + H2

−. (4.6)

Proof . To prove the first identity, we note that

θ1(λ+ − �)

θ1(λ+)
T �

ε1+ε2

θ1(λ− − �)

θ1(λ−)
T �

ε1−ε2

=
θ1(λ+ − �)

θ1(λ+)

θ1((λ + �(ε1 + ε2))− − �)

θ1((λ + �(ε1 + ε2))−)
T �

ε1+ε2
T �

ε1−ε2

=
θ1(λ+ − �)

θ1(λ+)

θ1(λ− − �)

θ1(λ−)
T �

2ε1
.
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Here we used the identity (ε1 + ε2, ε1 − ε2) = 0. The second identity follows from, for
instance,

θ1(λ+ − �)

θ1(λ+)
T �

ε1+ε2

θ1(λ+ − �)

θ1(λ+)
T �

ε1+ε2

=
θ1(λ+ − �)

θ1(λ+)

θ1((λ + �(ε1 + ε2))+ − �)

θ1((λ + �(ε1 + ε2))+)
T �

ε1+ε2
T �

ε1+ε2

=
θ1(λ+ − �)

θ1(λ+)

θ1(λ+ + � − �)

θ1(λ+ + �)
T �

2(ε1+ε2)

=
θ1(λ+ − �)

θ1(λ+ + �)
T �

2ε1
T �

2ε2
.

Here we used the identity (ε1 + ε2, ε1 + ε2) = 1. �
Second, we consider the eigenvalue problem for the A1-type difference operator

(difference Lamé or two-body Ruijsenaars operator)

θ1(z − ��)

θ1(z)
f(z + �) +

θ1(z + ��)

θ1(z)
f(z − �) = Ef(z). (4.7)

Lemma 11 For the special coupling constant � = 1,

θi(z) (i = 2, 3, 4)

are solutions of the equation (4.7) with eigenvalues

E = Ei =
θ1(2�) θi(0)

θ1(�) θi(�)
(i = 2, 3, 4).

Proof . This is the special case of Felder-Varchenko’s study [FV1]. They expressed the
solutions of (4.7) in terms of the algebraic Bethe Ansatz method, which is originally
developed and applied to the spin chain model. In fact, the operator in the left hand
side of (4.7) can be regarded as the transfer matrix of the simplest spin chain, that is,
it consists of only one site of freedom with spin � = 1. In this case, the Bethe Ansatz
equation is

θ1(t − 3�/2)

θ1(t + �/2)
= e2�c. (4.8)

The solution (t, c) of this equation gives an eigenfunction

f(z) = eczθ1(z + t − �/2)

with eigenvalue

ε = e−�c θ1(2�)

θ1(�)

θ1(t − �/2)

θ1(t + �/2)
.
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Now one checks directly that the equation (4.8) has solutions

(t, c) =

(
�

2
+

1

2
, 0

)
,

(
�

2
+

1 + τ

2
, πi

)
,

(
�

2
+

τ

2
, πi

)
. (4.9)

In fact, for example, if t = �/2 + τ/2 we have

θ1(t − 3�/2)

θ1(t + �/2)
=

θ1(−� + τ/2)

θ1(� + τ/2)
=

ie−πi(−�+τ/4)θ4(−�)

ie−πi(�+τ/4)θ4(�)
= e2πi�.

Here we used the relations of the theta functions (4.3) in Appendix C, and the fact
that θ4(z) is even. Thus we have the eigenfunctions

θ2(z), θ3(z), θ4(z)

corresponding to each solution (4.9), respectively. �
Therefore, the product of the theta functions

θi(λ−)θj(λ+) (i, j = 2, 3, 4)

are simultaneous eigenfunctions of the operators H2
+, H2

−, H+H− . Finally, we shall
establish the relationship of these Bethe Ansatz solutions and the bases of ThW

1 .

Lemma 12 The functions fi(λ) ∈ ThW
1 are expressed in terms of the Jacobi theta

functions as follows:

f1(λ) = θ3(λ−)θ3(λ+), f2(λ) = θ2(λ−)θ2(λ+), f3(λ) = θ4(λ−)θ4(λ+).

Proof . Because of the definitions of coroot lattice Q∨ (4.1) and Killing form (2.1), each
basis of Th1 is expressed as

Θ0(λ) = θ3(2λ1|2τ)θ3(2λ2|2τ),

Θε1(λ) = θ3(2λ1|2τ)θ2(2λ2|2τ),

Θε2(λ) = θ2(2λ1|2τ)θ3(2λ2|2τ),

Θε1+ε2(λ) = θ2(2λ1|2τ)θ2(2λ2|2τ).

Here λi = λεi
(i = 1, 2). Therefore we can prove this lemma by using the identities of

theta functions (addition theorems) (4.4), (4.5), (4.6), (4.7) in Appendix C. �
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Appendix C : Theta function

We establish notations and identities on the theta functions [WW]. The Jacobi theta
functions are defined for τ ∈ H+ as follows:

θ1(z|τ) = θ1/2,1

(
z +

1

2
, τ

)
=

∑
k∈�

exp

[
2πi

((
z +

1

2

)(
k +

1

2

)
+

1

2

(
k +

1

2

)2

τ

)]

θ2(z|τ) = θ1/2,1(z, τ) =
∑
k∈�

exp

[
2πi

(
z

(
k +

1

2

)
+

1

2

(
k +

1

2

)2

τ

)]

θ3(z|τ) = θ0,1(z, τ) =
∑
k∈�

exp

[
2πi

(
zk +

k2

2
τ

)]

θ4(z|τ) = θ0,1

(
z +

1

2
, τ

)
=

∑
k∈�

exp

[
2πi

((
z +

1

2

)
k +

k2

2
τ

)]
Note that θ1(z) is odd and the other three are even. These functions has quasi-
periodicity:

θ1(z + m|τ) = (−1)mθ1(z|τ), (4.1)

θ1(z + mτ |τ) = (−1)me−πim2τ−2πimzθ1(z|τ), (4.2)

(m ∈ Z), while other three can be expressed by θ1(z)

θ1

(
z +

1

2

∣∣∣∣ τ) = θ2(z|τ),

θ1

(
z +

τ

2

∣∣∣ τ) = ie−πi(z+τ/4)θ4(z|τ), (4.3)

θ1

(
z +

1

2
+

τ

2

∣∣∣∣ τ) = e−πi(z+τ/4)θ3(z|τ).

We use these identities in the computations in Lemma 12.

θ4(x|τ)θ4(y|τ) = θ3(x + y|2τ)θ3(x − y|2τ) − θ2(x + y|2τ)θ2(x − y|2τ), (4.4)

θ3(x|τ)θ3(y|τ) = θ3(x + y|2τ)θ3(x − y|2τ) + θ2(x + y|2τ)θ2(x − y|2τ), (4.5)

θ2(x|τ)θ2(y|τ) = θ3(x + y|2τ)θ2(x − y|2τ) + θ2(x + y|2τ)θ3(x − y|2τ), (4.6)

θ1(x|τ)θ1(y|τ) = θ3(x + y|2τ)θ2(x − y|2τ) − θ2(x + y|2τ)θ3(x − y|2τ). (4.7)

59



The sigma function σ(z) is an entire, odd, and quasi-periodic function with two
primitive quasi-periods 2ω1, 2ω2.

σ(z + 2nω1 + 2mω2) = (−1)n+m+nme(2nη1+2mη2)(z+nω1+mω2)σ(z)

with ηi = ζ(ωi) (i = 1, 2), where ζ(z) = σ′(z)/σ(z) denotes the Weierstrass ζ-function.
The connection between the Jacobi theta functions and the sigma functions are

σ(z) =

(
exp

η1z
2

2ω1

)
θ1(z/2ω1)

θ′1(0)
,

σr(z) =

(
exp

η1z
2

2ω1

)
θr+1(z/2ω1)

θr+1(0)
(r = 1, 2, 3).

Then, for the function v(z) in van Diejen’s system (3.7), we have

v(z) :=
σ(z + µ)

σ(z)
=

(
exp

η1(2zµ + µ2)

2ω1

)
θ1((z + µ)/2ω1)

θ1(z/2ω1)
. (4.8)

The connection with ℘ function is

℘(z) = − d2

dz2
log σ(z) = − 1

4ω2
1

(
d2

dz2
log θ1(z/2ω1)

)
− η1

ω1

. (4.9)
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