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Introduction

Let P be a partial differential operator with coefficients of class C∞ defined in an open

set Ω of Rd. P is said to be hypoelliptic in Ω if
for any u ∈ D′(Ω) and for any open subset Ω′ of Ω,

Pu ∈ C∞(Ω′) implies u ∈ C∞(Ω′).

It is one of basic problems in the theory of partial differential equations to analyze to

what extent a distribution solution u to the equation Pu = f is smooth according to the

smoothness of an arbitrarily given function f . Hypoellipticity of P is considered as a part

of this problem. The study of hypoellipticity of operators whose principal symbols have

real-valued coefficients and constant signs has progressed by the following methods. The

first one is based on an a priori estimate of solutions in Sobolev spaces. Once we find such

an inequality, we can prove the hypoellipticity with the aid of interpolation inequalities or

the theory of pseudo-differential operators. The second is based on the study of elementary

solution. It is not easy to construct an elementary solution in general. In some cases we

apply the theory of stochastic differential equations, and in other cases we construct a

parametrix instead of an elementary solution.

In this thesis, we study the hypoellipticity of second order partial differential operators

whose principal symbols are complex-valued or change sign. For this, we must apply both

of the above two methods except for some particular cases. Indeed we will divide the dual

space into two microlocal domains in one of which we use an estimation of norm and in

the other of which we construct a parametrix. Let us introduce the development of the

study of hypoellipticity of such operators from the viewpoint of norm estimate.

As is well-known, elliptic operators are hypoelliptic. This suggests that the principal

symbol of hypoelliptic operators has a kind of positivity. In 1967, Hörmander [10] proved

“If a second order differential operator with real-valued coefficients is hypoelliptic, then

the principal symbol does not change sign when the dual variables vary.” Let us refer to it

as the Hörmander principle. A natural question arises. “Is it necessary for hypoellipticity

that the principal symbol does not change sign when the space variables vary?” In 1971,

Kannai [12] proved that L1 = ∂t + t∂2
x, an operator of two variables, is hypoelliptic, while

L2 = ∂t − t∂2
x is not. L1 and L2 are typical examples of operators with sign-changing

principal symbols. This illustrates that the semi-definiteness of the principal symbol is

not necessary for hypoellipticity and that the type of changing sign is important. The sign

of the principal symbol of L2 above changes from minus to plus as t increases. This is a

condition similar to Nirenberg–Treves criterion for local solvability of differential equations

of principal type. (See [26] and [27].) In 1976, Beals and Fefferman [5] generalized Kannai’s
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result to higher dimensional cases. Their result was obtained by getting a suitable a priori

estimate with weight and using the general theory of pseudo-differential operators due to

Beals (See [3]). An advantage of this method is that the hypoellipticity follows from a

single a priori estimate with weight. However, there are many restrictions on the weight.

Therefore, the class of functions which control the sign of the principal symbol are strictly

limited. Beals and Fefferman’s result was extended by many authors. (Kumano-go and

Taniguchi [15], Taniguchi [32], Akamatsu [1], Zuily [35], Amano [2] and Lanconelli [17])

However, these works treat operators neither with complex-valued coefficients nor with

degeneracy of infinite order.

On the other hand, in 1987, Morimoto [23] presented a new idea for the study of

hypoellipticity. This is described simply as follows. First, suppose that the following

inequality without weight holds. Given any positive number N ,

(1) ‖u‖ ≤ C
(
‖Pu‖ + ‖u‖−N

)
for all u ∈ C∞

0 (Ω),

where ‖ · ‖s denotes the norm of the Sobolev space Hs of order s (s is a real number)

and ‖ · ‖ stands for ‖ · ‖0. Let u be a distribution on Ω. If Pu ∈ C∞(Ω), then we expect

that u ∈ L2(Ω) from (1). But the hypoellipticity of P does not follow simply from this

observation. Now, let (s, φ, ψ) be an arbitrary element of R×C∞
0 (Ω)×C∞

0 (Ω) such that

ψ = 1 in a neighborhood of the support of φ. If u is a distribution, there exists an N such

that φu ∈ H−N(Rd). Applying (1) to 〈Dx〉sφu and N+s in place of u and N respectively,

we have

(2) ‖〈Dx〉sφu‖ ≤ C
(
‖P 〈Dx〉sφu‖ + ‖φu‖−N

)
,

where 〈Dx〉s = (1 + |Dx|2)s/2. We admit for the moment that the first term on the right

hand side is evaluated as follows:

(3) ‖P 〈Dx〉sφu‖ ≤ C
(
‖〈Dx〉sψPu‖ + ‖φu‖−N

)
.

Combining (2) with (3), we obtain

(4) ‖〈Dx〉sφu‖ ≤ C
(
‖〈Dx〉sψPu‖ + ‖φu‖−N

)
.

So, (4) holds if (1) and (3) hold. The hypoellipticity of P follows from (4). This is because

ψPu ∈ Hs(R
d) implies 〈Dx〉sφu ∈ L2(Rd) from (4), so φu ∈ Hs(R

d). Since (s, φ, ψ) is

arbitrary, P is hypoelliptic by Sobolev’s imbedding theorem. The question is how to prove

(3). To do this, it suffices to prove that the norm ‖[〈Dx〉sφ, P ] u‖ is estimated by the right

hand side of (3). Successive derivatives of the symbol of P appear in the expansion of

the symbol of [〈Dx〉sφ, P ]. So, Morimoto introduced four kinds of estimates with weight

for operators with the differentiated symbols of P and proved that these estimates are
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sufficient for (3) to hold. This is a method applicable to a very large class of operators

because the hypoellipticity follows from a priori estimate like (1) without regularity gain.

However, we have to verify many inequalities to hold.

We improve Morimoto’s method to apply to a special microlocal domain and obtain

the results of hypoellipticity for a large class of second order partial differential operators

with complex-valued principal symbols which contains the operators treated in [5].

The operators which we study in this thesis are of the form:

(A) P = ∂t + f(t, x)
n∑

j,k=1

ajk(t, x)Lj(x, ∂x)Lk(x, ∂x) in Rd+1,

where (t, x) ∈ R × Rd, f(t, x) is a real-valued function of class C∞, ajk(t, x) ( j, k =

1, . . . , n ) are complex-valued functions of class C∞ and Lj(x, ∂x) ( j = 1, . . . , n ) are

first order differential operators in Rd
x with real-valued coefficients. d and n are positive

integers, d ≥ n or d < n. Operators of the form (A) are a sufficiently general object of

the study of hypoellipticity of operators with sign-changing principal symbols.

In what follows, we introduce our results in the order of composition of this thesis.

There are five results in this thesis, only the forth of them is on non-hypoellipticity, the

others are on hypoellipticity. The first result is our main theorem, the second and the

third are extensions of the first result. In the first result, we study the case where f is

real-valued and f depends on x or not. The second result is devoted to the case where f is

complex-valued. In the third result, we restrict ourselves to the case where f is real-valued

and independent of x and suppose that orders of degeneracy of vector fields L1, L2, . . . , Ln

are not the same. In the forth result, we investigate the question of non-hypoellipticity of

P of the form (A) in the case where f is independent of x. Our fifth result is a criterion

for hypoellipticity of operators with f(t) = tp + i tq. This is related to the second result.

But the criterion is not a simple corollary to the second result.

[1◦] The first result is on hypoellipticity of operators of the form (A). Let us enu-

merate our basic assumptions on f(t, x), ajk(t, x) and Lj.

(1◦) Either the following (1◦-α) or (1◦-β) holds.

(1◦-α) f does not depend on x and there exists no non-empty open interval on

which f(t) vanishes identically. Moreover, if f(t0) > 0 at a point t0 ∈ R, then

f(t) ≥ 0 everywhere on [t0,+∞].

(1◦-β) f depends on x and does not change sign. Moreover, for any x0 ∈ Rd, there

exists no non-empty open interval on which f(t, x0) vanishes identically.

(2◦) The matrix A(t, x) = (ajk(t, x))
n
j,k=1 satisfies the following:
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For any compact set K of Rd+1 there exists a constant δ = δ(K) > 0 such that

A(t, x) + tĀ(t, x) ≥ δI on K.

(3◦) The Lie algebra generated by {Lj}nj=1 is of dimension d at every point of Rd
x.

Now our first result is the following.

Theorem A Suppose that P is an operator of the form (A) satisfying Conditions (1◦),

(2◦) and (3◦). Then P is hypoelliptic in Rd+1.

Let us explain briefly about each of the conditions. Condition (1◦) restricts the type

of changing sign of f and the largeness or smallness of the set of zeros of f . In the manner

of changing sign, (1◦) admits the case where f changes from minus sign to plus sign as

t increases and does not admit the opposite case. On the size of the set of zeros, (1◦)

means that it is sufficiently small. But this is not so restrictive, because there exists an

f satisfying (1◦) whose set of zeros is of positive Lebesgue measure. Moreover, (1◦) does

not restrict the vanishing order of f , so f may vanish in infinite order. Condition (2◦)

implies that the real part of the principal symbol of P is non-negative when ξ runs over

Rd, which is consistent to the Hörmander principle. Condition (3◦) is the assumption that

the degeneracy of P with respect to x is of finite order. We hope to relax this assumption

so that we can treat infinitely degenerate operators with respect to x.

We will mention the proof of this theorem in the last part of Introduction. The method

of the proof of this theorem is applicable to show the hypoellipticity of various operators.

In fact, the results [2Æ], [3Æ], [5Æ] below are proved in a similar way to the proof of

Theorem A.

[2◦] Next, we consider the case where f in (A) is complex-valued. Let P be a second

order differential operator with coefficients of class C∞ of the form:

(B) P = ∂t +
(
f(t, x) + i g(t, x)

) n∑
j,k=1

ajk(t, x)LjLk in Rd+1,

where f(t, x) and g(t, x) are real-valued functions of class C∞ and Lj ( j = 1, . . . , n ) are

the same as in (A) and satisfy Condition (3◦) above. Assumptions on f(t, x), g(t, x), ajk

are the following:

(1�) f(t, x) satisfies (1◦) in Theorem A.

(2�) For any compact set K of Rd+1, either the following (2�-1) or (2�-2) holds.
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(2�-1) f changes sign and there exist positive constants ρ = ρ(K) > 3/4 and

C = C(K, ρ) such that

| g(t, x)| ≤ C |f(t, x)| and
d∑
k=1

| ∂xk
g(t, x)| ≤ C |f(t, x)|ρ on K,

(2�-2) f does not change sign and there exists a positive constant C = C(K) such

that

| g(t, x)| +
d∑
k=1

| ∂xk
g(t, x)|2 ≤ C |f(t, x)| on K.

(3�) ajk(t, x) are complex-valued functions of class C∞ and the matrix

A(t, x) = (ajk(t, x))
n
j,k=1 satisfies the following:

For any compact set K of Rd+1, either the following (3�-1) or (3�-2) holds.

(3�-1) f changes sign and there exists a positive constant δ = δ(K) such that

Re
((
f(t, x) + i g(t, x)

)
A(t, x)η, f(t, x)η

)
≥ δ |f(t, x)|2 |η|2

for all ((t, x), η) ∈ K ×Cn.

(3�-2) f does not change sign and there exists a positive constant δ = δ(K) such

that ∣∣∣∣Re
(
(f(t, x) + i g(t, x))A(t, x)η, η

)∣∣∣∣ ≥ δ |f(t, x)| |η|2

for all ((t, x), η) ∈ K ×Cn.

Here (· , ·) stands for the Hermitian scalar product on Cn.

If the inequality in (3�-1) holds, then the inequality in (3�-2) holds even if f changes sign.

Now our second result is stated as follows.

Theorem B Suppose that P is an operator of the form (B) satisfying Conditions (1�),

(2�) and (3�). Then P is hypoelliptic in Rd+1.

Briefly speaking, this theorem says that P of the form (B) is hypoelliptic if P is

hypoelliptic in the case where g is equal to 0 and if g is small in comparison with f .

Condition (2�) is not necessary in general for P to be hypoelliptic. For example, let us

consider the following operator of two variables:

Lp,q = ∂t +
(
tp + i tq

)
∂2
x,
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where p, q are non-negative integers. This is one of operators of the form (B) satisfying

(1�) and (3�). As will be seen in [5Æ] below, Lp,q is hypoelliptic if and only if p ≤ 2q. In

the case where p/2 < q < p, Lp,q does not satisfy (2�) but it is hypoelliptic.

[3◦] In the third place, we extend Theorem A to a different direction from The-

orem B. That is to say, we study the case where orders of degeneracy of vector fields

L1, L2, . . . , Ln in (A) are not the same. Let Q be a second order differential operator with

coefficients of class C∞ and of the form:

(C) Q = ∂t + f0(t)
n∑

j,k=1

ajk(t, x)fj(t)Ljfk(t)Lk in Rd+1.

This is a generalization of P in Theorem A in the case where f is independent of x (See

(1◦-α) above). Let {fj(t)}nj=0 be real-valued functions of class C∞ defined in R, and let

Zj be the set of zeros of fj ( j = 0, . . . , n ). For every compact set I of R, we define the

set N(I) to be

N(I) =
{
j ∈ { 1, . . . , n } ; Zj ∩ I 	= ∅

}
.

Assume the following conditions on {fj(t)}nj=0.

(1�-1) For every j ∈ { 0, . . . , n }, Zj does not contain any non-empty open interval.

(1�-2) If f0(t0) > 0 at a point t0 ∈ R, then f0(t) ≥ 0 everywhere on [t0,+∞].

(1�-3) Given a compact set I ⊂ R, suppose that N(I) is not empty. Then the following

statement holds.

“ For any j ∈ N(I), there exist positive constants C = C(I, j), λ = λ(I, j) such

that

|f0(t)| ≤ C |fj(t)|λ on I. ”

Our third result is the following.

Theorem C Suppose that Q satisfies (1�-1), (1�-2), (1�-3), (2◦) and (3◦). Then Q is

hypoelliptic in Rd+1.

Roughly speaking, Q is hypoelliptic if the functions {fj}nj=1, which stand for the

degeneracy of vector fields with respect to t, are controlled by a single function f0.

[4◦] Now, we study a condition of non-hypoellipticity of an operator P of the form

(A) under (2◦) and (3◦) in Theorem A. We restrict ourselves to the case where f is

independent of x. Our result is the following:
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Theorem D Suppose that P is an operator of the form (A) satisfying Conditions (2◦)

and (3◦). Then P is not hypoelliptic in Rd+1 if there exist an s ∈ R and an open interval

I containing s such that

(D)
f(t) ≥ 0 for every t ∈ I satisfying t < s

and f(t) ≤ 0 for every t ∈ I satisfying t > s.

This is a refinement of the result on non-hypoellipticity in [5]. Theorem D admits

the case where the vanishing order of f is infinite. However, since there exist f ’s such

that neither Condition (D) nor Condition (1◦) holds, we do not know from Theorem D

whether P with such an f is hypoelliptic or not. However, assuming that Conditions

(2◦) and (3◦) hold and that f is real-analytic, (1◦) is necessary and sufficient for P to be

hypoelliptic owing to Theorem D.

[5◦] Finally, we investigate the hypoellipticity of the following operator of two vari-

ables:

(E) Lp,q = ∂t +
(
tp + i tq

)
∂2
x,

where p, q are non-negative integers. Our result is the following.

Theorem E Lp,q is hypoelliptic in R2 if and only if p ≤ 2q.

Theorem E indicates that Condition (2�) in Theorem B is not necessary for hypoel-

lipticity.

Sketch of the proof of Theorem A

Theorems B and C on hypoellipticity are proved in a similar way. To simplify the expla-

nation, we restrict ourselves to the case where f changes sign and it does not depend

on x. Let (τ, ξ) be the dual variables of (t, x) and Ω an open subset of Rd+1. Also, let l

be positive number. For the proof, we divide the space Rd+1
τ,ξ into two microlocal domains

(i) |τ | ≥ l|ξ|2/2 and (ii) |τ | ≤ l|ξ|2.

Definition We say that P is hypoelliptic in the microlocal domain D of Rd+1
τ,ξ if

Pu ∈ C∞(Ω) and u ∈ D′(Ω) implies χ(Dt, Dx)u ∈ C∞(Ω) for every real-valued func-

tion χ(τ, ξ) such that χ is equal to 1 identically on D and the support of χ is contained

in a neighborhood of D.

It suffices for the proof to prove that P is hypoelliptic in each of (i) and (ii).
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(i) P satisfies Hörmander’s condition in the microlocal domain |τ | ≥ l|ξ|2/2. So there

exists a left parametrix of P in this domain belonging to an appropriate class of

pseudo-differential operators. Consequently, P is hypoelliptic in this domain. This

will be proved in §1. (P is Γ -elliptic, where Γ =
(
−∞

1/2

√
l/2

φ φ 1

)
(see §1 of [31]).)

(ii) In the domain |τ | ≤ l|ξ|2, P is microlocally a weakly elliptic operator. Here, we

say that P is weakly elliptic if the inequality (4) holds for P .

Let us explain how the proof of (ii) proceeds. As is mentioned above, Morimoto gave

a sufficient condition for a general partial differential operator to be weakly elliptic. We

rewrite this condition in the microlocal domain |τ | ≤ l|ξ|2. The sufficient condition

obtained in this way is composed of one a priori estimate without weight analogous to

(1) and four kinds of estimates for operators whose symbols are derivatives of the total

symbol of P . These are introduced in §2. (See Conditions (I)–(V).) Thus, there are five

kinds of estimates to be verified. Let us sketch how to do it.

First, since the principal symbol of P in question is a quadratic form of the vector

fields {Lj}nj=1 multiplied by f , an operator with a differentiated symbol of P is roughly

of the form:
n∑
j=1

MjfLj +
n∑
j=1

d∑
k=1

Nj,kfxk
Lj +M0,

where Mj, Nj,k are pseudo-differential operators. From this representation, we see that

verifying four kinds of estimates with weight is equivalent to studying inequalities for op-

erators {Lj}nj=1. From this, we have not so many inequalities to be verified. Furthermore,

we can investigate the hypoellipticity of an operator of the form (A) even if we generalize

the class of f to a certain extent. This is the reason why we have set the form of the

operators as in (A). Therefore, the idea of the proof of Theorem A can also be applied

to the proofs of Theorem B and of Theorem C.

In view of the fact explained above, the four kinds of inequalities with weight for P

will follow from the following two estimates for Lj. Without loss of generality, we may

assume that f changes sign at t = 0.

Lemma 3.1 For any K ⊂⊂ Ω and any ρ > 3/4, there exists a constant C depending

only on (K, ρ) such that

(3.1)
n∑
j=1

‖|f |ρLju‖2 ≤ C
{∣∣∣Re

(
Pu, (sgn t)|f |2ρ−1u

)∣∣∣+ ‖u‖2
}

for all u ∈ C∞
0 (K).
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Proposition 4.1 For any K ⊂⊂ Ω, any N > 0 and any χ ∈ ′SΨ, there exist positive

constants κ = κ(K), C = C(K,N, χ) such that

(4.1)

n∑
j=1

∥∥∥〈Dx〉κfLjχu
∥∥∥2

+
∥∥∥〈Dx〉κfχu

∥∥∥2
+

d∑
k=1

∥∥∥〈Dx〉κ(∂xk
f)χu

∥∥∥2
≤ C

(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)

for all u ∈ C∞
0 (K),

where ′SΨ is a class of pseudo-differential operators defined in §1.

We explain simply each of these two inequalities. Let us begin with (3.1). The smaller ρ,

the better (3.1). For example, if ρ were equal to 0, (3.1) would be an estimate which is not

affected by the degeneracy from f . The function (sgn t)|f |2ρ−1u appearing on the right

hand side is smooth if ρ = 1. On the other hand, this function is not smooth in general

if ρ < 1. An estimate like (3.1) involving a non-smooth function can not be treated in

the usual method based on the theory of pseudo-differential operators, because we can

not choose such a non-smooth function as a weight. One of advantages of our method is

that we can use such an estimate. The proof of (ii) starts from (3.1). We can deduce

from (3.1) many estimates involving only smooth functions. (See §4, §5, §6.) Lemma 3.1

is proved in §3.

Next, let us explain (4.1). The number κ is smaller than 1 in general. The loss of

derivatives of (4.1) with respect to x is equal to 1 − κ, which is smaller than 1 if f does

never vanish. So, (4.1) would be regarded as a subelliptic estimate and a good estimate

if f did not vanish. If we take the vanishing of f into account, (4.1) is not really so good.

Our proof goes well without obtaining a good estimate, which is another advantage of our

method. To prove (4.1), we divide the microlocal domain |τ | ≤ l|ξ|2 into two subdomains

|f〈ξ〉κ| ≤ 1, |f〈ξ〉κ| ≥ 1 and evaluate the left hand side of (4.1) in each domain, where

κ is a constant depending only on (K, {Lj}nj=1). (4.1) in the former domain follows from

(3.1), and (4.1) in the latter is obtained by using Condition (3◦) and applying Oleinik–

Radkevich’s method [28]. (See also [14].) Proposition 4.1 will be proved in §4.

The remaining problem is to show an inequality analogous to (1) which we need. This

follows from the next proposition.

Proposition 5.1 For any open set K ⊂⊂ Rd+1, any N > 0, any χ ∈ ′SΨ and any

µ > 0, there exists a constant C = C(K,N, χ, µ) such that

(5.1) ‖χu‖ ≤ µ ‖Pχu‖ + C ‖u‖−N for all u ∈ C∞
0 (K).

(5.1) is an improvement of (1), because we can take any positive number µ in advance.

In application of (5.1) to our problem, it is important that µ can be chosen arbitrarily

small (See Conditions (II) and (V) in §2). The proof of Proposition 5.1 is done by using

9



(4.1) and by a partition of unity according to a given small µ. The construction of such

a partition of unity is the key to the proof of Proposition 5.1 and it is our new idea. We

make use only of the smallness of the set of zeros of f and the way of changing sign of f

in this construction, so our result is also available in the case where the order of vanishing

of f is infinite and the set of zeros of f is complicated.

This is the sketch of the proof.

We believe, by this thesis, that the condition for operators with sign-changing sym-

bols to be hypoelliptic becomes clear to some extent. In this thesis, we can not treat,

unfortunately, the case where f which controls a sign of the principal symbol depends on

x if f changes sign. This will be our future problem.
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1 Preliminary

In this section, we introduce some notation used for the proof of Theorem A. Moreover,

we prove (i) and prepare for the proof of (ii), where (i) and (ii) are stated in the

Introduction. Before going into the detail, we give some examples of Theorem A.

Examples of Theorem A

1) The following operator P of 3 variables is hypoelliptic:

P = ∂t + t2k+1
(
∂2
x + ∂2

y

)
,

where k is a non-negative integer. On the contrary,

Q = ∂t − t2k+1
(
∂2
x + ∂2

y

)
is not hypoelliptic. (See [15], [5] (k = 0)).

2) The following operator P of 3 variables is hypoelliptic:

P = ∂t + f(t)
(
∂2
x + x2∂2

y

)
,

where f(t) =


(sgn t)

(
1 + sin

1

t

)
e−

1
|t| for t 	= 0,

0 for t = 0.

f(t) has a countably infinite number of zeros which accumulate at the origin and

f(t) changes sign there. On the contrary,

Q = ∂t − f(t)
(
∂2
x + x2∂2

y

)
is not hypoelliptic. (See §10).

3) The following operator P of 3 variables is hypoelliptic:

P = ∂t + f(t, x, y)
(
∂2
x + x2∂2

y

)
,

where f(t, x, y) =



(
1 + sin

1

t2 + x2 + y2

)
exp

(
− 1

t2 + x2 + y2

)

for (t, x, y) 	= (0, 0, 0),

0 for (t, x, y) = (0, 0, 0).

11



We shall mention further examples in §7.

In what follows we shall use systematically the notation in Chapter 2 of Kumano-go

[14]. We say that a function a(t, x, τ, ξ) of classC∞ defined onR2d+2 = R1
t×Rd

x×R1
τ×Rd

ξ

belongs to a symbol of class Smρ,δ if for any multi-index α, β there exists a constant Cα,β

such that ∣∣∣a(β)
(α)(t, x, τ, ξ)

∣∣∣ ≤ Cα,β 〈τ ; ξ〉m+δ|β|−ρ|α| in R2d+2,

where 〈τ ; ξ〉 =
√
|τ |2 + |ξ|2 + 1, a(β)

(α)(t, x, τ, ξ) = ∂ατ,ξD
β
t,xa(t, x, τ, ξ) and Dt,x = −i∂t,x.

Let S(Rd+1) be the space of rapidly decreasing functions. We say that a linear operator

A from S(Rd+1) to S(Rd+1) is a pseudo-differential operator with symbol a(t, x, τ, ξ) of

class Smρ,δ if a(t, x, τ, ξ) ∈ Smρ,δ and if Au can be defined to be

Au(t, x) = (2π)−d−1
∫
eitτ+ix·ξ a(t, x, τ, ξ)F [u](τ, ξ) dτ dξ for u ∈ S(Rd+1),

where F [u] is the Fourier transform:

F [u](τ, ξ) =
∫
e−isτ−iy·ξ u(s, y) ds dy.

We write A = a(t, x,Dt, Dx) ∈ ′Smρ,δ and denote the symbol a(t, x, τ, ξ) of A by

σ(A)(t, x, τ, ξ). ( See §1 of Chapter 2 in [14]. )

Since the hypoellipticity is a local property, we may assume, without loss of generality,

that the coefficients of P are bounded as well as their derivatives of any order. We

introduce some notation. Let (τ, ξ) be the dual variables of (t, x) and l, l′,m any positive

numbers such that l < l′. We denote by Z+ the set of non-negative integers. We say that

a smooth function χ(τ, ξ) belongs to the family Ψl,l′,m if

χ ∈ S0
1/2,0 , 0 ≤ χ ≤ 1 ,

suppχ ⊂ {|τ | ≤ l′|ξ|2} ∩ {|τ | + |ξ| ≥ m} , χ ≡ 1 on {|τ | ≤ l|ξ|2}
and 〈τ〉α 〈ξ〉|β| ∂ατ ∂βξ χ is bounded in Rd+1

τ,ξ for every (α, β) ∈ Z+ ×Zd
+ ,

where 〈τ〉 =
√

1 + τ 2 and 〈ξ〉 =
√

1 + |ξ|2.

Set

Ψ =
⋃

l,l′,m>0
l<l′

Ψl,l′,m .

For χ, χ′ belonging to C∞(Rτ ×Rd
ξ), we define the notation χ ⊂⊂ χ′ if χ′ ≡ 1 on suppχ

( χ ⊆ χ′ means that χ ⊂⊂ χ′ or χ = χ′ ). We see immediately that if χ ∈ Ψl,l′,m,

χ′ ∈ ΨL,L′,M (l′ < L,M < m) then χ ⊂⊂ χ′. Therefore, for any element χ of Ψ, we can
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find a χ′ ∈ Ψ such that χ ⊂⊂ χ′. Also if χ ⊂⊂ χ′, then 1 − χ′ ⊂⊂ 1 − χ.

We define the class of operators ′SΨ to be

′SΨ =
{
χ(Dt, Dx) ; χ ∈ Ψ

}
.

Obviously, ′SΨ ⊂ ′S0
1/2,0.

Theorem A follows from the following two propositions. Propositions 1.1 and 1.2

correspond to (i) and (ii) in the Introduction respectively.

Proposition 1.1 Suppose that P is an operator of the form (A). Then P is hypoelliptic

in the microlocal domain supp(1 − χ) for every χ ∈ Ψ, that is to say, for any Ω ⊂ Rd+1

fixed, if u ∈ D′(Rd+1) and Pu ∈ C∞(Ω), then
(
1 − χ(Dt, Dx)

)
u ∈ C∞(Ω).

Proposition 1.2 Suppose that P is an operator of the form (A) satisfying (1◦), (2◦)

and (3◦). For any Ω ⊂⊂ Rd+1, if u ∈ D′(Rd+1) and Pu ∈ C∞(Ω), then χ(Dt, Dx)u ∈
C∞(Ω) for every χ ∈ Ψ.

Indeed, since u =
(
1 − χ(Dt, Dx)

)
u+ χ(Dt, Dx)u for every χ ∈ Ψ, the hypoellipticity

of P follows from these propositions. First, let us prove Proposition 1.1.

Proof of Proposition 1.1. Since P is hypoelliptic in a domain of Rd+1 on which f

does not vanish, we may assume that sup(t,x)∈Ω |f(t, x)| is sufficiently small in Ω according

to a given χ ∈ Ψ. First, P satisfies (H)-condition in supp(1 − χ), that is to say, there

exist constants C,C ′ and for any α, β ∈ Zd+1
+ there exists a constant Cαβ independent of

(t, x, τ, ξ) such that

|p(t, x, τ, ξ)| ≥ C〈τ ; ξ〉 on {|τ | + |ξ| ≥ C ′} ∩ supp(1 − χ),

∣∣∣p(β)
(α)(t, x, τ, ξ)

∣∣∣ ≤ Cαβ〈τ ; ξ〉−|α|/2 |p(t, x, τ, ξ)|
on {|τ | + |ξ| ≥ C ′} ∩ supp(1 − χ),

(1.1)

where p(t, x, τ, ξ) is the symbol of P i.e., p(t, x, τ, ξ) = e−itτ−ix·ξPeitτ+ix·ξ.

These inequalities allow us to define a formal left parametrix of P as a sum of pseudo-

differential operators. First, we choose a function ψ(τ, ξ) ∈ C∞(Rτ ×Rd
ξ) satisfying

0 ≤ ψ(τ, ξ) ≤ 1 , ψ(τ, ξ) = 0 ( |τ | + |ξ| ≤ C ′ ) , = 1 ( |τ | + |ξ| ≥ 2C ′ ) ,

and set 

q0(t, x, τ, ξ) = p(t, x, τ, ξ)−1ψ(τ, ξ),

qk(t, x, τ, ξ) = −

 ∑
|γ|+j=k
j<k

1

γ!
q
(γ)
j p(γ)

 q0 ( k ≥ 1 ).

(1.2)
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Since qk is not globally smooth, we define new functions q′k by setting q′k = qk(1−χ) (k ≥
0). Then from (1.1) and (1.2) we get∣∣∣q′0(β)

(α)
∣∣∣ ≤ C0,α,β〈τ ; ξ〉−1−|α|/2,∣∣∣q′k(β)

(α)
∣∣∣ ≤ Ck,α,β〈τ ; ξ〉−1−k/2−|α|/2,

which implies q′k ∈ S
−1−k/2
1/2,0 ( k ≥ 0 ). Next we can find a symbol q(t, x, τ, ξ) ∈ S−1

1/2,0 such

that q ∼ ∑∞
k=0 q

′
k by the general theory of pseudo-differential operators. (See Chapter 2

in [14].) Then for any N we have

σ(QP ) − ∑
|γ|<N

1

γ!

(
N−1∑
k=0

q′k

)
p(γ) ∈ S

1−N/2
1/2,0 ,(1.3)

where Q = q(t, x,Dt, Dx) and σ(QP ) is the symbol of QP . On the other hand, we write

∑
|γ|<N

1

γ!

(
N−1∑
k=0

q′k

)
p(γ)

=
∑

|γ|<N

1

γ!

(
N−1∑
k=0

qk

)
p(γ)(1 − χ) +

∑
|γ|<N

1

γ!

N−1∑
k=0

∑
β<γ
β �=0

(
γ

β

)
q
(γ−β)
k (1 − χ)(β)p(γ)

(
set KN =

∑
|γ|<N

1

γ!

N−1∑
k=0

∑
β<γ
β �=0

(
γ

β

)
q
(γ−β)
k (1 − χ)(β)p(γ)

)

=
∑

|γ|<N

1

γ!

(
N−1∑
k=0

qk

)
p(γ)(1 − χ) +KN

= q0p(1 − χ) +
N−1∑
k=1

qkp+
∑

|γ|+j=k

1

γ!
q
(γ)
j p(γ)

 (1 − χ)

+
∑

|γ|+j≥N
j<N,|γ|<N

1

γ!
q
(γ)
j p(γ)(1 − χ) +KN .

Then we have ∑
|γ|<N

1

γ!

(
N−1∑
k=0

q′k

)
p(γ) − (1 − χ) −KN ∈ S

1−N/2
1/2,0 ,

which implies, together with (1.3),

σ
(
QP −

(
1 − χ(Dt, Dx)

)
−KN(t, x,Dt, Dx)

)
∈ S

1−N/2
1/2,0 .

We take χ′ ∈ Ψ such that χ ⊂⊂ χ′. Since
(
1 − χ′(Dt, Dx)

)
KN(t, x,Dt, Dx) ∈ ′S−∞ due

to (1 − χ′) ⊂⊂ (1 − χ), we obtain

σ
((

1 − χ′(Dt, Dx)
)
QP −

(
1 − χ′(Dt, Dx)

))
∈ S

1−N/2
1/2,0 .
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Since N is arbitrary, we have for any χ, χ′ ∈ Ψ (χ ⊂⊂ χ′ )(
1 − χ′(Dt, Dx)

)
=
(
1 − χ(Dt, Dx)

)
QP +R,(1.4)

where
(
1 − χ(Dt, Dx)

)
Q ∈ ′S−1

1/2,0 and R ∈ ′S−∞. Let x0 be any fixed point in Ω and

ϕ, ψ ∈ C∞
0 (Ω) be such that ϕ ⊂⊂ ψ and ϕ is identically equal to 1 on some neighborhood

of x0. For the proof of Proposition 1.1, it suffices to show that ϕ
(
1−χ(Dt, Dx)

)
u ∈ C∞

0 (Ω)

provided that u ∈ D′(Rd+1) and that Pu ∈ C∞(Ω). From (1.4), we have(
1 − χ(Dt, Dx)

)
ψu = Q′Pψu+Rψu,

where Q′ ∈ ′S−1
1/2,0. Multiplying ϕ from the left to the above equality, we obtain

ϕ
(
1 − χ(Dt, Dx)

)
u = ϕQ′Pu+ ϕ

[
Q′P, ψ

]
u− ϕ

[
1 − χ(Dt, Dx), ψ

]
u.

Since ϕ
[
Q′P, ψ

]
, ϕ
[
1 − χ(Dt, Dx), ψ

]
∈ ′S−∞, we have ϕ

(
1 − χ(Dt, Dx)

)
u ∈ C∞

0 (Ω). �

Next, we prepare the proof of Proposition 1.2. By Sobolev’s imbedding theorem,

χ(Dt, Dx)u ∈ C∞(Ω) is equivalent to the following:

〈Dt;Dx〉sψχ(Dt, Dx)u ∈ L2(Rd+1) for any real s and for any ψ ∈ C∞
0 (Ω).(1.5)

Since 〈ξ〉 ≤ 〈τ ; ξ〉 ≤ C〈ξ〉2 on suppχ, where C depends only on χ ∈ Ψ, (1.5) is equivalent

to the following:

〈Dx〉sψχ(Dt, Dx)u ∈ L2(Rd+1) for any real s and for any ψ ∈ C∞
0 (Ω).(1.6)

And again, (1.6) holds if

〈Dx〉sχ(Dt, Dx)ψu ∈ L2(Rd+1) for any real s and for any ψ ∈ C∞
0 (Ω).(1.7)

Indeed, suppose (1.7) holds. Then for any ψ ∈ C∞
0 (Ω), we can take ψ′ ∈ C∞

0 (Ω) such

that ψ ⊂⊂ ψ′. From (1.7), 〈Dx〉sχ(Dt, Dx)ψ
′u ∈ L2(Rd+1), so ψ〈Dx〉sχ(Dt, Dx)ψ

′u ∈
L2(Rd+1). Since [ψ, 〈Dx〉s]χ(Dt, Dx)ψ

′u ∈ L2(Rd+1) from (1.7), we have 〈Dx〉sψχ(Dt, Dx)

ψ′u ∈ L2(Rd+1). Finally (1.6) holds because 〈Dx〉sψ[χ(Dt, Dx), ψ
′] ∈ ′S−∞. Now, (1.7)

implies u ∈ C∞(Ω). So, for the proof of Proposition 1.2, it suffices to see that u ∈
D′(Rd+1) and Pu ∈ C∞(Ω) implies (1.7).

On the other hand, for any Ω ⊂⊂ Rd+1 fixed, if Pu ∈ C∞(Ω), then Pχ(Dt, Dx)u ∈
C∞(Ω) for every χ ∈ Ψ, because Pχ(Dt, Dx)u = −P

(
1 − χ(Dt, Dx)

)
u + Pu and

(
1 −

χ(Dt, Dx)
)
u ∈ C∞(Ω) from Proposition 1.1. Thus in order to show (1.7) for u ∈ D′(Rd+1)

such that Pu ∈ C∞(Ω), it suffices to show the following proposition.
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Proposition 1.3 Suppose that P satisfies (1◦), (2◦) and (3◦). For each real s, each

χ, χ′ ∈ Ψ satisfying χ ⊂⊂ χ′, the following statement holds.

“ Suppose that 〈Dx〉sψPχ′′(Dt, Dx)u ∈ L2(Rd+1) for any ψ ∈ C∞
0 (Rd+1) and any χ′′ ∈ Ψ

satisfying χ ⊆ χ′′ ⊆ χ′. Then 〈Dx〉sχ(Dt, Dx)ψu ∈ L2(Rd+1) for any ψ ∈ C∞
0 (Rd+1). ”

This means that P is weakly elliptic in microlocal domain suppχ. (see §2 in [22].) We

will prove Proposition 1.3 in §6 by making use of a result in the next section. If we admit

this for the moment, Proposition 1.2 is proved, and the proof of Theorem A is completed.
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2 Criterion for hypoellipticity in microlocal domain

In this section we shall give a refinement of Theorem 2.1 in [23]. We use this to prove

Proposition 1.3. The statement of Proposition 1.3 is almost the same as Proposition 2.1

below. Let Ω be an open set of Rd+1 and P (t, x,Dt, Dx) a differential operator of order

m with coefficients in C∞(Ω). P in this section is not necessarily the same as P in §1.

‖ ·‖s denotes the norm of the Sobolev space Hs for real number s and ‖ ·‖ stands for ‖ ·‖0.

If there is no confusion, we identify a function χ ∈ Ψ with an operator χ(Dt, Dx) ∈ ′SΨ.

For χ, χ′ ∈ ′SΨ, the notation χ ⊂⊂ χ′ (resp. χ ⊆ χ′) means that σ(χ) ⊂⊂ σ(χ′) (resp.

σ(χ) ⊆ σ(χ′)). We assume five conditions for P as follows:

(I) For any K ⊂⊂ Ω, any N > 0 and any χ ∈ ′SΨ, there exists a constant C1 =

C1(K,N, χ) such that

‖χu‖ ≤ C1

(
‖Pχu‖ + ‖u‖−N

)
for all u ∈ C∞

0 (K).(2.1)

(II) For any K ⊂⊂ Ω , any β = (0, β′) ∈ {0}×Zd
+ (|β| 	= 0), any µ > 0, any N > 0 and

any χ ∈ ′SΨ, there exists a constant C2 = C2(K,β, µ,N, χ) such that∥∥∥〈Dx〉−|β|(Pχ)(β)u
∥∥∥ ≤ µ ‖Pχu‖ + C2 ‖u‖−N for all u ∈ C∞

0 (K),(2.2)

where p(β)(t, x, τ, ξ) = Dβ
t,xp(t, x, τ, ξ) and Dt,x = −i∂t,x.

(III) For any K ⊂⊂ Ω, any α ∈ Zd+1
+ , any N > 0 and any χ, χ′ ∈ ′SΨ satisfying χ ⊂⊂ χ′,

there exists a constant C3 = C3(K,α,N, χ, χ
′) such that∥∥∥(Pχ)(α)u

∥∥∥ ≤ C3

(
‖Pχ′u‖ + ‖u‖−N

)
for all u ∈ C∞

0 (K),(2.3)

where p(α)(t, x, τ, ξ) = ∂ατ,ξp(t, x, τ, ξ).

(IV) For any (t0, x0) ∈ Ω and any neighborhood U of (t0, x0), there exist φ, ψ ∈ C∞
0 (U)

such that φ(t, x) = 1 in some neighborhood of (t0, x0),

φ ⊂⊂ ψ ( that is, ψ = 1 in a neighborhood of supp φ ),

and the inequality

‖〈Dx〉κPχφu‖(2.4)

≤ C4

(
‖〈Dx〉κψPχu‖ + ‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N

)
for all u ∈ C∞

0 (K)

holds for any open set K ⊂⊂ Ω, any N > 0 and any χ, χ′ ∈ ′SΨ (χ ⊂⊂ χ′), where

C4 = C4(K,N, χ, χ
′, φ, ψ) is a constant depending on (K,N, χ, χ′, φ, ψ) and κ is a

positive number smaller than 1 depending only on K.
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(V) For any K ⊂⊂ Ω, any β = (0, β′) ∈ {0}×Zd
+ (|β| 	= 0), any µ > 0, any N > 0, any

χ, χ′ ∈ ′SΨ (χ ⊂⊂ χ′), there exists a constant C5 = C5(K,β, µ,N, χ, χ
′, ψ) such that∥∥∥〈Dx〉κ−|β|(ψPχ)(β)u

∥∥∥(2.5)

≤ µ ‖〈Dx〉κψPχu‖ + C5

(
‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N

)
for all u ∈ C∞

0 (K),

where ψ is the function introduced in (IV) and κ is the number introduced in (IV).

Proposition 2.1 Suppose that a differential operator P = p(t, x,Dt, Dx) satisfies Con-

ditions (I)–(V). For each real s, each χ, χ′ ∈ ′SΨ satisfying χ ⊂⊂ χ′, the following state-

ment holds.

“ Suppose that u ∈ D′(Ω) and 〈Dx〉sψPχ′′u ∈ L2(Rd+1) for any ψ ∈ C∞
0 (Ω) and any

χ′′ ∈ ′SΨ satisfying χ ⊆ χ′′ ⊆ χ′. Then 〈Dx〉sχψu ∈ L2(Rd+1) for any ψ ∈ C∞
0 (Ω). ”

Therefore P is hypoelliptic in the microlocal domain suppχ× Ω.

Remark. Proposition 2.1 holds even if we omit the term ‖Pχ′u‖ from the right

hand side of (2.4) and (2.5) in Conditions (IV) and (V) respectively. We need this term

in the application of Proposition 2.1 to P specified in Theorem A. This is because we

have to investigate operators with differentiated symbols of Pχ. The derivatives of the

symbol Pχ involve derivatives of χ. The term ‖Pχu‖ alone does not suffice to evaluate

operators with such a symbol applied to u. So the term ‖Pχ′u‖ is needed for applying

Proposition 2.1 to P in question.

Before proving this proposition, let us sketch the roles of Conditions (I)–(V) in the

proof. Let χ, χ′ be as above and u an element of a Sobolev space. Given any point

(t0, x0) ∈ Ω, let φ, ψ ∈ C∞
0 (Ω) be as in Condition (IV). The proposition follows from the

inequality ∥∥∥〈Dx〉sχφu
∥∥∥ ≤ C

(∥∥∥〈Dx〉sψPχ′u
∥∥∥+ ‖ψu‖−N

)
.(2.6)

Obviously, (2.1) in Condition (I) is a version of (2.6) in the case s = 0. To obtain (2.6)

for s > 0, we apply (2.1) to 〈Dx〉sχφu in place of u to have∥∥∥〈Dx〉sχφu
∥∥∥ ≤ C1

(∥∥∥P 〈Dx〉sχφu
∥∥∥+ ‖ψu‖−N

)
.(2.7)

Rewriting P 〈Dx〉sχφu = [Pχ, 〈Dx〉s]φu+ 〈Dx〉sPχφu, we have to show two inequalities∥∥∥[Pχ, 〈Dx〉s
]
φu
∥∥∥ ≤ C

(∥∥∥〈Dx〉sPχφu
∥∥∥ + ‖ψu‖−N

)
,(2.8) ∥∥∥〈Dx〉sPχφu

∥∥∥ ≤ C
(∥∥∥〈Dx〉sψPχu

∥∥∥+ ‖ψu‖−N
)
.(2.9)

Let us begin with (2.8). By an asymptotic expansion of the symbol, we have

∥∥∥[Pχ, 〈Dx〉s
]
φu
∥∥∥ ≤ C

 ∑
0<|β|<2(s+m+N)

∥∥∥〈Dx〉s−|β| (Pχ)(β) φu
∥∥∥+ ‖φu‖−N

 ,
18



where β runs over indices of type (0, β′). Condition (II) guarantees that each term of the

sum on the right hand side does not exceed C
(
‖〈Dx〉sPχφu‖ + ‖ψu‖−N

)
(see Lemma

2.2). (2.8) is verified in this way (Arbitrariness of µ in Condition (II) will be necessary

only to prove Lemma 2.2).

Next, the proof of (2.9) is divided into four steps.

First step : We rewrite 〈Dx〉sPχφu as

〈Dx〉sPχφu = 〈Dx〉κ
[
Pχ, 〈Dx〉s−κ

]
φu+ 〈Dx〉κPχ〈Dx〉s−κφu,

and deal with the first term on the right hand side, where κ is the number introduced in

Condition (IV). Again by Lemma 2.2, we have∥∥∥〈Dx〉κ
[
Pχ, 〈Dx〉s−κ

]
φu
∥∥∥ ≤ µ ‖〈Dx〉sPχφu‖ + C(µ) ‖ψu‖−N .

Choosing a µ small enough, we have∥∥∥〈Dx〉sPχφu
∥∥∥ ≤ C

(∥∥∥〈Dx〉κPχ〈Dx〉s−κφu
∥∥∥+ ‖ψu‖−N

)
.(2.10)

Second step : We rewrite 〈Dx〉κPχ〈Dx〉s−κφu as

〈Dx〉κPχ〈Dx〉s−κφu = 〈Dx〉κPχ
[
〈Dx〉s−κ, φ

]
u+ 〈Dx〉κPχφ〈Dx〉s−κu.

We expand the symbol of
[
〈Dx〉s−κ, φ

]
and evaluate the commutators between each term

in the expansion and Pχ applied to u. Then, we have∥∥∥〈Dx〉κPχ
[
〈Dx〉s−κ, φ

]
u
∥∥∥ ≤ C

(∥∥∥〈Dx〉s−1Pχu
∥∥∥+

∥∥∥〈Dx〉s−1Pχ′u
∥∥∥+ ‖ψu‖−N

)
.

Here we make use of Condition (III) to evaluate commutators between Pχ and multipli-

cation by functions (see Lemma 2.3).

Third step : Condition (IV) yields∥∥∥〈Dx〉κPχφ〈Dx〉s−κu
∥∥∥

≤ C
(∥∥∥〈Dx〉κψPχ〈Dx〉s−κu

∥∥∥+
∥∥∥Pχ〈Dx〉s−κu

∥∥∥+
∥∥∥Pχ′〈Dx〉s−κu

∥∥∥+ ‖ψu‖−N
)
.

By Condition (II), the second and third terms on the right hand side are smaller than

C
(∥∥∥〈Dx〉s−κPχu

∥∥∥+
∥∥∥〈Dx〉s−κPχ′u

∥∥∥+ ‖ψu‖−N
)
. Hence we obtain

∥∥∥〈Dx〉κPχφ〈Dx〉s−κu
∥∥∥

≤ C
(∥∥∥〈Dx〉κψPχ〈Dx〉s−κu

∥∥∥+
∥∥∥〈Dx〉s−κPχu

∥∥∥+
∥∥∥〈Dx〉s−κPχ′u

∥∥∥+ ‖ψu‖−N
)
.

Here, notice that not 〈Dx〉s but 〈Dx〉s−κ appears in the second and third term on the

right hand side. Thus, we need Condition (IV) to lower the order of 〈Dx〉sPχ.
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Forth step : We rewrite 〈Dx〉κψPχ〈Dx〉s−κu as

〈Dx〉κψPχ〈Dx〉s−κu = 〈Dx〉κ
[
ψPχ, 〈Dx〉s−κ

]
u+ 〈Dx〉sψPχu.

We expand the symbols
[
ψPχ, 〈Dx〉s−κ

]
and evaluate the composition of 〈Dx〉κ and each

term of the expansion applied to u. By Condition (V), we have∥∥∥〈Dx〉κ
[
ψPχ, 〈Dx〉s−κ

]
u
∥∥∥

≤ C
(∥∥∥〈Dx〉sψPχu

∥∥∥+
∥∥∥〈Dx〉s−κPχu

∥∥∥+
∥∥∥〈Dx〉s−κPχ′u

∥∥∥+ ‖ψu‖−N
)
.

Condition (V) plays the same role as (II) for ψPχ instead of Pχ. (See Lemma 2.4 and

Corollary 2.5.)

Combining all these steps, we have∥∥∥〈Dx〉sPχφu
∥∥∥(2.11)

≤ C
(∥∥∥〈Dx〉sψPχu

∥∥∥+
∥∥∥〈Dx〉s−κPχu

∥∥∥+
∥∥∥〈Dx〉s−κPχ′u

∥∥∥+ ‖ψu‖−N
)
.

(see Lemma 2.6) The remaining problem is to estimate the second and third terms on the

right hand side of (2.11). We take functions φ′, ψ′ ∈ C∞
0 (Ω) such that ψ ⊂⊂ φ′ ⊂⊂ ψ′

and (2.4) holds for (φ′, ψ′) in place of (φ, ψ). Substituting φ′u for u in (2.11), we have∥∥∥〈Dx〉sPχφu
∥∥∥(2.12)

≤ C
(∥∥∥〈Dx〉sψPχu

∥∥∥+
∥∥∥〈Dx〉s−κPχφ′u

∥∥∥+
∥∥∥〈Dx〉s−κPχ′φ′u

∥∥∥+ ‖φ′u‖−N
)
,

because ψ [Pχ, φ′] is a smoothing operator. The second and third terms on the right hand

side of (2.12) are of the same type as in the left hand side of (2.11). Then we have easily∥∥∥〈Dx〉sPχφu
∥∥∥

≤ C
(∥∥∥〈Dx〉sψPχu

∥∥∥+
∥∥∥〈Dx〉s−κψ′Pχu

∥∥∥+
∥∥∥〈Dx〉s−κψ′Pχ′u

∥∥∥
+
∥∥∥〈Dx〉s−2κPχu

∥∥∥+
∥∥∥〈Dx〉s−2κPχ′u

∥∥∥+
∥∥∥〈Dx〉s−2κPχ′′u

∥∥∥+ ‖ψ′u‖−N
)
,

where χ′′ ∈ ′SΨ satisfying χ′ ⊂⊂ χ′′. Repeating a finite number of times of this argument,

the second and third terms will be estimated by C ‖ψ′u‖−N . Therefore we have an

inequality analogous to (2.6).

Now, we mention lemmas which are used above, and prove them. As in §2 of [22] we

employ a pseudo-differential operator Λs,k,ε = 〈Dx〉s(1 + ε〈Dx〉)−k for real s, ε > 0 and

k ≥ 0. The first lemma is used to control ‖[〈Dx〉s, Pχ]u‖.
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Lemma 2.2 (cf. Lemma 2.1 of [23]) Suppose that P satisfies Condition (II). Then for

any K ⊂⊂ Ω, any β = (0, β′) ∈ {0} × Zd
+ (|β| 	= 0), any real s, any µ > 0, N > 0,

0 < ε < 1, k ≥ 0 and any χ ∈ ′SΨ, there exists a constant C = C(K,β, s, µ,N, k, χ)

independent of ε such that∥∥∥Λs−|β|,k,ε(Pχ)(β)u
∥∥∥ ≤ µ ‖Λs,k,εPχu‖ + C ‖u‖−N for all u ∈ C∞

0 (K).(2.13)

Furthermore, for any K ⊂⊂ Ω, any real s, s′, any µ > 0, N > 0, 0 < ε < 1, k ≥ 0 and

any χ ∈ ′SΨ, there exists a constant C ′ = C ′(K, s, s′, µ,N, k, χ) independent of ε such that∥∥∥〈Dx〉s
′
[Pχ,Λs,k,ε]u

∥∥∥ ≤ µ ‖Λs+s′,k,εPχu‖ + C ′ ‖u‖−N for all u ∈ C∞
0 (K).(2.14)

Proof of Lemma 2.2. We take φ, ψ ∈ C∞
0 (Ω) such that φ ⊂⊂ ψ, φ ≡ 1 on K.

Applying (2.2) to K = suppψ, ψΛs,k,εφu ∈ C∞
0 ((suppψ)◦) and ψΛs,k,εφu for u, we obtain∥∥∥〈Dx〉−|β|(Pχ)(β)ψΛs,k,εφu

∥∥∥ ≤ µ ‖PχψΛs,k,εφu‖ + C ‖u‖−N .

Then we have easily∥∥∥Λs−|β|,k,ε(Pχ)(β)u
∥∥∥ ≤

∥∥∥〈Dx〉−|β| [(Pχ)(β)ψ,Λs,k,ε

]
φu
∥∥∥

+ µ
∥∥∥Λs,k,εPχu

∥∥∥+ µ
∥∥∥[Pχψ,Λs,k,ε

]
φu
∥∥∥+ C ‖u‖−N+s ,

where C is independent of ε. Since we can regard Λs,k,ε as an element of ′Ss1/2,0 on suppχ,

the expansion formula yields

[
(Pχ)(β)ψ,Λs,k,ε

]
≡ ∑

0<|α|<2(s+m+N)

(−1)|α|

α!
Λ

(α)
s,k,ε

{
(Pχ)(β)ψ

}
(α)

mod ′S−N
1/2,0

[
(Pχ)ψ,Λs,k,ε

]
≡ ∑

0<|α|<2(s+m+N)

(−1)|α|

α!
Λ

(α)
s,k,ε(Pχψ)(α) mod ′S−N

1/2,0

(where α runs over indices of type (0, α′)) ,

and since N is arbitrary and
{
(Pχ)(β)ψ

}
(α)
φ− (Pχ)(α+β)φ ∈ ′S−∞, we see that

∥∥∥Λs−|β|,k,ε(Pχ)(β)u
∥∥∥(2.15)

≤ µ ‖Λs,k,εPχu‖ + C ′µ
∑

0<|α|<2(s+m+N)

∥∥∥Λs−|α|,k,ε(Pχ)(α)u
∥∥∥

+ C ′′
 ∑

0<|α|<2(s+m+N)

∥∥∥Λs−|α|−|β|,k,ε(Pχ)(α+β)u
∥∥∥+ ‖u‖−N

 ,
where C ′ is independent of (ε, µ) and C ′′ is independent of ε. It is obvious that (2.13)

holds for |β| ≥ 2(s + m + N), so we may suppose that |β| ≤ 2(s + m + N) − 1. Set
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a0 = ‖Λs,k,εPχu‖ , aj =
∑

|β|=j
∥∥∥Λs−|β|,k,ε(Pχ)(β)u

∥∥∥ (j = 1, . . . , 2(s + m + N) −1) and

a2(s+m+N) = ‖u‖−N . (2.15) yields

aj ≤ µ
2(s+m+N)−1∑

k=0

ak + Cµ,j

2(s+m+N)∑
k=j+1

ak(2.16)

( j = 1, . . . , 2(s+m+N) − 1 ).

Applying Lemma 2.9 of [22] to (2.16), we have

aj ≤ µ′a0 + C ′
µ′,ja2(s+m+N)

for any µ′ > 0. This inequality is equivalent to (2.13). (2.14) follows from (2.13) and the

above expansion formula. �

Next lemma is used to evaluate the commutators between Pχ and multiplication by

functions.

Lemma 2.3 (cf. Lemma 2.2 of [23]) Suppose that φ(t, x) belongs to C∞
0 (Ω) and that P

satisfies Conditions (II) and (III). Then for any K ⊂⊂ Ω, any real s, any N > 0, 0 < ε <

1, k ≥ 0 and any χ, χ′ ∈ ′SΨ (χ ⊂⊂ χ′), there exists a constant C = C(K, s,N, k, χ, χ′, φ)

independent of ε such that

‖Λs,k,εPχφu‖ ≤ C
(
‖Λs,k,εPχu‖ + ‖Λs,k,εPχ

′‖ + ‖u‖−N
)

for all u ∈ C∞
0 (K).(2.17)

Proof of Lemma 2.3. By means of (2.14), we have∥∥∥Λs,k,εPχφu
∥∥∥ ≤

∥∥∥PχΛs,k,εφu
∥∥∥+

∥∥∥[Λs,k,ε, Pχ
]
φu
∥∥∥

≤
∥∥∥PχΛs,k,εφu

∥∥∥+ µ
∥∥∥Λs,k,εPχφu

∥∥∥+ Cµ ‖φu‖−N .

Then we obtain ∥∥∥Λs,k,εPχφu
∥∥∥ ≤ C

(∥∥∥PχΛs,k,εφu
∥∥∥+ ‖u‖−N

)
.

Here and in what follows we denote different constants independent of ε by the same

notation C. Using the expansion formula

Λs,k,εφ ≡ ∑
0≤|α|<2(s+m+N)

φ(α)Λ
(α)
s,k,ε/α! mod ′S−N−m

1/2,0 on suppχ,(2.18)

we have ∥∥∥PχΛs,k,εφu
∥∥∥ ≤ C

 ∑
|α|<2(s+m+N)

∥∥∥Pχφ(α)Λ
(α)
s,k,εu

∥∥∥+ ‖u‖−N
 .(2.19)
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And each of the sum satisfies∥∥∥Pχφ(α)Λ
(α)
s,k,εu

∥∥∥(2.20)

≤
∥∥∥∥φ(α)PχΛ

(α)
s,k,εu+

∑
0<|β|≤2(s+m+N)

φ(α+β)(Pχ)(β)Λ
(α)
s,k,εu/β!

∥∥∥∥+ C ‖u‖−N

≤ C
(∥∥∥PχΛ

(α)
s,k,εu

∥∥∥+
∥∥∥Pχ′Λ(α)

s,k,εu
∥∥∥+ ‖u‖−N

)
( by Condition (III) ) .

If χ′′ is one of χ and χ′, we have∥∥∥Pχ′′Λ(α)
s,k,εu

∥∥∥(2.21)

≤
∥∥∥∥Λ(α)

s,k,εPχ
′′u+

∑
0<|β|<2(s+m+N−|α|)

(−1)|β|Λ(α+β)
s,k,ε (Pχ′′)(β)u/β!

∥∥∥∥+ C ‖u‖−N

≤ C
(∥∥∥Λs−|α|,k,εPχ′′u

∥∥∥+ ‖u‖−N
)

( by (2.13) ) .

Combining three inequalities (2.19), (2.20) and (2.21), we have (2.17). �

Next lemma is used to control ‖[ψPχ, 〈Dx〉s]u‖.

Lemma 2.4 (cf. Lemma 2.3 of [23]) Suppose that P satisfies Conditions (II) and (V).

Then for any K ⊂⊂ Ω , any β = (0, β′) ∈ {0} × Zd
+ (|β| 	= 0), any real s, any µ > 0,

0 < ε < 1, N > 0, k ≥ 0 and any χ, χ′ ∈ ′SΨ (χ ⊂⊂ χ′), there exists a constant

C = C(K,β, s, µ, k,N, χ, χ′, ψ) independent of ε such that∥∥∥Λs−|β|,k,ε(ψPχ)(β)u
∥∥∥(2.22)

≤ µ
∥∥∥Λs,k,ε(ψPχ)u

∥∥∥+ C
(∥∥∥Λs−κ,k,εPχu

∥∥∥+
∥∥∥Λs−κ,k,εPχ′u

∥∥∥+ ‖u‖−N
)

for all u ∈ C∞
0 (K), where κ > 0 and ψ are the same as in Condition (V).

Proof of Lemma 2.4. As in the beginning of the proof of Lemma 2.2, we take

φ, φ′ ∈ C∞
0 (Ω) such that φ ⊂⊂ φ′, φ ≡ 1 on K. Applying (2.5) to K = suppφ′, we obtain∥∥∥〈Dx〉κ−|β|(ψPχ)(β)φ

′Λs−κ,k,εφu
∥∥∥(2.23)

≤ µ
∥∥∥〈Dx〉κ(ψPχ)φ′Λs−κ,k,εφu

∥∥∥
+ C

(∥∥∥Pχφ′Λs−κ,k,εφu
∥∥∥+

∥∥∥Pχ′φ′Λs−κ,k,εφu
∥∥∥+ ‖φ′Λs−κ,k,εφu‖−N

)
.

The left hand side of (2.23) is estimated from below as follows.∥∥∥〈Dx〉κ−|β|(ψPχ)(β)φ
′Λs−κ,k,εφu

∥∥∥
=

∥∥∥Λs−β,k,ε(ψPχ)(β)u+ 〈Dx〉κ−|β| [(ψPχ)(β)φ
′,Λs−κ,k,ε

]
φu
∥∥∥

≥
∥∥∥Λs−β,k,ε(ψPχ)(β)u

∥∥∥− ∥∥∥〈Dx〉κ−|β| [(ψPχ)(β)φ
′,Λs−κ,k,ε

]
φu
∥∥∥ .
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Using the expansion formula[
(ψPχ)(β)φ

′,Λs−κ,k,ε
]
φ ≡ ∑

0<|α|<2(s+m+N)

(−1)|α|Λ(α)
s−κ,k,ε

{
(ψPχ)(β)

}
(α)
φ/α! mod ′S−N

1/2,0

(where α runs over indices of type (0, α′)), we have∥∥∥〈Dx〉κ−|β|(ψPχ)(β)φ
′Λs−κ,k,εφu

∥∥∥(2.24)

≥
∥∥∥Λs−β,k,ε(ψPχ)(β)u

∥∥∥
− C

 ∑
0<|α|<2(s+m+N)

∥∥∥Λs−|α+β|,k,ε(ψPχ)(α+β)u
∥∥∥+ ‖u‖−N

 .
Next, the first term on the right hand side of (2.23) is written as follows.

µ
∥∥∥〈Dx〉κ(ψPχ)φ′Λs−κ,k,εφu

∥∥∥(2.25)

= µ
∥∥∥Λs,k,ε(ψPχ)u+ 〈Dx〉κ

[
(ψPχφ′),Λs−κ,k,ε

]
φu
∥∥∥

≤ µ
∥∥∥Λs,k,ε(ψPχ)u

∥∥∥+ Cµ
∑

0<|α|<2(s+m+N)

∥∥∥Λs−|α|,k,ε(ψPχ)(α)u
∥∥∥+ C ′ ‖u‖−N ,

where C is independent of (µ, ε) and C ′ is independent of ε. Also the second (third) terms

on the right hand side of (2.23) are estimated as follows.∥∥∥Pχφ′Λs−κ,k,εφu
∥∥∥(2.26)

=
∥∥∥Λs−κ,k,εPχu+

[
Pχφ′,Λs−κ,k,ε

]
φu
∥∥∥

≤
∥∥∥Λs−κ,k,εPχu

∥∥∥+ C ‖u‖−N ( by (2.14) when s′ = 0 ),

where C is a constant independent of µ, ε.

Combining above three inequalities (2.24),(2.25) and (2.26), we obtain∥∥∥Λs−β,k,ε(ψPχ)(β)u
∥∥∥

≤ µ
∥∥∥Λs,k,ε(ψPχ)u

∥∥∥+ µC
∑

0<|α|<2(s+m+N)

∥∥∥Λs−|α|,k,ε(ψPχ)(α)u
∥∥∥

+ C ′ ∑
0<|α|<2(s+m+N)

∥∥∥Λs−|α+β|,k,ε(ψPχ)(α+β)u
∥∥∥

+ C ′′ (∥∥∥Λs−κ,k,εPχu
∥∥∥+

∥∥∥Λs−κ,k,εPχ′u
∥∥∥+ ‖u‖−N

)
,

where C,C ′ are constants independent of (µ, ε).

By the same way as in the proof of Lemma 2.2, we obtain (2.22). �

We have a corollary by the same way as in the proof of (2.14) from (2.13).

Corollary 2.5 (cf. Corollary 2.4 of [23]) Suppose that P satisfies Conditions (II) and

(V). Then for any K ⊂⊂ Ω, any real s, s′, any N > 0, 0 < ε < 1, k ≥ 0 and any
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χ, χ′ ∈ ′SΨ (χ ⊂⊂ χ′), there exists a constant C = C(K, s, s′, N, k, χ, χ′, ψ) independent of

ε such that∥∥∥〈Dx〉s
′
[ψPχ,Λs,k,ε]u

∥∥∥(2.27)

≤ C
(∥∥∥Λs+s′,k,εψPχu

∥∥∥+
∥∥∥Λs+s−κ,k,εPχu

∥∥∥+
∥∥∥Λs+s′−κ,k,εPχ′u

∥∥∥+ ‖u‖−N
)

for all u ∈ C∞
0 (K), where (κ, ψ) are the same as in Condition (V).

The next lemma plays the most important role in the proof of Proposition 2.1. (see

(2.11).) If P satisfies Conditions (I),(II) and the inequality in the next lemma holds, then

Conditions (III)–(V) are not necessary to assume.

Lemma 2.6 (cf. Lemma 2.5 of [23]) Suppose that P satisfies Conditions (II)–(V). Then

for any K ⊂⊂ Ω, any real s, any N > 0, 0 < ε < 1, k ≥ 0 and any χ, χ′ ∈ ′SΨ (χ ⊂⊂ χ′),

there exists a constant C = C(K, s,N, k, χ, χ′) independent of ε such that∥∥∥Λs+κ,k,εPχφu
∥∥∥(2.28)

≤ C
(∥∥∥Λs+κ,k,εψPχu

∥∥∥+
∥∥∥Λs,k,εPχu

∥∥∥+
∥∥∥Λs,k,εPχ

′u
∥∥∥+ ‖u‖−N

)
for all u ∈ C∞

0 (K), where κ and φ, ψ ∈ C∞
0 (Ω) are the same as in Condition (IV).

Proof of Lemma 2.6. The left hand side of (2.28) is written as follows.∥∥∥Λs+κ,k,εPχφu
∥∥∥ =

∥∥∥〈Dx〉κPχΛs,k,εφu+ 〈Dx〉κ
[
Λs,k,ε, Pχ

]
φu
∥∥∥

≤
∥∥∥〈Dx〉κPχΛs,k,εφu

∥∥∥+ µ
∥∥∥Λs+κ,k,εPχφu

∥∥∥+ C ‖u‖−N ,

(by Lemma 2.2 (2.14) with s′ = κ). Taking µ small enough, we have∥∥∥Λs+κ,k,εPχφu
∥∥∥ ≤ C

(∥∥∥〈Dx〉κPχΛs,k,εφu
∥∥∥+ ‖u‖−N

)
for all u ∈ C∞

0 (K).

In view of the expansion formula (2.18) we have∥∥∥〈Dx〉κPχΛs,k,εφu
∥∥∥

≤
∥∥∥〈Dx〉κPχφΛs,k,εu

∥∥∥+ C

 ∑
0<|α|<2(s+m+N+κ)

∥∥∥〈Dx〉κPχφ(α)Λ
(α)
s,k,εu

∥∥∥+ ‖u‖−N


for all u ∈ C∞
0 (K).

By means of (2.17) with s = κ, k = 0 we have for |α| 	= 0∥∥∥〈Dx〉κPχφ(α)Λ
(α)
s,k,εu

∥∥∥
≤ C

(∥∥∥〈Dx〉κPχΛ
(α)
s,k,εu

∥∥∥+
∥∥∥〈Dx〉κPχ′Λ(α)

s,k,εu
∥∥∥+ ‖u‖−N

)
for all u ∈ C∞

0 (K)
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If χ′′ is one of χ and χ′, we have by (2.13)∥∥∥〈Dx〉κPχ′′Λ(α)
s,k,εu

∥∥∥
=
∥∥∥〈Dx〉κΛ(α)

s,k,εPχ
′′u+ 〈Dx〉κ

[
Pχ′′,Λ(α)

s,k,ε

]
u
∥∥∥

≤ C

∥∥∥Λs+κ−|α|,k,εPχ′′u
∥∥∥+

∑
0<|β|<2(s+m+N+κ−|α|)

∥∥∥Λs+κ−|α+β|,k,ε(Pχ′′)(β)u
∥∥∥+ ‖u‖−N


≤ C

(∥∥∥Λs+κ−|α|,k,εPχ′′u
∥∥∥+ ‖u‖−N

)
for all u ∈ C∞

0 (K).

Combining these three inequalities we have∥∥∥Λs+κ,k,εPχφu
∥∥∥(2.29)

≤ C
(∥∥∥〈Dx〉κPχφΛs,k,εu

∥∥∥+
∥∥∥Λs,k,εPχu

∥∥∥+
∥∥∥Λs,k,εPχ

′u
∥∥∥+ ‖u‖−N

)
.

Next, as in the beginning of the proof of Lemma 2.2, we take ϕ, ϕ′ ∈ C∞
0 (Ω) such that

ϕ ⊂⊂ ϕ′, ϕ ≡ 1 on K and ϕ′ ≡ 1 on suppψ. Then we have that for u ∈ C∞
0 (K)∥∥∥〈Dx〉κPχφΛs,k,εu

∥∥∥ =
∥∥∥〈Dx〉κPχφΛs,k,εϕ

′ϕu
∥∥∥

≤
∥∥∥〈Dx〉κPχφϕ′Λs,k,εϕu

∥∥∥+
∥∥∥〈Dx〉κPχφ

[
Λs,k,ε, ϕ

′]ϕu∥∥∥
≤

∥∥∥〈Dx〉κPχφϕ′Λs,k,εϕu
∥∥∥+ C ‖u‖−N ,

because 〈Dx〉κPχφ [Λs,k,ε, ϕ
′]ϕ is smoothing. Substituting ϕ′Λs,k,εϕu for u in (2.4), we

obtain∥∥∥〈Dx〉κPχφϕ′Λs,k,εϕu
∥∥∥

≤ C
(∥∥∥〈Dx〉κψPχϕ′Λs,k,εϕu

∥∥∥+
∥∥∥Pχϕ′Λs,k,εϕu

∥∥∥+
∥∥∥Pχ′ϕ′Λs,k,εϕu

∥∥∥+ ‖u‖−N
)
.

By means of ψPχϕ′−ψPχ, [Pχ, ϕ′] Λs,k,εϕ, [Pχ
′, ϕ′] Λs,k,εϕ ∈ ′S−∞, the right hand side is

smaller than the following:

≤ C
(∥∥∥〈Dx〉κψPχΛs,k,εu

∥∥∥+
∥∥∥PχΛs,k,εu

∥∥∥+
∥∥∥Pχ′Λs,k,εu

∥∥∥+ ‖u‖−N
)

≤ C
(∥∥∥Λs+κ,k,εψPχu

∥∥∥+
∥∥∥〈Dx〉κ

[
ψPχ,Λs,k,ε

]
u
∥∥∥

+
∥∥∥Λs,k,εPχu

∥∥∥+
∥∥∥Λs,k,εPχ

′u
∥∥∥+ ‖u‖−N

)
( by (2.14) with s′ = 0 )

≤ C
(∥∥∥Λs+κ,k,εψPχu

∥∥∥+
∥∥∥Λs,k,εPχu

∥∥∥+
∥∥∥Λs,k,εPχ

′u
∥∥∥+ ‖u‖−N

)
( by Corollary 2.5 (2.27) with s′ = κ ).

Combining above inequality and (2.29), we have (2.28). �

Remark. Set k = 2(s0 +m+N + κ) for s0 > 0. Then, for any v ∈ H−N(Rd+1) ∩
E ′(K), we have∥∥∥Λs+κ,k,εPχφv

∥∥∥ ≤ C
(∥∥∥Λs+κ,k,εψPχv

∥∥∥+
∥∥∥Λs,k,εPχv

∥∥∥+
∥∥∥Λs,k,εPχ

′v
∥∥∥+ ‖u‖−N

)
,
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where s ≤ s0 and C is a constant independent of ε. This can be verified from (2.28) in

the same way as in the remark to Lemma 2.5 in [23].

Proof of Proposition 2.1. Let (t0, x0) be any fixed point in Ω and let ψ(t, x) ∈
C∞

0 (Ω) be such that ψ ≡ 1 in a neighborhood U(t0, x0) of (t0, x0). Then, for any positive

integer l and any χ, χ′ ∈ ′SΨ(χ ⊂⊂ χ′), we can find finite sequences {φj}lj=1, {ψj}lj=1 ⊂
C∞

0 (Ω), {χj}lj=1 ⊂ ′SΨ satisfying the following two conditions.

condition (a) :

φ1 ⊂⊂ ψ1 ⊂⊂ φ2 ⊂⊂ ψ2 ⊂⊂ · · · ⊂⊂ φl ⊂⊂ ψl ⊂⊂ ψ

χ ⊂⊂ χ1 ⊂⊂ χ2 ⊂⊂ · · · ⊂⊂ χl ⊂⊂ χ′(= χl+1)

condition (b) : For any K ⊂⊂ Ω and any N > 0, there exists a constant C =

C(K,N, χj , χj+1, φj′ , ψj′) such that∥∥∥〈Dx〉κPχjφj′u
∥∥∥ ≤ C

(∥∥∥〈Dx〉κψj′Pχju
∥∥∥+ ‖Pχju‖ + ‖Pχj+1u‖ + ‖u‖−N

)
(2.30)

for all u ∈ C∞
0 (K) ( j, j′ = 1, . . . , l ),

where κ is a positive number depending only on K.

Indeed, we can find these sequences as follows.

First, we take a sequence {χj}lj=1 satisfying the condition (a). Next, from Condition (IV),

we can take φ̃1, ψ̃1 ∈ C∞
0 (U(t0, x0)) such that φ̃1 ⊂⊂ ψ̃1, φ̃1 ≡ 1 in some neighborhood

V (t0, x0) of (t0, x0) and (φ̃1, ψ̃1) satisfies (2.4) in place of (φ, ψ). Similarly we can take again

φ̃2, ψ̃2 ∈ C∞
0 (V (t0, x0)) such that φ̃2 ⊂⊂ ψ̃2, φ̃2 ≡ 1 in some neighborhood W (t0, x0) of

(t0, x0) and (φ̃2, ψ̃2) satisfies (2.4) in place of (φ, ψ). Here we used the arbitrariness of U in

Condition (IV). Since W (t0, x0) ⊂⊂ V (t0, x0) ⊂⊂ U(t0, x0), φ̃2 ⊂⊂ ψ̃2 ⊂⊂ φ̃1 ⊂⊂ ψ̃1 ⊂⊂
ψ. Repeating these steps l times, we have sequences {φ̃j}lj=1 and {ψ̃j}lj=1 ⊂ C∞

0 (Ω). Set

φj = φ̃l−j+1, ψj = ψ̃l−j+1(j = 1, . . . , l). Then, {φj}lj=1, {ψj}lj=1 are sequences we want.

As is well-known, for u ∈ D′(Ω), there exists an N > 0 such that ψu ∈ H−N(Rd+1).

Let us choose l larger than 2(s+m+N)/κ. By means of Lemma 2.11 of [22], its remark

and (I), for any φ1u = φ1ψv ∈ H−N(Rd+1) ∩ E ′(K) ( , where K is some neighborhood of

supp ψ ), we have ∥∥∥Λs,k,εχ1φ1u
∥∥∥ ≤ C

(∥∥∥Λs,k,εPχ1φ1u
∥∥∥+ ‖ψu‖−N

)
(2.31)

for a constant C independent of ε and k = 2(s+m+N). From (2.30) and the remark to

Lemma 2.6 with k = 2(s+m+N), we have for any s′ ≤ s,
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∥∥∥Λs′,k,εPχjφj′u
∥∥∥

=
∥∥∥Λs′,k,εPχjφj′φj′+1u

∥∥∥
≤ C

(∥∥∥Λs′,k,εψj′Pχjφj′+1u
∥∥∥

+
∥∥∥Λs′−κ,k,εPχjφj′+1u

∥∥∥+
∥∥∥Λs′−κ,k,εPχj+1φj′+1u

∥∥∥+ ‖ψu‖−N
)

≤ C ′ (∥∥∥Λs′,k,εψj′Pχju
∥∥∥+

∥∥∥Λs′−κ,k,εPχjφj′+1u
∥∥∥+

∥∥∥Λs′−κ,k,εPχj+1φj′+1u
∥∥∥+ ‖ψu‖−N

)
.

Because ψj′Pχjφj′+1 − ψj′Pχj ∈ ′S−∞ and φj′u = φj′φj′+1u. From (2.31) and above

estimate, we have∥∥∥Λs,k,εχ1φ1u
∥∥∥

≤ C

 l∑
j,j′=1

∥∥∥Λs−κ(j′−1),k,εψj′Pχju
∥∥∥+

l+1∑
j=1

∥∥∥Λs−κl,k,εPχjψu
∥∥∥+ ‖ψu‖−N

 ,
where C is a constant independent of ε.

Since ‖Λs−κ(j′−1),k,εψj′Pχju‖ ≤ ‖〈Dx〉s−κ(j
′−1)ψj′Pχju‖ ( j, j′ = 1, . . . , l ) and the family

{Λs−κl,k,εPχjψ}0<ε<1 is bounded in ′S−N
1/2,0 for all j ( j = 1, . . . , l ), we obtain

∥∥∥Λs,k,εχ1φ1u
∥∥∥ ≤ C

 l∑
j,j′=1

∥∥∥〈Dx〉s−κ(j
′−1)ψj′Pχju

∥∥∥+ ‖ψu‖−N
 .

Since the right hand side is bounded uniformly with respect to ε from the hypothesis of

the proposition, we finally obtain by letting ε tend to 0

∥∥∥〈Dx〉sχ1φ1u
∥∥∥ ≤ C

 l∑
j,j′=1

∥∥∥〈Dx〉sψj′Pχju
∥∥∥+ ‖ψu‖−N

 .
This shows that 〈Dx〉sχ1φ1u ∈ L2(Rd+1). Let ψ be any fixed element in C∞

0 (Ω). Since

(t0, x0) is arbitrary point in Ω, we see that 〈Dx〉sχ1ψu ∈ L2(Rd+1). This completes the

proof of Proposition 2.1. �
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3 The basic inequalities

From now on, we investigate the operator

P = ∂t + f(t, x)
n∑

j,k=1

ajk(t, x)LjLk

specified in Theorem A. In view of Proposition 2.1, for the proof of Proposition 1.3 (see

§6), it suffices to show that P satisfies Conditions (I)–(V) in §2. We need many preliminary

inequalities. Let us sketch how they are used in the following sections.

1. We use inequalities (3.1), (3.2) and (3.3) in Lemma 3.1 below to show that P

satisfies Conditions (I), (II), (IV) and (V). More precisely, they are used to eval-

uate fLjχu ( j = 1, . . . , n ) which are principal terms of 〈Dx〉−1 (Pχ)(β) u (β =

(0, β′), |β′| = 1).

2. Inequalities (3.12) and (3.13) in Lemma 3.3 are used to have the inequality

‖χu‖ ≤ µ‖Pχu‖ + Cµ,N‖u‖−N for every µ,N > 0 and every χ ∈ ′SΨ

(see Proposition 5.1 in §5). P satisfies Condition (I) due to this inequality.

3. We use the inequality (3.14) in Lemma 3.4 only for the proof of Lemma 3.5.

4. Inequality (3.16) in Lemma 3.5 is an a priori estimate with weight. Combining (3.12)

and (3.13) with (3.16), we can show that P satisfies Conditions (I), (IV) and (V).

More precisely, these inequalities are used to prove Proposition 4.1. (see Lemma 4.5

in §4.)

Let Ω be a bounded domain in Rd+1 and let πt be the projection from Ω to Rt

(πt( (t, x) ) = t). If f does not depend on x, let f(t) = f(t, x). (We set always

f(t) = f(t, x) in this case.) Then, from the hypothesis (1◦-α), there exists at most one

point where f(t) changes sign. Without loss of generality, we may suppose that the point

is t = 0.

Definition

We say that (f,Ω) is of type (α-1) if f(t, x) does not depend on x and if πt(Ω) contains

t = 0.

We say that (f,Ω) is of type (α-2) if f(t, x) does not depend on x and if πt(Ω) does not

contain t = 0.

We say that (f,Ω) is of type (β) if f depends on x.

We denote by ( · , · ) the ordinary scalar product on L2(Rd+1).
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Lemma 3.1 (i) If (f,Ω) is of type (α-1), for any K ⊂⊂ Ω and any ρ > 3/4, there

exists a constant C depending only on (K, ρ) such that

n∑
j=1

‖|f |ρLju‖2 ≤ C
{∣∣∣Re

(
Pu, (sgn t)|f |2ρ−1u

)∣∣∣+ ‖u‖2
}

(3.1)

for all u ∈ C∞
0 (K).

(ii) If (f,Ω) is of type (α-2) or of type (β), for any K ⊂⊂ Ω, there exists a constant

C depending only on K such that

n∑
j=1

∥∥∥|f |1/2Lju∥∥∥2 ≤ C
{
|Re (Pu, u)| + ‖u‖2

}
,(3.2)

for all u ∈ C∞
0 (K).

(iii) If (f,Ω) is of type (α-2) or of type (β), for any K ⊂⊂ Ω, there exists a constant

C depending only on K such that

n∑
j=1

‖fLju‖2 ≤ C

{
|Re (Pu, fu)| +

d∑
k=1

‖(∂xk
f)u‖2 + ‖fu‖2 +

∣∣∣((∂tf)u, u
)∣∣∣}(3.3)

for all u ∈ C∞
0 (K).

Remark. In (i), the lower bound 3/4 of the exponent ρ of |f | can not be replaced

by smaller one in general. This is because we need for the proof of Lemma 3.1 the estimate

Re(∂tu, (sgn t)|f |2ρ−1u) ≤ C‖u‖2. If 2ρ−1 ≤ 1/2, then (sgn t)|f |2ρ−1 is not of class C1(R)

in general even if (df/dt)(0) = 0. For example, if we take

f(t) =


(sgn t)

(
1 + sin

π

2t

)
e−

1
|t| , for t 	= 0,

0 , for t = 0,

then (sgn t)|f(t)|1/2 /∈ C1(R), because |f(t)|1/2 is not differentiable at t = 1/ (3 + 4l) for

every l ∈ Z. Since the set {1/ (3 + 4l)}l∈� accumulates at the origin, (sgn t)|f(t)|1/2 /∈
C1(πt(Ω)) for any Ω satisfying 0 ∈ πt(Ω).

On the other hand, the exponent 1/2 in (ii) can not be replaced by smaller one. In (iii),

the second, the third and the forth terms on the right hand side should not be replaced

by ‖u‖2. The reason will be seen in §4. In the following sections, we study the case where

the exponent ρ is smaller than 1. This is because, as is mentioned in the Introduction,

the smaller ρ, the better (3.1).

Proof of Lemma 3.1. Let us begin with (i). We define E(u) to be

E(u) = −
∫

(sgn t) |f(t)|2ρ−1 ∂t
(
|u|2

)
dt dx.(3.4)
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Then we can rewrite Re(Pu, (sgn t)|f |2ρ−1u) as follows.

Re
(
Pu, (sgn t)|f |2ρ−1u

)
= Re

(
∂tu, (sgn t)|f |2ρ−1u

)
+ Re

n∑
j,k=1

(
|f |2ρajkLjLku, u

)
=

1

2

∫
(sgn t)|f |2ρ−1∂t

(
|u|2

)
dt dx

+ Re
n∑

j,k=1

(
|f |2ρajkLku, L∗

ju
)

+ Re
n∑

j,k=1

(
|f |2ρ [ajk, Lj]Lku, u

)
,

where L∗
j is the formal adjoint of Lj. Furthermore, we have

Re
(
Pu, (sgn t)|f |2ρ−1u

)
= −Re

n∑
j,k=1

(
|f |2ρajkLku, Lju

)
+ Re

n∑
j,k=1

(
|f |2ρajkLku, (Lj + L∗

j)u
)

+ Re
n∑

j,k=1

(
|f |2ρ [ajk, Lj]Lku, u

)
−
(
− 1

2

∫
(sgn t)|f |2ρ−1∂t|u|2dtdx

)

= − 1

2

n∑
j,k=1

(
|f |2ρ

{
ajk + akj

}
Lku, Lju

)
+ Re

n∑
j,k=1

(
|f |2ρajkLku, (Lj + L∗

j)u
)

+ Re
n∑

j,k=1

(
|f |2ρ [ajk, Lj]Lku, u

)
− 1

2
E(u).

Since Lj+L
∗
j reduces to a multiplication by a smooth function, we have by using Condition

(2◦) and Schwarz’ inequality

1

2
δ(K)

n∑
j=1

‖|f |ρLju‖2 +
1

2
E(u)

≤
∣∣∣Re

(
Pu, (sgn t)|f |2ρ−1u

)∣∣∣+ ε
n∑
j=1

‖|f |ρLju‖2 + Cε,K,ρ ‖u‖2 ,

where ε is any positive constant, Cε,K,ρ is a constant depending only on (ε,K, ρ) and δ(K)

is the number introduced in Condition (2◦). Taking ε = δ(K)/4, we have

1

4
δ(K)

n∑
j=1

‖|f |ρLju‖2 +
1

2
E(u) ≤

∣∣∣Re
(
Pu, (sgn t)|f |2ρ−1u

)∣∣∣+ CK,ρ ‖u‖2 .(3.5)

Next, we introduce the following condition for E(u).

(F) E(u) can be represented as E(u) = E1(u) + E2(u), where E1(u) ≥ 0 and |E2(u)| ≤
C ′
K‖u‖2 for any u ∈ C∞

0 (K). (C ′
K depends only on K)

If (F) is satisfied, it follows from (3.5) that

1

4
δ(K)

n∑
j=1

‖|f |ρLju‖2 ≤ 1

4
δ(K)

n∑
j=1

‖|f |ρLju‖2 +
1

2

(
E(u) − E2(u)

)
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≤
∣∣∣Re

(
Pu, (sgn t)|f |2ρ−1u

)∣∣∣+ CK,ρ ‖u‖2 − 1

2
E2(u)

≤
∣∣∣Re

(
Pu, (sgn t)|f |2ρ−1u

)∣∣∣+ (CK,ρ + C ′
K/2) ‖u‖2 .

This implies (3.1).

Now let us show that (F) is satisfied. The proof is divided into two cases where f ′(0)

is equal to zero or not.

Case 1 f ′(0) = 0

If (sgn t)|f(t)|2ρ−1 ∈ C1(πt(Ω)), then |E(u)| ≤ C ′
K‖u‖2 for all u ∈ C∞

0 (K) by integration

by parts. So (F) is satisfied if we set E1(u) ≡ 0 and E2(u) = E(u). Therefore we have

only to show that (sgn t)|f(t)|2ρ−1 ∈ C1(πt(Ω)). In this case, f(0) = f ′(0) = f ′′(0) = 0 by

the Taylor expansion. Since f(t) does not change sign except at t = 0, |f(t)| is smooth

except at t = 0. Hence |f(t)| belongs to C2(R). The next lemma allows us to prove that

(sgn t)|f(t)|2ρ−1 ∈ C1(πt(Ω)).

Lemma 3.2 Let g(t) ∈ C2(R) be a non-negative function. Then, g(t)λ belongs to

C1(R) for every λ > 1/2.

Proof of Lemma 3.2. Let Zg be the set of zeros of g(t). g(t)λ is differentiable at

every point of R and

d

dt

{
g(t)λ

}
=


0 if t ∈ Zg,

λg(t)λ−1g′(t) otherwise.
(3.6)

Therefore, we shall show that the derivative of g(t)λ is continuous at every point t0 of Zg.

As is well-known, for non-negative C2-function g(t), there exist a neighborhood U of t0

and a constant C such that ∣∣∣∣∣ ddtg(t)
∣∣∣∣∣ ≤ C

√
g(t) in U.(3.7)

(cf. Lemma 1.7.1 in §7 of [28]) Consequently, we have∣∣∣∣∣ ddtg(t)λ
∣∣∣∣∣ ≤ λ

∣∣∣g(t)λ−1g′(t)
∣∣∣ ≤ Cλ |g(t)|λ− 1

2 in U,

which implies, together with (3.6), g(t)λ ∈ C1(R). �

Now we apply this to g(t) = |f(t)| and λ = 2ρ − 1 > 1/2. Then we have |f(t)|2ρ−1 ∈
C1(R) and d

dt
{|f(t)|2ρ−1} → 0 as t→ 0. Therefore, (sgn t)|f(t)|2ρ−1 ∈ C1(R).

Case 2 f ′(0) 	= 0

In this case, set h(t) = f(t)/t for t 	= 0 and h(0) = f ′(0). Then h(t) is non-negative and
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|h(t)|2ρ−1 ∈ C1(R) by Lemma 3.2. So we have (sgn t)|f(t)|2ρ−1 ∈ C1(R \ {0}) ∩ C(R).

We rewrite E(u) as follows.

E(u) = − lim
ε→0

∫
|t|>ε

{
(sgn t)|f |2ρ−1

}
∂t
(
|u|2

)
dtdx

by Lebesgue’s convergence theorem. Then we have

E(u) = lim
ε→0

{∫
|t|>ε

|u|2∂t
(
(sgn t)|t|2ρ−1|h(t)|2ρ−1

)
dtdx

+
∫
�

d
x

(
|f(ε)|2ρ−1|u(ε, x)|2 + |f(−ε)|2ρ−1|u(−ε, x)|2

)
dx
}

= lim
ε→0

{
(2ρ− 1)

∫
|t|>ε

|t|2ρ−2|h(t)|2ρ−1|u|2 dtdx

+
∫
|t|>ε

(sgn t)|t|2ρ−1|u|2∂t
(
|h(t)|2ρ−1

)
dtdx

}
,

because |f(±ε)| = O(ε2ρ−1) and 2ρ − 1 > 1/2. Furthermore, since |t|2ρ−2 is locally

integrable,

E(u) = (2ρ− 1)
∫
|t|2ρ−2|h(t)|2ρ−1|u|2dtdx+

∫
(sgn t)|t|2ρ−1|u|2∂t

{
|h(t)|2ρ−1

}
dtdx

= H1(u) +H2(u).

(sgn t)|t|2ρ−1∂t {|h(t)|2ρ−1} is bounded in πt(K), so there exists a constant C ′
K such that

|H2(u)| ≤ C ′
K‖u‖2 for all u ∈ C∞

0 (K). Moreover H1(u) is non-negative because the

integrand is non-negative and 2ρ − 1 > 1/2. So (F) is satisfied if we set E1(u) = H1(u),

E2(u) = H2(u). This completes the proof of (i).

Next we shall prove (ii). (The proof of (iii) is done in a similar way, so we omit

it.) Without loss of generality, we may suppose that f(t, x) is non-negative. We rewrite

Re(Pu, u) as follows:

Re (Pu, u)

= Re (∂tu, u) + Re
n∑

j,k=1

(
f(t, x)ajkLjLku, u

)

= Re
n∑

j,k=1

(
f(t, x)ajkLku, L

∗
ju
)

+ Re
n∑

j,k=1

(
[f(t, x)ajk, Lj]Lku, u

)

= −Re
n∑

j,k=1

(
f(t, x)ajkLku, Lju

)
+ Re

n∑
j,k=1

(
f(t, x)ajkLku, (Lj + L∗

j)u
)

+ Re
n∑

j,k=1

(
[f(t, x)ajk, Lj]Lku, u

)
and rewrite [f(t, x)ajk, Lj] as

[
f(t, x)ajk, Lj

]
= f(t, x)bjk0 +

d∑
l=1

bjkl(∂xl
f(t, x)),(3.8)
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where bjkl is a smooth function. Then we have

Re (Pu, u)(3.9)

= − 1

2

n∑
j,k=1

(
f(t, x)

{
ajk + akj

}
Lku, Lju

)
+ Re

n∑
j,k=1

(
f(t, x)ajkLku, (Lj + L∗

j)u
)

+ Re
n∑

j,k=1

(
f(t, x)Lku, bjk0u

)
+ Re

n∑
j,k=1

d∑
l=1

(
(∂xl

f(t, x))Lku, bjklu
)
.

Note that the forth term on the right hand side does not appear in the case where (f,Ω)

is of type (α-2). Since f(t, x) does not change sign in K, we have

d∑
l=1

|∂xl
f(t, x)|2 ≤ C(K)f(t, x) on K.(3.10)

(This is a generalization of (3.7) to (d + 1)-dimensional case. (see also [28].)) Then we

have
n∑
j=1

d∑
l=1

‖(∂xl
f(t, x))Lju‖2 ≤ C(K)

n∑
j=1

∥∥∥(f(t, x))1/2Lju
∥∥∥2 .(3.11)

Since Lj + L∗
j reduces to a multiplication by a smooth function, combining (3.9) and

(3.10), using Condition (2◦) and Schwarz’ inequality, we have

1

2
δ(K)

n∑
j=1

∥∥∥|f |1/2Lju∥∥∥2 ≤ |Re (Pu, u)| + ε
n∑
j=1

∥∥∥|f |1/2Lju∥∥∥2 + C(K, ε) ‖u‖2 ,

where ε is any positive constant, C(K, ε) is a constant depending only on (K, ε) and δ(K)

is the number introduced in Condition (2◦). Taking ε = δ(K)/4, we obtain (3.2). The

proof is completed. �

Lemma 3.3 (i) If (f,Ω) is of type (α-1), for any K ⊂⊂ Ω, there exists a constant C

depending only on K such that

‖u‖2 ≤ C
(
|Re (Pu, tu)| + ‖tu‖2

)
for all u ∈ C∞

0 (K).(3.12)

(ii) If (f,Ω) is of type (α-2) or (β), for any K ⊂⊂ Ω and any a ∈ R, there exists a

constant C such that

‖u‖2 ≤ C

∣∣∣Re
(
Pu, (t− a)u

)∣∣∣+ n∑
j=1

∥∥∥|(t− a)f(t, x)|1/2Lju
∥∥∥2
(3.13)

for all u ∈ C∞
0 (K), where C depends only on K and the diameter of {a} ∪ πt(K).
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Proof of Lemma 3.3. First, by means of (3.8), we rewrite Re (Pu, (t− a)u) as

Re (Pu, (t− a)u)

= − 1

2
‖u‖2 − Re

n∑
j,k=1

(
(t− a)f(t, x)ajkLku, Lju

)

+ Re
n∑

j,k=1

(
(t− a)f(t, x)ajkLku,

(
Lj + L∗

j

)
u
)

+ Re
n∑

j,k=1

(
[f(t, x)ajk, Lj ]Lku, (t− a)u

)

= − 1

2
‖u‖2 − Re

n∑
j,k=1

(
(t− a)f(t, x)ajkLku, Lju

)

+ Re
n∑

j,k=1

(
(t− a)f(t, x)Lku, ajk

(
Lj + L∗

j

)
u

)

+ Re
n∑

j,k=1

(
(t− a)f(t, x)Lku, bjk0u

)
+ Re

n∑
j,k=1

d∑
l=1

(
(t− a)(∂xl

f(t, x))Lku, bjklu
)
.

In the case (i), we have by setting a = 0

1

2
‖u‖2 +

δ(K)

2

n∑
j=1

∥∥∥|tf |1/2Lju∥∥∥2 ≤ |Re (Pu, tu)| + ε
n∑
j=1

∥∥∥|tf |1/2Lju∥∥∥2
+ Cε,K

∥∥∥|tf |1/2u∥∥∥2

due to tf(t) ≥ 0. |tf(t)|1/2/t is bounded in πt(K), so we obtain (3.12) if we set ε = δ(K)/2.

In the case (ii), we have from (3.10)

n∑
j=1

d∑
l=1

∥∥∥(t− a)(∂xl
f(t, x))Lju

∥∥∥2 ≤ C(K, a)
n∑
j=1

∥∥∥|(t− a)f(t, x)|1/2 Lju
∥∥∥2
,

where C(K, a) is a constant depending only on K and the diameter of {a} ∪ πt(K).

Combining this inequality with the above equality, we have by Schwarz’ inequality

‖u‖2 ≤ 2
∣∣∣Re

(
Pu, (t− a)u

)∣∣∣+ ε ‖u‖2

+ C(K, a, ε)
n∑
j=1

∥∥∥|(t− a)f(t, x)|1/2Lju
∥∥∥2 .

We finally obtain (3.13) by taking ε = 1/2. �

We prepare a notation for the next lemma. Given a multi-index J = (j1, . . . , jl) with

l ≥ 1, set J̃ = ( j1, . . . , jl−1 ) and define vector fields RJ inductively by

RJ = Lj1 (l = 1) , RJ = [RJ̃ , Ljl ] (l ≥ 2).

For example,

R1 = L1

R12 = [R1, L2] = [L1, L2]

R123 = [R12, L3] = [[L1, L2] , L3] .
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The number l is said to be the length of J and denoted by ‖J‖.

Lemma 3.4 (cf. Lemma 3.2 in Chapter 4 of [14]) For any K ⊂⊂ Ω, any multi-index J ,

there exists a constant C depending only on (K, J) such that∥∥∥∥〈Dx〉2
1−‖J‖−1f‖J‖RJu

∥∥∥∥2 ≤ C
(
‖Pu‖2 + ‖u‖2

)
for all u ∈ C∞

0 (K).(3.14)

Proof of Lemma 3.4. We proceed by induction with respect to the length l of J .

When l = 1 , we get (3.14) from (3.1) and (3.2). Now we assume that l ≥ 2 and write

J = ( j1, . . . , jl ), J̃ = ( j1, . . . , jl−1 ). If we prove∥∥∥∥〈Dx〉2
1−‖J‖−1f‖J‖RJu

∥∥∥∥2(3.15)

≤ C

 n∑
j=1

‖fLju‖2 +
∥∥∥∥〈Dx〉2

1−‖J̃‖−1f‖J̃‖RJ̃u
∥∥∥∥2

+ ‖u‖2


for all u ∈ C∞

0 (K) and apply the induction hypothesis to J̃ , then (3.14) will follow from

(3.1) and (3.2). Set TJ = 〈Dx〉2
2−‖J‖−2f‖J‖RJ and we write∥∥∥∥〈Dx〉2

1−‖J‖−1f‖J‖RJu
∥∥∥∥2 =

(
f‖J‖ [Ljl , RJ̃ ] u, 〈Dx〉2

2−‖J‖−2f‖J‖RJu
)

=
(
Ljlf

‖J‖RJ̃u, TJu
)

+
([
f‖J‖, Ljl

]
RJ̃u, TJu

)
−
(
RJ̃f

‖J‖Ljlu, TJu
)
−
([
f‖J‖, RJ̃

]
Ljlu, TJu

)
.

Since
[
f‖J‖, Ljl

]
,
[
f‖J‖, RJ̃

]
are rewritten as

[
f‖J‖, Ljl

]
= U1f

‖J̃‖ and
[
f‖J‖, RJ̃

]
= U2f,

where U1 and U2 are multiplications by functions of class C∞. Thus, we have∥∥∥∥〈Dx〉2
1−‖J‖−1f‖J‖RJu

∥∥∥∥2
=

(
f(t, x)‖J̃‖RJ̃u, TJfL

∗
jl
u
)

+
(
f‖J̃‖RJ̃u,

[
fL∗

jl
, TJ

]
u
)

+
(
f‖J̃‖RJ̃u, U1TJu

)
−
(
fLjlu, TJf

‖J̃‖R∗̃
J
u
)
−
(
fLjlu,

[
f‖J̃‖R∗̃

J
, TJ

]
u
)
−
(
fLjlu, U2TJu

)
.

[
fL∗

jl
, TJ

]
,
[
f‖J̃‖R∗̃

J
, TJ

]
and TJ belong to the symbol class ′S21−‖J̃‖−1(Rd

x) with parameter

t, and they are bounded in ′S21−‖J̃‖−1(Rd
x) when t runs over a compact set of R. Then,

using Ljl + L∗
jl
≡ 0 and RJ̃ +R∗̃

J
≡ 0 mod ′S0

1,0, we have (3.15) by Schwarz’ inequality. �

Remark. If (f,Ω) is of type (α-1) (resp. (α-2)), Lemma 3.4 holds even if we replace

f(t, x)‖J‖ by |f(t)|ρ‖J‖ (resp. |f(t)|‖J‖/2), where ρ is a constant satisfying ρ > 3/4.
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Lemma 3.5 (cf. Theorem 3.4 in Chapter 4 of [14]) For any K ⊂⊂ Ω, there exist a

positive integer k̃ depending only on K and a constant C depending only on K such that∥∥∥∥〈Dx〉2
1−k̃

f k̃u
∥∥∥∥2 ≤ C

(
‖Pu‖2 + ‖u‖2

)
for all u ∈ C∞

0 (K).(3.16)

Proof of Lemma 3.5. From Condition (3◦), we have the following:

For any K ⊂⊂ Ω, there exist a positive integer k̃ and functions bjJ(x), cj(x) ⊂ C∞(K)

such that

∂xl
=

∑
‖J‖≤k̃

blJ(x)RJ(x,Dx) + cl(x) ( l = 1, . . . , d ).

Then we write∥∥∥∥〈Dx〉2
1−k̃

f k̃u
∥∥∥∥2

=
∥∥∥∥〈Dx〉2

1−k̃−1〈Dx〉f k̃u
∥∥∥∥2 ≤ C

(
d∑
l=1

∥∥∥∥〈Dx〉2
1−k̃−1f k̃∂xl

u
∥∥∥∥2 +

∥∥∥∥〈Dx〉2
1−k̃−1u

∥∥∥∥2
)

≤ C

 d∑
l=1

∑
‖J‖≤k̃

∥∥∥∥〈Dx〉2
1−k̃−1f k̃

(
blJRJ + cl

)
u
∥∥∥∥2 + ‖u‖2

 ( since 21−k̃ − 1 ≤ 0 )

≤ C

 d∑
l=1

∑
‖J‖≤k̃

∥∥∥∥〈Dx〉2
1−k̃−1f k̃RJu

∥∥∥∥2 + ‖u‖2

 ≤ C
(
‖Pu‖2 + ‖u‖2

)
( by (3.14) ) .

The proof is finished. �

Remark. If (f,Ω) is of type (α-1) (resp. (α-2)), Lemma 3.5 holds even if we replace

f(t, x)k̃ to |f(t)|ρk̃ (resp. |f(t)|̃k/2), where ρ is a constant satisfying ρ > 3/4.
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4 The basic a priori estimate with weight

As is mentioned in the Introduction, we need an estimate for Lj with weight for the proof

of Theorem A. In this section, we shall prove Proposition 4.1 below. Inequality (4.1)

there is an estimate for Lj with the weight 〈ξ〉κf . By making use of this proposition,

we will verify that P in question satisfies Conditions (IV) and (V) in §2. Furthermore,

we will prove Proposition 5.1 in the next section by using the corollary to Proposition

4.1. Proposition 5.1 will guarantees Condition (I) for P to hold. As is stated above,

Proposition 5.1 plays an important role in the proof of Theorem A.

Proposition 4.1 For any K ⊂⊂ Ω, any N > 0 and any χ ∈ ′SΨ, there exist a positive

number κ = κ(K) and a positive constant C = C(K,N, χ) such that

n∑
j=1

∥∥∥〈Dx〉κfLjχu
∥∥∥2 +

∥∥∥〈Dx〉κfχu
∥∥∥2

+
d∑

k=1

∥∥∥〈Dx〉κ(∂xk
f)χu

∥∥∥2
(4.1)

≤ C
(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)

for all u ∈ C∞
0 (K).

We have immediately the following corollary.

Corollary 4.2 For any K ⊂⊂ Ω, any N > 0, any χ ∈ ′SΨ and any µ > 0, there exists

a constant C = C(K,N, χ, µ) such that

n∑
j=1

‖fLjχu‖2 + ‖fχu‖2 ≤ µ
(
‖Pχu‖2 + ‖χu‖2

)
+ C ‖u‖2

−N for all u ∈ C∞
0 (K).(4.2)

Proof of Corollary 4.2. By interpolation inequality, we have for any λ,M > 0

‖v‖2 ≤ λ ‖〈Dx〉κv‖2
+ C(λ,M)

∥∥∥〈Dx〉−Mv
∥∥∥2 for all v ∈ S(Rd+1),(4.3)

where κ is the number specified in Proposition 4.1. Applying (4.3) to v = fLjχu and

M = 2(N + 1), we have

‖fLjχu‖2 ≤ λ ‖〈Dx〉κfLjχu‖2
+ C(K,N, χ, λ) ‖u‖2

−N .

Moreover, applying (4.3) to v = fχu and M = 2N , we have

‖fχu‖2 ≤ λ ‖〈Dx〉κfχu‖2
+ C(K,N, χ, λ) ‖u‖2

−N .

Combining above two inequalities and using (4.1), we obtain (4.2). �

The proof of Proposition 4.1 is done by dividing R2d+1
t,x,ξ into two domains

{ (t, x, ξ) ; |f(t, x)|〈ξ〉κ′ ≤ 1 } and { (t, x, ξ) ; |f(t, x)|〈ξ〉κ′ > 1 } with a suitable κ′ > 0 and

evaluating the left hand side of (4.1) in each domain.
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Let φ̃1 and φ̃2 be functions of class C∞ in R such that suppφ̃1 ⊂ {|s| < 2} , φ̃1 ≡ 1 on {|s| ≤ 1}
suppφ̃2 ⊂ {|s| > 1} , φ̃2 ≡ 1 on {|s| ≥ 2}

and

φ̃1 + φ̃2 ≡ 1 on R.

And set χ̃j,κ′(t, x, ξ) = φ̃j
(
f(t, x)〈ξ〉κ′

)
( j = 1, 2 ), where κ′ is a positive constant smaller

than 1. By the definition of φ̃j , we have

〈ξ〉−κ′ ≤ |f(t, x)| ≤ 2〈ξ〉−κ′ on supp
(
∂αt,x,ξχ̃j,κ′

)
( |α| > 0, j = 1, 2 ).(4.4)

Furthermore, in the case where (f,Ω) is of type (β), we have

|∂tf(t, x)|2 +
d∑
k=1

|∂xk
f(t, x)|2 ≤ C(K)f(t, x) on K(4.5)

because f(t, x) does not change sign from (1◦-β). In the case where (f,Ω) is of type (α-1)

or of type (α-2), χ̃1,κ′ and χ̃2,κ′ belongs to S0
1,0(R

d
x) with parameter t (see (4.4)) and they

remain bounded in S0
1,0(R

d
x) for every κ′ as t runs over a compact set of Rt. On the

other hand, in the case where (f,Ω) is of type (β), χ̃1,κ′ and χ̃2,κ′ belong to S0
1,κ′/2(R

d
x)

with parameter t (see (4.4) and (4.5)) and they remain bounded in S0
1,κ′/2(R

d
x) for every

κ′ as t runs over a compact set of Rt. In both cases, χ̃1,κ′ + χ̃2,κ′ is identically equal

to 1 on R2d+1. If there is no confusion, we identify functions χ̃1,κ′ , χ̃2,κ′ with operators

χ̃1,κ′(t, x,Dx), χ̃2,κ′(t, x,Dx) respectively.

For the proof of Proposition 4.1, it suffices to show the following two lemmas.

Lemma 4.3 For any K ⊂⊂ Ω, any N > 0, any χ ∈ ′SΨ and any 0 < κ′ < 1, there

exist a positive number κ1 = κ1(κ
′) and a positive constant C = C(K,N, χ, κ′) such that

n∑
j=1

∥∥∥〈Dx〉κ1fLjχ̃1,κ′χu
∥∥∥2

+
∥∥∥〈Dx〉κ1fχ̃1,κ′χu

∥∥∥2 +
d∑

k=1

∥∥∥〈Dx〉κ1(∂xk
f)χ̃1,κ′χu

∥∥∥2
(4.6)

≤ C
(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)

for all u ∈ C∞
0 (K),

where κ1 depends only on κ′ and C depends only on (K,N, χ, κ′).

Lemma 4.4 For any K ⊂⊂ Ω, any N > 0 and any χ ∈ ′SΨ, there exist positive

numbers κ′ = κ′(K) < 1, κ2 = κ2(K) and a positive constant C = C(K,N, χ) such that

n∑
j=1

∥∥∥〈Dx〉κ2fLjχ̃2,κ′χu
∥∥∥2

+
∥∥∥〈Dx〉κ2fχ̃2,κ′χu

∥∥∥2 +
d∑

k=1

∥∥∥〈Dx〉κ2(∂xk
f)χ̃2,κ′χu

∥∥∥2
(4.7)

≤ C
(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)

for all u ∈ C∞
0 (K),

where (κ′, κ2) depends only on K and C depends only on (K,N, χ).
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Proof of Proposition 4.1. Given (K,N, χ), let κ′ be the same as in Lemma 4.4

which depends only on K. Set κ1 = κ1(κ
′) as in Lemma 4.3 and κ2 = κ2(K) as in Lemma

4.4. Now we define κ = min{κ1, κ2}. Since χ̃1,κ′ + χ̃2,κ′ is equal to the identity operator,

we have

n∑
j=1

∥∥∥〈Dx〉κfLjχu
∥∥∥+

∥∥∥〈Dx〉κfχu
∥∥∥ +

d∑
k=1

∥∥∥〈Dx〉κ(∂xk
f)χu

∥∥∥
≤

n∑
j=1

(∥∥∥〈Dx〉κfLjχ̃1,κ′χu
∥∥∥+

∥∥∥〈Dx〉κfLjχ̃2,κ′χu
∥∥∥)+

∥∥∥〈Dx〉κfχ̃1,κ′χu
∥∥∥

+
∥∥∥〈Dx〉κfχ̃2,κ′χu

∥∥∥+
d∑
k=1

(∥∥∥〈Dx〉κ(∂xk
f)χ̃1,κ′χu

∥∥∥+
∥∥∥〈Dx〉κ(∂xk

f)χ̃2,κ′χu
∥∥∥)

≤ C(K,N, χ)
(
‖Pχu‖ + ‖χu‖ + ‖u‖−N

)
( by Lemma 4.3 and Lemma 4.4 ).

Proposition 4.1 is proved. We see that κ depends only on K. �

In the following subsections, we shall prove these lemmas. The proofs of them are

done by reducing estimates for Lj to inequalities in Lemma 3.1. So we will divide the

proofs into some steps according to stages and kinds of the reduction.

4.1 Proof of Lemma 4.3

We prove Lemma 4.3 in two cases where (f,Ω) is of type (α-1) or (β). The proof in the

case of type (α-2) is done in a similar way as in the case of type (α-1) (or is done by the

proof in the case of type (β), because the case of type (α-2) is a special case of type (β)).

Let us begin with the case of type (α-1).

Case of type (α-1) :

Since ∂xk
f(t) ( k = 1, . . . , d ) vanishes identically in this case, it suffices to show that

n∑
j=1

∥∥∥〈Dx〉κ1fLjχ̃1,κ′χu
∥∥∥2 +

∥∥∥〈Dx〉κ1fχ̃1,κ′χu
∥∥∥2

(4.8)

≤ C(K,N, χ, κ′)
(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)

for all u ∈ C∞
0 (K).

Since |f(t)|〈ξ〉κ′ ≤ 2 on suppχ̃1,κ′ , we have

|f(t)|ρ′〈ξ〉ρ′κ′ ≤ 2ρ
′
on suppχ̃1,κ′ ,

where ρ′ is a positive number smaller than 1/4. Set κ1 = ρ�κ�, then we have

n∑
j=1

∥∥∥〈Dx〉κ1fχ̃1,κ′Ljχu
∥∥∥2 +

∥∥∥〈Dx〉κ1fχ̃1,κ′χu
∥∥∥2 ≤ 22ρ′

 n∑
j=1

∥∥∥|f |1−ρ′Ljχu∥∥∥2
+
∥∥∥|f |1−ρ′χu∥∥∥2

 .
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Setting ρ = 1 − ρ′ (> 3/4) and using Lemma 3.1 (3.1), we have

n∑
j=1

∥∥∥〈Dx〉κ1fχ̃1,κ′Ljχu
∥∥∥2

+
∥∥∥〈Dx〉κ1fχ̃1,κ′χu

∥∥∥2(4.9)

≤ C(K, ρ,N, χ)
(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)
.

By using an asymptotic expansion formula, 〈Dx〉κ1f [Lj, χ̃1,κ′ ] is an element of ′S0
1,0(R

d
x)

with parameter t and remains bounded in ′S0
1,0(R

d
x) when t runs over a compact set of R.

Thus, we have

n∑
j=1

∥∥∥〈Dx〉κ1fLjχ̃1,κ′χu
∥∥∥

≤
n∑
j=1

∥∥∥〈Dx〉κ1fχ̃1,κ′Ljχu
∥∥∥+

n∑
j=1

∥∥∥〈Dx〉κ1f [Lj, χ̃1,κ′ ]χu
∥∥∥+ C(K,N, χ) ‖u‖−N

≤
n∑
j=1

∥∥∥〈Dx〉κ1fχ̃1,κ′Ljχu
∥∥∥+ C(K, ρ, χ) ‖χu‖ + C(K,N, χ) ‖u‖−N .

Combining this inequality with (4.9), we obtain (4.8). And hence, Lemma 4.3 is proved

in the case of type (α-1).

Case of type (β) :

The multiplication by f can be regarded as an element of ′S−κ′
1,κ′/2(R

d
x) on the support

of χ̃1,κ′(t, x, ξ). Moreover, the multiplication by ∂xk
f or by ∂tf can be regarded as an

element of ′S
−κ′/2
1,κ′/2(R

d
x). By making use of the fact above, we prove Lemma 4.3 in the case

of type (β).

Let κ be a positive number satisfying 0 < κ < κ�/4. To prove Lemma 4.3, it suffices

to show the following two inequalities:

n∑
j=1

∥∥∥〈Dx〉κfLjχ̃1,κ′χu
∥∥∥2 ≤ C(K,N, χ, κ, κ′)

(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)
.(4.10)

∥∥∥〈Dx〉κfχ̃1,κ′χu
∥∥∥2

+
d∑
k=1

∥∥∥〈Dx〉κ(∂xk
f)χ̃1,κ′χu

∥∥∥2
(4.11)

≤ C(K,N, χ, κ, κ′)
(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)
.

Let us begin with (4.11). Since 〈Dx〉κfχ̃1,κ′ ∈ ′Sκ−κ
′

1,κ′/2(R
d
x) and 〈Dx〉κ(∂xk

f)χ̃1,κ′ ∈
′S
κ−κ′/2
1,κ′/2 (Rd

x) ( k = 1, . . . , d ) with parameter t, they remain bounded in ′S0
1,κ′/2(R

d
x) as t

runs over a compact set of R. So they are bounded in L2(K). Thus, the left hand side of

(4.11) does not exceed C(K,N, χ, κ, κ′) ‖χu‖2. This yields (4.11).

Next, we shall prove (4.10). The proof is divided into four steps.
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First step :

Applying (3.3) to 〈Dx〉κχ̃1,κ′χu for u, we have

n∑
j=1

∥∥∥fLj〈Dx〉κχ̃1,κ′χu
∥∥∥2

(4.12)

≤ C(K,N, χ)
(∣∣∣Re

(
P 〈Dx〉κχ̃1,κ′χu, f〈Dx〉κχ̃1,κ′χu

)∣∣∣+ d∑
k=1

∥∥∥(∂xk
f)〈Dx〉κχ̃1,κ′χu

∥∥∥2

+
∣∣∣((∂tf)〈Dx〉κχ̃1,κ′χu, 〈Dx〉κχ̃1,κ′χu

)∣∣∣+ ‖u‖2
−N

)
.

Since [fLj , 〈Dx〉κ] χ̃1,κ′ ∈ ′S
κ−κ′/2
1,κ′/2 (Rd

x) ⊂ ′S0
1,κ′/2(R

d
x) due to κ < κ′/4, the left hand side of

(4.12) is estimated from below as follows.

n∑
j=1

∥∥∥fLj〈Dx〉κχ̃1,κ′χu
∥∥∥2(4.13)

=
n∑
j=1

∥∥∥〈Dx〉κfLjχ̃1,κ′χu+ [fLj, 〈Dx〉κ] χ̃1,κ′χu
∥∥∥2

≥ 1

2

n∑
j=1

∥∥∥〈Dx〉κfLjχ̃1,κ′χu
∥∥∥2 −

n∑
j=1

∥∥∥[fLj , 〈Dx〉κ] χ̃1,κ′χu
∥∥∥2

≥ 1

2

n∑
j=1

∥∥∥〈Dx〉κfLjχ̃1,κ′χu
∥∥∥2 − C(K,κ, κ′) ‖χu‖2 .

Since (χ̃1,κ′)
∗ 〈Dx〉κ(∂tf)〈Dx〉κχ̃1,κ′ ∈ ′S

2κ−κ′/2
1,κ′/2 (Rd

x) and (4.11) holds, the second and third

terms on the right hand side of (4.12) are evaluated as

d∑
k=1

∥∥∥(∂xk
f)〈Dx〉κχ̃1,κ′χu

∥∥∥2
+
∣∣∣((∂tf)〈Dx〉κχ̃1,κ′χu, 〈Dx〉κχ̃1,κ′χu

)∣∣∣(4.14)

≤ C(K,κ, κ′) ‖χu‖2 +
∣∣∣((χ̃1,κ′)

∗ 〈Dx〉κ(∂tf)〈Dx〉κχ̃1,κ′χu, χu
)∣∣∣

≤ C ′(K,κ, κ′) ‖χu‖2 .

Combining (4.12) with (4.13) and (4.14), we obtain

n∑
j=1

∥∥∥〈Dx〉κfLjχ̃1,κ′χu
∥∥∥2(4.15)

≤ C(K,N, χ, κ, κ′)
(∣∣∣Re

(
P 〈Dx〉κχ̃1,κ′χu, f〈Dx〉κχ̃1,κ′χu

)∣∣∣+ ‖χu‖2 + ‖u‖2
−N
)
.

Second step :

By means of (4.15), it suffices for the proof of (4.10) to show that

“ For any K ⊂⊂ Ω, any N > 0, any κ′ (0 < κ′ < 1), any κ (0 < κ < κ′/4) and any µ > 0,

there exists a constant C = C(K,N, χ, κ, κ′, µ) such that
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∣∣∣ Re
(
P 〈Dx〉κχ̃1,κ′χu, f〈Dx〉κχ̃1,κ′χu

) ∣∣∣(4.16)

≤ µ
n∑
j=1

∥∥∥〈Dx〉κfLjχ̃1,κ′χu
∥∥∥2 + C

(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)

for all u ∈ C∞
0 (K).”

Indeed, choosing a µ sufficiently small, we have (4.10) from (4.16) above. To obtain (4.16),

we rewrite P 〈Dx〉κχ̃1,κ′ as

P 〈Dx〉κχ̃1,κ′ = 〈Dx〉κχ̃1,κ′P +
[
P, 〈Dx〉κχ̃1,κ′

]
= 〈Dx〉κχ̃1,κ′P +

[
P, 〈Dx〉κ

]
χ̃1,κ′ + 〈Dx〉κ

[
P, χ̃1,κ′

]
.

So the left hand side of (4.16) is evaluated as∣∣∣ Re
(
P 〈Dx〉κχ̃1,κ′χu, f〈Dx〉κχ̃1,κ′χu

) ∣∣∣
≤

∣∣∣(Pχu, (χ̃1,κ′)
∗ 〈Dx〉κf〈Dx〉κχ̃1,κ′χu

)∣∣∣
+
∣∣∣([P, 〈Dx〉κ

]
χ̃1,κ′χu, f〈Dx〉κχ̃1,κ′χu

)∣∣∣+ ∣∣∣(〈Dx〉κ
[
P, χ̃1,κ′

]
χu, f〈Dx〉κχ̃1,κ′χu

)∣∣∣ .
Since (χ̃1,κ′)

∗ 〈Dx〉κf〈Dx〉κχ̃1,κ′ ∈ ′S2κ−κ′
1,κ′/2 (Rd

x), we have∣∣∣ Re
(
P 〈Dx〉κχ̃1,κ′χu, f〈Dx〉κχ̃1,κ′χu

) ∣∣∣
≤

∣∣∣([P, 〈Dx〉κ
]
χ̃1,κ′χu, f〈Dx〉κχ̃1,κ′χu

)∣∣∣+ ∣∣∣(〈Dx〉κ
[
P, χ̃1,κ′

]
χu, f〈Dx〉κχ̃1,κ′χu

)∣∣∣
+ C(K,κ, κ′)

(
‖Pχu‖2 + ‖χu‖2

)
.

Therefore, it suffices for the proof of (4.16) to show that the first and second terms on

the right hand side of the above inequality do not exceed the right hand side of (4.16).

So we shall prove the following two inequalities:∣∣∣([P, 〈Dx〉κ
]
χ̃1,κ′χu, f〈Dx〉κχ̃1,κ′χu

)∣∣∣(4.17)

≤ µ
n∑
j=1

∥∥∥〈Dx〉κfLjχ̃1,κ′χu
∥∥∥2

+ C(K,N, χ, κ, κ′, µ)
(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)
,

∣∣∣(〈Dx〉κ
[
P, χ̃1,κ′

]
χu, f〈Dx〉κχ̃1,κ′χu

)∣∣∣(4.18)

≤ C(K,N, χ, κ, κ′)
(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)
.

The form of
[
P, 〈Dx〉κ

]
is similar to one of

[
P, χ̃1,κ′

]
(see (4.19) and (4.20) below), but

(4.17) and (4.18) are treated in a different way. This is because Nj,k in (4.19) and Mjk
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in (4.20) belong to a different class of operators. (4.17) and (4.18) will be proved in the

Final step below and in the next step respectively.

Third step :

In this step, we prove (4.18). First, [P, χ̃1,κ′ ] is represented as follows.

[
P, χ̃1,κ′

]
=

n∑
j=1

Nj,0fLj +
n∑
j=1

d∑
k=1

Nj,k(∂xk
f)Lj +N0,0,(4.19)

where Nj,k ∈ ′S
κ′/2
1,κ′/2(R

d
x) ( j ∈ {0, . . . , n}, k ∈ {0, . . . , d} ). So the left hand side of (4.18)

is evaluated as follows.∣∣∣(〈Dx〉κ
[
P, χ̃1,κ′

]
χu, f〈Dx〉κχ̃1,κ′χu

)∣∣∣
≤

n∑
j=1

∣∣∣(〈Dx〉κNj,0fLjχu, f〈Dx〉κχ̃1,κ′χu
)∣∣∣

+
n∑
j=1

d∑
k=1

∣∣∣(〈Dx〉κNj,k(∂xk
f)Ljχu, f〈Dx〉κχ̃1,κ′χu

)∣∣∣
+
∣∣∣(〈Dx〉κN0,0χu, f〈Dx〉κχ̃1,κ′χu

)∣∣∣ .
Since N∗

j,k〈Dx〉κf〈Dx〉κχ̃1,κ′ ∈ ′S
2κ−κ′/2
1,κ′/2 (Rd

x) ⊂ ′S0
1,κ′/2(R

d
x) due to κ < κ′/4, we have by

Schwarz’ inequality∣∣∣(〈Dx〉κ
[
P, χ̃1,κ′

]
χu, f〈Dx〉κχ̃1,κ′χu

)∣∣∣
≤ C(K,N, χ, κ, κ′)

 n∑
j=1

‖fLjχu‖2 +
n∑
j=1

d∑
k=1

‖(∂xk
f)Ljχu‖2 + ‖χu‖2 + ‖u‖2

−N

 .
Combining (4.5), (3.2), (3.3) and this inequality, we obtain (4.18).

Final step :

In this step, we shall prove (4.17). We rewrite [P, 〈Dx〉κ] as follows.

[
P, 〈Dx〉κ

]
=

n∑
j=1

Mj,0fLj +
n∑
j=1

d∑
k=1

Mj,k(∂xk
f)Lj +M0,0,(4.20)

where Mj,k ∈ ′Sκ1,0(R
d
x) ( j ∈ {0, . . . , n}, k ∈ {0, . . . , d} ). Therefore (4.17) follows from

the following two inequalities:

n∑
j=1

∣∣∣(Mj,0fLjχ̃1,κ′χu, f〈Dx〉κχ̃1,κ′χu
)∣∣∣+ ∣∣∣(M0,0χ̃1,κ′χu, f〈Dx〉κχ̃1,κ′χu

)∣∣∣(4.21)

≤ µ
n∑
j=1

∥∥∥〈Dx〉κfLjχ̃1,κ′χu
∥∥∥2

+ C1(K,N, χ, κ, κ
′, µ)

(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)
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n∑
j=1

d∑
k=1

∣∣∣(Mj,k(∂xk
f)Ljχ̃1,κ′χu, f〈Dx〉κχ̃1,κ′χu

)∣∣∣(4.22)

≤ µ
n∑
j=1

∥∥∥〈Dx〉κfLjχ̃1,κ′χu
∥∥∥2 + C2(K,N, χ, κ, κ

′, µ)
(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)
.

First, let us prove (4.21). Since Mj,0 ∈ ′Sκ1,0(R
d
x) and f〈Dx〉κχ̃1,κ′ ∈ ′Sκ−κ

′
1,κ′/2(R

d
x) ⊂

′S0
1,κ′/2(R

d
x), we have by Schwarz’ inequality

n∑
j=1

∣∣∣(Mj,0fLjχ̃1,κ′χu, f〈Dx〉κχ̃1,κ′χu
)∣∣∣+ ∣∣∣(M0,0χ̃1,κ′χu, f〈Dx〉κχ̃1,κ′χu

)∣∣∣
≤ µ

n∑
j=1

∥∥∥〈Dx〉κfLjχ̃1,κ′χu
∥∥∥2

+ C(K,N, χ, κ, κ′, µ)
(
‖χu‖2 + ‖u‖2

−N
)
,

which implies (4.21).

Next, we prove (4.22). We rewrite (Mj,k(∂xk
f)Ljχ̃1,κ′χu, f〈Dx〉κχ̃1,κ′χu) as follows.(

Mj,k(∂xk
f)Ljχ̃1,κ′χu, f〈Dx〉κχ̃1,κ′χu

)
=

(
fMj,k(∂xk

f)Ljχ̃1,κ′χu, 〈Dx〉κχ̃1,κ′χu
)

=
(
χ̃∗

1,κ′〈Dx〉κMj,k(∂xk
f)fLjχ̃1,κ′χu, χu

)
+
(
[f,Mj,k] (∂xk

f)Ljχ̃1,κ′χu, 〈Dx〉κχ̃1,κ′χu
)
.

The expansion formula of the symbol yields L∗
j(∂xk

f) [f,Mj,k]
∗ 〈Dx〉κχ̃1,κ′ ∈ ′S

2κ−κ′/2
1,κ′/2 (Rd

x).

Moreover, we see that χ̃∗
1,κ′〈Dx〉κMj,k(∂xk

f) ∈ ′S
2κ−κ′/2
1,κ′/2 (Rd

x) ⊂ ′Sκ1,κ′/2(R
d
x) and χ̃1,κ′ ∈

′S0
1,κ′/2(R

d
x). Thus, by Schwarz’ inequality, we obtain

n∑
j=1

d∑
k=1

∣∣∣(Mj,k(∂xk
f)Ljχ̃1,κ′χu, f〈Dx〉κχ̃1,κ′χu

)∣∣∣
≤ µ

n∑
j=1

∥∥∥〈Dx〉κfLjχ̃1,κ′χu
∥∥∥2

+ C(K,N, χ, κ, κ′, µ)
(
‖χu‖2 + ‖u‖2

−N
)
,

which implies (4.22). So (4.17) holds and hence (4.16) holds. Therefore, (4.10) is proved.

Now the proof of Lemma 4.3 is completed. �

4.2 Proof of Lemma 4.4

Since f does not vanish on the support of χ̃2,κ′(t, x, ξ), P does not degenerate on the

support of χ̃2,κ′(t, x, ξ). By making use of the above fact, we get a subelliptic estimate

(4.23) in Lemma 4.5 below. We prove Lemma 4.4 by using this estimate.

Lemma 4.5 For any K ⊂⊂ Ω, any N > 0, any χ ∈ ′SΨ and any κ′ satisfying 0 <

κ′ < 21−k̃/(k̃ + 1), there exists a positive constant C = C(K,N, χ, κ′) such that∥∥∥〈Dx〉κ
′
χ̃2,κ′χu

∥∥∥2 ≤ C
(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)

for all u ∈ C∞
0 (K),(4.23)
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where C depends only on (K,N, χ, κ′) and k̃ is as in Lemma 3.5.

Proof of Lemma 4.5. First, we consider the operator f−k̃χ̃2,κ′〈Dx〉−21−k

. Since f

does not vanish on the support of χ̃2,κ′ , f
−k̃χ̃2,κ′〈Dx〉−21−k̃

is a pseudo-differential operator

with the symbol f−k̃〈ξ〉−21−k̃

χ̃2,κ′(t, x, ξ) which belongs to S k̃κ
′−21−k̃

1,κ′/2 (Rd
x) due to (4.4). Set

Rκ′ = 〈Dx〉κ
′
χ̃2,κ′ − 〈Dx〉κ

′
f−k̃χ̃2,κ′〈Dx〉−21−k̃

f k̃〈Dx〉2
1−k̃

.

By an asymptotic expansion of the symbol, Rκ′ ∈ ′S
(k̃+1)κ′−1
1,κ′/2 (Rd

x) ⊂ ′S0
1,κ′/2(R

d
x) due to

0 < κ′ < 21−k̃/(k̃ + 1). Thus,
∥∥∥〈Dx〉κ

′
χ̃2,κ′χu

∥∥∥ is evaluated as follows.

∥∥∥〈Dx〉κ
′
χ̃2,κ′χu

∥∥∥ ≤
∥∥∥∥〈Dx〉κ

′
f−k̃χ̃2,κ′〈Dx〉−21−k̃

f k̃〈Dx〉2
1−k̃

χu
∥∥∥∥

+C(K,N, κ′)
(
‖χu‖ + ‖u‖−N

)
≤ C(K,N, χ, κ′)

(∥∥∥∥f k̃〈Dx〉2
1−k̃

χu
∥∥∥∥+ ‖χu‖ + ‖u‖−N

)
≤ C(K,N, χ, κ′)

(∥∥∥∥〈Dx〉2
1−k̃

f k̃χu
∥∥∥∥+

∥∥∥∥[f k̃, 〈Dx〉2
1−k̃
]
χu
∥∥∥∥

+ ‖χu‖ + ‖u‖−N
)
.

Since
[
f k̃, 〈Dx〉2

1−k̃
]
∈ ′S0

1,0(R
d
x), combining this inequality with (3.16), we obtain (4.23).

�

Lemma 4.5 guarantees that second and third terms on the left hand side in (4.7)

does not exceed C(K,N, χ)
(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)

if we choose a κ2 so small that

κ2 ≤ κ′.

Proof of Lemma 4.4. Given K ⊂⊂ Ω, let k̃ be as in Lemma 3.5 and κ′ a positive

number satisfying 0 < κ′ < 21−k̃/(k̃ + 1). Set κ2 = κ�/4. We treat the first term on the

left hand side in (4.7). It suffices to show the following inequality:

n∑
j=1

∥∥∥〈Dx〉κ2fLjχ̃2,κ′χu
∥∥∥2 ≤ C(K,N, χ)

(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)
.(4.24)

In what follows, we prove this inequality. The proof is divided into three steps.

First step :

In the case of type (α-1), we apply (3.1) with ρ = 1 to 〈Dx〉κ2χ̃2,κ′χu for u. In the case of

type (α-2) or of type (β), we apply (3.3) to (3.3) 〈Dx〉κ2χ̃2,κ′χu for u. Then, we have

n∑
j=1

∥∥∥fLj〈Dx〉κ2χ̃2,κ′χu
∥∥∥2

≤ C(K,N, χ)
(∣∣∣Re

(
P 〈Dx〉κ2χ̃2,κ′χu, f〈Dx〉κ2χ̃2,κ′χu

)∣∣∣+ ∥∥∥〈Dx〉κ2χ̃2,κ′χu
∥∥∥2

+ ‖u‖2
−N

)
.
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In the same way as in the proof of Lemma 4.3 for type (β), we have

n∑
j=1

∥∥∥fLj〈Dx〉κ2χ̃2,κ′χu
∥∥∥2

(4.25)

≤ C(K,N, χ)
( ∣∣∣Re

(
Pχu, χ̃∗

2,κ′f〈Dx〉2κ2χ̃2,κ′χu
)∣∣∣

+
∣∣∣([P, 〈Dx〉κ2

]
χ̃2,κ′χu, f〈Dx〉κ2χ̃2,κ′χu

)∣∣∣
+
∣∣∣(〈Dx〉κ2

[
P, χ̃2,κ′

]
χu, f〈Dx〉κ2χ̃2,κ′χu

)∣∣∣+ ∥∥∥〈Dx〉κ2χ̃2,κ′χu
∥∥∥2

+ ‖u‖2
−N

)

Since [fLj, 〈Dx〉κ2 ] ∈ ′Sκ2
1,0(R

d
x), the left hand side of (4.25) is estimated from below as

follows.

n∑
j=1

∥∥∥fLj〈Dx〉κ2χ̃2,κ′χu
∥∥∥2

(4.26)

≥ 1

2

n∑
j=1

∥∥∥〈Dx〉κ2fLjχ̃2,κ′χu
∥∥∥2 − C(K)

∥∥∥〈Dx〉κ2χ̃2,κ′χu
∥∥∥2.

Since ‖〈Dx〉κ2χ̃2,κ′χu‖2 ≤
∥∥∥〈Dx〉κ

′
χ̃2,κ′χu

∥∥∥2
due to κ2 < κ′, combining (4.25) with (4.26),

we have by Lemma 4.5

n∑
j=1

∥∥∥〈Dx〉κ2fLjχ̃2,κ′χu
∥∥∥2 ≤ C(K,N, χ)

(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N(4.27)

+
∣∣∣([P, 〈Dx〉κ2

]
χ̃2,κ′χu, f〈Dx〉κ2χ̃2,κ′χu

)∣∣∣
+
∣∣∣(〈Dx〉κ2

[
P, χ̃2,κ′

]
χu, f〈Dx〉κ2χ̃2,κ′χu

)∣∣∣).
In view of (4.19) and (4.20) , [P, 〈Dx〉κ2 ] χ̃2,κ′ , 〈Dx〉κ2 [P, χ̃1,κ′ ] are rewritten as follows:

[
P, 〈Dx〉κ2

]
χ̃2,κ′ =

n∑
j=1

Mj,0fLjχ̃2,κ′ +
n∑
j=1

d∑
k=1

Mj,k(∂xk
f)Ljχ̃2,κ′ +M0,0χ̃2,κ′ ,(4.28)

where Mj,k ∈ ′Sκ2
1,0(R

d
x) ( j ∈ {0, . . . , n}, k ∈ {0, . . . , d} ).

[
P, χ̃2,κ′

]
=

n∑
j=1

Nj,0fLj +
n∑
j=1

d∑
k=1

Nj,k(∂xk
f)Lj +N0,0,(4.29)

In the case of type (α-1), Nj,0 ∈ ′S0
1,0(R

d
x) for j ∈ {1, . . . , n} and N0,0 ∈ ′Sκ

′
1,0(R

d
x). In the

case of type (α-2) or of type (β), Nj,k ∈ ′S
κ′/2
1,κ′/2(R

d
x) for (j, k) ∈ {0, . . . , n} × {0, . . . , d}.

More precisely, N0,0 in the case of type (α-1) is represented as

N0,0 = (∂tχ̃2,κ′)(t,Dx) + Ñ0,0 where Ñ0,0 ∈ ′S0
1,0(R

d
x).(4.30)
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By means of (4.27), (4.28) and (4.29), it suffices to show the following two inequalities for

the proof of (4.24):

n∑
j=1

∣∣∣(Mj,0fLjχ̃2,κ′χu, f〈Dx〉κ2χ̃2,κ′χu
)∣∣∣(4.31)

+
n∑
j=1

d∑
k=1

∣∣∣(Mj,k(∂xk
f)Ljχ̃2,κ′χu, f〈Dx〉κ2χ̃2,κ′χu

)∣∣∣
+
∣∣∣(M0,0χ̃2,κ′χu, f〈Dx〉κ2χ̃2,κ′χu

)∣∣∣
≤ µ

n∑
j=1

∥∥∥〈Dx〉κ2fLjχ̃2,κ′χu
∥∥∥2

+ C1(K,N, χ, µ)
(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)
.

n∑
j=1

∣∣∣(〈Dx〉κ2Nj,0fLjχu, f〈Dx〉κ2χ̃2,κ′χu
)∣∣∣(4.32)

+
n∑
j=1

d∑
k=1

∣∣∣(〈Dx〉κ2Nj,k(∂xk
f)Ljχu, f〈Dx〉κ2χ̃2,κ′χu

)∣∣∣
+
∣∣∣(〈Dx〉κ2N0,0χu, f〈Dx〉κ2χ̃2,κ′χu

)∣∣∣
≤ C2(K,N, χ)

(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)
.

Second step :

In this step, we prove (4.32). First, each term in the first and second sums on the left

hand side of (4.32) is rewritten as follows.(
〈Dx〉κ2Nj,0fLjχu, f〈Dx〉κ2χ̃2,κ′χu

)
=

(
fLjχu,N

∗
j,0〈Dx〉κ2f〈Dx〉κ2χ̃2,κ′χu

)
,(

〈Dx〉κ2Nj,k(∂xk
f)Ljχu, f〈Dx〉κ2χ̃2,κ′χu

)
=

(
(∂xk

f)Ljχu,N
∗
j,k〈Dx〉κ2f〈Dx〉κ2χ̃2,κ′χu

)
.

Since N∗
j,k〈Dx〉κ2f〈Dx〉κ2 ∈ ′Sκ

′
1,κ′/2(R

d
x) for (j, k) 	= (0, 0), by Schwarz’ inequality, the left

hand side of (4.32) does not exceed

C(K,N)
( n∑
j=1

‖fLjχu‖2 +
n∑
j=1

d∑
k=1

‖(∂xk
f)Ljχu‖2(4.33)

+
∥∥∥〈Dx〉κ

′
χ̃2,κ′χu

∥∥∥2
+
∣∣∣(〈Dx〉κ2N0,0χu, f〈Dx〉κ2χ̃2,κ′χu

)∣∣∣).
In the case of type (α-1), from (3.1) with ρ = 1, (4.33) does not exceed

C(K,N, χ)
(
‖Pχu‖2 + ‖u‖2 + ‖u‖2

−N +
∣∣∣(〈Dx〉κ2N0,0χu, f〈Dx〉κ2χ̃2,κ′χu

)∣∣∣).
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In the case of type (α-2) or of (β), the same estimate holds from (3.2), (3.3) and (3.11).

The remaining problem is to evaluate |(〈Dx〉κ2N0,0χu, f〈Dx〉κ2χ̃2,κ′χu)|. This is di-

vided into two cases. Suppose that (f,Ω) is of type (α-2) or (β). Remembering N0,0 ∈
′S
κ′/2
1,κ′/2(R

d
x), we have N∗

0,0〈Dx〉κ2f〈Dx〉κ2 ∈ ′Sκ
′

1,κ′/2(R
d
x) by κ2 = κ′/4. Thus, we have∣∣∣(〈Dx〉κ2N0,0χu, f〈Dx〉κ2χ̃2,κ′χu

)∣∣∣ ≤
∣∣∣(χu,N∗

0,0〈Dx〉κ2f〈Dx〉κ2χ̃2,κ′χu
)∣∣∣(4.34)

≤ C(K)
(
‖χu‖2 +

∥∥∥〈Dx〉κ
′
χ̃2,κ′χu

∥∥∥2) .
Suppose that (f,Ω) is of type (α-1). Also in this case, (4.34) holds. This is proved in the

following way. We have from (4.30)∣∣∣(〈Dx〉κ2N0,0χu, f〈Dx〉κ2χ̃2,κ′χu
)∣∣∣ ≤

∣∣∣(〈Dx〉κ2 (∂tχ̃2,κ′) (t,Dx)χu, f〈Dx〉κ2χ̃2,κ′χu
)∣∣∣

+
∣∣∣(χu, Ñ∗

0,0〈Dx〉κ2f〈Dx〉κ2χ̃2,κ′χu
)∣∣∣

≤
∣∣∣(f (∂tχ̃2,κ′) (t,Dx)χu, 〈Dx〉2κ2χ̃2,κ′χu

)∣∣∣
+
∣∣∣(χu, Ñ∗

0,0〈Dx〉κ2f〈Dx〉κ2χ̃2,κ′χu
)∣∣∣

(The multiplication by f commutes with 〈Dx〉κ2 in this case.) Since Ñ∗
0,0〈Dx〉κ2f〈Dx〉κ2 ∈

′S2κ2
1,0 (Rd

x) ⊂ ′Sκ
′

1,0(R
d
x), the second term on the right hand side of the above inequality is

evaluated as∣∣∣(χu, Ñ∗
0,0〈Dx〉κ2f〈Dx〉κ2χ̃2,κ′χu

)∣∣∣ ≤ C(K)
(
‖χu‖2 +

∥∥∥〈Dx〉κ
′
χ̃2,κ′χu

∥∥∥2
)
.

Next, we treat the first term. The symbol of f (∂tχ̃2,κ′) (t,Dx) is equal to (∂tf(t))f(t)〈ξ〉κ′

φ̃′
2

(
f(t)〈ξ〉κ′

)
. Since |f(t)| 〈ξ〉κ′ ≤ 2 on the support of φ̃′

2

(
f(t)〈ξ〉κ′

)
, f (∂tχ̃2,κ′) (t,Dx)

belongs to the operator class ′S0
1,0(R

d
x) and remains bounded when t runs over a compact

set of R. So the first term is evaluated as∣∣∣(f (∂tχ̃2,κ′) (t,Dx)χu, 〈Dx〉2κ2χ̃2,κ′χu
)∣∣∣ ≤ C(K)

(
‖χu‖2 +

∥∥∥〈Dx〉κ
′
χ̃2,κ′χu

∥∥∥2
)
.

Therefore, (4.34) holds also in this case.

Applying Lemma 4.5 to (4.34), we obtain (4.32) in both cases.

Final step :

We prove (4.31). First, we evaluate the first and third terms on the left hand side of

(4.31). Since Mj,0 ∈ ′Sκ2
1,0(R

d
x) ⊂ ′Sκ

′
1,0(R

d
x), we have by Schwarz’ inequality

n∑
j=1

∣∣∣(Mj,0fLjχ̃2,κ′χu, f〈Dx〉κ2χ̃2,κ′χu
)∣∣∣+ ∣∣∣(M0,0χ̃2,κ′χu, f〈Dx〉κ2χ̃2,κ′χu

)∣∣∣(4.35)

≤ µ
n∑
j=1

∥∥∥〈Dx〉κ2fLjχ̃2,κ′χu
∥∥∥2 + C(K,µ)

∥∥∥〈Dx〉κ
′
χ̃2,κ′χu

∥∥∥2
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≤ µ
n∑
j=1

∥∥∥〈Dx〉κ2fLjχ̃2,κ′χu
∥∥∥2 + C(K,N, χ, µ)

(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)

( by Lemma 4.5 ).

Next, we evaluate the second term on the left hand side of (4.31).

We rewrite (Mj,k(∂xk
f)Ljχ̃2,κ′χu, f〈Dx〉κ2χ̃2,κ′χu) as follows.(

Mj,k(∂xk
f)Ljχ̃2,κ′χu, f〈Dx〉κ2χ̃2,κ′χu

)
=

(
Mj,k(∂xk

f)fLjχ̃2,κ′χu, 〈Dx〉κ2χ̃2,κ′χu
)

+
(
χ̃2,κ′χu,L

∗
j(∂xk

f) [f,Mj,k]
∗ 〈Dx〉κ2χ̃2,κ′χu

)
.

Since Mj,k(∂xk
f) ∈ ′Sκ2

1,0(R
d
x) and L∗

j(∂xk
f) [f,Mj,k]

∗ 〈Dx〉κ2 ∈ ′Sκ
′

1,0(R
d
x), the second term

on the left hand side of (4.31) is evaluated by Schwarz’ inequality as

n∑
j=1

d∑
k=1

∣∣∣(Mj,k(∂xk
f)Ljχ̃2,κ′χu, f〈Dx〉κ2χ̃2,κ′χu

)∣∣∣(4.36)

≤ µ
n∑
j=1

∥∥∥〈Dx〉κ2fLjχ̃2,κ′χu
∥∥∥2 + C(K,µ)

∥∥∥〈Dx〉κ
′
χ̃2,κ′χu

∥∥∥2
.

By using Lemma 4.5, (4.35) and (4.36) yield (4.31). And hence (4.24) holds. The proof

of Lemma 4.4 is finished. �
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5 A priori estimate without weight

In this section, we shall prove Proposition 5.1 below. Inequality (5.1) there is an improve-

ment of (2.1) in Condition (I). Obviously (5.1) guarantees Condition (I) for P to hold.

We need the arbitrariness of µ to verify Conditions (II) and (V). (see Proposition 6.1 in

§6.) Moreover, (5.1) allows us to neglect ‖χu‖ in the course of estimation in the following

sections.

Proposition 5.1 For any open set K ⊂⊂ Rd+1, any N > 0, any χ ∈ ′SΨ and any

µ > 0, there exists a constant C = C(K,N, χ, µ) such that

‖χu‖ ≤ µ ‖Pχu‖ + C ‖u‖−N for all u ∈ C∞
0 (K).(5.1)

Proof of Proposition 5.1. For every subset M in an Euclidian space, M denotes

the closure of M . For any K ⊂⊂ Rd+1, there exist a bounded open interval I of Rt and

a bounded open set U of Rd
x such that K ⊂⊂ I × U . There are two cases according as

I and U can be or cannot chosen so that (f, I × U) is of type (α-2) or of type (β). We

prove Proposition 5.1 by a partition of unity of I × U . First, suppose that (f, I × U) is

of type (α-2) or of type (β). Without loss of generality, we may suppose that f(t, x)

is non-negative on I × U .

Let us begin with the construction of a partition of I. A partition of U will be

constructed later. For any y ∈ U and any ε > 0, we can find families of open intervals

{Iq(y, ε)}N(y,ε)
q=1 , {Jq(y, ε)}N(y,ε)−1

q=1 ⊂ Rt satisfying the following conditions:

(B1) N(y, ε) is finite for every y ∈ U and every ε > 0.

(B2) I ⊂ (
⋃N(y,ε)
q=1 Iq(y, ε)) ∪ (

⋃N(y,ε)−1
q=1 Jq(y, ε)).

(B3) I1(y, ε) contains the left end point of I and IN(y,ε)(y, ε) contains the right end point

of I.

(B4) Ip(y, ε) ∩ Iq(y, ε) = ∅ and Jp(y, ε) ∩ Jq(y, ε) = ∅ if p 	= q.

(B5) Iq(y, ε) ∩ Jq(y, ε) 	= ∅ and Iq+1(y, ε) ∩ Jq(y, ε) 	= ∅ for any q.

(B6) |Iq(y, ε)| ≤ ε for any q, where |Iq(y, ε)| is the length of Iq.

(B7) |Jq(y, ε)| ≤ ε/2 for any q.

(B8) f(t, y) > 0 in Jq(y, ε) for any q.
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Indeed, we construct them in the following way.

Given y ∈ U , let I1 be any open interval of length ε containing the left end point of I.

If f(t, y) vanishes at the right end point of I1, then we take a smaller one such that f(t, y)

does not vanish at the right end point of I1 and |I1| ≥ ε/2. This is possible because, by

the hypothesis (1◦), there is no non-empty interval on which f(t, y) vanishes identically,

so the set { t ∈ Rt ; f(t, y) > 0 } is dense. Let t1 be the right end point of I1 and we choose

an open interval J1 such that t1 ∈ J1, f(t, y) > 0 in J1 and |J1| < ε/2. (Note that the set

{ t ∈ Rt ; f(t, y) > 0 } is open.) Let s1 be the right end point of J1. Obviously, t1 < s1 and

|s1 − t1| < ε/2. Next we choose a point t2 ∈ (t1 + ε, s1 + ε) satisfying f(t2, y) > 0. This is

also possible by hypothesis (1◦). Set I2 = (t2 − ε, t2), then |I2| = ε. Since t1 < t2 − ε < s1,

I1 ∩ I2 = ∅ and I2 ∩ J1 	= ∅. Moreover, t2 − s1 > ε/2 because |s1 − t1| < ε/2. Then

we choose an open interval J2 such that t2 ∈ J2, f(t, y) > 0 in J2 and |J2| < ε/2. Since

t2 − s1 > ε/2, J1 ∩ J2 = ∅. Repeating these steps l times for any positive integer l, we

have {Iq}lq=1, {Jq}lq=1, and set Iq(y, ε) = Iq, Jq(y, ε) = Jq ( q = 1, . . . , l ) which satisfy the

conditions (B4)–(B8). Since∣∣∣∣∣∣
l⋃

q=1

(Iq ∪ Jq)
∣∣∣∣∣∣ ≥

∣∣∣∣∣∣
l⋃

q=1

Iq

∣∣∣∣∣∣ =
l∑

q=1

|Iq| ≥ ε

2
+ (l − 1) ε,

let us choose l so large that |I|+ε < (l−1)ε+ε/2. Then I ⊂ (
⋃l
q=1 Iq(y, ε))∪(

⋃l
q=1 Jq(y, ε)).

Let t∗ be the right end point of I. Then, the set {q ∈ {1, . . . , l} ; t∗ ∈ Iq(y, ε) ∪ Jq(y, ε)}
is non-empty. Let M(y, ε) be the minimal element of this set. We choose N(y, ε) in the

following way.

1. N(y, ε) = M(y, ε) if t∗ ∈ IM(y,ε)(y, ε).

2. N(y, ε) = M(y, ε) + 1 if t∗ ∈ IM(y,ε)+1(y, ε).

3. If t∗ ∈ JM(ε)(y, ε)\
(
IM(ε)(y, ε) ∪ IM(ε)+1(y, ε)

)
, then we take a new IM(ε)+1(y, ε) such

that IM(ε)(y, ε) ∩ IM(ε)+1(y, ε) = ∅, JM(ε)(y, ε) ∩ IM(ε)+1(y, ε) 	= ∅, |IM(ε)+1(y, ε)| = ε

and t∗ ∈ IM(ε)+1(y, ε). We set N(y, ε) = M(y, ε) + 1.

And hence, {Iq(y, ε)}N(y,ε)
q=1 , {Jq(y, ε)}N(y,ε)−1

q=1 satisfy the conditions (B1)–(B3).

Next, let us construct a partition of U . f(t, y) does not vanish in Jq(y, ε) by (B8),

so there exists an open cube Qq,y of center y such that f(t, x) > 0 in Jq(y, ε) ×Qq,y. Let

ly,ε be the smallest length of sides of cubes Qq,y ( q = 1, . . . , N(y, ε)− 1 ). Let Qy,ε be the

open cube of Rd
x of center y and of length of side ly,ε/2. We define the set Zf,K to be

Zf,K =
{
(t, x) ∈ K ; f(t, x) = 0

}
.
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Then, from (B2) and (B8),

Zf,K ⊂ ⋃
y∈U

N(y,ε)⋃
q=1

Iq(y, ε) ×Qy,ε.

Since Iq(y, ε) ×Qy,ε is open and Zf,K is compact, we have

Zf,K ⊂
J(ε)⋃
j=1

N(yj ,ε)⋃
q=1

Iq(yj, ε) ×Qyj ,ε,

where J(ε) is finite for every ε. Let aj,q be the middle point of Jq−1(yj, ε) ∪ Iq(yj, ε) ∪
Jq(yj, ε) for every (j, q). The family

{
{Iq(yj, ε) ×Qyj ,ε}N(yj ,ε)

q=1

}J(ε)

j=1
obtained above satisfies

the following four conditions:

(Q1) For any ε > 0 and any (j, q), we have

|t− aj,q| ≤ ε for any t ∈ Jq−1(yj, ε) ∪ Iq(yj, ε) ∪ Jq(yj, ε).

(Q2) f(t, x) > 0 in Jq(yj, ε) ×Qyj ,ε for any ε > 0 and any (j, q).

(Q3) f(t, x) > 0 on K \
{
∪J(ε)
j=1 ∪N(yj ,ε)

q=1 Iq(yj, ε) ×Qyj ,ε

}
for any ε > 0.

Now we construct a partition of unity on I×U subordinate to
{
{Iq(yj, ε)×Qyj ,ε}N(yj ,ε)

q=1

}J(ε)

j=1
.

We choose a sequence of functions {φj,q(t)}N(yj ,ε)
q=1 ⊂ C∞

0 (R) such that

φj,1(t) = 1 on I1(yj, ε) ∩ I, φj,1(t) ∈ C∞
0 (I1(yj, ε) ∪ J1(yj, ε)),

φj,q(t) = 1 on Iq(yj, ε),

φj,q(t) ∈ C∞
0 (Jq−1(yj, ε) ∪ Iq(yj, ε) ∪ Jq(yj, ε)) ( q = 2, . . . , N(yj , ε) − 1 ),

φj,N(yj ,ε)(t) = 1 on IN(yj ,ε)(yj, ε) ∩ I,
φj,N(yj ,ε)(t) ∈ C∞

0 (JN(yj ,ε)−1(yj, ε) ∪ IN(yj ,ε)(yj, ε))

and 0 ≤ φj,q(t) ≤ 1 for every (j, q).

Let Q∗
y,ε be the open cube of center y and of length of side ly,ε. We see that Qy,ε ⊂⊂ Q∗

y,ε.

We choose a sequence of functions {φj(x)}J(ε)
j=1 ⊂ C∞

0 (Rd) such that

φj(x) = 1 on Qyj ,ε, φj(x) ∈ C∞
0 (Q∗

yj ,ε
) and 0 ≤ φj(x) ≤ 1 ( j = 1, . . . , J(ε) ).

Then we set

ϕj,q(t, x) = φj,q(t)φj(x) for j ∈ {1, . . . , J(ε)}, q ∈ {1, . . . , N(yj , ε)},

Φ(t, x) =
J(ε)∑
j=1

N(yj ,ε)∑
q=1

(
ϕj,q(t, x)

)2
+

J(ε)∏
j=1

N(yj ,ε)∏
q=1

(
1 −

(
ϕj,q(t, x)

)2
)2
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and

Φ̃(t, x) =
J(ε)∏
j=1

N(yj ,ε)∏
q=1

(
1 −

(
ϕj,q(t, x)

)2
)
.

Note that f(t, x) does not vanish on the support of ∂tϕj,q for every (j, q). Since Φ(t, x)

does not vanish in Rd+1, so
(
Φ(t, x)

)−1/2 ∈ C∞(Rd+1). We set

ψj,q(t, x) = ϕj,q(t, x)
(
Φ(t, x)

)−1/2
for j ∈ {1, . . . , J(ε)}, q ∈ {1, . . . , N(yj , ε)}

and

ψ∗(t, x) = Φ̃(t, x)
(
Φ(t, x)

)−1/2
.

We see that ψj,q ∈ C∞
0

(
(Jq−1(yj, ε) ∪ Iq(yj, ε) ∪ Jq(yj, ε)) ×Q∗

yj ,ε

)
and

J(ε)∑
j=1

N(yj ,ε)∑
q=1

ψj,q(t, x)
2 + ψ∗(t, x)2 = 1 on Rd+1.

Moreover, supp Φ̃ ⊂ Rd+1 \ Zf,K , so suppψ∗ ⊂ Rd+1 \ Zf,K .

Now we start evaluating ‖u‖. Let ε, δ be positive numbers which we shall choose later.

By using (3.13) in Lemma 3.3, ‖u‖2 is estimated as follows.

‖u‖2 =
J(ε)∑
j=1

N(yj ,ε)∑
q=1

‖ψj,qu‖2 + ‖ψ∗u‖2

≤ C1

J(ε)∑
j=1

N(yj ,ε)∑
q=1

{∣∣∣ Re
(
Pψj,qu, (t− aj,q)ψj,qu

) ∣∣∣+ n∑
k=1

∥∥∥|(t− aj,q)f |1/2 Lkψj,qu
∥∥∥2}

+ ‖ψ∗u‖2 ,

where C1 is independent of (ε, δ). By Schwarz’ inequality and (Q1), we have

‖u‖2 ≤ C1

J(ε)∑
j=1

N(yj ,ε)∑
q=1

{
δ ‖Pψj,qu‖2 +

ε2

4δ
‖ψj,qu‖2 + ε

n∑
k=1

∥∥∥|f |1/2 Lkψj,qu∥∥∥2
}

+ ‖ψ∗u‖2

≤ 2C1δ ‖Pu‖2 + 2C1δ
J(ε)∑
j=1

N(yj ,ε)∑
q=1

∥∥∥[P, ψj,q]u∥∥∥2 + 2C1ε
n∑
k=1

∥∥∥f1/2Lku
∥∥∥2

+ 2C1ε
J(ε)∑
j=1

N(yj ,ε)∑
q=1

∥∥∥f1/2 [Lk, ψj,q]u
∥∥∥2 + C1

ε2

4δ
‖u‖2 + ‖ψ∗u‖2

Now we obtain

‖u‖2 ≤ 2C1δ ‖Pu‖2 + 2C1δR1,ε(u) + 2C1ε
n∑
k=1

∥∥∥f1/2Lku
∥∥∥2 + 2C1εR2,ε(u)(5.2)

+ C1
ε2

4δ
‖u‖2 + ‖ψ∗u‖2 ,
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where

R1,ε(u) =
J(ε)∑
j=1

N(yj ,ε)∑
q=1

∥∥∥[P, ψj,q]u∥∥∥2 and R2,ε(u) =
J(ε)∑
j=1

N(yj ,ε)∑
q=1

∥∥∥f1/2 [Lk, ψj,q] u
∥∥∥2 .

Let us evaluate each term of R1,ε(u). We rewrite [P, ψj,q] as

[P, ψj,q] = (∂tψj,q) + f(t, x)

(
n∑
k=1

bj,k,q,εLk + bj,0,q,ε

)

= Φ−1/2(∂tϕj,q) − 1

2
Φ−3/2(∂tΦ)ϕj,q + f(t, x)

(
n∑
k=1

bj,k,q,εLk + bj,0,q,ε

)

and rewrite ∂tΦ as

∂tΦ = 2
J(ε)∑
j=1

N(yj ,ε)∑
q=1

ϕj,q(∂tϕj,q) + 2
(
∂tΦ̃

)
Φ̃.

Then we have

R1,ε(u) =
J(ε)∑
j=1

N(yj ,ε)∑
q=1

∥∥∥[P, ψj,q]u∥∥∥2
(5.3)

≤ C(K, ε)

J(ε)∑
j=1

N(yj ,ε)∑
q=1

‖(∂tϕj,q)u‖2 +
n∑
k=1

‖fLku‖2 + ‖fu‖2 +
∥∥∥Φ̃u∥∥∥2

 ,
where C(K, ε) depends only on (K, ε).

Next, we evaluate each term of R2,ε(u). Let ν be a positive number which we choose

later. We define φ̃1,ν(t, x) and φ̃2,ν(t, x) to be

φ̃j,ν(t, x) = φ̃j(f(t, x)/ν) ( j = 1, 2 ),

where φ̃j is the function specified in §4. Obviously, φ̃1,ν + φ̃2,ν = 1 on Rd+1 and |f(t, x)| ≤
2ν on suppφ̃1,ν . So

∥∥∥f1/2 [Lk, ψj,q]u
∥∥∥2 is evaluated as follows.∥∥∥f1/2 [Lk, ψj,q]u

∥∥∥2 ≤ C(K, j, k, q, ε)
∥∥∥f1/2u

∥∥∥2
≤ 2C(K, j, k, q, ε)

(∥∥∥f1/2φ̃1,νu
∥∥∥2 +

∥∥∥f1/2φ̃2,νu
∥∥∥2
)

≤ C̃(K, j, k, q, ε)
(
ν ‖u‖2 +

∥∥∥φ̃2,νu
∥∥∥2) .

Thus, we obtain

R2,ε(u) ≤ C(K, ε)
(
ν ‖u‖2 +

∥∥∥φ̃2,νu
∥∥∥2) .(5.4)

Combining (5.2) with (5.3) and (5.4), we have

‖u‖2 ≤ 2C1δ ‖Pu‖2 + 2C1ε
n∑
k=1

∥∥∥f1/2Lku
∥∥∥2 + δC2(K, ε)

J(ε)∑
j=1

N(yj ,ε)∑
q=1

‖(∂tϕj,q)u‖2

+ δC3(K, ε)

(
n∑
k=1

‖fLku‖2 + ‖fu‖2

)
+ δC4(K, ε)

∥∥∥Φ̃u∥∥∥2

+ C1
ε2

4δ
‖u‖2 + νC5(K, ε) ‖u‖2 + C6(K, ε)

∥∥∥φ̃2,νu
∥∥∥2 + ‖ψ∗u‖2 ,
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where Cl(K, ε) ( l = 2, . . . , 6 ) depends only on (K, ε). Applying (3.2) in Lemma 3.1 to

the second term on the right hand side, we have by Schwarz’ inequality

‖u‖2 ≤ 2C1δ ‖Pu‖2 + C7ε ‖Pu‖2 + δC3(K, ε)

(
n∑
k=1

‖fLku‖2 + ‖fu‖2

)

+

(
C1
ε2

4δ
+

5C7ε

4
+ νC5(K, ε)

)
‖u‖2 + C8(K, ε, δ, ν)

∑
ψ∈Γ

‖ψu‖2 ,

where C7 depends only on K, C8(K, ε, δ, ν) depends only on (K, ε, δ, ν) and Γ is the set{
Φ̃, φ̃2,ν , ψ∗, (∂tϕj,q) ( j = 1, . . . , J(ε), q = 1, . . . , N(yj , ε) )

}
.

Given µ > 0, we choose δ so small that 2C1δ < µ2/8. Next, we choose a small ε in such

a way that C1ε
2/(4δ) + 5C7ε/4 < 1/4, C7ε < µ2/8. Moreover we choose ν so small that

νC5(K, ε) < 1/4. Then we have

‖u‖2 ≤ µ2

2
‖Pu‖2 + 2δC3(K, ε)

(
n∑
k=1

‖fLku‖2 + ‖fu‖2

)
+ 2C8(K, ε, δ, ν)

∑
ψ∈Γ

‖ψu‖2 .

Given N > 0, applying this inequality to χu for u, we have

‖χu‖2 ≤ µ2

2
‖Pχu‖2 + 2δC3(K, ε)

(
n∑
k=1

‖fLkχu‖2 + ‖fχu‖2

)
+ 2C8(K, ε, δ, ν)

∑
ψ∈Γ

‖ψχu‖2 + C9(K,N, χ, ε, δ, ν) ‖u‖2
−N

for all u ∈ C∞
0 (K), where C9(K,N, χ, ε, δ, ν) depends only on (K,N, χ, ε, δ, ν). Let λ be

a positive number which we choose later. Applying Corollary 4.2 to the second term on

the right hand side, we have

‖χu‖2 ≤
(
µ2

2
+ 2δC3(K, ε)λ

)
‖Pχu‖2 + 2δC3(K, ε)λ ‖χu‖2(5.5)

+ 2C8(K, ε, δ, ν)
∑
ψ∈Γ

‖ψχu‖2 + C10(K,N, χ, ε, δ, ν, λ) ‖u‖2
−N ,

where C10(K,N, χ, ε, δ, ν, λ) depends only on (K,N, χ, ε, δ, ν, λ).

We evaluate
∑
ψ∈Γ ‖ψχu‖2. Suppose that a smooth function ψ satisfies

f(t, x) 	= 0 on suppψ.(5.6)

By the hypothesis (3◦), the Lie algebra generated by {∂t, {Lj}nj=1} is of dimension d+1 at

every point of Rd+1. Therefore, by hypothesis (2◦), P has a subelliptic estimate in some

neighborhood of the support of ψ, that is to say, there exist positive constants κ = κ(K)

and C = C(K,ψ) such that

‖ψu‖2
κ ≤ C

(
‖Pψu‖2 + ‖ψu‖2

)
for all u ∈ C∞

0 (K).
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By interpolation inequality ‖v‖2 ≤ θ ‖v‖2
κ + C(N, θ) ‖v‖2

−N , we have

‖ψu‖2 ≤ θ C(K,ψ) ‖Pψu‖2 + θ C(K,ψ) ‖ψu‖2 + C(K,N, θ, ψ) ‖u‖2
−N

≤ θ C1(K,ψ) ‖Pu‖2 + 2θ C(K,ψ) ‖[P, ψ] u‖2

+ θ C2(K,ψ) ‖u‖2 + C(K,N, θ, ψ) ‖u‖2
−N

≤ θ C1(K,ψ) ‖Pu‖2 + θ C3(K,ψ)
(
‖fLju‖2 + ‖u‖2

)
+ θ C2(K,ψ) ‖u‖2 + C(K,N, θ, ψ) ‖u‖2

−N

≤ θ C4(K,ψ) ‖Pu‖2 + θ C5(K,ψ) ‖u‖2 + C(K,N, θ, ψ) ‖u‖2
−N

( by (3.3) in Lemma 3.1 ).

Applying this to χu for u, we obtain

‖ψχu‖2 ≤ θ C4(K,ψ) ‖Pχu‖2 + θ C5(K,ψ) ‖χu‖2(5.7)

+ C(K,N, χ, ψ, θ) ‖u‖2
−N for all u ∈ C∞

0 (K).

Each element of Γ satisfies (5.6). Indeed, supp Φ̃ ⊂ Rd+1 \ Zf,K and suppψ∗ ⊂ Rd+1 \
Zf,K by (Q3), so Φ̃ and ψ∗ satisfy (5.6). Since f(t, x) > ν > 0 on suppφ̃2,ν , φ̃2,ν also

satisfies (5.6). Since ∂tϕj,q(t, x) = φj(x)∂tφj,q(t) and supp∂tφj,q ⊂ Jq−1(yj, ε) ∪ Jq(yj, ε),
supp(∂tϕj,q) ⊂ (Jq−1(yj, ε) ∪ Jq(yj, ε)) ×Q∗

yj ,ε
. So, by (Q2), ∂tϕj,q satisfies (5.6) for every

(j, q).

Combining (5.5) with (5.7), we have

‖χu‖2 ≤
(
µ2

2
+ 2δC3(K, ε)λ+ C11(K, ε, δ, ν) θ

)
‖Pχu‖2

+
(
2δC3(K, ε)λ+ C12(K, ε, δ, ν) θ

)
‖χu‖2 + C13(K,N, χ, ε, δ, ν, λ, θ) ‖u‖2

−N ,

where C11(K, ε, δ, ν) and C12(K, ε, δ, ν) depend only on (K, ε, δ, ν) and

C13(K,N, χ, ε, δ, ν, λ, θ) depends only on (K,N, χ, ε, δ, ν, λ, θ).

Finally, we choose λ, θ so small that 2δC3(K, ε)λ+C11(K, ε, δ, ν)θ+C12(K, ε, δ, ν)θ <

min{µ2/4, 1/4}. (Note that ε, δ, ν have already been chosen.) Then we obtain

‖χu‖2 ≤ µ2 ‖Pχu‖2 +
4

3
C13(K,N, χ, ε, δ, ν, λ, θ) ‖u‖2

−N for all u ∈ C∞
0 (K).

This completes the proof in the case where (f, I × U) is of type (α-2) or of type (β).

Next we prove (5.1) in the case where I and U satisfying K ⊂⊂ I × U can not be

chosen so that (f, I × U) is of of type (α-2) or of type (β). Let (I, U) be a pair such

that K ⊂⊂ I × U . Then, I contains the origin and (f, I × U) is of type (α-1) by the

hypothesis (1◦). So we write f(t) = f(t, x). For any ε > 0, we can find open intervals

I0, I1, I2, J0, J1 satisfying (A1)–(A6) below.
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(A1) I ⊂ I0 ∩ J0 ∩ I1 ∩ J1 ∩ I2.

(A2) I0 contains the left end point of I, I1 contains the origin and I2 contains the right

end point of I.

(A3) Ip ∩ Iq = ∅, and J0 ∩ J1 = ∅ if p 	= q.

(A4) None of J0 ∩ I0, J1 ∩ I1, J0 ∩ I1, J1 ∩ I2 is empty.

(A5) |J0 ∩ I1 ∩ J1| ≤ 2ε

(A6) f(t) does not vanish in J0 ∪ J1.

Such open intervals can be chosen in the same way as in the proof of the case of type

(α-2). We define Ĩ0, Ĩ1, Ĩ2 by Ĩ0 = I0 ∪ J0, Ĩ1 = J0 ∪ I1 ∪ J1, Ĩ2 = J1 ∪ I2. Then
(
f, Ĩ0 × U

)
and

(
f, Ĩ2 × U

)
are of type (α-2). We find functions ϕ0, ϕ1, ϕ2 ∈ C∞

0 (R) satisfying

ϕq ∈ C∞
0 (Ĩq), ϕq ≡ 1 on Iq ( q = 0, 1, 2 ),

2∑
q=0

ϕq
2 ≡ 1 on I.

Now we start evaluating ‖χu‖. Applying Lemma 3.3 (3.12) to ϕ1u, we have

‖u‖2 =
2∑
q=0

‖ϕqu‖2

≤ ‖ϕ0u‖2 + C1

(∣∣∣ Re
(
Pϕ1u, tϕ1u

) ∣∣∣+ ‖tϕ1u‖2
)

+ ‖ϕ2u‖2 ,

where C1 depends only on K. Substituting χu for u into this inequality, we have

‖χu‖2 ≤ ‖ϕ0χu‖2 + C1

(∣∣∣ Re
(
Pϕ1χu, tϕ1χu

) ∣∣∣+ ‖tϕ1χu‖2
)

+ ‖ϕ2χu‖2 + C(K,N, χ) ‖u‖2
−N .

Since
(
f, Ĩ0 × U)

)
and

(
f, Ĩ2 × U

)
are of type (α-2), applying Proposition 5.1 to ϕ0χu

and ϕ2χu for u, we have

‖χu‖2 ≤ δ ‖Pϕ0χu‖2 + C0(K, δ,N) ‖ϕ0χu‖2
−N + δ ‖Pϕ2χu‖2 + C2(K, δ,N) ‖ϕ2χu‖2

−N

+ C1

(∣∣∣ Re
(
Pϕ1χu, tϕ1χu

) ∣∣∣+ ‖tϕ1χu‖2
)

for any δ > 0, where C0(K, δ,N) depends only on (K, suppϕ0, δ,N) and C2(K, δ,N)

depends only on (K, suppϕ2, δ,N). Thus, from the condition (A5), we have by Schwarz’

inequality

‖χu‖2 ≤ δ
2∑
q=0

‖Pϕqχu‖2 +

(
C2

1

4δ
+ C1

)
‖tϕ1χu‖2 + C3 ‖u‖2

−N

≤ 2δ ‖Pχu‖2 + 4ε2

(
C2

1

4δ
+ C1

)
‖χu‖2 + 2δ

2∑
q=0

‖(∂tϕq)χu‖2 + C3 ‖u‖2
−N ,
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where C3 depends only on (K, δ,N, ϕ0, ϕ2). Then, for any µ > 0, we choose δ so small

that 2δ < µ2/4. Next we take a small ε in such a way that 4ε2 (C2
1/(4δ) + C1) < 1/2.

Then we have

‖χu‖2 ≤ µ2

2
‖Pχu‖2 + 4δ

2∑
q=0

‖(∂tϕq)χu‖2 + 2C3 ‖u‖2
−N .

Finally, since f does not vanish on
⋃2
q=0 supp∂tϕq by the condition (A6), we obtain (5.1)

by using (5.7) as in the proof of type (α-2). �
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6 The proof of Proposition 1.3

For the proof of Theorem A, it suffices to show that P satisfies Conditions (I)–(V) in §2
as is mentioned in §3. Since they are local conditions, we may assume, without loss of

generality, that coefficients of P are bounded as well as their derivatives of any order. We

assume always that the point where f(t) changes sign is t = 0 in the case where (f,Ω) is

of type (α-1).

6.1 Verification of Condition (I)

As is mentioned in §5, the inequality (5.1) in Proposition 5.1 is an improved version of

(2.1) in Condition (I). So Condition (I) is satisfied for P in question.

6.2 Verification of Condition (II)

In this subsection, we verify that P satisfies Condition (II). Let us remember that this is

the following:

“ For any K ⊂⊂ Ω , any β = (0, β′) ∈ {0} × Zd
+ (|β| 	= 0), any µ > 0, any N > 0 and

any χ ∈ ′SΨ, there exists a constant C2 = C2(K,β, µ,N, χ) such that∥∥∥〈Dx〉−|β|(Pχ)(β)u
∥∥∥ ≤ µ ‖Pχu‖ + C2 ‖u‖−N for all u ∈ C∞

0 (K).”(6.1)

To verify this, we will use Lemma 3.1 and Proposition 5.1.

By an asymptotic expansion of the symbol, we have P(β)χ − (Pχ)(β) ∈ ′S−∞. Since∥∥∥〈Dx〉−|β| (P(β)χ− (Pχ)(β)

)
u
∥∥∥ ≤ C(K,β,N, χ)‖u‖−N , it suffices to show the inequality

(6.1) with (Pχ)(β) replaced by P(β)χ. Namely, we shall prove that

“ For any K ⊂⊂ Ω , any β = (0, β′) ∈ {0} × Zd
+ (|β| 	= 0), any µ > 0, any N > 0 and

any χ ∈ ′SΨ, there exists a constant C2 = C2(K,β, µ,N, χ) such that∥∥∥〈Dx〉−|β|P(β)χu
∥∥∥ ≤ µ ‖Pχu‖ + C2 ‖u‖−N for all u ∈ C∞

0 (K).”(6.2)

The proof of (6.2) is divided into two cases |β| ≥ 2 and |β| = 1. First, suppose that

|β| ≥ 2. Since we can regard 〈Dx〉−|β|P(β) as an element of ′S0
1/2,0 on suppχ, we have (6.2)

by Proposition 5.1.

Next we shall prove (6.2) in the case where |β| = 1. Let p(t, x, τ, ξ) be the symbol of

P and L̃j(x, ξ) the symbol of Lj. Then p(t, x, τ, ξ) is written as

p(t, x, τ, ξ) = iτ + f(t, x)
n∑

j,k=1

aj,k(t, x) L̃j(x, ξ) L̃k(x, ξ)

+ f(t, x)
n∑

j,k=1

ajk
∑
|α|=1

L̃j
(α)

(x, ξ) L̃k(α)(x, ξ).
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The symbol of second order part of P(β) ( principal symbol of P(β)) is written as follows:

σ2(P(β)) = f(t, x)
n∑

j,k=1

{
ajk(β)(t, x) L̃j(x, ξ) L̃k(x, ξ)(6.3)

+ ajk(t, x) L̃j(β)(x, ξ) L̃k(x, ξ) + ajk(t, x) L̃j(x, ξ) L̃k(β)(x, ξ)
}

+ f(β)(t, x)
n∑

j,k=1

ajk(t, x) L̃j(x, ξ) L̃k(x, ξ).

Since p(β)(t, x, τ, ξ) − σ2(P(β))(t, x, τ, ξ) is of class S1
1,0 and does not depend on τ , P(β) is

of the form

P(β) =
n∑
j=1

Mj,0,βfLj +
n∑
j=1

d∑
k=1

Mj,k,β(∂xk
f)Lj +M0,0,β,(6.4)

where Mj,k,β ∈ ′S1
1,0(R

d+1) and their symbols do not depend on τ . Note that Mj,k,β =

0 (k ≥ 1) if (f,Ω) is of type (α-1) or of type (α-2). For each (j, k), 〈Dx〉−1Mj,k,β belongs

to ′S0
0,0, so they are bounded on L2(K) and their operator norms depend only on K.

Therefore,
∥∥∥〈Dx〉−1P(β)χu

∥∥∥2
is evaluated as follows:

∥∥∥〈Dx〉−1P(β)χu
∥∥∥2 ≤ C(K,β,N, χ)



 n∑
j=1

‖fLjχu‖2 + ‖χu‖2 + ‖u‖2
−N


for the case of type (α-1) or of type (α-2),(

n∑
j=1

‖fLjχu‖2

+
n∑
j=1

d∑
k=1

‖(∂xk
f)Ljχu‖2 + ‖χu‖2 + ‖u‖2

−N

)

for the case of type (β).

By means of Proposition 5.1, it suffices to show that

“ For any K ⊂⊂ Ω, any µ > 0, any N > 0 and any χ ∈ ′SΨ, there exists a constant

C = C(K,µ,N, χ) such that

µ2 ‖Pχu‖2 + C ‖u‖2
−N ≥



n∑
j=1

‖fLjχu‖2

for the case of type (α-1) or of type (α-2),
n∑
j=1

‖fLjχu‖2 +
n∑
j=1

d∑
k=1

‖(∂xk
f)Ljχu‖2

for the case of type (β)

(6.5)

for all u ∈ C∞
0 (K). ”

If (f,Ω) is of type (α-2), then we have by Lemma 3.1 (3.2)
n∑
j=1

‖fLjχu‖2 ≤ C(K)
n∑
j=1

∥∥∥|f |1/2Ljχu∥∥∥2(6.6)
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≤ C ′(K)
(
|Re (Pχu, χu)| + ‖χu‖2

)
+ C(K,N, χ) ‖u‖2

−N .

If (f,Ω) is of type (β), then we have by (3.11) and Lemma 3.1 (3.2)

n∑
j=1

‖fLjχu‖2 +
n∑
j=1

d∑
k=1

‖(∂xk
f)Ljχu‖2 ≤ C(K)

n∑
j=1

∥∥∥|f |1/2Ljχu∥∥∥2
(6.7)

≤ C ′(K)
(
|Re (Pχu, χu)| + ‖χu‖2

)
+ C(K,N, χ) ‖u‖2

−N .

If (f,Ω) is of type (α-1), then we have by Lemma 3.1 (3.1) with ρ = 1

n∑
j=1

‖fLjχu‖2 ≤
n∑
j=1

‖|f |Ljχu‖2(6.8)

≤ C(K)
(
|Re (Pχu, (sgn t)|f |χu)| + ‖χu‖2

)
+ C(K,N, χ) ‖u‖2

−N .

Therefore, by Schwarz’ inequality, we have from (6.6), (6.7) and (6.8)

ε ‖Pχu‖2 + C(ε,K) ‖χu‖2 + C(K,N, χ) ‖u‖2
−N

≥



n∑
j=1

‖fLjχu‖2

for the case of type (α-1) or of type (α-2),
n∑
j=1

‖fLjχu‖2 +
n∑
j=1

d∑
k=1

‖(∂xk
f)Ljχu‖2

for the case of type (β)

for any ε,N > 0 and for all u ∈ C∞
0 (K). Finally, given µ > 0, we choose ε so small that

ε < µ2/2 and apply Proposition 5.1 to µ/
√

4C(ε,K) in place of µ, then we obtain (6.5).

The proof of (6.2) is finished.

6.3 Verification of Condition (III)

In this subsection, we verify that P satisfies Condition (III). Let us remember that this

is the following:

“ For any K ⊂⊂ Ω, any α ∈ Zd+1
+ , any N > 0 and any χ, χ′ ∈ ′SΨ satisfying χ ⊂⊂ χ′,

there exists a constant C3 = C3(K,α,N, χ, χ
′) such that∥∥∥(Pχ)(α)u

∥∥∥ ≤ C3

(
‖Pχ′u‖ + ‖u‖−N

)
for all u ∈ C∞

0 (K).”

To verify this, we shall use a left parametrix of P in the microlocal domain supp(1−σ(χ)).

By an expansion formula, we divide (Pχ)(α) into two parts as follows.

(Pχ)(α) ≡ P (α)χ+
∑

β+γ=α
γ �=0

Cβ,γP
(β)χ(γ) mod ′S−∞

≡ J1 + J2 mod ′S−∞.
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Notice that, if α = 0, only J1 appears on the right hand side. We have to show two

inequalities

‖J1u‖ ≤ C1(K,α,N, χ, χ
′)
(
‖Pχ′u‖ + ‖u‖−N

)
(6.9)

‖J2u‖ ≤ C2(K,α,N, χ, χ
′)
(
‖Pχ′u‖ + ‖u‖−N

)
.(6.10)

First, let us begin with (6.10). We take χ′′ ∈ ′SΨ satisfying χ′′ ⊂⊂ χ. Then,

χ′′ ⊂⊂ χ ⊂⊂ χ′(6.11)

σ(χ)(γ) = σ(χ)(γ)σ(χ′)
(
1 − σ(χ′′)

)
(γ 	= 0).(6.12)

Moreover, since |ξ|2 is equivalent to |τ | on suppσ(χ)(γ), we write γ as (γ1, γ
′) and have∣∣∣σ(χ)(γ)(τ, ξ)

∣∣∣ ≤ Cγ〈τ〉−γ1〈ξ〉−|γ′| ≤ C ′
γ〈ξ〉−2γ1−|γ′|.(6.13)

By means of (1.4) in §1, P has a left parametrix Q in the microlocal domain supp(1−χ′′),

that is to say,

(1 − χ′′)u = (1 − χ′′)QPu+Ru, Q ∈ ′S−1
1/2,0, R ∈ ′S−∞.(6.14)

Then, by using (6.12) and (6.14), we rewrite each term of J2 applied to u as follows.

P (β)χ(γ)u = P (β)χ(γ)χ′(1 − χ′′)u(6.15)

= P (β)χ(γ)χ′(1 − χ′′)QPu+ Sβγu (, where Sβγ ∈ ′S−∞ )

= P (β)χ(γ)(1 − χ′′)QPχ′u+ P (β)χ(γ) [χ′, (1 − χ′′)QP ]u+ Sβγu

= P (β)χ(γ)QPχ′u+ S ′
βγu,

where S ′
βγ = P (β)χ(γ) [χ′, (1 − χ′′)QP ] + Sβγ . Since P (β)χ(γ) [χ′, (1 − χ′′)QP ] is a smooth-

ing operator due to (6.11), so is S ′
βγ. In view of (6.13), we see that P (β)χ(γ)Q ∈ ′S0

1/2,0 for

γ 	= 0. Therefore,

‖J2u‖ ≤ ∑
β+γ=α
γ �=0

Cβ,γ
∥∥∥P (β)χ(γ)u

∥∥∥
≤ ∑

β+γ=α
γ �=0

Cβ,γ
∥∥∥P (β)χ(γ)QPχ′u

∥∥∥+ C(K,α,N, χ, χ′) ‖u‖−N

≤ C ′(K,α,N, χ, χ′)
(
‖Pχ′u‖ + ‖u‖−N

)
.

Thus, (6.10) is proved.

Next, we shall show (6.9). By the same way as in the preceding subsection, there

exists a constant C = C(K,α) such that

∥∥∥P (α)v
∥∥∥ ≤ C

(
‖Pv‖ +

n∑
j=1

‖fLjv‖ + ‖v‖
)

for all v ∈ C∞
0 (K).
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Applying this inequality to χu for v, we have by (6.5) and Proposition 5.1

‖J1u‖ ≤ C(K,α,N, χ)
(
‖Pχu‖ + ‖u‖−N

)
for all u ∈ C∞

0 (K).(6.16)

Notice that it is not Pχ′u but Pχu which appears on the right hand side of (6.16). Since

χ ⊂⊂ χ′, ‖Pχu‖ is evaluated as

‖Pχu‖ = ‖Pχχ′u‖ =
∥∥∥χPχ′u+ [P, χ]χ′u

∥∥∥(6.17)

≤ ‖Pχ′u‖ +
∥∥∥[P, χ]χ′u

∥∥∥.
Thus, we shall prove that ∥∥∥[P, χ]χ′u

∥∥∥ ≤ C
(
‖Pχ′u‖ + ‖u‖−N

)
.

We take χ̃ ∈ ′SΨ satisfying χ′ ⊂⊂ χ̃. Then we have χ(γ) = χ(γ)χ̃(1 − χ′′) (γ 	= 0). The

expansion formula yields

[P, χ] ≡ ∑
0<|γ|<2(N+2)

(−1)|γ|

γ!
χ(γ)P(γ) mod ′S−N

1/2,0.

By the same way as in the proof of (6.15), we have χ(γ)P(γ) = χ(γ)P(γ)QPχ̃+ S̃γ for γ 	= 0,

where Q ∈ ′S−1
1/2,0 and S̃γ ∈ ′S−∞. Since χ(γ)P(γ)Q ∈ ′S0

1/2,0 for γ 	= 0, we obtain

∥∥∥[P, χ]χ′u
∥∥∥ ≤ C(K,N, χ)

 ∑
0<|γ|<2(N+2)

∥∥∥χ(γ)P(γ)QPχ̃χ
′u
∥∥∥+ ‖u‖−N


≤ C ′(K,N, χ)

(
‖Pχ′u‖ + ‖u‖−N

)
( by χ′ ⊂⊂ χ̃ ).

Combining this inequality with (6.16) and (6.17), we have (6.9). This completes the

verification of Condition (III).

6.4 Verification of Condition (IV)

In this subsection, we shall verify that P satisfies Condition (IV). We will use Proposition

4.1 in §4. Let us remember that Condition (IV) is the following:

“ For any (t0, x0) ∈ Ω and any neighborhood U of (t0, x0), there exist φ, ψ ∈ C∞
0 (U) such

that φ(t, x) = 1 in a neighborhood of (t0, x0), φ ⊂⊂ ψ and that the inequality∥∥∥〈Dx〉κPχφu
∥∥∥

≤ C4

(∥∥∥〈Dx〉κψPχu
∥∥∥+ ‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N

)
for all u ∈ C∞

0 (K)

holds for any open set K ⊂⊂ Ω, any N > 0 and any χ, χ′ ∈ ′SΨ (χ ⊂⊂ χ′), where

C4 = C4(K,N, χ, χ
′, φ, ψ) is a constant depending on (K,N, χ, χ′, φ, ψ) and κ is a positive

number smaller than 1 depending only on K.”
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Let φ, ψ ∈ C∞
0 (Rd+1) be such that φ ⊂⊂ ψ and κ be a positive number smaller than

1 which we choose later. Let χ, χ′ ∈ ′SΨ be such that χ ⊂⊂ χ′. We rewrite 〈Dx〉κPχφ as

〈Dx〉κPχφ = 〈Dx〉κφPχ+ 〈Dx〉κ [P, φ]χ+ 〈Dx〉κ [χ, φ]P + 〈Dx〉κ
[
P, [χ, φ]

]
.

Since 〈Dx〉κ[χ, φ] ∈ ′S
(κ−1)/2
1/2,0 by (6.13) and [χ, φ]P − [χ, φ]Pχ′ ∈ ′S−∞ by χ ⊂⊂ χ′, we have

∥∥∥〈Dx〉κPχφu
∥∥∥ ≤ C(K,N, χ, χ′, κ, φ)

(∥∥∥〈Dx〉κφPχu
∥∥∥+

∥∥∥〈Dx〉κ [P, φ]χu
∥∥∥(6.18)

+ ‖Pχ′u‖ +
∥∥∥〈Dx〉κ

[
P, [χ, φ]

]
u
∥∥∥+ ‖u‖−N

)
.

As in the preceding subsection, we have by taking χ′′ ∈ ′SΨ such that χ′′ ⊂⊂ χ

〈Dx〉κ
[
P, [χ, φ]

]
= 〈Dx〉κ

[
P, [χ, φ]

]
(1 − χ′′)QPχ′ +R,

where Q ∈ ′S−1
1/2,0 is a left parametrix of P in the microlocal domain supp(1 − χ′′) and

R ∈ ′S−∞. Since 〈Dx〉κ [P, [χ, φ]] (1 − χ′′)Q ∈ ′Sκ−1
1/2,0, we have∥∥∥〈Dx〉κ

[
P, [χ, φ]

]
u
∥∥∥ ≤ C ′(K,N, χ, χ′, κ, φ)

(
‖Pχ′u‖ + ‖u‖−N

)
.(6.19)

Next, we rewrite [P, φ] as

[P, φ] = ∂tφ+
n∑
j=1

MjfLj +M0f,

where Mj ∈ C∞
0 (Rd+1) ( j = 0, . . . , n ). Then we have∥∥∥〈Dx〉κ [P, φ]χu

∥∥∥
≤ C(K,N, φ)

(∥∥∥〈Dx〉κ(∂tφ)χu
∥∥∥+

n∑
j=1

∥∥∥〈Dx〉κfLjχu
∥∥∥+

∥∥∥〈Dx〉κfχu
∥∥∥+ ‖u‖−N

)
.

Combining (6.18) with (6.19) and this inequality, we have∥∥∥〈Dx〉κPχφu
∥∥∥ ≤ C1(K,N, χ, χ

′, κ, φ)
(∥∥∥〈Dx〉κφPχu

∥∥∥+ ‖Pχ′u‖

+
∥∥∥〈Dx〉κ(∂tφ)χu

∥∥∥+
n∑
j=1

∥∥∥〈Dx〉κfLjχu
∥∥∥+

∥∥∥〈Dx〉κfχu
∥∥∥ + ‖u‖−N

)
.

If we choose a κ smaller than the κ in Proposition 4.1, we obtain by applying Proposition

4.1 ∥∥∥〈Dx〉κPχφu
∥∥∥ ≤ C3(K,N, χ, χ

′, κ, φ)
(∥∥∥〈Dx〉κφPχu

∥∥∥+
∥∥∥〈Dx〉κ(∂tφ)χu

∥∥∥(6.20)

+ ‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N
)
.

Now we shall evaluate ‖〈Dx〉κ(∂tφ)χu‖. For any given point (t0, x0) in Ω and any given

neighborhood U of (t0, x0), we choose φ, ψ ∈ C∞
0 (U) in the following way.
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1. If f(t0, x0) 	= 0,

we choose φ, ψ such that suppψ ∩ { (t, x) ; f(t, x) = 0 } = ∅ and φ ⊂⊂ ψ.

2. If f(t0, x0) = 0,

then we choose an open interval I ⊂ Rt containing t0 and an open set V ⊂ Rd
x

containing x0 such that I × V ⊂ U . We take ψ(t, x) ∈ C∞
0 (I × V ) such that

f(t, x) 	= 0 on the support of ∂tψ and ψ = 1 in a neighborhood of (t0, x0). This

is possible because the set of points where f(t, x0) does not vanish is dense in Rt

and {t ; f(t, x0) 	= 0} is open. In fact, we choose open intervals I0, J0, J1 such that

J0 \ I0 	= ∅, J0∩ I0 	= ∅, J1 \ I0 	= ∅, J1∩ I0 	= ∅, J0∩J1 = ∅, J0∪ I0∪J1 ⊂ I, f(t, x0) >

0 in J0 ∪ J1 and t0 ∈ I0. Since f(t, x0) > 0 in J0 ∪ J1, we choose an open cube V0 of

Rd
x of center x0 contained in V such that f(t, x) > 0 in {J0 ∪ J1} × V0. Let V1 be

an open cube of Rd
x of center x0 whose length of side is a half of one of V0. We set

ψ(t, x) = ψ1(t)ψ2(x), where ψ1(t) ∈ C∞
0 (J0 ∪ I0 ∪ J1) such that ψ1(t) = 1 in I0 and

ψ2(x) ∈ C∞
0 (V0) such that ψ2(x) = 1 on V1. Replacing U by I0 × V1 and repeating

this argument, we get a new ψ and so we choose again a φ. Obviously, φ ⊂⊂ ψ.

In either case, f(t, x) 	= 0 on supp∂tφ. So P has a subelliptic estimate in some neighbor-

hood of supp∂tφ, that is to say,

“ There exist positive constants δ = δ(K, supp∂tφ) and C = C(K, ∂tφ) such that∥∥∥(∂tφ)χu
∥∥∥
δ
≤ C

(∥∥∥P (∂tφ)χu
∥∥∥+

∥∥∥(∂tφ)χu
∥∥∥) for all u ∈ C∞

0 (K).”

We can set δ = min{21−k̃, 1/2} for example, where k̃ is the number introduced in Lemma

3.5 in §3, so we may regard δ as depending only on K. We have by choosing a κ smaller

than δ above ∥∥∥〈Dx〉κ(∂tφ)χu
∥∥∥

≤ C(K,N, χ, φ)
(∥∥∥(∂tφ)Pχu

∥∥∥+
∥∥∥[P, ∂tφ]χu

∥∥∥+ ‖(∂tφ)χu‖
)

≤ C1(K,N, χ, φ)
(
‖Pχu‖ +

n∑
j=1

‖fLjχu‖ + ‖χu‖
)

≤ C2(K,N, χ, φ)
(
‖Pχu‖ + ‖χu‖

)
( by Lemma 3.1 ).

By Proposition 5.1, we have∥∥∥〈Dx〉κ(∂tφ)χu
∥∥∥ ≤ C3(K,N, χ, φ)

(
‖Pχu‖ + ‖u‖−N

)
.(6.21)

Combining (6.20) with this inequality, we obtain∥∥∥〈Dx〉κPχφu
∥∥∥(6.22)

≤ C(K,N, χ, χ′, κ, φ)
(∥∥∥〈Dx〉κφPχu

∥∥∥+ ‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N
)
.
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Since φ ⊂⊂ ψ, 〈Dx〉κφ = 〈Dx〉κφψ. Moreover 〈Dx〉κφ〈Dx〉−κ ∈ ′S0
0,0. Therefore, Condition

(IV) holds from (6.22). Verification of Condition (IV) is finished.

Remark. The inequality (6.22) holds even if we replace φ by ψ. That is to say, the

following inequality holds.∥∥∥〈Dx〉κPχψu
∥∥∥(6.23)

≤ C(K,N, χ, χ′, κ, ψ)
(∥∥∥〈Dx〉κψPχu

∥∥∥+ ‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N
)

for all u ∈ C∞
0 (K).

This is because it is sufficient for inequality (6.23) to hold that f(t, x) 	= 0 on the support

of ∂tψ. The inequality (6.23) is needed for the proof of Proposition 6.1. (See Proposition

6.1 and Lemma 6.2 in the next subsection.)

6.5 Verification of Condition (V)

In this subsection, we shall verify that P satisfies Condition (V). Let us remember that

Condition (V) is the following:

“ For any K ⊂⊂ Ω, any β = (0, β′) ∈ {0} × Zd
+ (|β| 	= 0), any µ > 0, any N > 0, any

χ, χ′ ∈ ′SΨ (χ ⊂⊂ χ′), there exists a constant C5 = C5(K,β, µ,N, χ, χ
′, ψ) such that∥∥∥〈Dx〉κ−|β|(ψPχ)(β)u

∥∥∥(6.24)

≤ µ
∥∥∥〈Dx〉κψPχu

∥∥∥+ C5

(
‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N

)
for all u ∈ C∞

0 (K),

where (ψ, κ) is the same as in (IV). ”

To verify this, we will make use of Propositions 4.1 and 5.1.

Since (ψPχ)(β) − (ψP )(β)χ ∈ ′S−∞, we shall prove that

“ For any K ⊂⊂ Ω, any β = (0, β′) (β′ 	= 0), any µ > 0, any N > 0 and any χ, χ′ ∈ ′SΨ

(χ ⊂⊂ χ′), there exists a constant C = C(K,β, µ,N, χ, χ′, ψ) such that∥∥∥〈Dx〉κ−|β|(ψP )(β)χu
∥∥∥(6.25)

≤ µ
∥∥∥〈Dx〉κψPχu

∥∥∥+ C
(
‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N

)
for all u ∈ C∞

0 (K),

where (ψ, κ) is the same as in (IV). ”

Remark. If (f,Ω) is of type (α-1) or of type (α-2), we can prove that P satisfies

the following condition (V′).
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(V′) For any K ⊂⊂ Ω, any β = (0, β′) ∈ {0} × Zd
+ (|β| 	= 0), any N > 0, any χ ∈

′SΨ (χ ⊂⊂ χ′) and any ψ ∈ C∞
0 (Ω), there exists a constant C = C(K,β,N, χ, ψ)

such that∥∥∥〈Dx〉κ−|β|(ψP )(β)χu
∥∥∥ ≤ C

(
‖Pχu‖ + ‖u‖−N

)
for all u ∈ C∞

0 (K),

where κ is the number specified in (IV).

Obviously, Condition (V) holds if Condition (V′) is satisfied.

The proof of (6.25) is divided into three cases |β| ≥ 3, |β| = 1 and |β| = 2.

Case 1: |β| ≥ 3

Since we can regard 〈Dx〉κ−|β|(ψP )(β) as an element of ′Sκ−1
1/2,0 in the microlocal domain

suppχ, so (6.25) holds by Proposition 5.1.

Case 2: |β| = 2

We rewrite (ψP )(β) as

(ψP )(β) = ψ(β)P +
∑

β1+β2=β
β1,β2 �=0

ψ(β1)P(β2) + ψP(β)

= P̃1(ψ, β) + P̃2(ψ, β) + P̃3(ψ, β).

To prove (6.25) in this case, we shall show that each of
∥∥∥〈Dx〉κ−2P̃1(ψ, β)χu

∥∥∥ ,∥∥∥〈Dx〉κ−2P̃2(ψ, β)χu
∥∥∥ and

∥∥∥〈Dx〉κ−2P̃3(ψ, β)χu
∥∥∥ does not exceed the right hand side of

(6.25). The first term µ
∥∥∥〈Dx〉κψPχu

∥∥∥ on the right hand side of (6.25) is needed only to

evaluate
∥∥∥〈Dx〉κ−2P̃3(ψ, β)χu

∥∥∥.
Estimate of

∥∥∥〈D�〉��2P̃1(ψ, β)χu
∥∥∥

Since 〈Dx〉κ−2ψ(β) ∈ ′S
(κ−2)/2
1/2,0 on suppχ, we have∥∥∥〈Dx〉κ−2P̃1(ψ, β)χu

∥∥∥ ≤ C1(K,β,N, χ, ψ)
(
‖Pχu‖ + ‖u‖−N

)
.(6.26)

Estimate of
∥∥∥〈D�〉��2P̃2(ψ, β)χu

∥∥∥
We rewrite P̃2(ψ, β) as

P̃2(ψ, β) = M̃0f +
d∑
k=1

M̃k(∂xk
f) + Ñ ,

where M̃k ∈ ′S2
1,0 ( k = 0, . . . , d ), Ñ ∈ ′S1

1,0 and their symbols do not depend on τ . Since

〈Dx〉κ−2M̃k ∈ ′Sκ1/2,0 on suppχ (k = 0, . . . , d ) and 〈Dx〉κ−2Ñ ∈ ′S
(κ−1)/2
1/2,0 on suppχ, we have∥∥∥〈Dx〉κ−2P̃2(ψ, β)χu

∥∥∥
≤ C(K,β,N, χ, ψ)

(∥∥∥〈Dx〉κfχu
∥∥∥+

d∑
k=1

∥∥∥〈Dx〉κ(∂xk
f)χu

∥∥∥+ ‖u‖−N
)
.
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Therefore, Proposition 4.1 yields∥∥∥〈Dx〉κ−2P̃2(ψ, β)χu
∥∥∥ ≤ C2(K,β,N, χ, ψ)

(
‖Pχu‖ + ‖u‖−N

)
.(6.27)

Estimate of
∥∥∥〈D�〉��2P̃3(ψ, β)χu

∥∥∥
Here we shall prove that

“ For any K ⊂⊂ Ω, any µ > 0, any N > 0 and any χ, χ′ ∈ ′SΨ (χ ⊂⊂ χ′), there exists a

constant C3 = C3(K,µ,N, χ, χ
′, ψ) such that∥∥∥〈Dx〉κ−2P̃3(ψ, β)χu

∥∥∥(6.28)

≤ µ
∥∥∥〈Dx〉κψPχu

∥∥∥+ C3

(
‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N

)
for all u ∈ C∞

0 (K).”

The proof is divided into two cases where f depends on x or not. Suppose that f does

not depend on x, that is to say, (f,Ω) is of type (α-1) or of type (α-2). Then,

P̃3(ψ, β) is of the form ψP̃f(t), where P̃ ∈ ′S2
1,0 and 〈Dx〉κ−2P̃ 〈Dx〉−κ ∈ ′S0

0,0. Then we

have ∥∥∥〈Dx〉κ−2P̃3(ψ, β)χu
∥∥∥ ≤ C(K,β, ψ) ‖〈Dx〉κfχu‖ .

By Proposition 4.1, we obtain∥∥∥〈Dx〉κ−2P̃3(ψ, β)χu
∥∥∥ ≤ C(K,β, ψ)

(
‖Pχu‖ + ‖u‖−N

)
.

This implies (6.28).

Next, suppose that f depends on x, that is to say, (f,Ω) is of type (β). We rewrite

ψP(β) as ψP(β) = P(β)ψ +
[
ψ, P(β)

]
and have∥∥∥〈Dx〉κ−2P̃3(ψ, β)χu

∥∥∥ ≤ ∥∥∥〈Dx〉κ−2P(β)ψχu
∥∥∥+

∥∥∥〈Dx〉κ−2
[
ψ, P(β)

]
χu
∥∥∥ .

Since 〈Dx〉κ−2P(β)〈Dx〉−κ ∈ ′S0
0,0 and 〈Dx〉κ−2

[
ψ, P(β)

]
∈ ′S

(κ−1)/2
1/2,0 on suppχ, applying

Proposition 5.1, we obtain∥∥∥〈Dx〉κ−2P̃3(ψ, β)χu
∥∥∥(6.29)

≤ C4(K)
∥∥∥〈Dx〉κψχu

∥∥∥+ C5(K,N, χ, χ
′, ψ)

(
‖Pχu‖ + ‖u‖−N

)
.

Therefore, it suffices for the proof of (6.28) to show the following proposition.

Proposition 6.1 Assume that (f,Ω) is of type (β). For any K ⊂⊂ Ω, any µ > 0, any

N > 0 and any χ, χ′ ∈ ′SΨ (χ ⊂⊂ χ′), there exists a constant C6 = C6(K,µ,N, χ, χ
′, ψ)

such that ∥∥∥〈Dx〉κχψu
∥∥∥ ≤ µ

∥∥∥〈Dx〉κψPχu
∥∥∥+ C6

(
‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N

)
(6.30)

for all u ∈ C∞
0 (K),

where (ψ, κ) is the same as in the verification of Condition (IV).
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(6.28) holds if we admit this proposition. This is because ‖〈Dx〉κψχu‖ does not ex-

ceed ‖〈Dx〉κχψu‖ + ‖〈Dx〉κ [ψ, χ] u‖. Moreover 〈Dx〉κ [ψ, χ] ∈ ′S
(κ−1)/2
1/2,0 and 〈Dx〉κ [ψ, χ] −

〈Dx〉κ [ψ, χ]χ′ ∈ ′S−∞ due to χ ⊂⊂ χ′. So we have by Proposition 5.1∥∥∥〈Dx〉κψχu
∥∥∥ ≤ ∥∥∥χ〈Dx〉κψu

∥∥∥+ C7(K,N, χ, χ
′, ψ)

(
‖Pχ′u‖ + ‖u‖−N

)
.

Combining (6.29) with (6.30) and this inequality, we obtain (6.28).

Proof of Proposition 6.1. Applying Proposition 5.1 to 〈Dx〉κψu for u, we have

for any µ > 0∥∥∥〈Dx〉κχψu
∥∥∥ ≤ µ

∥∥∥P 〈Dx〉κχψu
∥∥∥+ C8(K,µ,N, χ, ψ) ‖u‖−N for all u ∈ C∞

0 (K).(6.31)

(Note that χ commutes with 〈Dx〉κ.)
We shall treat the first term on the right hand side. Since P 〈Dx〉κ is rewritten as P 〈Dx〉κ =

〈Dx〉κP + [P, 〈Dx〉κ], we have∥∥∥P 〈Dx〉κχψu
∥∥∥ ≤ ∥∥∥〈Dx〉κPχψu

∥∥∥+
∥∥∥[P, 〈Dx〉κ]χψu

∥∥∥.
Applying (6.23) in the remark of the preceding subsection to the first term on the right

hand side, we have∥∥∥P 〈Dx〉κχψu
∥∥∥ ≤

∥∥∥[P, 〈Dx〉κ]χψu
∥∥∥

+ C9(K,N, χ, χ
′, ψ)

(∥∥∥〈Dx〉κψPχu
∥∥∥+ ‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N

)
.

Combining this inequality with (6.31), we obtain∥∥∥χ〈Dx〉κψu
∥∥∥ ≤ µ

∥∥∥[P, 〈Dx〉κ]χψu
∥∥∥+ µC9

∥∥∥〈Dx〉κψPχu
∥∥∥(6.32)

+ C10(K,µ,N, χ, χ
′, ψ)

(
‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N

)
.

To evaluate ‖[P, 〈Dx〉κ]χψu‖, we need the following lemma.

Lemma 6.2 Assume that (f,Ω) is of type (β). For any K ⊂⊂ Ω, any N > 0 and any

χ, χ′ ∈ ′SΨ (χ ⊂⊂ χ′), there exists a constant C11 = C11(K,N, χ, χ
′, ψ) such that

∥∥∥[P, 〈Dx〉κ]χψu
∥∥∥ ≤ C11

(∥∥∥〈Dx〉κψPχu
∥∥∥+

∥∥∥〈Dx〉κχψu
∥∥∥(6.33)

+ ‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N
)

for all u ∈ C∞
0 (K),

where (ψ, κ) is the same as in the verification of Condition (IV).
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We admit Lemma 6.2 for the moment. Lemma 6.2 will be proved later. From (6.32) and

(6.33), we have∥∥∥〈Dx〉κχψu
∥∥∥ ≤ µ (C9 + C11)

∥∥∥〈Dx〉κψPχu
∥∥∥+ µC11

∥∥∥〈Dx〉κχψu
∥∥∥

+ C12(K,µ,N, χ, χ
′, ψ)

(
‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N

)
.

Finally, given µ′ > 0, we choose a small µ in such a way that µC11 < 1 and µ(C9 +

C11)/(1 − µC11) < µ′. Then we obtain∥∥∥〈Dx〉κχψu
∥∥∥ ≤ µ′

∥∥∥〈Dx〉κψPχu
∥∥∥

+ C13(K,N, χ, χ
′, ψ, µ′)

(
‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N

)
.

This is equivalent to (6.30). The proof of Proposition 6.1 is completed. �

Proof of Lemma 6.2. In view of (4.18), we rewrite [P, 〈Dx〉κ] as

[
P, 〈Dx〉κ

]
=

n∑
j=1

Mj,0fLj +
n∑
j=1

d∑
k=1

Mj,k(∂xk
f)Lj +M0,0,

where Mj,k ∈ ′Sκ1/2,0 on suppχ. Then we have

∥∥∥[P, 〈Dx〉κ]χψu
∥∥∥ ≤ C14(K,N, χ)

( n∑
j=1

∥∥∥〈Dx〉κfLjχψu
∥∥∥(6.34)

+
n∑
j=1

d∑
k=1

∥∥∥〈Dx〉κ(∂xk
f)Ljχψu

∥∥∥+
∥∥∥〈Dx〉κχψu

∥∥∥ ).
By Proposition 4.1, the first term on the right hand side of (6.34) is estimated as

n∑
j=1

∥∥∥〈Dx〉κfLjχψu
∥∥∥ ≤ C15(K,N, χ, ψ)

(∥∥∥〈Dx〉κPχψu
∥∥∥+ ‖u‖−N

)
.

Applying (6.23) to the first term on the right hand side, we have

n∑
j=1

∥∥∥〈Dx〉κfLjχψu
∥∥∥(6.35)

≤ C16(K,N, χ, χ
′, ψ)

(∥∥∥〈Dx〉κψPχu
∥∥∥+ ‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N

)
.

Next we evaluate the second term on the right hand side of (6.34). 〈Dx〉κ(∂xk
f)Lj is

rewritten as 〈Dx〉κ(∂xk
f)Lj = (∂xk

f)Lj〈Dx〉κ + [〈Dx〉κ, (∂xk
f)Lj]. Since [〈Dx〉κ, (∂xk

f)Lj]

∈ ′Sκ1/2,0 on suppχ and |∂xk
f | ≤ C(K)|f |1/2 due to (4.5), we have

n∑
j=1

d∑
k=1

∥∥∥〈Dx〉κ(∂xk
f)Ljχψu

∥∥∥ ≤ C17(K)
n∑
j=1

∥∥∥|f |1/2Lj〈Dx〉κχψu
∥∥∥(6.36)

+ C18(K,N, χ, ψ)
(∥∥∥〈Dx〉κχψu

∥∥∥+ ‖u‖−N
)
.
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Applying Lemma 3.1 (3.2) to the first term on the right hand side of (6.36) for 〈Dx〉κχψu
in place of u, we have

n∑
j=1

∥∥∥|f |1/2Lj〈Dx〉κχψu
∥∥∥2

≤ C19(K,N, χ, ψ)
(∣∣∣ Re

(
P 〈Dx〉κχψu, 〈Dx〉κχψu

) ∣∣∣+ ∥∥∥〈Dx〉κχψu
∥∥∥2 + ‖u‖2

−N

)
.

Let λ be a positive number. By Schwarz’ inequality, the above inequality yields
n∑
j=1

∥∥∥|f |1/2Lj〈Dx〉κχψu
∥∥∥2 ≤ λ2

∥∥∥[P, 〈Dx〉κ]χψu
∥∥∥2

+ λ2
∥∥∥〈Dx〉κPχψu

∥∥∥2
+ C20(K,N, χ, ψ, λ)

(∥∥∥〈Dx〉κχψu
∥∥∥2 + ‖u‖2

−N

)
.

Combining (6.36) with this inequality and applying (6.23) to the second term on the right

hand side, we obtain

n∑
j=1

d∑
k=1

∥∥∥〈Dx〉κ(∂xk
f)Ljχψu

∥∥∥(6.37)

≤ λC17(K)
∥∥∥[P, 〈Dx〉κ]χψu

∥∥∥+ λC21(K,N, χ, χ
′, ψ)

∥∥∥〈Dx〉κψPχu
∥∥∥

+ C22(K,N, χ, χ
′, ψ, λ)

(∥∥∥〈Dx〉κχψu
∥∥∥+ ‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N

)
.

We have from (6.34), (6.35) and (6.37)∥∥∥[P, 〈Dx〉κ]χψu
∥∥∥

≤ λC17(K)
∥∥∥[P, 〈Dx〉κ

]
χψu

∥∥∥+ C23(K,N, χ, χ
′, ψ, λ)

×
(∥∥∥〈Dx〉κψPχu

∥∥∥+
∥∥∥〈Dx〉κχψu

∥∥∥+ ‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N
)
.

We obtain (6.33) by setting λ = 1/(2C15(K)). �

Now we return to the proof of (6.25) in the case where |β| = 2. (6.25) follows from

three inequalities (6.26), (6.27) and (6.28). Condition (V) for P in question is verified in

this case.

Remark. Here we have a corollary to Proposition 6.1. This is used in the proof of

(6.25) for the case where |β| = 1.

Corollary 6.3 Assume that (f,Ω) is of type (β). For any K ⊂⊂ Ω, any µ > 0, any

N > 0 and any χ, χ′ ∈ ′SΨ (χ ⊂⊂ χ′), there exists a constant C = C(K,µ,N, χ, χ′, ψ)

such that
n∑
j=1

d∑
k=1

∥∥∥〈Dx〉κ(∂xk
f)Ljχψu

∥∥∥(6.38)

≤ µ
∥∥∥〈Dx〉κψPχu

∥∥∥+ C
(
‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N

)
for all u ∈ C∞

0 (K),

where (ψ, κ) is the same as in the verification of Condition (IV).
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Proof of Corollary 6.3. Let us remember that the inequality (6.37) is the follow-

ing:

n∑
j=1

d∑
k=1

∥∥∥〈Dx〉κ(∂xk
f)Ljχψu

∥∥∥
≤ λC17(K)

∥∥∥[P, 〈Dx〉κ]χψu
∥∥∥+ λC21(K,N, χ, χ

′, ψ)
∥∥∥〈Dx〉κψPχu

∥∥∥
+ C22(K,N, χ, χ

′, ψ, λ)
(∥∥∥〈Dx〉κχψu

∥∥∥+ ‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N
)
.

Applying (6.33) in Lemma 6.2 to the first term on the right hand side, we have

n∑
j=1

d∑
k=1

∥∥∥〈Dx〉κ(∂xk
f)Ljχψu

∥∥∥
≤ λC24(K,N, χ, χ

′, ψ)
∥∥∥〈Dx〉κψPχu

∥∥∥
+ C25(K,N, χ, χ

′, ψ, λ)
(∥∥∥〈Dx〉κχψu

∥∥∥+ ‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N
)
.

Let λ′ be a positive number and set λ = λ′/(2C24). We apply Proposition 6.1 to λ′/(2C25)

in place of µ. Then we obtain

n∑
j=1

d∑
k=1

∥∥∥〈Dx〉κ(∂xk
f)Ljχψu

∥∥∥
≤ λ′

∥∥∥〈Dx〉κψPχu
∥∥∥+ C26(K,λ

′, N, χ, χ, ψ)
(
‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N

)
.

This is equivalent to (6.38). �

We return to the proof of (6.25) which is our purpose in this subsection. The remaining

case is |β| = 1.

Case 3: |β| = 1

We rewrite (ψP )(β) as (ψP )(β) = ψ(β)P + ψP(β) and have∥∥∥〈Dx〉κ−1(ψP )(β)χu
∥∥∥ ≤ ∥∥∥〈Dx〉κ−1ψ(β)Pχu

∥∥∥+
∥∥∥〈Dx〉κ−1ψP(β)χu

∥∥∥ .
Since 〈Dx〉κ−1ψ(β) ∈ ′S

(κ−1)/2
1/2,0 on suppχ, the first term on the right hand side does not

exceed C(K,β, χ,N)
(
‖Pχu‖ + ‖u‖−N

)
. So, it suffices for the proof of (6.25) to show the

following inequality:∥∥∥〈Dx〉κ−1ψP(β)χu
∥∥∥ ≤ µ

∥∥∥〈Dx〉κψPχu
∥∥∥(6.39)

+ C(K,µ,N, χ, χ′, ψ)
(
‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N

)
.

We rewrite 〈Dx〉κ−1ψP(β)χ as

〈Dx〉κ−1ψP(β)χ =
n∑
j=1

〈Dx〉κ−1ψMj,0fLjχ(6.40)

+
n∑
j=1

d∑
k=1

〈Dx〉κ−1ψMj,k(∂xk
f)Ljχ+ 〈Dx〉κ−1ψM0,0χ,

73



where Mj,k ∈ ′S1
1,0 and their symbols do not depend on τ . Furthermore M0,0 is rewritten

as

M0,0 = M̃0f +
d∑

k=1

M̃k(∂xk
f) + m̃,(6.41)

where M̃k ∈ ′S1
1,0 ( k = 0, . . . , d ) and m̃ is a multiplication by a smooth function.

Remark. If f does not depend on x, Mj,k (k 	= 0) does not appear in (6.40),

moreover M̃k (k 	= 0) and m̃ do not appear in (6.41).

We shall evaluate each term of (6.40) applied to u. First, we evaluate∑n
j=1

∥∥∥〈Dx〉κ−1ψMj,0fLjχu
∥∥∥. Since 〈Dx〉κ−1ψMj,0〈Dx〉−κ ∈ ′S0

0,0, we have

n∑
j=1

∥∥∥〈Dx〉κ−1ψMj,0fLjχu
∥∥∥ ≤ C(K,ψ)

n∑
j=1

∥∥∥〈Dx〉κfLjχu
∥∥∥(6.42)

≤ C(K,N, χ, ψ)
(
‖Pχu‖ + ‖u‖−N

)
( by Propositions 4.1 and 5.1 ).

Next, we evaluate
∑n
j=1

∑d
k=1

∥∥∥〈Dx〉κ−1ψMj,k(∂xk
f)Ljχu

∥∥∥. We will make use of Corol-

lary 6.3. As is mentioned in the above remark, we may neglect to evaluate this term if f

does not depend on x. Calculating the commutator between the multiplication by ψ and

Mj,k(∂xk
f)Ljχ, we have

ψMj,k(∂xk
f)Ljχ = Mj,k(∂xk

f)Ljχψ +Mj,kLj [ψ, χ] (∂xk
f) +Mj,k

[
(∂xk

f), Lj [ψ, χ]
]

+Mj,k [ψ,Lj] (∂xk
f)χ+ [ψ,Mj,k] (∂xk

f)Ljχ

(Note that ∂xk
f commutes with [ψ,Lj ], because they are multiplications by functions.)

〈Dx〉κ−1Mj,k〈Dx〉−κ , 〈Dx〉κ−1Mj,k [ψ,Lj] 〈Dx〉−κ and 〈Dx〉κ−1 [ψ,Mj,k] belong to ′S0
0,0. So,

we have

n∑
j=1

d∑
k=1

∥∥∥〈Dx〉κ−1ψMj,k(∂xk
f)Ljχu

∥∥∥(6.43)

≤ C(K,ψ)
n∑
j=1

d∑
k=1

(∥∥∥〈Dx〉κ(∂xk
f)Ljχψu

∥∥∥+
∥∥∥〈Dx〉κ−1Mj,kLj [ψ, χ] (∂xk

f)u
∥∥∥

+
∥∥∥〈Dx〉κ−1Mj,k

[
∂xk

f, Lj [ψ, χ]
]
u
∥∥∥+

∥∥∥〈Dx〉κ(∂xk
f)χu

∥∥∥+
∥∥∥(∂xk

f)Ljχu
∥∥∥).

The asymptotic expansion formula yields

〈Dx〉κ−1Mj,kLj [ψ, χ] 〈Dx〉−κ, 〈Dx〉κ−1Mj,k

[
∂xk

f, Lj [ψ, χ]
]
∈ ′S0

1/2,0.

Since

[ψ, χ] (∂xk
f) − [ψ, χ] (∂xk

f)χ′,
[
∂xk

f, Lj [ψ, χ]
]
−
[
∂xk

f, Lj [ψ, χ]
]
χ′ ∈ ′S−∞
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for χ′ ∈ ′SΨ satisfying χ ⊂⊂ χ′, we have

n∑
j=1

d∑
k=1

∥∥∥〈Dx〉κ−1ψMj,k(∂xk
f)Ljχu

∥∥∥(6.44)

≤ C(K,N, χ, χ′, ψ)

(
n∑
j=1

d∑
k=1

∥∥∥〈Dx〉κ(∂xk
f)Ljχψu

∥∥∥+
d∑
k=1

∥∥∥〈Dx〉κ(∂xk
f)χ′u

∥∥∥
+ ‖χ′u‖ +

d∑
k=1

∥∥∥〈Dx〉κ(∂xk
f)χu

∥∥∥+
n∑
j=1

d∑
k=1

∥∥∥(∂xk
f)Ljχu

∥∥∥+ ‖u‖−N
)
.

Applying Corollary 6.3 to the first term on the right hand side, we obtain by Propositions

4.1, 5.1 and Lemma 3.1

n∑
j=1

d∑
k=1

∥∥∥〈Dx〉κψMj,k(∂xk
f)Ljχu

∥∥∥(6.45)

≤ µ
∥∥∥〈Dx〉κψPχu

∥∥∥+ C(K,N, χ, χ′, ψ, µ)
(
‖Pχu‖ + ‖Pχ′u‖ + ‖u‖−N

)
.

Finally, we evaluate
∥∥∥〈Dx〉κ−1ψM0,0χu

∥∥∥. Let us remember the definitions of M̃k and m̃

(see (6.41)). Since 〈Dx〉κ−1ψM̃k〈Dx〉−κ and 〈Dx〉κ−1ψm̃ belong to ′S0
0,0, we have by (6.41)

∥∥∥〈Dx〉κ−1ψM0,0χu
∥∥∥ ≤ C(K,ψ)

(∥∥∥〈Dx〉κfχu
∥∥∥+

d∑
k=1

∥∥∥〈Dx〉κ(∂xk
f)χu

∥∥∥+ ‖χu‖
)
.

By Propositions 4.1 and 5.1, we obtain∥∥∥〈Dx〉κ−1ψM0,0χu
∥∥∥ ≤ C(K,N, χ, χ′, ψ)

(
‖Pχu‖ + ‖u‖−N

)
.(6.46)

From (6.42), (6.45) and (6.46), we obtain (6.39). (6.25) in the case where |β| = 1 is

proved. Now Condition (V) for P in question is verified.
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7 Examples

In this section, we give some examples of P satisfying (1◦)–(3◦), especially, examples of

f(t, x) which satisfies Condition (1◦). Since Condition (1◦) is not so restrictive, the set

of functions satisfying (1◦) contains an f(t, x) whose set of zeros is of positive Lebesgue

measure.

First, we need the following lemma. This guarantees the existence of a smooth function

which vanishes only on any given closed set of Rn.

Lemma 7.1 (cf. Theorem 2 in §2.1 in Chapter VI of [30]) For any closed subset K of

Rn, there exists a function f of class C∞ in Rn such that

f = 0 on K and f > 0 in Rn \K.

7.1 Examples of f independent of x

Now we show some examples of Theorem A. First, let us begin with the case where f(t, x)

does not depend on x.

1) The following operator of 3 variables is hypoelliptic:

P = ∂t + f1(t)
(
∂2
x + x2a(t, x, y)∂2

y

)
,

where a(t, x, y) is a complex-valued smooth function satisfying Re a(t, x, y) > 0 in R3

and f1 is defined in the following way. Let I0 = [0, 1], I1 = [0, 3/8] ∪ [5/8, 1], I2 =

[0, 5/32] ∪ [7/32, 3/8] ∪ [5/8, 25/32] ∪ [27/32, 1], . . . , where Ij+1 is obtained by removing

the middle open subinterval of length 4−(j+1) from each closed interval consisting Ij. So, Ij

is a disjoint union of 2j closed intervals of equal length (1+2j)/22j+1. The set K1 = ∩∞
j=0Ij

is called the Harnack set. This is closed and does not contain non-empty open set. Let

f1 be a smooth function on R such that f1 = 0 on K1 and f1 > 0 in R \K1. Such an f1

exists due to Lemma 7.1.

P satisfies obviously Conditions (2◦) and (3◦). Moreover, f1 satisfies Condition (1◦).

This is because, f1 is non-negative and the set of zeros of f1 contains no non-empty open

interval. So f1 satisfies Condition (1◦-α). Furthermore, the Lebesgue measure of the set

of zeros of f1 is equal to

1 −
∞∑
k=1

2k−1

4k
=

1

2
> 0.

2) The following operator of 3 variables is hypoelliptic:

P = ∂t + f2(t)
(
a(t, x, y)∂2

x + x2b(t, x, y)∂2
y

)
,
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where a(t, x, y) and b(t, x, y) are complex-valued smooth functions satisfying Re a(t, x, y)>

0 and Re b(t, x, y) > 0 in R3 and f2 is defined to be

f2(t) =

 f1(t+ 3/8) for t ≥ 0,

−f1(−t+ 3/8) for t < 0,

where f1 is as above. Obviously, f2 is smooth possibly except at t = 0. Since the set

{s ∈ K1 ; s ≥ 3/8} accumulates at s = 3/8, the right differential coefficients of f2 of any

order are equal to 0 at t = 0 by Rolle’s theorem. By the same way, the left differential

coefficients of f2 of any order are equal to 0 at t = 0. So f2 is smooth everywhere. f2 has

an uncountably infinite number of zeros and changes sign at the origin. And f2 satisfies

Condition (1◦-α). Furthermore, the Lebesgue measure of the set of zeros of f2 is positive.

7.2 Examples of f depending on x

In this subsection, we show examples for the case where f(t, x) depends on x.

1) The following operator of 2 variables is hypoelliptic:

P = ∂t + g1(t, x)∂
2
x,

where g1(t, x) on R2 is defined in the following way. Let f3 be a smooth function on R

such that f3(s) = 0 on K3 and f3 > 0 in R\K3, where K3 is the Cantor set. There exists

such an f3 due to Lemma 7.1. We define the function g1(t, x) to be

g1(t, x) = f3(t+ x).

f3 is non-negative and does not vanish identically in any non-empty open interval, so

does g1(·, x) for every x ∈ R. Thus g1 satisfies Condition (1◦-β). The set of zeros of

g1 consists of uncountably infinite number of lines. These lines accumulate at every line

t+ x = constant.

2) The following operator of (d+ 1)-variables is hypoelliptic:

P = ∂t + g2(t, x1, x2, . . . , xd)

a(t, x)∂2
x1

+ b(t, x)

(
d∑
k=2

x1
k∂xk

)2  ,
where a(t, x), b(t, x) are complex-valued smooth functions satisfying (Re a)(Re b) > 0 at

every point of Rd+1 and g2 is a smooth function on Rd+1 defined to be

g2(t, x1, x2, . . . , xd) = f1

(
t2 +

d∑
k=1

x2
k

)
,
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where f1 is the same as in the preceding subsection.

Obviously, P satisfies Condition (2◦). Since the set of zeros of f1(t
2 + a) contains

no non-empty open interval for every a ≥ 0, g2 satisfies Condition (1◦-β). Therefore,

P satisfies Condition (1◦). Furthermore, the set of zeros of g2 consists of uncountably

infinite number of spheres. The Lebesgue measure of the set of zeros of g2 is calculated

as follows. ∫
{ (t,x) ; g2(t,x)=0 }

dt dx =
∫∫

{ (r,ω)∈�+×Sd ; f2(r2)=0 }
rddr dSω,

where R+ = {r , 0 ≤ r < +∞}, Sd is the unit sphere of dimension d and dSω stands for

the area element of Sd. The right hand side is estimated from below as follows.∫∫
{ (r,ω)∈�+×Sd ; f2(r2)=0 }

rddr dSω

= area(Sd)
∫
{ r∈�+ ; f2(r2)=0 }

rddr =
1

2
area(Sd)

∫
K1

s(d−1)/2ds

≥ 1

2

(
3

8

)(d−1)/2

area(Sd)
∫
K1

ds =
1

4

(
3

8

)(d−1)/2

area(Sd),

where area(Sd) is the area of Sd. So, the Lebesgue measure of the set of zeros of g2 is

positive.

Next, we shall prove that
{
∂x1 ,

∑d
k=2 x1

k∂xk

}
satisfies Condition (3◦). Set L0 = ∂x1

and L1 =
∑d
k=2 x1

k∂xk
. Let us remember the notation RJ (see p.35). Given a multi-index

J = (j1, . . . , jl) with l ≥ 1, where jm ∈ {0, 1} (m = 1, . . . , l ), set J̃ = (j1, . . . , jl−1) and

define RJ inductively by

RJ = Lj1 (l = 1) , RJ = [RJ̃ , Ljl ] (l ≥ 2).

(See Lemma 3.4 in §3.)

Set J0 = (1,

d︷ ︸︸ ︷
0, 0, . . . , 0 ), J1 = (1,

d−1︷ ︸︸ ︷
0, 0, . . . , 0 ), J2 = (1,

d−2︷ ︸︸ ︷
0, 0, . . . , 0 ), . . . , Jd−2 = (1, 0, 0).

Since
l∑

r=0

xr1
r!
RJl−r

= (−1)d−l(d− l)! ∂xd−l
( l = 0, . . . , d− 2 ),

the Lie algebra generated by {L0, L1} is of dimension d at every point of Rd
x. Thus,

{L0, L1} satisfies Condition (3◦).
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8 Application 1 of Theorem A

As far as the preceding section, we studied the hypoellipticity of P of the form (A). We

assumed that f(t, x) is real-valued. In this section, we investigate the hypoellipticity of P

of the form (A) in the case where f(t, x) is complex-valued. For example, let us consider

the operator P = ∂t + {f(t, x) + ig(t, x)} ∂2
x in R2, where f(t, x) satisfies Condition (1◦)

and g(t, x) is a real-valued smooth function. P is hypoelliptic due to Theorem A if the

quotient g(t, x)/f(t, x) can be extended to a smooth function. Theorem B in [2Æ] in the

Introduction gives a sufficient condition for hypoellipticity of P of the form (B) in the

case where g(t, x)/f(t, x) is not necessarily extended to a smooth function.

Before giving the proof and examples of Theorem B, let us sketch the roles of Condi-

tions (2�) and (3�).

1. (2�) controls g(t, x) by means of f(t, x). This guarantees the following inequalities

to hold.
n∑
j=1

‖g(t, x)Lju‖2 ≤ C(K)
n∑
j=1

‖f(t, x)Lju‖2 for all u ∈ C∞
0 (K).(8.1)

n∑
j=1

d∑
k=1

∥∥∥(∂xk
g(t, x)

)
Lju

∥∥∥2 ≤



C(K, ρ)
n∑
j=1

∥∥∥|f(t, x)|ρLju
∥∥∥2

for the case where f(t, x) changes sign,

C(K)
n∑
j=1

∥∥∥|f(t, x)|1/2Lju
∥∥∥2

for the case where f(t, x) does not

change sign

(8.2)

for all u ∈ C∞
0 (K), where ρ is the positive number specified in (2�-1). These inequalities

allow us to neglect effects of g in the course of estimation for P . (2�) is not a necessary

condition for hypoellipticity of P . For example, let p, q be non-negative integers and let

us consider the following operator:

Lp,q = ∂t +
(
tp + i tq

)
∂2
x.

The necessary and sufficient condition for Lp,q to be hypoelliptic is that p ≤ 2q. (see §11.)

Lp,q does not satisfy (2�) but satisfies (1�) and (3�) in the case where p/2 < q < p.

2. If the matrix A(t, x) is hermitian or the function g(t, x) vanishes identically, (3�) is

equivalent to (2◦).
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Examples of Theorem B

1) The following operator of 3 variables is hypoelliptic:

P = ∂t +
(
f(t) + i g(t)

) {
(2 + 2i sin 4t) ∂2

x + (1 + i sin 8t) (sin x)2 ∂2
y

}
,

where

f(t) =


exp

(
− 1

|t|
)

for t 	= 0,

0 for t = 0

and g(t) =


sin

(
1

t

)
exp

(
− 1

|t|
)

for t 	= 0,

0 for t = 0.

The quotient g(t)/f(t) can not be extended to a smooth function but remains bounded

in R. The matrix for P appearing in (3�) is equal to

A(t, x, y) =

 2 + 2i sin 4t 0

0 1 + i sin 8t

 .
Thus, Re ((f(t) + i g(t))A(t, x, y)η, f(t)η) for η = t(η1, η2) ∈ C2 is equal to

|f(t)|2
(

4
{
1 − (sin 4t)

(
sin

1

t

)}2

|η1|2 +
{
1 − (sin 8t)

(
sin

1

t

)}2

|η2|2
)
.

Since the functions 1 − (sin 4t)(sin 1/t) and 1 − (sin 8t)(sin 1/t) do not vanish in R, so

A(t, x, y) satisfies (3�-1).

2) The following operator of 3 variables is hypoelliptic:

P = ∂t +
(
f(t) + i g(t, x, y)

) (
2∂2

x + i sin(x2 + y2)∂xx∂y + 3i sin(x2 + y2)x∂y∂x + 2x2∂2
y

)
,

where

f(t) =


(sgn t) exp

(
− 1

|t|
)

for t 	= 0,

0 for t = 0

and

g(t, x, y) =


√

3

2
exp

(
−1 + x2 + y2

|t|
)

for t 	= 0,

0 for t = 0.

f satisfies (1�) and g satisfies (2�-1) for every ρ satisfying 0 < ρ < 1. The matrix for P

appearing in (3�) is equal to

A(t, x, y) =

 2 i sin(x2 + y2)

3i sin(x2 + y2) 2

 .
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Thus, Re ((f(t) + i g(t, x, y))A(t, x, y)η, f(t)η) for η ∈ C2 is evaluated from below as

Re ((f(t) + i g(t, x, y))A(t, x, y)η, f(t)η)

≥
2 −

√{
1 + 3 exp

(
−2(x2+y2)

|t|
)}

sin2 (x2 + y2)

2
|f(t)|2 |η|2 for t 	= 0.

Since{
1 + 3 exp

(
−2 (x2 + y2)

|t|
)}

sin2
(
x2 + y2

)
< 4 for every (t, x, y) ∈ R3 \ {t = 0},

so the matrix A(t, x, y) satisfies (3�-1).

3) The following operator of 3 variables is hypoelliptic:

P = ∂t +
(
f(t, x, y) + i g(t, x, y)

) (
∂2
x + x4∂2

y

)
,

where

f(t, x, y) =


exp

(
− 1

(t2 + x2 + y2)3

)
for (t, x, y) 	= (0, 0, 0),

0 for (t, x, y) = (0, 0, 0)

and

g(t, x, y) =


sin

(
1

txy

)
exp

(
− 1

27t2x2y2

)
for txy 	= 0

0 for txy = 0.

g(t, x, y)/f(t, x, y) can not be extended to a smooth function but remains bounded in R3.

On the other hand, (∂xg(t, x, y))
2 /f(t, x, y) and (∂yg(t, x, y))

2 /f(t, x, y) can be extended

to smooth functions in R3. Therefore, g satisfies (2�-2).

Proof of Theorem B.

The proof is done in a similar way as that of Theorem A. So we give it roughly. Since

Proposition 1.1 holds for P in question, it suffices to show that P satisfies Conditions

(I)–(IV) in §2. Let us begin by getting the inequalities analogous to those in §3. As in §3,

let f(t) = f(t, x) if f(t, x) does not depend on x. From the hypothesis (1�), there exists

at most one point where f(t) changes sign. So we assume that the point is t = 0. Let Ω

be a bounded domain in Rd+1. We use again the definition for (f,Ω) to be of type (α-1)

or of type (α-2) or of type (β) as in §3. First, if (f,Ω) is of type (α-1), (3�-1) yields

Re
((
f(t) + i g(t, x)

)
A(t, x)η, (sgn t) |f(t)|2ρ−1 η

)
≥ δ |f(t)|2ρ |η|2(8.3)

for all ρ > 3/4 and all η ∈ Cn. On the other hand, if (f,Ω) is of type (α-2) or of type

(β), (3�-2) yields∣∣∣∣Re
((
f(t, x) + i g(t, x)

)
A(t, x)η, f(t, x)η

)∣∣∣∣ ≥ δ |f(t, x)η|2(8.4)

81



for all η ∈ Cn. Using above inequalities, we have the following lemma corresponding to

Lemma 3.1.

Lemma 8.1 (i) If (f,Ω) is of type (α-1), there exists, for any K ⊂⊂ Ω and any

ρ̃ > 3/4, a constant C depending only on (K, ρ̃) such that

n∑
j=1

∥∥∥|f |ρ̃Lju∥∥∥2 ≤ C
{∣∣∣Re

(
Pu, (sgn t)|f |2ρ̃−1u

)∣∣∣+ ‖u‖2
}

(8.5)

for all u ∈ C∞
0 (K).

(ii) If (f,Ω) is of type (α-2) or of type (β), there exists, for any K ⊂⊂ Ω, a constant

C depending only on K such that
n∑
j=1

∥∥∥|f |1/2Lju∥∥∥2 ≤ C
{
|Re (Pu, u)| + ‖u‖2

}
(8.6)

for all u ∈ C∞
0 (K).

(iii) If (f,Ω) is of type (α-2) or of type (β), there exists, for any K ⊂⊂ Ω, a constant

C depending only on K such that

n∑
j=1

‖fLju‖2 ≤ C
{
|Re (Pu, fu)| +

d∑
k=1

‖(∂xk
f)u‖2(8.7)

+
d∑
k=1

‖(∂xk
g)u‖2 + ‖fu‖2 + |((∂tf)u, u)|

}
for all u ∈ C∞

0 (K).

Proof of Lemma 8.1. We only prove (i). (The proof of (ii) (resp. (iii)) is done by

using (3�-2) (resp. (8.4)) in place of (8.3).) Set

P̃ = −∂t +
n∑

j,k=1

L∗
j

(
f(t, x) + i g(t, x)

)
ajk(t, x)Lk.

Since Lj + L∗
j reduces to a multiplication by a smooth function, we have

P + P̃ =
(
f(t, x) + i g(t, x)

) n∑
j=1

bj0(t, x)Lj(8.8)

+
n∑
j=1

d∑
l=1

bjl(t, x)
(
∂xl
f(t, x) + i ∂xl

g(t, x)
)
Lj,

where bjl(t, x) ∈ C∞(Rd+1). Note that ∂xl
f(t, x) = 0 ( l = 1, . . . , d ) in the case where

(f,Ω) is of type (α-1). By (8.8), −Re (Pu, (sgn t)|f |2ρ−1u) is estimated from below as

follows.

−Re
(
Pu, (sgn t)|f |2ρ̃−1u

)
(8.9)

≥ Re
(
P̃ u, (sgn t)|f |2ρ̃−1u

)
−
∣∣∣((P + P̃

)
u, (sgn t)|f |2ρ̃−1u

)∣∣∣ .
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From (8.3), the first term on the right hand side of (8.9) is estimated from below as

follows.

Re
(
P̃ u, (sgn t)|f |2ρ̃−1u

)
≥ δ(K)

n∑
j=1

∥∥∥|f |ρ̃Lju∥∥∥2 +
1

2
E(u),(8.10)

where

E(u) = −
∫

(sgn t) |f(t)|2ρ̃−1 ∂t
(
|u|2

)
dtdx.

(See (3.4) in the proof of Lemma 3.1.) By Schwarz’ inequality, the second term on the

right hand side of (8.9) is evaluated as follows.∣∣∣((P + P̃
)
u, (sgn t)|f |2ρ̃−1u

)∣∣∣(8.11)

≤ ε
n∑
j=1

∥∥∥|f |2ρ̃Lju∥∥∥2 + ε
n∑
j=1

(∥∥∥|f |2ρ̃−1gLju
∥∥∥2 +

d∑
l=1

∥∥∥|f |2ρ̃−1(∂xl
g)Lju

∥∥∥2
)

+ C(K, ε) ‖u‖2 .

From (2�-1), we have ∣∣∣|f(t, x)|2ρ̃−1g(t, x)
∣∣∣ ≤ C1(K, ρ̃)|f(t, x)|ρ̃.(8.12)

Moreover, 2ρ̃− 1 + ρ > ρ̃, where ρ is defined in (2�-1). So we have from (2�-1)∣∣∣|f(t, x)|2ρ̃−1
(
∂xl
g(t, x)

)∣∣∣ ≤ C2(K, ρ̃)|f(t, x)|ρ̃.(8.13)

Therefore, we obtain from (8.9), (8.10), (8.11), (8.12) and (8.13)

δ(K)
n∑
j=1

∥∥∥|f |ρ̃Lju∥∥∥2 +
1

2
E(u)

≤
∣∣∣Re

(
Pu, (sgn t)|f |2ρ̃−1u

)∣∣∣+ C(K, ρ, ρ̃) ε
n∑
j=1

∥∥∥|f |ρ̃Lju∥∥∥2 + C(K, ε, ρ̃) ‖u‖2 .

Setting ε = δ(K)/(2C(K, ρ̃)) and evaluating E(u) as in the proof of Lemma 3.1, we obtain

(8.5). �

Lemma 8.2 (i) If (f,Ω) is of type (α-1), there exists, for any K ⊂⊂ Ω, a constant

C depending only on K such that

‖u‖2 ≤ C
(
|Re (Pu, tu)| + ‖tu‖2

)
for all u ∈ C∞

0 (K).(8.14)

(ii) If (f,Ω) is of type (α-2) or of type (β), there exists, for any K ⊂⊂ Ω and any

a ∈ R, a constant C such that

‖u‖2 ≤ C

|Re (Pu, (t− a)u)| +
n∑
j=1

∥∥∥|(t− a)f(t, x)|1/2Lju
∥∥∥2
(8.15)

for all u ∈ C∞
0 (K), where C depends only on K and the diameter of {a} ∪ πt(K).
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If (f,Ω) is of type (α-1), (3�-1) yields

Re
((
f(t) + i g(t, x)

)
A(t, x)η, tη

)
≥ δ |tf(t)| |η|2(8.16)

for all η ∈ Cn. We can prove (i) by using this inequality as we used Condition (2◦) in the

proof of Lemma 3.3. On the other hand, the proof of (ii) is done in the same way as that

of (ii) in Lemma 3.3. So we omit the proof.

Next, we have the following lemma which plays the same role as Lemma 3.5 in §3.

Lemma 8.3 For any K ⊂⊂ Ω, there exist a positive integer k depending only on K

and a constant C depending only on K such that∥∥∥〈Dx〉2
1−k

f(t, x)ku
∥∥∥2 ≤ C

(
‖Pu‖2 + ‖u‖2

)
for all u ∈ C∞

0 (K).(8.17)

The proof is done by using Lemma 8.1 as we used Lemma 3.1 in the proof of Lemma 3.5.

Now we give two propositions corresponding to Propositions 4.1 and 5.1 by making

use of lemmas obtained above. We use Lemma 8.1 and Lemma 8.3 as we used Lemma

3.1 and Lemma 3.5 in §4 respectively. And we have the following proposition by applying

(8.1) and (8.2).

Proposition 8.4 For any K ⊂⊂ Ω, any N > 0 and any χ ∈ ′SΨ, there exist positive

constants κ = κ(K), C = C(K,N, χ) such that

n∑
j=1

‖〈Dx〉κfLjχu‖2
+

n∑
j=1

‖〈Dx〉κgLjχu‖2
+ ‖〈Dx〉κfχu‖2

(8.18)

+ ‖〈Dx〉κgχu‖2
+

d∑
k=1

‖〈Dx〉κ(∂xk
f)χu‖2

+
d∑
k=1

‖〈Dx〉κ(∂xk
g)χu‖2

≤ C
(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)

for all u ∈ C∞
0 (K).

Furthermore, we obtain Proposition 5.1 for P in question by using Proposition 8.4, Lem-

mas 8.1 and 8.2. By making use of Propositions 8.4 and 5.1 in the same way as we used

Propositions 4.1 and 5.1 in §6, we can verify that P satisfies Conditions (I)–(V). However,

we have to evaluate the following terms:

n∑
j=1

‖gLjχu‖2 ,
n∑
j=1

d∑
k=1

‖(∂xk
g)Ljχu‖2 ,

d∑
k=1

‖〈Dx〉κ(∂xk
g)χu‖2

and
n∑
j=1

d∑
k=1

‖〈Dx〉κ(∂xk
g)Ljχψu‖2

.

They are estimated as follows.
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1. In the verifications of (II)–(V),

n∑
j=1

‖gLjχu‖2

≤ C(K)
n∑
j=1

‖fLjχu‖2 ( by (8.1) )

≤ C(K,N, χ)
(
‖Pχu‖2 + ‖u‖2

−N
)

( by Lemma 8.1 and Propsition 5.1 ).

2. In the verifications of (II),(IV) and (V),

n∑
j=1

d∑
k=1

‖(∂xk
g)Ljχu‖2

≤ C(K,N, χ)
(
‖Pχu‖2 + ‖χu‖2 + ‖u‖2

−N
)

( by (8.2) and Lemma 8.1 )

≤ C ′(K,N, χ)
(
‖Pχu‖2 + ‖u‖2

−N
)

( by Proposition 5.1 ).

3. In the verifications of (IV) and (V),

d∑
k=1

‖〈Dx〉κ(∂xk
g)χu‖2

≤ C(K,N, χ)
(
‖Pχu‖2 + ‖u‖2

−N
)

( by Propositions 8.4 and 5.1 ).

4. In the verification of (V),

n∑
j=1

d∑
k=1

‖〈Dx〉κ(∂xk
g)Ljχψu‖2

≤
n∑
j=1

d∑
k=1

‖(∂xk
g)〈Dx〉κLjχψu‖2

+ C(K) ‖〈Dx〉κχψu‖2

≤ C(K)



n∑
j=1

∥∥∥|f(t)|ρ〈Dx〉κLjχψu
∥∥∥2

for the case where f(t, x) changes sign,
n∑
j=1

∥∥∥|f(t, x)|1/2〈Dx〉κLjχψu
∥∥∥2

for the case where f(t, x) does not change sign,

( by (8.2) )

+ C(K) ‖〈Dx〉κχψu‖2

≤ µ ‖〈Dx〉κψPχu‖2
+ C(K,N, χ, χ′, µ)

(
‖Pχu‖2 + ‖Pχ′u‖2

+ ‖u‖2
−N
)

( see Proof of Corollary 6.3. )

In this way, we can evaluate these terms. So we neglect the effects of g in the verification

of Conditions (I)–(V). The proof of Theorem B is finished. �
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9 Application 2 of Theorem A

In this section, we investigate the hypoellipticity of Q of the form (C) which is a general-

ization of (A) if f(t, x) does not depend on x. Our result is stated as Theorem C in the

Introduction. Let us begin with stating a corollary to Theorem C.

Corollary 9.1 Suppose that ( ajk(t, x) )nj,k=1 satisfies (2◦) and that {Lj }nj=1 satisfies

(3◦). Let { ej }nj=1 be non-negative integers. Then, the following operator is hypoelliptic:

Q = ∂t + te0
n∑

j,k=1

ajk(t, x) t
ejLj t

ekLk in Rd+1.(9.1)

Proof of Corollary 9.1.

If e0 = 0 and if there exists a positive integer j such that ej 	= 0, then {tej}nj=0 does not

satisfy (1�-3) for any closed interval containing t = 0. Therefore, we divide the proof into

two cases where e0 is equal to zero or not. Q is hypoelliptic if e0 	= 0 by applying Theorem

C to fj(t) = tej ( j = 0, . . . , n ). Next, Q is hypoelliptic even if e0 = 0. This is because the

Lie algebra generated by
{
∂t, { tejLj }nj=1

}
is of dimension d + 1 at every point of Rd+1.

�

Before giving the proof and examples of Theorem C, let us sketch the roles of Condi-

tions (1�-1), (1�-2) and (1�-3).

1. (1�-1) and (1�-2) for f0 are the same as (1◦-α) in Theorem A. They play the same

role as (1◦-α) in Theorem A.

2. (1�-3) controls the vanishing order of fj ( j = 1, . . . , n ) by means of f0. In order

to prove that Q is hypoelliptic, we have to evaluate
∥∥∥|f0(t)|ρ|fj(t)|δLju

∥∥∥2
for some ρ, δ

satisfying ρ ≤ 1, δ ≤ 1 and (ρ, δ) 	= (1, 1). We can evaluate ‖|f0(t)|ρfjLju‖2 for 3/4 < ρ

as will be seen in Lemma 9.2 below. Thus, the degeneracy of Q with respect to t should

be controlled by f0. So we need (1�-3). In addition, (1�-3) is used to get a priori estimate

(9.11) in Lemma 9.5 below. On the other hand, (1�-3) is not a necessary condition for

hypoellipticity of Q. For example, the following operator of 3 variables is hypoelliptic:

Q̃ = ∂t + ∂2
x + t2∂2

y .

Q̃ satisfies (1�-1), (1�-2), (2◦) and (3◦) but does not satisfy (1�-3).

Examples of Theorem C

1) The following operator of 3 variables is hypoelliptic:

Q = ∂t + f0(t)
(
∂2
x + x6f2

1 (t)∂2
y

)
,
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where f0(t) and f1(t) are real-valued functions of class C∞ such that

the set of zeros of f0(t) does not contain any non-empty open interval,(9.2)

f0(t) satisfies (1�-2) and(9.3)

there exists a positive constant C such that(9.4)

|f0(t)| ≤ C |f1(t)| for all t ∈ R.
In this case, the exponent λ appearing in (1�-3) can be chosen to be 1 due to (9.4).

Moreover, form (9.2) and (9.4), the set of zeros of f1(t) does not contain any non-empty

open interval. So a pair of functions (f0, f1) satisfies (1�-1), (1�-2) and (1�-3). The following

pair is an example satisfying (9.2), (9.3) and (9.4).

f0(t) =


(sgn t)

(
sin2 1

t

)
e−

1
|t| for t 	= 0,

0 for t = 0

f1(t) =


(
sin

1

t

)
e−

1
|t| for t 	= 0,

0 for t = 0.

f0 and f1 have a countably infinite number of zeros which accumulate at the origin.

2) Let δ0, δ1, . . . , δd be positive numbers. Then the following operator of (d + 1)

variables is hypoelliptic:

Q = ∂t + g0(t)

g1(t)∂
2
x1

+
d∑
j=2

gj(t)x
2
j−1∂

2
xj

 ,

where g0(t) =


(sgn t) exp

(
− 1

δ0|t|
)

for t 	= 0,

0 for t = 0

and gj(t) =


exp

(
− 1

δj|t|
)

for t 	= 0,

0 for t = 0

( j = 1, . . . , d ).

For this example, λ(I, j) appearing in (1�-3) is equal to 2δj/δ0 for every j ∈ { 1, . . . , d }
and every closed interval I containing t = 0.

3) Let h1, h2, . . . , hd be real-valued functions of class C∞ defined in R such that

the set of zeros of hj does not contain any non-empty open interval for every j. Let

e1, e2, . . . , ed be positive integers. Then the following operator of (d + 1) variables is

hypoelliptic:

∂t +
d∏

k=1

hk(t)
2ek

d∑
j=1

hj(t)
2∂2
xj
.
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Set f0(t) =
∏d
k=1 hk(t)

2ek , fj(t) = hj(t) ( j = 1, . . . , d ). Then {fj(t)}dj=0 satisfies (1�-1),

(1�-2) and (1�-3). λ(I, j) can be chosen to be 2ej for every j and every I.

Proof of Theorem C.

Let I be an arbitrary bounded open interval of Rt and I the closure of I. We shall prove

that Q is hypoelliptic in Ω = I ×Rd
x. The proof is divided into two cases whether N(I)

is empty or not. Suppose that N(I) is empty. Set ãjk(t, x) = ajk(t, x)fj(t)fk(t) ( j, k =

1, . . . , n ). Then (ãjk(t, x))
n
j,k=1 satisfies Condition (2◦) on Ω. So, Q is hypoelliptic in Ω

due to Theorem A.

Next, suppose that N(I) is non-empty. The proof is done in a similar way as that of

Theorem A. So we give it roughly. By the same way as in the proof of Proposition 1.1 for

P , Proposition 1.1 holds for Q. Therefore, it suffices to show that Q satisfies Conditions

(I)–(V) in §2. Without loss of generality, we may suppose that f0 changes sign at t = 0.

As in §3, we say that (f0,Ω) is of type (α-1) if πt(Ω) contains t = 0 and that (f0,Ω) is of

type (α-2) if πt(Ω) does not contain t = 0.

First, we have the following two lemmas corresponding to Lemmas 3.1 and 3.3 respec-

tively.

Lemma 9.2 (i) If (f0,Ω) is of type (α-1), there exists, for any K ⊂⊂ Ω and any

ρ > 3/4, a constant C depending only on (K, ρ) such that

n∑
j=1

‖|f0|ρfjLju‖2 ≤ C
{∣∣∣Re

(
Qu, (sgn t)|f0|2ρ−1u

)∣∣∣+ ‖u‖2
}

(9.5)

for all u ∈ C∞
0 (K).

(ii) If (f0,Ω) is of type (α-2), there exists, for any K ⊂⊂ Ω, a constant C depending

only on K such that

n∑
j=1

∥∥∥|f0|1/2fjLju
∥∥∥2 ≤ C

{
|Re (Qu, u)| + ‖u‖2

}
for all u ∈ C∞

0 (K).(9.6)

Lemma 9.3 (i) If (f0,Ω) is of type (α-1), there exists, for any K ⊂⊂ Ω, a constant

C depending only on K such that

‖u‖2 ≤ C
(
|Re (Qu, tu)| + ‖tu‖2

)
for all u ∈ C∞

0 (K).(9.7)

(ii) If (f,Ω) is of type (α-2), there exists, for any K ⊂⊂ Ω and any a ∈ R, a constant

C such that

‖u‖2 ≤ C

|Re (Qu, (t− a)u)| +
n∑
j=1

∥∥∥|(t− a)f0|1/2fjLju
∥∥∥2
(9.8)

for all u ∈ C∞
0 (K), where C depends only on K and the diameter of {a} ∪ πt(K).
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The proof of Lemma 9.2 (Lemma 9.3) is done in the same way as that of Lemma 3.1

(Lemma 3.3) respectively, so we omit it.

The next lemma is used only for the proof of Lemma 9.5 below. We prepare a notation.

Given a multi-index J = (j1, . . . , jl) with l ≥ 1 and jm ∈ {1, . . . , n} (m = 1, . . . , l ), we

define the function FJ(t) to be

FJ(t) = f0(t)
l

l∏
m=1

fjm(t).

l is said to be the length of J and denoted by ‖J‖.

Lemma 9.4 For any K ⊂⊂ Ω and any multi-index J , there exists a constant C de-

pending only on (K, J) such that∥∥∥∥〈Dx〉2
1−‖J‖−1FJ(t)RJu

∥∥∥∥2 ≤ C
(
‖Qu‖2 + ‖u‖2

)
for all u ∈ C∞

0 (K),(9.9)

where ‖J‖ is the length of J and RJ is the same as in §3. (See Lemma 3.4.)

The proof is done by induction with respect to the length of J and by using Lemma

9.2 as we used Lemma 3.1 in the proof of Lemma 3.4.

Next, set

M = M(I) = max
j∈N(I)

1

λ(I, j)
,(9.10)

where λ has been defined in (1�-3). M is a number which stands for what extent the

functions f1, f2, . . . , fn are controlled by f0. Then, we have the following lemma which

plays the same role as Lemma 3.5 in §3.

Lemma 9.5 For any K ⊂⊂ Ω, there exist a positive integer k depending only on K

and a constant C depending only on K such that∥∥∥〈Dx〉2
1−k

f0(t)
(M+1)ku

∥∥∥2 ≤ C
(
‖Qu‖2 + ‖u‖2

)
for all u ∈ C∞

0 (K).(9.11)

Proof of Lemma 9.5. From the hypothesis (3◦), we have the following:

For any K ⊂⊂ Ω, there exist a positive integer k and functions bjJ(x), cj(x) ∈ C∞(K)

such that

∂xl
=

∑
‖J‖≤k

blJ(x)RJ(x,Dx) + cl(x) ( l = 1, . . . , d ).(9.12)
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From Condition (1�-3), we have for every multi-index J = (j1, . . . , jl) and any t ∈ I

|FJ(t)| ≥ |f0(t)|l
l∏

m=1

|fjm(t)| ≥ C1(I, J) |f0(t)|l
∏

jm∈N(I)

C(I,m) |f0(t)|1/λ(I,jm)

≥ C2(I, J) |f0(t)|l
l∏

m=1

|f0(t)|M(I) ≥ C3(I, J) |f0(t)|(M+1)l .

This implies, together with (9.12),

∥∥∥〈Dx〉2
1−k

f0(t)
(M+1)ku

∥∥∥2 ≤ C1(K)

 ∑
‖J‖≤k

∥∥∥〈Dx〉2
1−k−1FJ(t)RJu

∥∥∥2 + ‖u‖2


≤ C2(K)

(
‖Qu‖2 + ‖u‖2

)
( by (9.9) ) .

The proof is finished. �

In view of Lemma 9.5, the degeneracy of Q with respect to t is controlled by f0(t). We

set χ̂j,κ′(t, ξ) = φ̃j
(
f0(t)〈ξ〉κ

′)
(j = 1, 2). Applying Lemmas 9.2 and 9.5, and using χ̂j,κ′

as χ̃1,κ′ and χ̃2,κ′ are used in getting Proposition 4.1, we obtain the following proposition.

Proposition 9.6 For any K ⊂⊂ Ω, any N > 0 and any χ ∈ ′SΨ, there exist positive

constants κ = κ(K), C = C(K,N, χ) such that

n∑
j=1

‖〈Dx〉κf0fjLjχu‖2
+ ‖〈Dx〉κf0χu‖2

(9.13)

≤ C
(
‖Qχu‖2 + ‖χu‖2 + ‖u‖2

−N
)

for all u ∈ C∞
0 (K).

Furthermore, by making use of Lemmas 9.2 and 9.3, we obtain the following proposi-

tion which guarantees that Q satisfies Condition (I).

Proposition 9.7 For any domain K ⊂⊂ Ω, any N > 0, any χ ∈ ′SΨ and any µ > 0,

there exists a constant C = C(K,N, χ, µ) such that

‖χu‖ ≤ µ ‖Qχu‖ + C ‖u‖−N for all u ∈ C∞
0 (K).(9.14)

The proof of this proposition is done by constructing a partition of unity according to

(f0,Ω) as in the proof of Proposition 5.1 in §5. Thus, we omit the proof.

End of Proof of Theorem C. We can verify that Q satisfies Conditions (I)–(V)

by using Lemma 9.2 and Propositions 9.6 and 9.7 as we used Lemma 3.1 and Propositions

4.1 and 5.1 in §6 respectively. So Q is hypoelliptic due to Proposition 2.1. And hence the

proof of Theorem C is finished. �
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10 Necessity of (1◦) for hypoellipticity

In this section, we investigate the question of non-hypoellipticity for P of the form (A)

under Conditions (2◦), (3◦). Throughout this section, we assume that f(t, x) is a real-

valued function of class C∞ and independent of x, so we set f(t) = f(t, x). Our result

is Theorem D presented in the Introduction. Before proving this theorem, we give a

remark.

Remark. Condition (1◦-α) is necessary and sufficient for hypoellipticity of P under

Conditions (2◦) and (3◦) provided that f is real-analytic. This is because f satisfies one

of (F1) and (F2) as follows if Condition (1◦-α) does not hold.

(F1) There exists a non-empty open interval I on which f vanishes identically.

(F2) There exist t1, t2 ∈ R such that t1 < t2 and f(t1) > 0 > f(t2).

If (F1) holds, P is obviously not hypoelliptic. If (F2) holds and if f is real-analytic,

(D) holds and hence P is not hypoelliptic due to Theorem D. Indeed, let Zf be the

set of zeros of f(t) in [t1, t2]. Zf is finite because f is real-analytic. So, there exist a

positive integer q and a sequence of numbers {sm}qm=1 such that Zf = {s1, . . . , sq−1}
and t1 < s1 < s2 < · · · < sq−1 < sq = t2. Since f(t) ≥ 0 on [t1, s1], the set {m ∈
{1, . . . , q − 1} ; f(t) ≥ 0 on [t1, sm]} is non-empty. Let l be the maximal element of this

set. Then we have f(t) ≥ 0 on [t1, sl] and f(t) ≤ 0 on [sl, sl+1]. So (D) is satisfied if we

set s = sl and I = (t1, sl+1).

On the other hand, Theorem D does not make clear whether (1◦-α) is necessary or

not for hypoellipticity of P if f is not real analytic. This is because, there exists an f

such that neither (D) nor Condition (1◦-α) holds. For example, we can construct such a

function in the following way. Let g, g̃ be functions of class C∞ in R such that
g > 0 in {|t| < 1/2}, g ≡ 0 on {|t| ≥ 1/2}
g̃ > 0 in {t > 0}, g̃ ≡ 0 on {t ≤ 0}.

And set

Σ0 = {2}
Σl =

{
2 + 3δ1 + 32δ2 + · · · + 3lδl ; δm ∈ {0, 2} (m = 1, 2, . . . , l )

}
( l = 1, 2, . . . ).

We define a sequence of functions {gl}∞l=0 by

g0(t) = g̃(−t) + g̃(t− 1)

gl(t) =
(−1)l

l!

∑
σ∈Σl−1

g
(
3l
(
t− 2σ − 1

2 · 3l
))

( l ≥ 1 )
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and set

g∗(t) =
∞∑
l=0

gl(t).

We can verify that the sum
∑∞
l=1 g

(k)
l (t) converges uniformly in R for every k ∈ Z+.

Therefore g∗ belongs to C∞(R). Obviously, g∗ does not satisfy Condition (1◦-α). More-

over, since the set of zeros of g∗ is the Cantor set, there exists, for any zero s of g∗ and

any neighborhood J of s, an s′ ∈ J such that g∗(s′) > 0 and s′ > s. So g∗ does not satisfy

(D).

Let us sketch the proof of Theorem D. The idea of proof is to construct a non-smooth

function u for which H = Pu is of class C∞. The construction is based on [5]. A formal

solution is obtained as a sum of distributions, but the sum is not convergent in general

in the distribution sense. In the second subsection, we investigate the smoothness of

each term of the sum. And we modify the formal solution to make it convergent in the

distribution sense and to make its image by P smooth. In the third subsection, we verify

that the modified sum is not smooth.

Let us begin with the proof of Theorem D. First, without loss of generality we may

suppose that s = 0. Moreover from (D), we may assume that

−
∫ t

0
f(s) ds > 0 if t ∈ I \ {0}.(10.1)

This is because, if there exists an r ∈ I \{0} such that − ∫ r0 f(s)ds = 0, then f(t) vanishes

identically on [min{0, r},max{0, r}]. Obviously, P is not hypoelliptic in this case.

10.1 A formal solution

A formal solution is the sum of distributions obtained by solving a system of ordinary

differential equations (10.2) below.

Let ξ be the dual variable of x and a(t, x, ξ) be the symbol of
∑n
j,k=1 ajkLjLk. Then

P is written as P = ∂t + f(t) a(t, x,Dx). We denote by Fx the partial Fourier transform

with respect to x. We rewrite Pu formally as follows by integration by parts.

Pu =
∫
eix·ξ

{
∂tFx[u](t, ξ) + f(t)

∑
α

i|α|

α!
∂αξ
(
(∂αxa(t, 0, ξ))Fx[u](t, ξ)

)}
−dξ,

where −dξ = (2π)−ddξ. Next, let ψ(ξ) be a real-valued function of class C∞ defined on Rd

which we shall choose later. Let {vj(t, ξ)}∞j=0 be the solution of the following system of
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ordinary differential equations.

d

dt
v0(t, ξ) + f(t) a(t, 0, ξ) v0(t, ξ) = 0

d

dt
vj(t, ξ) + f(t) a(t, 0, ξ) vj(t, ξ) = −f(t)

j−1∑
k=0

∑
|α|=k+1

i|α|

α!
×

∂αξ
(
vj−k−1(t, ξ) ∂

α
x a(t, 0, ξ)

)
( j ≥ 1 )

(10.2)

subject to the initial condition v0(0, ξ) = ψ(ξ)

vj(0, ξ) = 0 ( j ≥ 1 ).
(10.3)

We can solve (10.2)–(10.3) inductively. We see easily that vj(t, ξ) ∈ C∞(Rd+1) for every

j. If we denote the inverse partial Fourier transform with respect to ξ by F−1
ξ , the sum

ũ(t, x) =
∞∑
j=0

F−1
ξ [vj ](t, x)(10.4)

satisfies P ũ = 0. (We shall show in Lemma 10.2 below that F−1
ξ [vj ](t, x) belongs to

S ′(Rd
ξ) for every t ∈ I.) Indeed, we can rewrite P ũ formally as follows.

P ũ =
∫
eix·ξ

{
∂tv0(t, ξ) + f(t) a(t, 0, ξ) v0 +

∞∑
j=1

(
∂tvj(t, ξ) + f(t) a(t, 0, ξ) vj

+ f(t)
j−1∑
k=0

∑
|α|=k+1

i|α|

α!
∂αξ
(
(∂αxa(t, 0, ξ)) vj−k−1(t, ξ)

))}
−dξ.

The right hand side is equal to 0 by (10.2). Moreover, if ψ is not rapidly decreasing, so

will be Fx[u](0, ξ).

10.2 Modification of the formal solution

In this subsection, we shall modify the formal solution ũ (see (10.4) above). Let us

sketch how the modification will be done. First, we study − ∫ t0 f(s)a(s, 0, ξ)ds and choose

a suitable ψ in (10.3) (see Lemma 10.1). Next, we study the order of decay of vj as

|ξ| → ∞. We will see that the order of decay of vj grows larger as j increases (see

Lemma 10.2). This means that F−1
ξ [vj] is more and more smooth as j increases. Finally

we construct functions {uj}∞j=0 from {vj}∞j=0 such that u =
∑∞
j=0 uj is convergent in the

distribution sense and that Pu is smooth.

We investigate − ∫ t0 f(s) a(s, 0, ξ) ds. We set

F (t) = −
∫ t

0
f(s) ds, G(t, ξ) = −

∫ t

0
f(s) a(s, 0, ξ) ds.
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Since a(s, 0, ξ) is a polynomial in ξ of degree 2, let a2(s, ξ) be the second degree part of

a(s, 0, ξ) and set a1(s, ξ) = a(s, 0, ξ) − a2(s, ξ). a2(s, ξ) is written as follows:

a2(s, ξ) =
n∑

j,k=1

ajk(s, 0) σp(Lj)(0, ξ)σp(Lk)(0, ξ),

where σp(Lj) is the first degree part with respect to ξ of the symbol of Lj. Since the

coefficients of Lj are real-valued by Condition (3◦), σp(Lj)(0, ξ) is purely imaginary. Then

we have for every s ∈ I

Re a2(s, ξ) = Re
n∑

j,k=1

ajk(s, 0) σp(Lj)(0, ξ)σp(Lk)(0, ξ)

= − 1

2

((
A(s, 0) + tĀ(s, 0)

)
σ, σ

)
≤ − 1

2
δ(I)

n∑
j=1

|σp(Lj)(0, ξ)|2 ( by Condition (2◦) ).

where σ is the column vector t(σp(L1)(0, ξ), . . . , σp(Ln)(0, ξ) ).

Next, in view of Condition (3◦),

there exist integers q ∈ {1, . . . , n} and m ∈ {1, . . . , d}(10.5)

such that the coefficient of ξm in σp(Lq)(0, ξ) is not zero.

Let ξ̃ = (ξ1, . . . , ξm−1, 0, ξm+1, . . . , ξd). For every C > 0 we define D(C) to be

D(C) =
{
ξ ∈ Rd ; |ξm|2 ≥ C|ξ̃|2

}
.(10.6)

We see immediately that

ξ2
m ≥ C

1 + C
|ξ|2 for every ξ ∈ D(C).(10.7)

Now we shall show the following lemma.

Lemma 10.1 There exist positive constants (C0, C1, C2) independent of (t, ξ) such that

|expG(t, ξ)| ≤ exp
(
−C0F (t)|ξ|2

)
for all (t, ξ) ∈ I ×

(
D(C1) ∩ {|ξ| ≥ C2}

)
.(10.8)

Proof of Lemma 10.1. Since |expG(t, ξ)| = exp ReG(t, ξ), it suffices to show that

ReG(t, ξ) ≤ −C0|ξ|2F (t) for all (t, ξ) ∈ I ×
(
D(C1) ∩ {|ξ| ≥ C2}

)
.(10.9)

This follows from the inequality.

Re a(s, 0, ξ) ≤ −C0|ξ|2 for all (s, ξ) ∈ I ×
(
D(C1) ∩ {|ξ| ≥ C2}

)
.(10.10)
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In fact, suppose that (10.10) holds. If t ∈ I and t > 0, then −f(s) ≥ 0 on [0, t] by (D)

and we have

ReG(t, ξ) = −
∫ t

0
f(s) Re a(s, 0, ξ) ds

≤ C0|ξ|2
∫ t

0
f(s) ds = −C0|ξ|2F (t) for all ξ ∈ D(C1) ∩ {|ξ| ≥ C2}.

In a similar way, we can verify that this holds also for t < 0. So (10.9) is satisfied and

hence (10.8) holds.

Now let us prove (10.10). First, by (10.5), there exist positive constants C3, C4 inde-

pendent of ξ such that

n∑
j=1

|σp(Lj)(0, ξ)|2 ≥ C3 ξm
2 − C4|ξ̃|2.

Then, in view of the definition of D(C), we choose a positive number C5 so large that

C4|ξ̃|2 ≤ C3

2
ξm

2 for all ξ ∈ D(C5).

Thus we have

Re a2(s, ξ) ≤ − 1

4
δ(I)C3 ξm

2 for all (s, ξ) ∈ I ×D(C5).(10.11)

Since a1(s, ξ) is a polynomial in ξ of degree 1, there exist constants C6, C7 independent

of (s, ξ) such that

|Re a1(s, ξ)| ≤ C6|ξ| + C7 for all (s, ξ) ∈ I ×Rd.

We choose a positive number C8 so large that

C6|ξ| + C7 ≤ δ(I)C3 C5

8(1 + C5)
|ξ|2 for all ξ ∈ Rd satisfying |ξ| ≥ C8.

Then, we have by (10.7)

|Re a1(s, ξ)| ≤ δ(I)C3C5

8(1 + C5)
|ξ|2(10.12)

≤ 1

8
δ(I)C3 ξm

2 for all (s, ξ) ∈ I ×
(
D(C5) ∩ {|ξ| ≥ C8}

)
.

Set C9 = δ(I)C3C5/(8 + 8C5) > 0. We have from (10.11), (10.12) and (10.7)

Re a(s, 0, ξ) = Re a2(s, ξ) + Re a1(s, ξ) ≤ − 1

4
δ(I)C3 ξm

2 + |Re a1(s, ξ)|

≤ − 1

4
δ(I)C3 ξm

2 +
1

8
δ(I)C3 ξm

2 ≤ − 1

8
δ(I)C3 ξm

2

≤ −C9|ξ|2
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for all (s, ξ) ∈ I ×
(
D(C5)∩ {|ξ| ≥ C8}

)
. This implies (10.10). And hence Lemma 10.1 is

proved. �

We choose a real-valued function ψ(ξ) in such a way that ψ(ξ) = 〈ξ〉−d−3χ(ξ), where

χ(ξ) is an element of S0
1,0(R

d) and satisfies

0 ≤ χ ≤ 1, suppχ ⊂ D(C1) ∩ {|ξ| ≥ C2} and χ ≡ 1 on D(2C1) ∩ {|ξ| ≥ 2C2}.
Note that ψ(ξ) is not rapidly decreasing. From (10.2)–(10.3), we have

v0(t, ξ) = ψ(ξ) expG(t, ξ).

Therefore (10.8) implies

|v0(t, ξ)| ≤ 〈ξ〉−d−3 exp
(
−C0F (t)|ξ|2

)
for all (t, ξ) ∈ I ×Rd.

By (10.1) and this inequality, v0(t, ξ) belongs to L1(Rd
ξ)∩L2(Rd

ξ) for every t ∈ I, moreover

F−1
ξ [v0] is differentiable once with respect to t and twice with respect to x.

Now we are going to show that F−1
ξ [vj] is ([j/2]+1)-times differentiable with respect to

(t, x). We shall prove Lemma 10.2 below for this. Furthermore, F−1
ξ [vj] is differentiable

once with respect to t and twice with respect to x by using Lemma 10.2 (see (10.18)

below).

Lemma 10.2 For any (j, p, β) ∈ Z+×Z+×Zd
+, there exists a constant Cj

p,β such that∣∣∣∂pt ∂βξ vj(t, ξ)∣∣∣ ≤ Cj
p,β

(
1 + F (t)〈ξ〉2

)|β|+2j 〈ξ〉2p−d−3−|β|−j exp ReG(t, ξ)(10.13)

for all (t, ξ) ∈ I ×Rd.

Proof of Lemma 10.2. We proceed by induction with respect to j. For j = 0, we

treat ∂βξ v0 at first. It is written as

∂βξ v0 =
∑

β′
0+···+β′

l=β

|β′
j |≥1, j=1,...,l

Cβ′
(
∂
β′
0
ξ ψ

)(
∂
β′
1
ξ G(t, ξ)

)
· · ·
(
∂
β′

l
ξ G(t, ξ)

)
expG(t, ξ),

and ∂βξG(t, ξ) is evaluated as follows.∣∣∣∂βξG(t, ξ)
∣∣∣ = ∣∣∣∣− ∫ t

0
f(s) ∂βξ a(s, 0, ξ) ds

∣∣∣∣ ≤ CβF (t)〈ξ〉2−|β|.

Note that F (t) is non-negative by (10.1). So we have∣∣∣∂βξ v0(t, ξ)
∣∣∣ ≤ ∑

C ′
β′〈ξ〉−d−3−|β′

0|F (t)l〈ξ〉2l−|β′
1+···+β′

l| exp ReG(t, ξ)

=
|β|∑
l=1

Cβ,lF (t)l〈ξ〉2l〈ξ〉−d−3−|β| exp ReG(t, ξ)

≤ Cβ
(
1 + F (t)〈ξ〉2

)|β| 〈ξ〉−d−3−|β| exp ReG(t, ξ).
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Therefore (10.13) holds for j = p = 0. Next, we prove (10.13) in the case where j = 0, p ≥
1 by induction with respect to p. Let p′ be a positive integer and suppose that (10.13)

holds for j = 0, 0 ≤ p ≤ p′. From (10.2), we have ∂p
′+1
t ∂βξ v0 = −∂p′t ∂βξ (f(t)a(t, 0, ξ)v0).

By Leibniz’ rule, this implies

∣∣∣∂p′+1
t ∂βξ v0

∣∣∣ =

∣∣∣∣∣∣
p′∑
q=0

∑
α≤β

(
p′

q

)(
β

α

)
∂qt ∂

α
ξ

(
f(t) a(t, 0, ξ)

)
∂p

′−q
t ∂β−αξ v0

∣∣∣∣∣∣
≤

p′∑
q=0

∑
α≤β

C ′
q,α〈ξ〉2−|α| ×

Cp′−q,β−α
(
1 + F (t)〈ξ〉2

)|β−α| 〈ξ〉2(p′−q)−d−3−|β−α| exp ReG(t, ξ)

( by induction hypothesis )

≤ C ′
p′,β

(
1 + F (t)〈ξ〉2

)|β| 〈ξ〉2(p′+1)−d−3−|β| exp ReG(t, ξ).

So (10.13) holds for p = p′ + 1. Now (10.13) is verified for all p provided that j = 0.

Next, let j′ be a positive integer and suppose that (10.13) holds for 0 ≤ j ≤ j′. Then

(10.2)–(10.3) yield

vj′+1(t, ξ) = −
j′∑
k=0

∑
|α|=k+1

expG(t, ξ)

×
∫ t

0
f(s)

i|α|

α!
∂αξ
(
vj′−k(s, ξ) ∂αxa(s, 0, ξ)

)
exp(−G(s, ξ)) ds.

Furthermore, we have by Leibniz’ rule

∂βξ vj′+1(t, ξ)(10.14)

= − ∑
γ1+γ2+γ3=β

Cγ1,γ2,γ3

j′∑
k=0

∑
|α|=k+1

(
∂γ1ξ expG(t, ξ)

)

×
∫ t

0
f(s)

i|α|

α!
∂α+γ2
ξ

(
vj′−k(s, ξ) ∂αxa(s, 0, ξ)

) (
∂γ3ξ exp(−G(s, ξ))

)
ds.

By the same way as for v0, we have
∣∣∣∂γ1ξ expG(t, ξ)

∣∣∣ ≤ Cγ1
(
1 + F (t)〈ξ〉2

)|γ1| 〈ξ〉−|γ1| exp ReG(t, ξ),∣∣∣∂γ3ξ exp(−G(s, ξ))
∣∣∣ ≤ Cγ3

(
1 + F (s)〈ξ〉2

)|γ3| 〈ξ〉−|γ3| exp(−ReG(s, ξ)).
(10.15)

Since j′ − k ≤ j′, we have by induction hypothesis∣∣∣∣∣ i|α|α!
∂α+γ2
ξ

(
vj′−k(s, ξ) ∂αxa(s, 0, ξ)

) ∣∣∣∣∣(10.16)

≤ Cα,γ2,j′,k
(
1 + F (s)〈ξ〉2

)|α+γ2|+2(j′−k) 〈ξ〉−d−1−|α+γ2|−(j′−k) exp ReG(s, ξ).

Suppose that t > 0. Since |f(s)| = −f(s) for every s ∈ [0, t], we have by combining

inequalities (10.14), (10.15) and (10.16)
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∣∣∣∂βξ vj′+1(t, ξ)
∣∣∣

≤ ∑
γ1+γ2+γ3=β

j′∑
k=0

∑
|α|=k+1

Cγ1,γ2,γ3,j′,k,α
(
1 + F (t)〈ξ〉2

)|γ1| 〈ξ〉−d−1−|α+γ1+γ2+γ3|−(j′−k)

× exp ReG(t, ξ)
∫ t

0

{
(−f(s))

(
1 + F (s)〈ξ〉2

)|α+γ2+γ3|+2(j′−k)}
ds.

Since −f(s) ≥ 0 for s ∈ [0, t], we have 0 ≤ F (s) ≤ F (t) for s ∈ [0, t]. Therefore we obtain∣∣∣∂βξ vj′+1(t, ξ)
∣∣∣(10.17)

≤ Cj′
β

(
1 + F (t)〈ξ〉2

)|β|+2j′+1 〈ξ〉−d−1−|β|−j′−1 exp ReG(t, ξ)
∫ t

0
(−f(s)) ds

= Cj′
β

(
1 + F (t)〈ξ〉2

)|β|+2j′+1 〈ξ〉−d−1−|β|−(j′+1)
(
exp ReG(t, ξ)

)
F (t)〈ξ〉2〈ξ〉−2

≤ Cj′
β

(
1 + F (t)〈ξ〉2

)|β|+2j′+2 〈ξ〉−d−3−|β|−(j′+1) exp ReG(t, ξ).

In a similar way, we get (10.17) also for t < 0. Now (10.13) is verified for every (p, j) ∈
{0} ×Z+. Finally, (10.2) yields

∂p
′+1
t ∂βξ vj(t, ξ) = −∂p′t ∂βξ

(
f(t) a(t, 0, ξ) vj(t, ξ)

)
−∂p′t ∂βξ

f(t)
j−1∑
k=0

∑
|α|=k+1

i|α|

α!
∂αξ
(
vj−k−1(t, ξ) ∂

α
xa(t, 0, ξ)

)
for j ≥ 1. Thus, again by induction with respect to p by the same way as in the proof for

v0, we have (10.13) for p > 0. Now Lemma 10.2 is proved. �

The support of vj(t, ·) is contained in ⊂ D(C1) ∩ {|ξ| ≥ C2} for every (j, t) ∈ Z+ × I

from (10.2)–(10.3) and the definition of ψ. Moreover, since

sup
I×�d

{
F (t)l|ξ|2l exp(−C0|ξ|2F (t))

}
< +∞ for every l ∈ Z+,

we have by Lemma 10.2 and (10.8)∣∣∣∂pt ∂βξ vj(t, ξ)∣∣∣ ≤ Cj,p,β〈ξ〉2p−d−3−j−|β| for all (t, ξ) ∈ I ×Rd.(10.18)

This shows that F−1
ξ [vj ](t, x) ∈ C [j/2]+1(I ×Rd).

In what follows, we modify vj . The formal sum ũ satisfies P ũ = 0 (see (10.4)).

However, ũ is not necessarily convergent in the distribution sense. Therefore, we need to

modify vj consisting ũ so that the modified sum converges and in addition that its image

by P is smooth. Let h(ξ) be a function of class C∞ in Rd such that

h(ξ) ≡ 1 on {|ξ| ≥ 2}, supph(ξ) ⊂ {|ξ| ≥ 1}.
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Let {εj}∞j=0 be a sequence of positive numbers such that ε0 = 1 < ε1 < ε2 < · · · → +∞
which we choose later. For every (j, p, β) ∈ Z+ ×Z+ ×Zd

+ satisfying p+ |β| ≤ [j/2], we

have∣∣∣ ∂pt ∂βxF−1
ξ

[
h(ε−1

j ·) vj(t, ·)
]
(x)

∣∣∣
=

∣∣∣∣ ∫ eix·ξ (iξ)β h(ε−1
j ξ) ∂pt vj(t, ξ)

−dξ
∣∣∣∣ ≤ Cj,p,0

∫
|ξ|≥εj

〈ξ〉−d−3−j+2p+|β| −dξ (by (10.18))

≤ Cj,p,0

∫
|ξ|≥εj

〈ξ〉−d−2〈ξ〉−1 −dξ ≤ Cj,p,0εj
−1
∫
〈ξ〉−d−2 −dξ = Cj,p,0Cdεj

−1,

where Cd is a constant depending only on d. So we choose a {εj}∞j=1 inductively in the

following way.

ε0 = 1, εj > max

{
1 + εj−1, 2

jCd max
p+|β|≤[j/2]

Cj,p,0

}
(j ≥ 1).

We set uj(t, x) = F−1
ξ [h(ε−1

j ·)vj(t, ·)](x). Then we have for every (j, p, β) ∈ Z+×Z+×Zd
+

satisfying p+ |β| ≤ [j/2]∣∣∣∂pt ∂βxuj(t, x)∣∣∣ ≤ 2−j for all (t, x) ∈ I ×Rd.(10.19)

And hence

∞∑
j=N

uj(t, x) converges in C [N/2](I ×Rd) for every positive integer N.(10.20)

Let

u(t, x) =
∞∑
j=0

uj(t, x).

Since u(t, x) is a continuous function in I ×Rd from (10.19), it belongs to D′(I ×Rd).

Now, let us show that Pu is smooth. For a positive integer N , we divide Pu into two

parts as follows.

Pu(t, x) = P
N−1∑
j=0

uj(t, x) + P
∞∑
j=N

uj(t, x) = U1,N(t, x) + U2,N(t, x).

It suffices to show the following lemma.

Lemma 10.3 Let l be a positive integer. Then U1,N(t, x) ∈ C l(I ×Rd) if [N/2] > l.

In fact, given a positive integer l, we choose N so large that [N/2] > l + 2. By (10.20),

U2,N(t, x) ∈ C [N/2]−2(I ×Rd) ⊂ C l(I ×Rd). Moreover, this lemma implies U1,N(t, x) ∈
C l(I × Rd). So Pu = U1,N + U2,N ∈ C l(I × Rd). Since l is arbitrary, we see that

Pu ∈ C∞(I ×Rd).
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Proof of Lemma 10.3. U1,N(t, x) is given by

U1,N(t, x) =
∫
eix·ξ

N−1∑
j=0

h(ε−1
j ξ) ∂tvj(t, ξ)

−dξ

+
∫
eix·ξf(t) a(t, x, ξ)

N−1∑
j=0

h(ε−1
j ξ) vj(t, ξ)

−dξ.

By the Taylor expansion and integration by parts, we have

U1,N(t, x)

=
∫
eix·ξ

N−1∑
j=0

h(ε−1
j ξ) ∂tvj(t, ξ)

−dξ

+
∫
eix·ξf(t)

N−1∑
j=0

∑
|α|<N

i|α|

α!
∂αξ
(
h(ε−1

j ξ) vj(t, ξ) ∂
α
xa(t, 0, ξ)

)
−dξ

+N
∫
eix·ξ

∑
|α|=N

i|α|

α!

∫ 1

0
(1 − θ)N−1∂αξ

(
f(t) ∂αx a(t, θx, ξ)

N−1∑
j=0

h(ε−1
j ξ) vj(t, ξ)

)
dθ −dξ

= V1,N(t, x) + V2,N(t, x) + V3,N(t, x).

To prove Lemma 10.3, we have to show the following:

V1,N(t, x) + V2,N(t, x) ∈ C l(I ×Rd) if [N/2] > l.(10.21)

V3,N(t, x) ∈ C l(I ×Rd) if [N/2] > l.(10.22)

Let us begin with (10.22). We evaluate derivatives of the integrand of V3,N by using

(10.18) and we have

“ For any K ⊂⊂ Rd and any (p, α, β, γ) ∈ Z+ ×Zd
+ ×Zd

+ ×Zd
+ satisfying that |α| = N

and p+ |β| ≤ [N/2], there exists a constant C = C(K, p, α, β, γ,N) such that∣∣∣∣∣∣ (iξ)β∂pt ∂αξ ∂γx
(
f(t) ∂αxa(t, θx, ξ)

N−1∑
j=0

h(ε−1
j ξ) vj(t, ξ)

) ∣∣∣∣∣∣ ≤ C〈ξ〉−d−1+2p+|β|−N

for all (t, x, ξ, θ) ∈ I ×K ×Rd × [0, 1]. ”

This implies V3,N(t, x) ∈ C [N/2](I×Rd). Consequently, V3,N(t, x) ∈ C l(I×Rd) if [N/2] >

l. Now (10.22) is verified.

Next, we prove (10.21). We define W1,N (t, x) by

W1,N (t, x) =
∫
eix·ξh(ξ)

N−1∑
j=0

∂tvj(t, ξ)
−dξ.(10.23)

Since derivatives of h(ξ)∂tvj(t, ξ) − h(ε−1
j ξ)∂tvj(t, ξ) of any order are rapidly decreasing

with respect to ξ, the difference V1,N −W1,N is smooth. Also, we define W2,N(t, x) by

W2,N (t, x) =
∫
eix·ξh(ξ)

N−1∑
j=0

f(t)
∑

|α|<N

i|α|

α!
∂αξ
(
vj(t, ξ) ∂

α
xa(t, 0, ξ)

)
−dξ.(10.24)
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Then, the difference V2,N − W2,N is also smooth because derivatives of h(ξ)∂αξ
(
vj(t, ξ)

∂αxa(t, 0, ξ)
)
− ∂αξ

(
h(ε−1

j ξ)vj(t, ξ)∂
α
xa(t, 0, ξ)

)
of any order are rapidly decreasing with

respect to ξ. Therefore, for the proof of (10.21), it suffices to show that

W1,N (t, x) +W2,N (t, x) ∈ C l(I ×Rd) for every N satisfying [N/2] > l.(10.25)

Now we prove (10.25) by making use of (10.2). Summing up both sides of (10.2) from

j = 0 to j = N − 1, we have

∫
eix·ξh(ξ)

N−1∑
j=0

∂tvj(t, ξ) + f(t)
∑

|α|<N

i|α|

α!
∂αξ
(
vj(t, ξ) ∂

α
xa(t, 0, ξ)

) −dξ(10.26)

=
∫
eix·ξh(ξ) f(t)

N−2∑
k=0

∑
|α|=k+1

N−1∑
p=N−k−1

i|α|

α!
∂αξ
(
vp(t, ξ) ∂

α
x a(t, 0, ξ)

)
−dξ.

The left hand side of (10.26) is equal to W1,N +W2,N . Therefore, we have to show that the

right hand side of (10.26) belongs to C l(I ×Rd) for every N satisfying [N/2] > l+2. We

evaluate derivatives of the integrand by using (10.18). Then we have for every (q, β) ∈
Z+ ×Zd

+∣∣∣∣∣∣ (iξ)β∂qt
(
f(t)

N−2∑
k=0

∑
|α|=k+1

N−1∑
p=N−k−1

i|α|

α!
∂αξ
(
vp(t, ξ) ∂

α
x a(t, 0, ξ)

)) ∣∣∣∣∣∣
≤

N−2∑
k=0

∑
|α|=k+1

N−1∑
p=N−k−1

Ck,α,β,p,q,N〈ξ〉−d−1−|α|+|β|+2q−p ≤ Cq,β,N〈ξ〉−d−1+|β|+2q−N .

This shows that the right hand side of (10.26) belongs to C [N/2](I×Rd). So (10.25) holds.

This completes the proof of Lemma 10.3. �

10.3 Verification of non-smoothness of the solution

From (10.19), the sum
∑∞
j=0 uj(t, x) is convergent uniformly in any compact subset of I.

Since uj(t, x) is continuous for every j and uj(0, x) vanishes identically for every j ≥ 1 by

(10.3), we have

u(0, x) =
∞∑
j=0

uj(0, x) = u0(0, x) =
∫
eix·ξh(ξ)ψ(ξ) −dξ.

If u were smooth, u(0, x) should also be smooth. In what follows, we shall prove by

contradiction that u(0, x) is not smooth.

Set Br = {x ∈ Rd; |x| < r}. Suppose that u(0, x) be smooth in B1. Then for every

ϕ ∈ C∞
0 (B1), ϕ(x)u(0, x) belongs to C∞

0 (B1) and Fx[ϕ(·)u(0, ·)](ξ) is rapidly decreasing.
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Let ϕ1 ∈ C∞
0 (B1) be such that Fx[ϕ1](ξ) is real-valued and non-negative. There exists

such a ϕ1. In fact, take a ϕ2 ∈ C∞
0 (B1/3) such that ϕ2 is real-valued and ϕ2(x) = ϕ2(−x).

Then Fx[ϕ2](ξ) is real-valued. Set ϕ1(x) = ϕ2 ∗ϕ2(x), where ∗ stands for the convolution.

Now, ϕ1 ∈ C∞
0 (B2/3), Fx[ϕ1](ξ) is real-valued and non-negative, because Fx[ϕ1](ξ) =

(Fx[ϕ2](ξ))
2.

Let us evaluate F [ϕ1(·)u(0, ·)](ξ) and prove that it is not rapidly decreasing. First,

without loss of generality, we may suppose that m appeared in (10.6) is equal to 1. So

D(C) is defined to be

D(C) =
{
ξ ∈ Rd ; |ξ1|2 ≥ C|ξ2|2 + · · · + |ξd|2

}
.

Let us remember that ψ is of the form

ψ(ξ) = 〈ξ〉−d−3χ(ξ),

where χ(ξ) is an element of S0
1,0(R

d) and satisfies

0 ≤ χ ≤ 1, suppχ ⊂ D(C1) ∩ {|ξ| ≥ C2} and χ ≡ 1 on D(2C1) ∩ {|ξ| ≥ 2C2}.
Then we have

F
[
ϕ1(·)u(0, ·)

]
(ξ) =

∫
�

d
x

e−ix·ξϕ1(x)F−1
ξ

[
h(·)ψ(·)

]
(x) dx

=
∫
�

d
η

Fx[ϕ1](η) 〈ξ − η〉−d−3 h(ξ − η)χ(ξ − η) −dη

Since the integrand is non-negative and 〈ξ − η〉 ≤ √
2〈ξ〉〈η〉, we have

F
[
ϕ1(·)u(0, ·)

]
(ξ)(10.27)

≥ 2−(d+3)/2
∫
�

d
η

Fx[ϕ1](η) 〈ξ〉−d−3〈η〉−d−3 h(ξ − η)χ(ξ − η) −dη.

Next we define three domains D1(ξ1), D2(ξ1) and D3(ξ1) by setting

D1(ξ1) =
{
η ∈ Rd ; |ξ1 − η1|2 ≥ 2C1

(
|η2|2 + · · · + |ηd|2

)}
,

D2(ξ1) =
{
η ∈ Rd ; ξ1 − η1 ≥ 2C1

(
|η2|2 + · · · + |ηd|2

)1/2}
,

D3(ξ1) =
{
η ∈ Rd ; |(ξ1, 0, . . . , 0) − η| ≥ max{2C2, 2}

}
.

We see immediately that D2(ξ1) ⊂ D1(ξ1) for every ξ1 ∈ R and that

h(ξ − η)χ(ξ − η)
∣∣∣
ξ=(ξ1,0,...,0)

= 1 on D1(ξ1) ∩D3(ξ1) for every ξ1 ∈ R.
Substituting (ξ1, 0, . . . , 0) for ξ in (10.27), we have

F
[
ϕ1(·)u(0, ·)

]
(ξ1, 0, . . . , 0) ≥ 2−(d+3)/2〈ξ1〉−d−3

∫
D1(ξ1)∩D3(ξ1)

Fx[ϕ1](η)〈η〉−d−3 −dη

≥ 2−(d+3)/2〈ξ1〉−d−3
∫
D2(ξ1)∩D3(ξ1)

Fx[ϕ1](η)〈η〉−d−3 −dη.
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Set

D4 =
{
η ∈ Rd ; −η1 ≥ 2C1

(
|η2|2 + · · · + |ηd|2

)1/2
}
.

Then, D4 ⊂ D2(ξ1)∩D3(ξ1) for every ξ1 satisfying ξ1 > max{2C2, 2}. Therefore we obtain

for any ξ1 satisfying ξ1 > max{2C2, 2}
F
[
ϕ1(·)u(0, ·)

]
(ξ1, 0, . . . , 0) ≥ 2−(d+3)/2〈ξ1〉−d−3

∫
D4

Fx[ϕ1](η)〈η〉−d−3 −dη.

Since Fx[ϕ1](η) is real-analytic by Paley-Wiener’s theorem and D4 contains an open set

of Rd, Fx[ϕ1](η) does not vanish identically on D4. Moreover Fx[ϕ1](η) is non-negative,

so
∫
D4

Fx[ϕ1](η)〈η〉−d−3 −dη is a positive constant independent of ξ1. This shows that

Fx[ϕ1(·)u(0, ·)](ξ) is not rapidly decreasing. This is a contradiction, so u(0, x) is not

smooth and hence u(t, x) is not smooth. The proof of Theorem D is completed. �

Remark. Throughout this section, we assumed that f does not depend on x. Here

we mention a result on non-hypoellipticity of P of the form (A) in the case where f

depends on x.

Corollary 10.4 Suppose that f(t, x) does not change sign, no ajk(t, x) depends on

t and that the operator
∑n
j,k=1 ajkLjLk has an elementary solution E(x, y) belonging to

C∞(Rn
x ×Rn

y \ {x = y}). Then, Condition (1◦-β) is necessary and sufficient for P of the

form (A) to be hypoelliptic under Conditions (2◦) and (3◦).

An example is the following

L = ∂t + f(t, x)
(
∂2
x1

+ ∂2
x2

+ · · · + ∂2
xd

)
.

If f(t, x) does not change sign, L is hypoelliptic if and only if f(t, x) satisfies Condition

(1◦-β). This is because L is hypoelliptic due to Theorem A if f(t, x) satisfies (1◦-β). If

f(t, x) does not satisfy (1◦-β), then there exist an x0 ∈ Rn and a non-empty open interval

I such that f(t, x0) vanishes identically on I. Let E(x) be the usual elementary solution

of the Laplacian �x, that is,

E(x) =



1

2
|x | (d = 1)

1

2π
log |x | (d = 2)

− Γ(ν)

4πd/2
|x |2−d (d ≥ 3), where ν =

d− 2

2
.

Now we calculate the pairing 〈LE(x− x0), ϕ〉 for every ϕ ∈ C∞
0 (I ×Rd

x) as follows.

〈LE(x− x0), ϕ 〉
= 〈E(x− x0),�xf(t, x)ϕ 〉 ( since E(x− x0) does not depend on t )

= 〈 δ(x− x0), f(t, x)ϕ 〉 =
∫
I
f(t, x0)ϕ(t, x0) dt = 0.
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Thus, LE(x−x0) = 0 in D′(I×Rd
x). Obviously, E(x−x0) is not smooth in a neighborhood

of x = x0. So L is not hypoelliptic in I ×Rd
x. Therefore, Condition (1◦-β) is necessary

for L to be hypoelliptic.
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11 Hypoellipticity of a particular operator

of the form (B)

In this section, we investigate hypoellipticity of the following operator which appeared in

§8
Lp,q = ∂t +

(
tp + i tq

)
∂2
x,

where p, q are given non-negative integers. We gave a necessary and sufficient condition

for Lp,q to be hypoelliptic in the Introduction (see Theorem E). If p is large with respect

to q, i tq∂2
x is dominant. ∂t + i tq∂2

x is not hypoelliptic because this is a Schrödingerlike

operator. So one can guess that Lp,q is not hypoelliptic in this case. On the contrary, if q

is large with respect to p, tp∂2
x is dominant. Since ∂t+ tp∂2

x is hypoelliptic due to Theorem

A, we expect that Lp,q is hypoelliptic in this case. Indeed, the following propositions hold.

Proposition 11.1 Lp,q is not hypoelliptic in R2 if p ≥ 2q + 1.

Proposition 11.2 Lp,q is hypoelliptic in R2 if p ≤ 2q.

11.1 Proof of Proposition 11.1

Let us sketch the proof. First, we take a non-smooth solution w belonging to D′ to the

equation (∂t + i tq∂2
x)w = 0 (see (11.3) below). Next, from this w, we construct a formal

solution U of Lp,qU = 0 as a sum of distributions. And we modify U so that the modified

sum Ũ is convergent in the distribution sense and that its image by Lp,q is of class C∞.

Finally, we prove that Ũ is not smooth.

To simplify the proof, we restrict ourselves to the case where p = 2q+1. The remaining

case is treated in a similar way. Set

Mq = L2q+1,q = ∂t +
(
t2q+1 + i tq

)
∂2
x,(11.1)

Lq = ∂t + i tq∂2
x.(11.2)

Let a, b be numbers satisfying 0 < a < b and I an open interval containing t = 0. We

shall show that Mq is not hypoelliptic in I× (a, b). For this, it suffices to prove that there

exists a Ũ ∈ D′(I × (a, b)) \C∞(I × (a, b)) such that MqŨ ∈ C∞(I × (a, b)).

Let k be the smallest integer such that k−(q+1)/2 > −1. We define w ∈ D′(I×(a, b))

to be

〈w,ϕ〉 =
1

k!

∫ b

a

∫ ∞

0
tkw0(t, x)

(
tLkqϕ

)
dt dx for every ϕ ∈ C∞

0 (I × (a, b)),(11.3)
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where

w0(t, x) = |t|−(q+1)/2 exp

(
− i (q + 1) x2

4tq+1

)

and tLq = −∂t + i tq∂2
x. We see that Lqw0 = 0 in {t > 0}. First, let us show that

Lqw = 0(11.4)

as an element of D′(I × (a, b)). We calculate the pairing 〈Lqw,ϕ〉 for ϕ ∈ C∞
0 (I × (a, b)).

〈Lqw,ϕ〉 =
〈
w, tLqϕ

〉
=

1

k!

∫ b

a

{∫ ∞

0
tkw0(t, x)

(
tLk+1
q ϕ

)
dt
}
dx

= lim
ε↓0

1

k!

∫ b

a

{∫ ∞

ε
tkw0(t, x)

(
tLk+1
q ϕ

)
dt
}
dx

( by Lebesgue’s convergence theorem ).

Set

Iε =
1

k!

∫ b

a

∫ ∞

ε
tkw0(t, x)

(
tLk+1
q ϕ

)
dt dx for ε > 0.

Since integration by parts yields

Lk+1
q

{
tk

k!
w0

}
= Lkq

{
Lq

(
tk

k!
w0

)}
= Lkq

{
tk−1

(k − 1)!
w0

}
= · · · = Lqw0 = 0

in {t > 0}, Iε is rewritten as

Iε =
k∑
l=0

Jl,ε,

where Jl,ε =
1

(k − l)!

∫ b

a
εk−l−(q+1)/2 exp

(
− i (q + 1) x2

4εq+1

)(
tLk−lq ϕ

)
(ε, x) dx ( l = 0, . . . , k ).

It reveals that

Jl,ε = O
(
εk−l+(q+1)/2

)
.(11.5)

In fact, Jl,ε is rewritten as follows.

Jl,ε = − 1

(k − l)!

∫ b

a
εk−l−(q+1)/2

{
2εq+1

i (q + 1) x
∂x exp

(
− i (q + 1) x2

4εq+1

)}(
tLk−lq ϕ

)
(ε, x) dx

= − 2 εk−l+(q+1)/2

i (q + 1) (k − l)!

∫ b

a

{
∂x exp

(
− i (q + 1) x2

4εq+1

)}
tLk−lq ϕ(ε, x)

x
dx.

Since 0 < a < b, (tLk−lq ϕ(ε, x))/x ∈ C∞
0 ((a, b)). Therefore we have by integration by parts

Jl,ε =
2 εk−l+(q+1)/2

i (q + 1) (k − l)!

∫ b

a
exp

(
− i (q + 1) x2

4εq+1

)
∂x

(
tLk−lq ϕ(ε, x)

x

)
dx.

This shows (11.5). Since k− l+(q+1)/2 > 0 ( l = 0, . . . , k ), lim
ε↓0

Iε = 0. And hence (11.4)

holds.
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Now we prepare three lemmas to construct a formal solution U of MqU = 0. Lemma

11.3 is used only to have (11.8) below. The construction starts from (11.8). Lemma 11.4

is needed only for proving Lemma 11.5. We use Lemma 11.5 to construct successively a

formal series solution U .

Lemma 11.3 Let w be as in (11.3). Then, the following equality holds as an element

of D′(I × (a, b)).

Mq

(
e(q+1)x2/8w

)
=

(
t2q+1 + i tq

) (
∂2
xe

(q+1)x2/8
)
w(11.6)

− i(q + 1)

2
tqe(q+1)x2/8w − i(q + 1)2

4
tqx2e(q+1)x2/8w.

Proof of Lemma 11.3. Given ϕ ∈ C∞
0 (I × (a, b)), set

J̃ =
〈(
t2q+1 + i tq

) (
∂2
xe

(q+1)x2/8
)
w,ϕ

〉
− i(q + 1)

2

〈
tqe(q+1)x2/8w,ϕ

〉
− i(q + 1)2

4

〈
tqx2e(q+1)x2/8w,ϕ

〉
and

Ĩε =
1

k!

∫ b

a

{∫ ∞

ε
tkw0(t, x)

tLkq
{
e(q+1)x2/8

(
tMqϕ

)}
dt
}
dx.

We see that 〈
Mq

(
e(q+1)x2/8w

)
, ϕ
〉

= lim
ε↓0

Ĩε.

Since Mq = Lq + t2q+1 ∂2
x due to (11.1) and (11.2), (11.6) holds in {t > 0} for w0 in place

of w. So the difference Ĩε − J̃ is equal to a sum of integrals on [a, b]. By the same way as

we evaluated Jl,ε, we see that this sum of integrals tends to 0 as ε ↓ 0. Therefore, (11.6)

holds in the distribution sense. �

We define the distribution w̃ to be

w̃ = exp

(
(q + 1) x2

8

)
w.(11.7)

Remark. In the case where p ≥ 2q+2, w̃ is not needed for the proof of Proposition

11.1. Lemma 11.5 below holds if we replace w̃ by w. Thus, the construction of U goes

well without w̃ in this case.

Rewriting (11.6) for w̃, we have

Mq w̃ = t2q+1C1(q, x) w̃ + tq C2(q, x) w̃,(11.8)

where C1(q, x) =
q + 1

4
+

(q + 1)2

16
x2 and C2(q, x) = −i

(
q + 1

4
+

3(q + 1)2

16
x2

)
.

Next, we have the following lemma which generalizes (11.8).
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Lemma 11.4 Let w̃ be as in (11.7). For any F (x) ∈ C∞( [a, b] ) and any positive

integer l, there exist two functions C1(q, F, x) and C2(q, F, x) belonging to C∞( [a, b] )

such that

Mq

(
tlF (x) w̃

)
= t2q+1+l C1(q, F, x) w̃ + tq+l C2(q, F, x) w̃(11.9)

+ tl−1
(
(q + 1) xF ′ + lF

)
w̃

as an element of D′(I × (a, b)).

Proof of Lemma 11.4. Set
C1(q, F, x) = C1(q, x)F (x) +

q + 1

2
xF ′(x) + i F ′′(x)

C2(q, F, x) = C2(q, x)F (x) − i
q + 1

2
xF ′(x) + F ′′(x),

where C1(q, x) and C2(q, x) are as in (11.8). Then (11.9) holds in {t > 0}. By the same

way as in the proof of Lemma 11.3, we obtain (11.6) in the distribution sense. �

For every non-negative integer l, let Vl be the vector space consisting of linear com-

binations of C(x) tmw̃ where C(x) ∈ C∞( [a, b] ) and m is an integer not smaller than

l. As is mentioned above, the following lemma allows us to construct successively the

summands of U .

Lemma 11.5 Given a non-negative integer l, there exists, for any v ∈ Vl, a u ∈ Vl+1

such that

Mq u+ v ∈ Vl+1.

Proof of Lemma 11.5. Let w̃ be as in (11.7). For any v ∈ Vl, there exist a finite

number of functions G1(x), . . . , Gr(x) belonging to C∞( [a, b] ) such that

v −
r∑
j=1

tlGj(x) w̃ ∈ Vl+1.

So, it suffices to show that, there exists, for any G ∈ C∞( [a, b] ), a ũ ∈ Vl+1 such that

Mq ũ+ tlG(x) w̃ ∈ Vl+1. Given G(x) ∈ C∞( [a, b] ), we set

F (x) = −x−(l+1)/(q+1)
∫ x

a

y(l+1)/(q+1)−1

q + 1
G(y) dy and ũ = tl+1F (x) w̃.

Since 0 < a < b, the interval [a, b] does not contain x = 0. Consequently, ũ ∈ Vl+1. Then,

Mq ũ+ tlG(x) w̃ ∈ Vl+1 by (11.9). Lemma 11.5 is proved. �

108



Now let us construct a formal solution U of MqU = 0. To do this, we are going to find

a sequence of distributions {vj}∞j=0 such that

vl ∈ Vl and Mq

l∑
j=0

vj ∈ Vl for every l ∈ Z+.(11.10)

If such a sequence {vj}∞j=0 is chosen, set

U =
∞∑
j=0

vj.

Then, this is a formal solution of MqU = 0. We choose {vj}∞j=0 in the following way.

Set v0 = w̃. Then, Mqv0 ∈ V0 from (11.8). We take a v1 ∈ V1 such that Mqv1 +Mqv0 ∈
V1. This is possible by applying Lemma 11.5 to l = 0 and v = Mqv0. Next, we take a

v2 ∈ V2 such that Mqv2 +Mq (v0 + v1) ∈ V2. This is also possible by Lemma 11.5 because

Mq (v0 + v1) ∈ V1. We repeat this procedure and obtain {vj}∞j=0.

Next, we modify U obtained above. The sum U is not necessarily convergent in

the distribution sense. So we construct {uj}∞j=0 from {vj}∞j=0 so that the sum
∑∞
j=0 uj

converges in the distribution sense and that its image by Mq belongs to C∞(I × (a, b)).

For every non-negative integers (j,m), tjw̃ ∈ Cm(I × [a, b]) if j − 1− q/2 ≥ m(q+ 2).

Thus, we have

Vj ⊂ C [(j−1−q/2)/(q+2)](I × [a, b]) for every j >
q + 3

2
,(11.11)

where [s] denotes the largest integer not exceeding s. Let {εj}∞j=0 be a sequence of positive

numbers such that 1 = ε0 > ε1 > ε2 > · · · → 0 which we choose later. Let h(s) be a

smooth function of class C∞ such that

h(s) ≡ 1 on {|s| ≤ 1/2}, supph(s) ⊂ {|s| ≤ 1} and 0 ≤ h(s) ≤ 1.

We have for every j > (q + 3)/2 and every non-negative integers α, β satisfying α + β ≤
[(j − 1 − q/2)/(q + 2)]∣∣∣∂αt ∂βx(h(t/εj) vj)∣∣∣ ≤ εj

j−α(q+2)−β(q+1)−(q+1)/2Cjαβ for all (t, x) ∈ I × [a, b],(11.12)

where Cjαβ does not depend on the choice of {εj}∞j=0. So we choose a {εj}∞j=0 inductively

in the following way.
εj = 1 if 0 ≤ j ≤ [(q + 3)/2],

0 < εj < min
α+β≤[ j−1−q/2

q+2 ]

{(
2j(Cjαβ + 1)

)−4
,
εj−1

2

}
if j ≥ [(q + 3)/2] + 1.

(11.13)
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Set uj = h(t/εj) vj ( j ≥ 0 ). We define Ũ to be

Ũ =
∞∑
j=0

uj.(11.14)

By (11.12) and (11.13), we have for every j > (q + 3)/2 and every non-negative integers

α, β satisfying α + β ≤ [(j − 1 − q/2)/(q + 2)]∣∣∣∂αt ∂βxuj(t, x)∣∣∣ ≤ 2−j on I × [a, b].

And hence, for any non-negative integer l,

the sum
∞∑

j=[q/2]+2+l(q+2)

uj converges uniformly in C l(I × [a, b]).(11.15)

Now let us prove that Ũ (see (11.14)) converges in D′(I × (a, b)). We divide it into

two parts as follows.

Ũ =
∞∑
j=0

uj =
[q/2]+1∑
j=0

uj +
∞∑

j=[q/2]+2

uj.

The second sum on the right hand side converges uniformly in C0(I × [a, b]) by (11.15).

Thus, Ũ converges in D′(I × (a, b)).

Next, we prove that Mq Ũ ∈ C∞(I × (a, b)). It suffices to show that MqŨ ∈ C l(I ×
(a, b)) for any non-negative integer l. Given l, we set N = [q/2] + 2 + (l + 2)(q + 2). We

divide MqŨ into two parts as follows.

MqŨ = Mq

N−1∑
j=0

uj +Mq

∞∑
j=N

uj.

The second sum
∑∞
j=N uj converges in C l+2(I × [a, b]) from (11.15) with l + 2 in place of

l. So Mq
∑∞
j=N uj ∈ C l(I × [a, b]). The remaining question is to prove that Mq

∑N−1
j=0 uj ∈

C l(I × [a, b]). It is rewritten as follows.

N−1∑
j=0

Mq uj =
N−1∑
j=0

Mq h(t/εj) vj

=
N−1∑
j=0

ε−1
j h′(t/εj) vj +

N−1∑
j=0

(
h(t/εj) − h(t/εN−1)

)
Mq vj

+ h(t/εN−1)
N−1∑
j=0

Mq vj

= P1,N + P2,N + P3,N .

The support of P1,N and that of P2,N are contained in {2−1εN−1 ≤ t ≤ 1}. So P1,N and

P2,N belong to C∞(I× (a, b)) because vj is smooth except at t = 0 for every j. Moreover,
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we have from (11.10) and (11.11)

P3,N = h(t/εN−1)
N−1∑
j=0

Mq vj ∈ VN−1 ⊂ C l(I × (a, b)).

Therefore, MqŨ ∈ C l(I × (a, b)). Since l is arbitrary, MqŨ ∈ C∞(I × (a, b)).

Finally, let us show that Ũ /∈ C∞(I × (a, b)). The proof is done by contradiction.

Suppose that Ũ ∈ C∞(I × (a, b)). Since the support of uj is contained in {t ≥ 0} for

every j, so is the support of Ũ . Thus,

∂mt Ũ(0, x) = 0 in (a, b) for every m ∈ Z+.(11.16)

Let δ be a positive number smaller than 1 and let ϕ1(t), ϕ2(x) be functions such that
ϕ1 ∈ C∞

0 (I), 0 ≤ ϕ1 ≤ 1, ϕ1 ≡ 1 in a neighborhood of t = 0,

ϕ2 ∈ C∞
0 ((a, b)), 0 ≤ ϕ2 ≤ 1,

∫ b

a
ϕ2 dx > 0.

Set

ϕδ(t, x) = ϕ1(t/δ)ϕ2(x) ∈ C∞
0 (I × (a, b)) and ζ(t, x) = exp

(
i (q + 1) x2

4tq+1

)
.

Then, (11.16) implies 〈
tkζŨ , ϕδ

〉
= O (δm) for every m ∈ Z+,(11.17)

where k is as in (11.3). We shall show that (11.17) does not hold. First, tku0 belongs to

L1
loc(I × (a, b)), tkζu0 is real-valued and tkζu0 = h(t) tk−(q+1)/2 in {t > 0} ∩ (I × (a, b)).

So, we have for sufficiently small δ

〈
tkζu0, ϕδ

〉
=

∫
t>0

∫ b

a
h(t) tk−(q+1)/2ϕ1(t/δ)ϕ2(x) dt dx

≥
∫
t>0

∫ b

a
h(t)ϕ1(t/δ)ϕ2(x) dt dx

( since tk−(q+1)/2 ≥ 1 on the domain of integration )

≥ δ
∫
t>0

ϕ1(t) dt
∫ b

a
ϕ2(x) dx = C1δ,

where C1 is a positive constant independent of δ. So we have〈
tkζu0, ϕδ

〉
≥ C1δ.(11.18)

On the other hand, tkuj belongs to L1
loc(I × (a, b)) for j ≥ 1, and∣∣∣tkuj(t, x)∣∣∣ ≤ Cj00|t|1/4εj1/4 on I × (a, b) ( j ≥ 1 ).

111



If j > (q + 3)/2, Cj00 is the same as that in (11.12). From (11.13), εj
1/4 < 2−jC−1

j00 if

j > (q + 3)/2. Thus, we have∣∣∣∣ tkζ ∞∑
j=1

uj

∣∣∣∣ ≤ C2|t|1/4 on I × (a, b).

This yields ∣∣∣∣〈tkζ ∞∑
j=1

uj, ϕδ

〉∣∣∣∣ ≤ C3δ
5/4,

where C3 is a positive constant independent of δ. Combining this inequality with (11.18),

we have ∣∣∣〈tkζŨ , ϕδ〉∣∣∣ ≥ C1δ − C3δ
5/4 ≥ (C1/2) δ for 0 < δ < (1/(2C3))

4.

This contradicts (11.17). So Ũ /∈ C∞(I × (a, b)). Proposition 11.1 is now proved. �

11.2 Proof of Proposition 11.2

Let Ω be a bounded open set of R2. We sketch the proof for Lp,q to be hypoelliptic in Ω

if p ≤ 2q. Let (τ, ξ) be the dual variables of (t, x) and ′SΨ be the class of operators defined

in §1. For a Ξ ∈ ′SΨ, we divide the space R2
τ,ξ into two microlocal domains suppσ(Ξ),

supp(1 − σ(Ξ)) and prove that Lp,q is hypoelliptic in each domain.

First, we shall prove that Lp,q has a left parametrix Q in the microlocal domain

supp(1 − σ(Ξ)) for every Ξ ∈ ′SΨ. The proof of the next lemma is done in the same way

as that of Proposition 1.1 in §1. So we omit it.

Lemma 11.6 Suppose that p ≤ 2q. Then, for any Ξ ∈ ′SΨ, there exist Q ∈ ′S−1
1/2,0 and

R ∈ ′S−∞ such that

(1 − Ξ) = QLp,q +R.(11.19)

Remark. This holds even if p > 2q > 0.

Lp,q is hypoelliptic in supp(1 − σ(Ξ)) for every Ξ ∈ ′SΨ from this lemma. This

is because, given Ξ ∈ ′SΨ, (1 − Ξ)u = QLp,qu + Ru ∈ C∞(Ω) if u ∈ D′(Ω) and if

Lp,qu ∈ C∞(Ω). Since u = (1 − Ξ)u + Ξu, Lp,qΞu ∈ C∞(Ω) for every Ξ ∈ ′SΨ provided

that Lp,qu ∈ C∞(Ω). So it suffices for the proof of Proposition 11.2 to show the following

proposition.

Proposition 11.7 Let u be an element of D′(Ω). If Lp,qΞu ∈ C∞(Ω) for any Ξ ∈ ′SΨ,

then Ξu ∈ C∞(Ω) for every Ξ ∈ ′SΨ.
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To prove this, we prepare three lemmas. Set

κ(p) =
2

p+ 1
.(11.20)

The proof of Proposition 11.7 starts from the inequality (11.21) below which is an a priori

estimate with weight 〈ξ〉κ(p). This lemma will also be used to prove Lemmas 11.10 and

11.11 below.

Lemma 11.8 For any open set K ⊂⊂ Ω, any N > 0 and any Ξ ∈ ′SΨ, there exists a

positive constant C = C(p,K,N,Ξ) such that∥∥∥〈Dx〉κ(p)Ξu
∥∥∥2 ≤ C

(
‖Lp,qΞu‖2 + ‖u‖2

−N
)

for all u ∈ C∞
0 (K).(11.21)

Proof of Lemma 11.8. We define an ordinary differential operator Qp,q(ξ) on

Rt with real parameter ξ to be

Qp,q(ξ) =
d

dt
−
(
tp + i tq

)
ξ2.

For the proof of (11.21), it suffices to prove the following lemma.

Lemma 11.9 For any non-empty bounded open interval I, there exists a positive con-

stant C = C(p, I) such that

|ξ|4/(p+1)
∫
|v|2dt ≤ C

∫
|Qp,q(ξ) v|2 dt for all (v, ξ) ∈ C∞

0 (R) × {|ξ| ≥ 1},(11.22)

where C is independent of ξ and v.

We admit this lemma for the moment. We denote by Fx the partial Fourier transform

with respect to x. Substituting v by Fxu(t, ξ) in (11.22), we have for any ξ satisfying

|ξ| ≥ 1 ∫ ∣∣∣〈ξ〉κ(p)Fxu
∣∣∣2 dt ≤ 2κ(p)C

∫
|Qp,q(ξ)Fxu|2 dt.

On the other hand, we have for any ξ satisfying |ξ| ≤ 1∫ ∣∣∣〈ξ〉κ(p)Fxu
∣∣∣2 dt ≤ 4N+κ(p)

∫ ∣∣∣〈ξ〉−2NFxu
∣∣∣2 dt.

Therefore, we have for any ξ ∈ R∫ ∣∣∣〈ξ〉κ(p)Fxu
∣∣∣2 dt ≤ C(p,K,N)

(∫
|Qp,q(ξ)Fxu|2 dt+

∫ ∣∣∣〈ξ〉−2NFxu
∣∣∣2 dt) ,

where C(p,K,N) is a constant depending only on (p,K,N). Integrating both sides with

respect to ξ, we get by Plancherel’s formula∥∥∥〈Dx〉κ(p)u
∥∥∥2 ≤ C(p,K,N)

(
‖Lp,qu‖2 +

∥∥∥〈Dx〉−2Nu
∥∥∥2) for all u ∈ C∞

0 (K).
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We obtain (11.21) by applying this inequality to Ξu in place of u. Lemma 11.8 is now

proved. �

Proof of Lemma 11.9. We prove this lemma only in the case where p is even.

The case where p is odd is treated in a similar way. (11.22) follows from the inequality∫
|w|2ds ≤ C1

∫ ∣∣∣∣∣dwds − spw

∣∣∣∣∣
2

ds for all w ∈ C∞
0 (R),(11.23)

where C1 does not depend on w. Indeed, (11.21) is obtained by applying (11.23) to

w(s) = exp

(
− i |ξ|

(2p−2q)/(p+1)

q + 1
sq+1

)
v(s/|ξ|2/(p+1)).

Let us prove (11.23). Given w ∈ C∞
0 (R), set

λ =
∫ +∞

s
exp

(
−2µp+1

p+ 1

)
dµ and θ(λ) = exp

(
− sp+1

p+ 1

)
w(s).

Then, the following inequality yields (11.23).

ρ(s) = exp

(
2sp+1

p+ 1

)∫ +∞

s
exp

(
−2µp+1

p+ 1

)
dµ ≤ C2 (−∞ < s <∞),(11.24)

where C2 does not depend on s. This is because, since θ ∈ C∞
0 ((0,∞)),∫

|w|2ds =
∫ +∞

0
|θ(λ)|2 exp

(
4sp+1

p+ 1

)
dλ ≤ C2

2

∫ +∞

0

∣∣∣∣∣θ(λ)

λ

∣∣∣∣∣
2

dλ ( by (11.24) )

≤ 4C2
2

∫ +∞

0

∣∣∣∣∣dθdλ
∣∣∣∣∣
2

dλ ( by Hardy’s inequality (see Theorem 327 in [8].) )

= 4C2
2

∫ ∣∣∣∣∣dwds − spw

∣∣∣∣∣
2

ds.

Thus, it suffices for the proof of Lemma 11.9 to verify (11.24). Now let us show (11.24).

Obviously, ρ(s) is bounded in {|s| < 1}. Suppose that s ≤ −1. Since 1 ≤ µp for

µ ∈ [s,−1],

ρ(s) ≤ exp

(
2sp+1

p+ 1

)(∫ +∞

−1
exp

(
−2µp+1

p+ 1

)
dµ+

∫ −1

s
µp exp

(
−2µp+1

p+ 1

)
dµ

)

≤ exp

(
2sp+1

p+ 1

)(∫ +∞

−1
exp

(
−2µp+1

p+ 1

)
dµ− 1

2
e2/(p+1)

)
+

1

2
< +∞.

A similar argument applies to the case where s ≥ 1 because 1 ≤ µp for µ ∈ [s,+∞]. And

hence Lemma 11.9 holds. �

The next lemma is needed only for proving Lemma 11.11. We define a non-negative

number r(p) to be

r(p) =
[
p+ 1

2

]
,(11.25)

where [s] denotes the largest integer not exceeding s, so r(p) = p/2 if p is even.
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Lemma 11.10 For any K ⊂⊂ Ω, any N > 0 and any Ξ ∈ ′SΨ, there exists a positive

constant C = C(p,K,N,Ξ) such that∥∥∥〈Dx〉κ(p)/2tr(p)∂xΞu
∥∥∥2 ≤ C

(
‖Lp,qΞu‖2 + ‖u‖2

−N
)

for all u ∈ C∞
0 (K),(11.26)

where κ(p) is as in (11.20).

Proof of Lemma 11.10. We prove (11.26) only in the case where p is even.

(The proof of the case where p is odd goes by using (11.28) in place of (11.27) below.)

First, the following inequality holds.∥∥∥tp/2∂xu∥∥∥2 ≤ |Re (Lp,qu, u)| for all u ∈ C∞
0 (K).(11.27)

In fact, this follows from the equality∥∥∥tp/2∂xu∥∥∥2 = − |Re (Lp,qu, u)| .

(If p is odd, the following inequality holds.∥∥∥t(p+1)/2∂xu
∥∥∥2 ≤ |Re (Lp,qu, tu)| for all u ∈ C∞

0 (K). )(11.28)

Applying (11.27) to 〈Dx〉κ(p)/2Ξu for u, we have∥∥∥〈Dx〉κ(p)/2tr(p)∂xΞu
∥∥∥2 ≤

∣∣∣Re
(
Lp,q〈Dx〉κ(p)/2Ξu, 〈Dx〉κ(p)/2Ξu

)∣∣∣+ C(K,N,Ξ) ‖u‖2
−N

≤
∣∣∣Re

(
〈Dx〉κ(p)/2Lp,qΞu, 〈Dx〉κ(p)/2Ξu

)∣∣∣+ C(K,N,Ξ) ‖u‖2
−N

≤
∣∣∣Re

(
Lp,qΞu, 〈Dx〉κ(p)Ξu

)∣∣∣+ C(K,N,Ξ) ‖u‖2
−N

≤ ‖Lp,qΞu‖2 +
∥∥∥〈Dx〉κ(p)Ξu

∥∥∥2
+ C(K,N,Ξ) ‖u‖2

−N .

This implies (11.26) by Lemma 11.8. �

Remark. Lemma 11.8 and Lemma 11.10 hold even if p > 2q.

The following lemma is used in the proof of Proposition 11.7 to evaluate the commu-

tator of Lp,qΞ with multiplication by a function applied to u.

Lemma 11.11 Suppose that p ≤ 2q. Let ϕ, ψ ∈ C∞
0 (R2) be such that ϕ ⊂⊂ ψ.

Then, for any K, any N > 0 and any Ξ, Ξ̃ ∈ ′SΨ (Ξ ⊂⊂ Ξ̃), there exists a constant

C = C(K,N,Ξ, Ξ̃, ϕ, ψ) such that∥∥∥〈Dx〉κ(p)/2Lp,qΞϕu
∥∥∥(11.29)

≤ C
(∥∥∥〈Dx〉κ(p)/2ψLp,qΞu

∥∥∥+ ‖Lp,qΞu‖ +
∥∥∥Lp,qΞ̃u∥∥∥+ ‖u‖−N

)
for all u ∈ C∞

0 (K), where κ(p) = 2/(p+ 1).
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Proof of Lemma 11.11. First, Lp,qΞϕu is rewritten as follows.

Lp,qΞϕu = Lp,qϕΞu+ Lp,q
[
Ξ,ϕ

]
u

= ϕψLp,qΞu+
[
Lp,q, ϕ

]
Ξu+

[
Ξ,ϕ

]
Lp,qu+

[
Lp,q,

[
Ξ,ϕ

]]
u.

Then the left hand side of (11.29) is evaluated as follows.∥∥∥〈Dx〉κ(p)/2Lp,qΞϕu
∥∥∥(11.30)

≤ C(K,Ξ,ϕ)
∥∥∥〈Dx〉κ(p)/2ψLp,qΞu

∥∥∥+
∥∥∥〈Dx〉κ(p)/2

[
Lp,q, ϕ

]
Ξu

∥∥∥
+
∥∥∥〈Dx〉κ(p)/2

[
Ξ,ϕ

]
Lp,qu

∥∥∥+
∥∥∥∥〈Dx〉κ(p)/2

[
Lp,q,

[
Ξ,ϕ

]]
u
∥∥∥∥ .

We treat the second term on the right hand side.
[
Lp,q, ϕ

]
is rewritten as

[
Lp,q, ϕ

]
= (∂tϕ) + 2(∂xϕ)

(
tp + i tq

)
∂x + (∂2

xϕ)
(
tp + i tq

)
.

Since p ≤ 2q, r(p) ≤ min{p, q}, where r(p) is as in (11.25). Thus, we have∥∥∥〈Dx〉κ(p)/2
[
Lp,q, ϕ

]
Ξu

∥∥∥ ≤ C(K,ϕ)
(∥∥∥〈Dx〉κ(p)/2Ξu

∥∥∥+
∥∥∥〈Dx〉κ(p)/2tr(p)∂xΞu

∥∥∥)
≤ C(K,N,Ξ, ϕ)

(
‖Lp,qΞu‖ + ‖u‖−N

)
( by Lemmas 11.8 and 11.10 ).

Combining (11.30) with this inequality, we have∥∥∥〈Dx〉κ(p)/2Lp,qΞϕu
∥∥∥(11.31)

≤
∥∥∥〈Dx〉κ(p)/2

[
Ξ,ϕ

]
Lp,qu

∥∥∥+
∥∥∥∥〈Dx〉κ(p)/2

[
Lp,q,

[
Ξ,ϕ

]]
u
∥∥∥∥

+ C(K,Ξ,N, ϕ)
(∥∥∥〈Dx〉κ(p)/2ψLp,qΞu

∥∥∥+ ‖Lp,qΞu‖ + ‖u‖−N
)
.

The first term on the right hand side of (11.31) is estimated as∥∥∥〈Dx〉κ(p)/2
[
Ξ,ϕ

]
Lp,qu

∥∥∥ ≤ C(K,N,Ξ, Ξ̃, ϕ)
(∥∥∥Lp,qΞ̃u∥∥∥+ ‖u‖−N

)
(11.32)

because
[
Ξ,ϕ

]
Lp,q −

[
Ξ,ϕ

]
Lp,qΞ̃ ∈ ′S−∞ and 〈Dx〉κ(p)/2

[
Ξ,ϕ

]
∈ ′S0

1/2,0. It remains to

evaluate the second term on the right hand side of (11.31). We choose a Ξ̂ ∈ ′SΨ such

that Ξ̂ ⊂⊂ Ξ. Since Ξ̂ ⊂⊂ Ξ ⊂⊂ Ξ̃,[
Lp,q,

[
Ξ,ϕ

]]
−
[
Lp,q,

[
Ξ,ϕ

]]
(1 − Ξ̂)Ξ̃ ∈ ′S−∞.

So, we have by Lemma 11.6[
Lp,q,

[
Ξ,ϕ

]]
=
[
Lp,q,

[
Ξ,ϕ

]]
QLp,qΞ̃ +R,
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where Q ∈ ′S−1
1/2,0 is a left parametrix of Lp,q in the microlocal domain supp(1 − Ξ̂) and

R ∈ ′S−∞. Furthermore,
[
Lp,q,

[
Ξ,ϕ

]]
Q ∈ ′S−1

1/2,0. Therefore, we get

∥∥∥∥〈Dx〉κ(p)/2
[
Lp,q,

[
Ξ,ϕ

]]
u
∥∥∥∥ ≤ C(K,Ξ, Ξ̃,N, ϕ)

(∥∥∥Lp,qΞ̃u∥∥∥+ ‖u‖−N
)
.

Combining (11.31) with (11.32) and the above inequality, we obtain (11.29). �

Proof of Proposition 11.7. Suppose that Lp,qΞu ∈ C∞(Ω) for every Ξ ∈ ′SΨ.

It suffices for the proof of Proposition 11.7 to show that 〈Dx〉sΞϕu ∈ L2(R2) for every

(s, ϕ,Ξ) ∈ R × C∞
0 (Ω) × ′SΨ. If this is done, we see that Ξϕu ∈ C∞(Ω) for every

(ϕ,Ξ) ∈ C∞
0 (Ω) × ′SΨ by Sobolev’s imbedding theorem, so our assertion holds.

Let s > 0, Ξ, Ξ̃ ∈ ′SΨ (Ξ ⊂⊂ Ξ̃) and ϕ, ψ ∈ C∞
0 (Ω) (ϕ0 ⊂⊂ ψ) be any given. Set

κ = κ(p)/2. If u ∈ D′(Ω), there exists an N > 0 such that ψu ∈ H−N(R2). Let us choose a

positive integer l larger than 2(s+N+2)/κ. We find sequences {ϕj}lj=0, {ψj}lj=0 ⊂ C∞
0 (Ω)

and {Ξj}lj=0 ⊂ ′SΨ such that

ϕ = ϕ0 ⊂⊂ ψ1 ⊂⊂ ϕ1 ⊂⊂ ψ1 ⊂⊂ · · · ⊂⊂ ϕl ⊂⊂ ψl = ψ

Ξ = Ξ0 ⊂⊂ Ξ1 ⊂⊂ · · · ⊂⊂ Ξl−1 ⊂⊂ Ξl = Ξ̃.

Our aim here is to show the inequality

∥∥∥〈Dx〉sΞϕ0u
∥∥∥ ≤ C

 l∑
j′=0

∥∥∥〈Dx〉s ψLp,qΞj′u
∥∥∥+ ‖ψu‖−N

 .(11.33)

As in §2 of [22] we introduce a pseudo-differential operator Λs,k,ε = 〈Dx〉s(1 + ε〈Dx〉)−k
for real s, ε > 0 and k ≥ 0. Note that Lp,qΞ commutes with Λs,k,ε for every (Ξ, s, k, ε).

First, applying Lemma 11.8 to Λs−κ,k,εϕ0u with k = 2(s+N + 2), we have

∥∥∥Λs,k,εΞϕ0u
∥∥∥ ≤ C

(∥∥∥Lp,qΞ Λs−κ,k,ε ϕ0u
∥∥∥+ ‖ψu‖−N

)
(11.34)

= C
(∥∥∥〈Dx〉κ Lp,qΞ0 Λs−2κ,k,ε ϕ0u

∥∥∥+ ‖ψu‖−N
)
,

where C is independent of ε. Here and in what follows we denote different constants

independent of ε by the same notation C.

Next, let j, j′ be non-negative integers satisfying 0 ≤ j′ ≤ j ≤ l − 1. The expansion

formula yields

Ξj′Λs−(j+2)κ,k,ε ϕ0 − Ξj′
∑

0≤|α|≤2(s+N+2)

ϕj(α) Λ
(α)
s−(j+2)κ,k,ε /α! ∈ ′S−N−κ

1/2,0 ,
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so we have∥∥∥〈Dx〉κ Lp,qΞj′Λs−(j+2)κ,k,ε ϕju
∥∥∥(11.35)

≤ C

 ∑
0≤|α|≤2(s+N+2)

∥∥∥〈Dx〉κ Lp,qΞj′ ϕj(α) Λ
(α)
s−(j+2)κ,k,ε u

∥∥∥+ ‖ψu‖−N
 .

Since ϕj(α) ⊂⊂ ψj and ϕj(α) Λ
(α)
s−(j+2)κ,k,ε − ϕj(α) Λ

(α)
s−(j+2)κ,k,ε ϕj+1, we have by applying

Lemma 11.11 to the right hand side of (11.35)∥∥∥〈Dx〉κ Lp,qΞj′Λs−(j+2)κ,k,ε ϕju
∥∥∥

≤ C

{ ∑
0≤|α|≤2(s+N+2)

(∥∥∥〈Dx〉κ ψjLp,qΞj′Λ(α)
s−(j+2)κ,k,ε ϕj+1u

∥∥∥
+
∥∥∥Lp,qΞj′Λ(α)

s−(j+2)κ,k,ε ϕj+1u
∥∥∥+

∥∥∥Lp,qΞj′+1Λ
(α)
s−(j+2)κ,k,ε ϕj+1u

∥∥∥)+ ‖ψu‖−N
}

≤ C
(∥∥∥Λs−(j+2)κ,k,ε ψLp,qΞj′u

∥∥∥+
∥∥∥〈Dx〉κ Lp,qΞj′Λs−(j+3)κ,k,ε ϕj+1u

∥∥∥
+
∥∥∥〈Dx〉κ Lp,qΞj′+1Λs−(j+3)κ,k,ε ϕj+1u

∥∥∥+ ‖ψu‖−N
)
.

Combining (11.34) with the above estimate, we have∥∥∥Λs,k,εΞϕ0u
∥∥∥

≤ C

 l∑
j′=0

∥∥∥Λs−2κ,k,ε ψLp,qΞj′u
∥∥∥+

l∑
j′=0

∥∥∥Λs−(l+1)κ,k,ε Lp,qΞj′ψu
∥∥∥+ ‖ψu‖−N

 .
Since ‖Λs−2κ,k,ε ψLp,qΞj′u‖ ≤ ‖〈Dx〉s ψLp,qΞj′u‖ and the family {Λs−(l+1)κ,k,ε Lp,qΞj′}0<ε<1

is bounded in ′S−N
1/2,0 for every j, we obtain

∥∥∥Λs,k,εΞϕ0u
∥∥∥ ≤ C

 l∑
j′=0

∥∥∥〈Dx〉s ψLp,qΞj′u
∥∥∥+ ‖ψu‖−N

 .
〈Dx〉s ψLp,qΞj′u ∈ L2(R2) for every j′ because Lp,qΞu ∈ C∞(Ω) for every Ξ ∈ ′SΨ. So

the right hand side is bounded uniformly with respect to ε, we finally obtain (11.33) and

〈Dx〉sΞϕu ∈ L2(R2) by letting ε tend to 0. Since (s, Ξ, ϕ) are arbitrary, Ξu ∈ C∞(Ω)

for every Ξ ∈ ′SΨ. This completes the proof of Proposition 11.7. And hence Proposition

11.2 holds. �
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