TOHOKU MATHEMATICAL PUBLICATIONS

Number 14

Non-isotropic harmonic tori in complex projective spaces and configurations of points on Riemann surfaces

by
Tetsuya TANIGUCHI

December 1999
©Tohoku University
Sendai 980-8578, Japan

Editorial Board

Shigetoshi Bando	Satoru Igari	Masanori Ishida
Katsuei Kenmotsu	Hideo Kozono	Yasuo Morita
Tetsuo Nakamura	Seiki Nishikawa	Tadao Oda
Norio Shimakura	Toshikazu Sunada	Izumi TAKAGI
Toyofumi Takahashi	Masayoshi Takeda	Kazuyuki Tanaka
Yoshio Tsutsumi	Takashi Yoshino	Akihiko YUkie

This series aims to publish material related to the activities of the Mathematical Institute of Tohoku University. This may include:

1. Theses submitted to the Institute by grantees of the degree of Doctor of Science.
2. Proceedings of symposia as well as lecture notes of the Institute. A primary advantage of the series lies in quick and timely publication. Consequently, some of the material published here may very likely appear elsewhere in final form.

Tohoku Mathematical Publications

Mathematical Institute
Tohoku University
Sendai 980-8578, Japan

Non-isotropic harmonic tori in complex projective spaces and configurations of points on Riemann surfaces

A thesis presented by

Tetsuya Taniguchi

to
The Mathematical Institute for the degree of Doctor of Science

Tohoku University
Sendai, Japan

November 1999

Acknowledgments

The author wishes to express his sincere gratitude to Professor Seiki Nishikawa for his helpful guidance and insightful suggestions throughout the preparation of this thesis, without which this work would never have been completed.

He also would like to express his deep appreciation to the members of the geometry seminar at Tohoku University, in particular to Professors Katsuei Kenmotsu, Hajime Urakawa, Toshikazu Sunada, Shigetoshi Bando, Shin Nayatani, Hiroyasu Izeki, Motoko Kotani, Yasuhiro Nakagawa, Wayne Rossman, Keisuke Ueno and Hitoshi Furuhata, for their valuable advice and constant encouragement.

This work was supported by the JSPS Reserch Fellowship for Young Scientists.

Contents

1. Introduction 3
2. Construction of harmonic maps into complex projective spacesfrom spectral data10
2.1 Spectral data
2.2 Construction of harmonic maps into complex projective spaces
3. Proof of the harmonicity of corresponding maps 16
3.1 Primitive maps
3.2 A parallel transport
3.3 Ideal sheaves on spectral curves
4. Reconstruction of spectral curves from harmonic tori 28
4.1 Extended frames and loop groups
4.2 The dressing orbit of a vacuum solution
4.3 Affine schemes corresponding to rings of polynomial Killing fields
4.4 Construction of Valuations
4.5 Completion of the affine curve and the line bundle
4.6 Computation of arithmetic genus of spectral curves
5. Properties of spectral data with a compact connected Riemannsurface55
5.1 Properties of smooth real curves
5.2Δ-invariants of divisors on Riemann surfaces
6. Rational or elliptic spectral curves 60
6.1 Jacobi's theta functions and Weierstrass' zeta functions
6.2 Main results
6.3 Classification of spectral data with the smooth rational spectral curve
6.4 Classification of spectral data with smooth elliptic spectral curves
6.5 Construction of harmonic maps in terms of the rational spectral curve
6.6 Construction of harmonic maps in terms of elliptic spectral curves
6.7 Periodicity conditions of harmonic maps in terms of generalized Jacobians
References 83

1. Introduction

It is one of the profound problems in differential geometry to classify and construct harmonic maps from a Riemann surface M into a compact Lie group G or a symmetric space G / K. These objects are related with many fundamental examples in differential geometry, in particular, with minimal surfaces, which have been studied for a long time by geometers. In the late 1970's, such harmonic maps also appeared as nonlinear sigma models or chiral models in mathematical physics. Since then, in the study of harmonic maps, many interesting results have been established but major open problems still remain. For example, when the genus of a Riemann surface M is greater than 1, the classification of such harmonic maps is not obtained yet.

When M is the Riemann sphere, the well-established twistor theory of harmonic maps is useful to describe harmonic maps of M into G / K. In fact, this idea was first used by Calabi [11], [12] in his study of minimal 2-spheres in S^{n}. Moreover, harmonic maps of a two-sphere into a complex Grassmann manifold have been studied and classified in [3], [30] and [31].

In this case, any harmonic map is covered by a horizontal holomorphic map into an auxiliary complex manifold, a twistor space, and the study of such harmonic maps is therefore reduced to a problem in algebraic geometry. In this sense, the case of genus 0 has been accomplished.

In general, each harmonic map of a Riemann surface M into a sphere S^{n} or a complex projective space $\mathbb{C} P^{n}$ has a sequence of invariants, which are given as holomorphic differentials on M measuring the lack of orthogonality of iterated derivatives of the map. In particular, when all these invariants vanish, such harmonic map is obtained from a holomorphic curve in a twistor space. These harmonic maps are called isotropic. Since every holomorphic differential on the Riemann sphere vanishes, any harmonic 2 -sphere in S^{n} or $\mathbb{C} P^{n}$ is isotropic.

For the case of harmonic tori in a sphere S^{n} or a complex projective space $\mathbb{C} P^{n}$,
we have the following two possibilities:
(1) All invariants vanish, that is, the harmonic torus is isotropic.
(2) The harmonic torus is not isotropic.

In the former case, such torus is again covered by a holomorphic curve in a twistor space. In the latter case, these harmonic tori are called non-isotropic. In 1995 Burstall [1] proved that any non-isotropic harmonic torus in a sphere or a complex projective space is covered by a primitive harmonic map of finite type into a certain generalized flag manifold. Subsequently, Udagawa [28] generalized Burstall's result to those harmonic tori into a complex Grassmann manifold $G_{2}\left(\mathbb{C}^{4}\right)$ of 2-dimensional complex linear subspaces in \mathbb{C}^{4} and also constructed, by using a Symes formula, weakly conformal non-superminimal harmonic maps from the complex line to $G_{2}\left(\mathbb{C}^{4}\right)$. Employing these facts, as well as algebro-geometric methods, McIntosh proved that every non-isotropic harmonic torus in a complex projective space corresponds to a map constructed from a triplet (X, π, \mathcal{L}), consisting of an auxiliary algebraic curve X, and a rational function π and a line bundle \mathcal{L} on X. Such triplet is called a spectral data. Thus McIntosh realized the moduli space of non-isotropic harmonic tori in complex projective spaces as a subset of the moduli space of these spectral data.

Therefore it seems natural to ask the following: Which spectral data corresponds to a harmonic torus in a complex projective space?

In this thesis, we give a partial answer to this problem. More precisely, we prove a criterion on the periodicity of harmonic maps constructed from the spectral data whose spectral curves are smooth rational or elliptic curves.

Before describing the plan of this thesis, we now review briefly McIntosh's results and state our main theorems.

McIntosh [17], [18] has constructed a significant correspondence between the following two spaces: the space of non-isotropic, linearly full harmonic maps $\psi: \mathbb{R}^{2} \rightarrow \mathbb{C} P^{n}$ of finite type, up to isometries, and that of triplets (X, π, \mathcal{L}) consisting of a real,
complete, connected algebraic curve X (which we call the spectral curve for ψ), a rational function π on X and a line bundle \mathcal{L} over X, which are required to satisfy certain conditions.

This correspondence yields a harmonic map from a spectral data in the following fashion. Take a spectral data (X, π, \mathcal{L}). On the Jacobian variety $J(X)$ of the spectral curve X, we consider a real 2-dimensional linear flow $L: \mathbb{R}^{2} \rightarrow J(X), z \mapsto L(z)$. Then we know that each line bundle contained in this flow has the following properties. Denoting by $H^{0}(X, \mathcal{L} \otimes L(z))$ the space of global holomorphic sections of $\mathcal{L} \otimes L(z)$, we see that the dimension of $H^{0}(X, \mathcal{L} \otimes L(z))$ is $n+1$ if the degree of π is $n+1$. Let R be the ramification divisor of π. Then, since $(\mathcal{L} \otimes L(z)) \otimes \overline{\rho_{X}^{*}(\mathcal{L} \otimes L(z))}$ is isomorphic to the divisor line bundle $\mathcal{O}_{X}(R)$, each line bundle $\mathcal{L} \otimes L(z)$ has a natural bilinear form h via a trace map $H^{0}\left(X, \mathcal{O}_{X}(R)\right) \rightarrow H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}\right) \cong \mathbb{C}$, which is induced from π. Thus we obtain a vector bundle W of rank $n+1$ over \mathbb{R}^{2} with the fiber metric h, where the fiber of W at $z \in \mathbb{R}^{2}$ is given by $H^{0}(X, \mathcal{L} \otimes L(z))$.

Next, we consider subbundles W_{0}, \ldots, W_{n-m} and a connection ∇ of W, which enjoy the following property: The rank of W_{i} is $i+1$ and

$$
W_{0} \subset \cdots \subset W_{n-m} \subset W, \quad \nabla_{\partial / \partial z} W_{i} \subset W_{i+1}
$$

Then these subbundles satisfy the weak form of Griffiths transversality, which is almost the condition for the corresponding map to be harmonic (primitive harmonic). For each $z \in \mathbb{R}^{2}$, by using the above connection, we can identify the fiber of W_{0} at z with a complex line in the $(n+1)$-dimensional complex vector space $H^{0}(X, \mathcal{L} \otimes L(0))$. In this way, we get a desired harmonic map $\psi: \mathbb{R}^{2} \rightarrow \mathbb{C} P^{n}$.

With these understood, for spectral data with rational spectral curves, we shall prove the following

Theorem 9. Let X be the smooth rational curve \mathbb{P}^{1}. Then (X, π, \mathcal{L}) is a spectral data if and only if the following conditions are satisfied:
(1) $\left(X, \rho_{X}\right)$ is real isomorphic to $\left(\mathbb{P}^{1}, \rho\right)$. By an affine coordinate λ of \mathbb{P}^{1}, ρ is
given by $\lambda \mapsto 1 / \bar{\lambda}$ and π is expressed as

$$
\pi(\lambda)=\alpha_{0} \lambda^{m+1} \frac{\prod_{j=1}^{n-m}\left(\lambda-P_{j}\right)}{\prod_{j=1}^{n-m}\left(\lambda-Q_{j}\right)}, \quad P_{0}=0, \quad \alpha_{0}=\frac{\prod_{j=1}^{n-m}\left(1-Q_{j}\right)}{\prod_{j=1}^{n-m}\left(1-P_{j}\right)}
$$

for some m and n with $1 \leqq m \leqq n-1$. Here $P_{j} \in X^{S}=\{\lambda \in X|0<|\lambda|<1\}$ and $Q_{j}=1 / \overline{P_{j}}$ for any $1 \leqq j \leqq n-m$.
(2) \mathcal{L} is a line bundle of degree n.

Theorem 10. Choosing a complex coordinate on the source suitably, the harmonic map $\Psi: \mathbb{R}^{2} \rightarrow \mathbb{C} P^{n}$ corresponding to the above spectral data $\left(X_{\tau}, \pi, \mathcal{L}\right)$ is given by

$$
z=x+\sqrt{-1} y \mapsto\left[\Psi_{0}(z): \Psi_{1}(z): \cdots: \Psi_{n}(z)\right]
$$

where $\Psi_{i}(z)$ is a function defined by

$$
\begin{equation*}
\Psi_{i}(z)=\exp \left(\eta_{i}^{-1} z-\eta_{i} \bar{z}\right) \cdot \frac{\prod_{j=1}^{n-m}\left(\eta_{i}-P_{j}\right)}{\prod_{j=1}^{n-m}\left(\eta_{i}-R_{j}\right)} \tag{1.1}
\end{equation*}
$$

Here $\left\{\eta_{0}, \ldots, \eta_{n}\right\}$ is the inverse image $\pi^{-1}(1)$ of 1 by π and $R_{+}=\sum_{j=1}^{n} R_{j}$ is a divisor given by the intersection of X^{S} with R, that is, $R_{+}=X^{S} \cap R$.

As for spectral data with elliptic spectral curves, we shall prove
Theorem 12. Let X be a smooth elliptic curve. Then (X, π, \mathcal{L}) is a spectral data if and only if the following conditions are satisfied:
(1) X is an elliptic curve $X_{\tau}=\mathbb{C} /(\mathbb{Z} \oplus \mathbb{Z} \tau)$, where τ is a pure imaginary number $\sqrt{-1} t$ with $t>0 . \rho_{X}$ is an anti-holomorhic involution induced by the usual conjugation of \mathbb{C}. Regarded as a doubly periodic meromorphic function on \mathbb{C}, π is expressed as

$$
\pi(u)=C \frac{\theta_{1}\left(u-P_{0}\right)^{m+1} \prod_{j=1}^{n-m-1} \theta_{1}\left(u-P_{j}\right) \cdot \theta_{1}\left(u-P_{n-m}-W\right)}{\theta_{1}\left(u-Q_{0}\right)^{m+1} \prod_{j=1}^{n-m} \theta_{1}\left(u-Q_{j}\right)}
$$

for some m and n with $1 \leqq m \leqq n-1$. Here $P_{i} \in X^{S}=\{x \in X \mid 0<\operatorname{Im} \mathrm{x}<$ $\operatorname{Im} \tau / 2(\bmod \operatorname{Im} \tau \mathbb{Z})\}$ and $Q_{i}=\overline{P_{i}}(\bmod \mathbb{Z} \oplus \mathbb{Z} \tau)$ for any $0 \leqq i \leqq n-m$; $W=(m+1) P_{0}+\sum_{i=1}^{n-m} P_{i}-(m+1) Q_{0}-\sum_{i=1}^{n-m} Q_{i} ; P_{0} \neq P_{i}$ for $i \neq 0 ; W$ belongs to $\mathbb{Z} \oplus \mathbb{Z} \tau$; and C is the unique constant such that $\pi(0)=1$.
(2) Let $r: \operatorname{Pic}^{\mathrm{n}+1}(\mathrm{X}) \rightarrow \operatorname{Pic}^{0}(\mathrm{X})$ be a map defined by $\mathcal{F} \mapsto \mathcal{F} \otimes \mathcal{O}_{X}\left(-R_{+}\right)$, where $R_{+}=\sum_{j=0}^{n} R_{j}$ is a divisor of degree $n+1$ given by the intersection of X^{S} with R, that is, $R_{+}=X^{S} \cap R$. Then, \mathcal{L} is an element of the inverse image of $(\mathbb{Z} \oplus \sqrt{-1} \mathbb{R}) /(\mathbb{Z} \oplus \tau \mathbb{Z})$ by the composition $J \circ r$. Here J is a biholomorphic map from $\mathrm{Pic}^{\mathrm{n}+1}(\mathrm{X})$ to $J(X)$.

Theorem 13. Choosing a complex coordinate on the source suitably, the harmonic map $\Psi: \mathbb{R}^{2} \rightarrow \mathbb{C} P^{n}$ corresponding to the above spectral data $\left(X_{\tau}, \pi, \mathcal{L}=\mathcal{O}_{X}(D)\right)$ is given by

$$
z=x+\sqrt{-1} y \mapsto\left[\Psi_{0}(z): \Psi_{1}(z): \cdots: \Psi_{n}(z)\right]
$$

where $\Psi_{i}(z)$ is a function defined by

$$
\Psi_{i}(z)=\mu_{i} \exp \left(z\left[\zeta_{w}\left(\eta_{i}-P_{0}\right)-A \eta_{i}\right]-\bar{z}\left[\zeta_{w}\left(\eta_{i}-Q_{0}\right)-A \eta_{i}\right]\right)
$$

$$
\begin{equation*}
\cdot \frac{\theta_{1}\left(\eta_{i}-P_{0}\right)^{m} \prod_{j=1}^{n-m} \theta_{1}\left(\eta_{i}-P_{j}\right) \theta_{1}\left(\eta_{i}+m P_{0}-\sum_{j=1}^{n-m} P_{j}-D-z+\bar{z}\right)}{\prod_{j=0}^{n} \theta_{1}\left(\eta_{i}-R_{j}\right)} . \tag{1.2}
\end{equation*}
$$

Here ζ_{w} is Weierstrass's zeta function, $\left\{\eta_{0}, \ldots, \eta_{n}\right\}$ is the inverse image $\pi^{-1}(1)$ of 1 by π, μ_{i} is a constant given by $\mu_{i}=\exp \left(2 \pi \sqrt{-1}\left(D-R_{+}\right) \operatorname{Im} \eta_{\mathrm{i}} / \mathrm{t}\right)$, and A is a constant depending only on the complex structure of X.

Next, we review McIntosh's construction of spectral data from these harmonic maps. To this end, we need a recent work of Burstall and Pedit [5] on dressing orbits of harmonic maps, who studied an action of a certain loop group on the space of primitive harmonic maps of \mathbb{R}^{2} into a k-symmetric space. Using their results and the fact that a flag manifold $F^{r}\left(\mathbb{C} P^{n}\right)$ is a rank one $(r+2)$-symmetric space, McIntosh proved that possibly after an isometry, every primitive lift of finite type lies in a single dressing orbit \mathcal{O}_{Λ}. A distinctive feature of these orbits \mathcal{O}_{Λ} is that they admit a hierarchy of commuting flows (conservation laws). We show that this hierarchy can be used to characterize those harmonic maps of finite type, that is, a harmonic map in \mathcal{O}_{Λ} is of finite type if and only if its orbit under the hierarchy is finite-dimensional. Moreover, on this orbit, there exists a dynamical system whose flows are generated
by the action of an abelian Lie subalgebra \mathfrak{C}_{R} of the loop algebra. In terms of this subalgbra, a harmonic map of finite type is described as a map with finite dimensional $\mathfrak{C}_{R^{-}}$orbit. The stabilizer of such a point determines a maximal abelian subalgebra \mathfrak{R} of the Lie algebra of polynomial Killing fields for the map. Then \mathfrak{R} is a commutative one-dimensional unital \mathbb{C}-algebra and the spectrum Spec \mathfrak{R} of \mathfrak{R} is an affine curve whose completion by smooth points yields X. Since the Killing fields are elements of the loop algebra, \mathfrak{R} comes equipped with a representation, which provides X with \mathcal{L}. Furthermore, the tangent space to the \mathfrak{C}_{R}-orbit is identified with the tangent space to a real subgroup $J_{R}(X)$ of $J(X)$, whose dimension gives the arithmetic genus of X.

In connection with the periodicity, McIntosh observed that the harmonic map of \mathbb{R}^{2} into a complex projective space $\mathbb{C} P^{n}$ associated to a spectral data (X, π, \mathcal{L}) is doubly periodic if and only if a certain homomorphism from \mathbb{R}^{2} to a generalized Jacobian $J\left(X_{0}\right)$ is doubly periodic. However, generally it is hard to compute this homomorphism. In the case of spectral data with spectral curves of genus 0 or 1 , we shall explicitly construct these homomorphisms and prove the following

Theorem 11. Let $\Psi: \mathbb{R}^{2} \rightarrow \mathbb{C} P^{n}$ be the harmonic map in Theorem 10. Then Ψ is doubly periodic with periods $v_{1}, v_{2} \in \mathbb{C}$ if and only if the set

$$
\begin{equation*}
V=\bigcap_{1 \leqq i \leqq n} \frac{\pi}{\beta_{i}}(\mathbb{R} \oplus \sqrt{-1} \mathbb{Z}) \tag{1.3}
\end{equation*}
$$

contains the 2-dimensional lattice $M=\mathbb{Z} v_{1} \oplus \mathbb{Z} v_{2}$, where $\beta_{1}, \ldots, \beta_{n}$ are complex numbers defined by $\beta_{i}=\eta_{i}^{-1}-\eta_{0}^{-1}$.

For the case of an elliptic spectral curve X, we shall also prove the following
Theorem 14. The harmonic map $\Psi: \mathbb{R}^{2} \rightarrow \mathbb{C} P^{n}$ in Theorem 13 is doubly periodic with periods $v_{1}, v_{2} \in \mathbb{C}$ if and only if the set $V=\bigcap_{0 \leqq i \leqq n} V_{i}$ contains the 2 -dimensional lattice $M=\mathbb{Z} v_{1} \oplus \mathbb{Z} v_{2}$, where V_{0}, \ldots, V_{n} are the sets defined by

$$
V_{i}= \begin{cases}\pi \beta_{i}^{-1}(\mathbb{R} \oplus \sqrt{-1} \mathbb{Z}) & \text { if } \beta_{i} \neq 0 \\ \mathbb{C} & \text { otherwise }\end{cases}
$$

Here $\beta_{0}, \beta_{1}, \ldots, \beta_{n}$ are complex numbers defined by

$$
\beta_{0}=-2 \pi / t, \quad \beta_{i}=\left[\zeta_{w}\left(\eta_{0}-P_{0}\right)-\zeta_{w}\left(\eta_{i}-P_{0}\right)-B\left(\eta_{0}-\eta_{i}\right) \tau^{-1}\right] \quad(1 \leqq i \leqq n) .
$$

Now we summarize the content of each section.
In Section 2, we recall the definition of the spectral data, and review, with a slight improvement, McIntosh's construction of harmonic maps in terms of these spectral data.

In Sections 3 and 4, we shall review fundamental results obtained by McIntosh. The harmonicity of the maps constructed in the previous sections is shown in Section 3. We also describe in Section 4 the construction of spectral data conversely from nonisotropic harmonic tori in complex projective spaces.

In Section 5, we discuss the properties of spectral data whose spectral curves are compact connected Riemann surfaces.

In Section 6, all spectral data with smooth rational or elliptic spectral curves are classified (Theorems 9 and 12), and corresponding harmonic maps are explicitly constructed (Theorems 10 and 13). Moreover, we prove a necessary and sufficient condition for a constructed harmonic map to be doubly periodic (Theorems 11 and 14). We also construct some examples of harmonic tori by using the method developed in this section. In Sections 6.3 and 6.4, the proofs of Theorems 9 and 12 are given respectively. Sections 6.5 and 6.6 are devoted to proving Theorems 10 and 13. Finally, in Section 6.7 we introduce certain homomorphisms into generalized Jacobians of spectral curves and prove Theorem 14.

2. Construction of harmonic maps into complex projective spaces FROM SPECTRAL DATA

2.1. Spectral data. Let \mathbb{P}^{1} be the smooth rational curve and λ an affine coordinate on it. Let ρ be an anti-holomorphic involution on \mathbb{P}^{1} defined by $\lambda \mapsto 1 / \bar{\lambda}$. Then the fixed point set of ρ consists of the equator S^{1} defined by $\left\{\lambda \in \mathbb{P}^{1}| | \lambda \mid=1\right\}$.

First we recall the definition of a spectral data introduced by McIntosh (cf. §2.1 in [18]).

Definition 1. A spectral data is a triplet (X, π, \mathcal{L}) of isomorphism classes which satisfies the following conditions:
(1) X is a complete, connected, algebraic curve of arithmetic genus p, with a real involution ρ_{X}.
(2) π is a meromorphic function on X of degree $N=n+1$ satisfying $\pi \circ \rho_{X}=1 / \bar{\pi}$, with a distinguished zero P_{0} of degree $m+1(m \geqq 1)$ and a pole $P_{\infty}=\rho_{X}\left(P_{0}\right)$. We regard X as a covering of degree $n+1$ of the rational curve \mathbb{P}^{1} via π.
(3) \mathcal{L} is a line bundle over X of degree $p+n$ satisfying

$$
\begin{equation*}
\mathcal{L} \otimes \overline{\rho_{X *} \mathcal{L}} \cong \mathcal{O}_{X}(R), \tag{2.1}
\end{equation*}
$$

where R is the ramification divisor for π. By identifying \mathcal{L} with a divisor line bundle $\mathcal{O}_{X}(D)$, we can find a meromorphic function f on X which satisfies the following conditions:
(a) The divisor (f) of f is given by $D+\rho_{* X} D-R$ and $\overline{\rho_{X}^{*} f}=f$.
(b) Let $X_{\mathbb{R}}$ be the preimage of S^{1} by π. Then f is non-negative on $X_{\mathbb{R}}$.
(4) π has no branch points on S^{1} and ρ_{X} fixes every point of $X_{\mathbb{R}}$.

Two triplets are the same if there exists a biholomorphic map between spectral curves which carries the real structure, the meromorphic function and the isomorphism class of the line bundle each other.

When X is a compact conneted Riemann surface, the above definition of spectral data becomes simpler.

Theorem 1. Let X be a compact conneted Riemann surface. A triplet (X, π, \mathcal{L}) is a spectral data if and only if it satisfies the following conditions:
(1) X is a compact connected Riemann surface of genus p, with real involution ρ_{X}. The set $X \backslash X^{\rho}$ consists of two connected components X^{N}, X^{S}, where X^{ρ} is the fixed points of ρ_{X}. Moreover, X^{ρ} decomposes into the disjoint union $X^{\rho}=\coprod_{i=1}^{\nu(X)} S_{i}^{1}$ with $S_{i}^{1}=S^{1}$, that is, $\nu(X)$ copies of a loop.
(2) π is a meromorphic function on X of degree $N=n+1$, which satisfies either that all poles are contained in X^{N} and all zeros are contained in X^{S}, or that all poles are contained in X^{S} and all zeros are contained in X^{N}. Moreover, π has a zero P_{0} of order $\geqq 2$ and a point $x \in X^{\rho}$ such that $|\pi(x)|=1$, and the set of poles coincides with the image of the set of zeros by ρ_{X}.
(3) \mathcal{L} is a line bundle over X of degree $p+n$ satisfying

$$
D+\rho_{X *}(D) \cong R, \quad \delta(\mathcal{L})=0
$$

where R is the ramification divisor for π, D is a divisor such that $\mathcal{L} \cong \mathcal{O}_{X}(D)$, and $\delta(\mathcal{L})$ is a number defined as follows:
$\delta(\mathcal{L})=\nu(X)-\left|\sharp\left\{s_{i} \in \Lambda \mid g\left(s_{i}\right) / g\left(s_{1}\right)>0\right\}-\sharp\left\{s_{i} \in \Lambda \mid g\left(s_{i}\right) / g\left(s_{1}\right)<0\right\}\right|$,
where g is a meromorphic function with the divisor $(g)=D+\rho_{X *} D-R$ and Λ is the set of points $s_{1}, s_{2}, \ldots, s_{\nu(X)}$ such that $s_{i} \in S_{i}^{1}$ and $g\left(s_{i}\right) \neq 0, \infty$.
(The proof of this theorem will be given in Section 5.)
2.2. Construction of harmonic maps into complex projective spaces. By applying McIntosh's method of constructing harmonic maps in terms of spectral data, we shall construct harmonic maps which correspond to spectral data having smooth rational or elliptic spectral curves. We also prove Theorems 10 and 13 in this section.

From now on, for a Riemann surface X and a sheaf \mathcal{F} on X, we denote by $H^{i}(X, \mathcal{F})$ and $H^{i}(Y, \mathcal{F})$ the i-th cohomology of the sheaf of holomorphic sections of \mathcal{F} and its restriction to an open subset Y of X, respectively. We also denote the dimension of $H^{i}(X, \mathcal{F})$ by $h^{i}(X, \mathcal{F})$. Let (X, π, \mathcal{L}) be a spectral data as in Definition 1. By identifying \mathcal{L} with a divisor line bundle $\mathcal{O}_{X}(D)$, we equip $H^{0}(X, \mathcal{L})$ with a positive definite Hermitian form h as follows.

For given $u, v \in H^{0}(X, \mathcal{L})$, we define a rational function $h(u, v)$ on \mathbb{P}^{1} by

$$
\begin{equation*}
h(u, v)(p)=\sum_{x \in \pi^{-1}(p)} f(x) u(x) \overline{\left(v \circ \rho_{X}\right)(x)}, \tag{2.2}
\end{equation*}
$$

where p is a point of \mathbb{P}^{1}. Then it is known that $h(u, v)$ is a constant function and the following holds.

Theorem 2. ([18]) The Hermitian form h is positive definite on $H^{0}(X, \mathcal{L})$. Moreover, $\pi_{*} \mathcal{L}$ is a trivial vector bundle of rank $(n+1)$ over \mathbb{P}^{1}, where $n+1$ is the degree of π.

Let $\pi^{-1}(1)=\left\{\eta_{0}, \ldots, \eta_{n}\right\}$, the inverse image of 1 by π, and $\theta_{i}(0 \leqq i \leqq n)$ a local trivialization for \mathcal{L} over a neighbourhood of η_{i}. Using these local trivializations, the Hermitian form h in (2.2) has also the following expression. For $u \in H^{0}(X, \mathcal{L})$, let u_{0}, \ldots, u_{n} be the complex numbers defined by $u\left(\eta_{i}\right)=u_{i} \theta_{i}\left(\eta_{i}\right)$. For $v \in H^{0}(X, \mathcal{L})$, we define the complex numbers v_{0}, \ldots, v_{n} in a similar way. Then (2.2) becomes

$$
\begin{equation*}
h(u, v)=\sum_{i=0}^{n} a_{i} u_{i} \overline{v_{i}}, \tag{2.3}
\end{equation*}
$$

where a_{0}, \ldots, a_{n} are positive real numbers depending only on the choice of $\theta_{0}, \ldots, \theta_{n}$.
Next we construct a line bundle $L(z)$ with a complex parameter z. Let $U\left(P_{0}\right)$ be a neighbourhood of P_{0} and $U\left(P_{\infty}\right)$ a neighbourhood of P_{∞} defined by $U\left(P_{\infty}\right)=$ $\rho_{X}\left(U\left(P_{0}\right)\right)$. Let ζ be a meromorphic function on $U\left(P_{0}\right) \cup U\left(P_{\infty}\right)$ satisfying $\pi=\zeta^{m+1}$ and $\zeta \circ \rho_{X}=1 / \bar{\zeta}$. We fix an open cover $X_{A} \cup X_{I}$ of X, where $X_{A}=X \backslash\left\{P_{0}, P_{\infty}\right\}$ and $X_{I}=U\left(P_{0}\right) \cup U\left(P_{\infty}\right)$. Let $L(z)$ be the unique line bundle with local trivializations
θ_{A}^{z} and θ_{I}^{z} over X_{A} and X_{I} respectively, such that

$$
\begin{equation*}
\theta_{I}^{z}=\exp \left(z \zeta^{-1}-\bar{z} \zeta\right) \theta_{A}^{z} \quad \text { on } X_{A} \cap X_{I} \tag{2.4}
\end{equation*}
$$

Let \mathcal{L}_{0} be an ideal sheaf of \mathcal{L} defined by $\mathcal{L}_{0}=\mathcal{L}\left(-m P_{0}-E_{0}\right)$, where E_{0} is the restriction of the zero divisor of π to X_{A}, that is, $E_{0}=P_{1}+P_{2}+\cdots+P_{n-m}$. Then it is known that $H^{0}\left(X, \mathcal{L}_{0} \otimes L(z)\right)$ is a one-dimensional complex vector space. For each $z \in \mathbb{C}$, fix a non-zero global section τ of $\mathcal{L}_{0} \otimes L(z)$. Then $\tau \otimes \theta_{A}^{z-1}$ belongs to $H^{0}\left(X_{A}, \mathcal{L}\right)$ and we can find holomorphic functions $\psi_{0}^{z}, \ldots, \psi_{n}^{z}$ over $\mathbb{P}^{1} \backslash\{0, \infty\}$ such that

$$
\begin{equation*}
\tau_{A} \otimes \theta_{A}^{z-1}=\left(\psi_{0}^{z} \circ \pi\right) \sigma_{0}+\cdots+\left(\psi_{n}^{z} \circ \pi\right) \sigma_{n} \tag{2.5}
\end{equation*}
$$

where $\left\{\sigma_{0}, \ldots, \sigma_{n}\right\}$ is an orthonormal basis of $H^{0}(X, \mathcal{L})$ with respect to the Hermitian form h.

Now we are going to construct a harmonic map corresponding to the spectral data (X, π, \mathcal{L}). Let $\psi: \mathbb{R}^{2} \rightarrow \mathbb{C} P^{n}$ be a map defined by

$$
z=x+\sqrt{-1} y \mapsto\left[\psi_{0}^{z}(1): \cdots: \psi_{n}^{z}(1)\right]
$$

Then it is known that ψ is a harmonic map corresponding to the spectral data (X, π, \mathcal{L}). This construction is due to McIntosh, which is described in detail in [17] and [18]. However, in general it seems difficult to compute $\psi_{0}^{z}, \ldots, \psi_{n}^{z}$.

We shall now present a method which determines the values of $\psi_{0}^{z}(\lambda), \ldots, \psi_{n}^{z}(\lambda)$ at $\lambda=1$. We define a complex $(n+1) \times(n+1)$ matrix $M=\left(M_{i j}\right)$ by

$$
\begin{equation*}
M_{i j} \theta_{i}\left(\eta_{i}\right)=\sigma_{j}\left(\eta_{i}\right) \tag{2.6}
\end{equation*}
$$

Let t_{j}^{z} be complex numbers defined by

$$
\begin{equation*}
\tau \otimes \theta_{A}^{z-1}\left(\eta_{j}\right)=t_{j}^{z} \theta_{j}\left(\eta_{j}\right) \tag{2.7}
\end{equation*}
$$

Substituting (2.6) and (2.7) to (2.5), we obtain

$$
\begin{equation*}
{ }^{t}\left(t_{0}^{z}, \ldots, t_{n}^{z}\right)=M^{t}\left(\psi_{0}^{z}(1), \ldots, \psi_{n}^{z}(1)\right) \tag{2.8}
\end{equation*}
$$

Lemma 1. The determinant of M does not vanish.
Proof. Since $\left\{\sigma_{0}, \ldots, \sigma_{n}\right\}$ is an orthonormal basis with respect to h, we have $h\left(\sigma_{i}, \sigma_{j}\right)=$ $\delta_{i j}$. From this and the identity (2.3), it is easy to see that the following identity holds:

$$
M \operatorname{diag}\left(a_{0}, \ldots, a_{n}\right) M^{*}=I_{n+1}
$$

where $\operatorname{diag}\left(a_{0}, \ldots, a_{n}\right)$ denotes the diagonal matrix with diagonal components a_{0}, \ldots, a_{n}, and I_{n+1} is the unit matrix of degree $n+1$. In particular, we see that the determinant of M does not vanish.

Hence the inverse matrix M^{-1} of M exists, and $\psi_{0}^{z}(1), \ldots, \psi_{n}^{z}(1)$ are determined as

$$
\begin{equation*}
{ }^{t}\left(\psi_{0}^{z}(1), \ldots, \psi_{n}^{z}(1)\right)=M^{-1 t}\left(t_{0}^{z}, \ldots, t_{n}^{z}\right) \tag{2.9}
\end{equation*}
$$

Moreover, it is known that the components of the matrix M and $t_{0}^{z}, \ldots, t_{n}^{z}$ can be expressed by using theta functions and Baker-Akhizer functions (cf. [16]).

Constructing a special orthonormal basis, the above formula takes a much simpler form. In fact, for $0 \leqq i \leqq n$, take a non-zero element $\sigma_{i} \in H^{0}\left(X, \mathcal{L}\left(-\eta_{0}-\cdots-\eta_{i-1}-\right.\right.$ $\left.\eta_{i+1}-\cdots-\eta_{n}\right)$). Rescaling σ_{i}, we obtain an orthonormal basis $\left\{\sigma_{i}\right\}$ of \mathcal{L}, that is, $h\left(\sigma_{i}, \sigma_{j}\right)=\delta_{i j}$. Then the matrix M is diagonal and $M_{i i}$ is given by

$$
M_{i i}=\left.\frac{\sigma_{i}}{\theta_{i}}\right|_{\eta_{i}}
$$

Therefore the right hand side of the equation (2.9) becomes

$$
\begin{equation*}
t\left(\left.\frac{\tau \otimes \theta_{A}(z)^{-1}}{\sigma_{0}}\right|_{u=\eta_{0}},\left.\frac{\tau \otimes \theta_{A}(z)^{-1}}{\sigma_{1}}\right|_{u=\eta_{1}}, \ldots,\left.\frac{\tau \otimes \theta_{A}(z)^{-1}}{\sigma_{n}}\right|_{u=\eta_{n}}\right) \tag{2.10}
\end{equation*}
$$

Let $\psi(z, \bar{z}, u)$ be a function on X such that $\psi(z, \bar{z}, u) \theta_{A}(z)$ is an element of $H^{0}\left(X, \mathcal{L}_{0} \otimes\right.$ $L(z))$. Setting $\tau=\psi(z, \bar{z}, u) \theta_{A}(z)$ and substituting τ into (2.10), we get

$$
\begin{equation*}
\psi_{i}^{z}(1)=\left.\frac{\psi(z, \bar{z}, u)}{\sigma_{i}}\right|_{u=\eta_{i}} \quad \text { for } 0 \leqq i \leqq n \tag{2.11}
\end{equation*}
$$

Before closing this subsection, we prove the following lemma for later use.

Lemma 2. Given a function $\phi(z, \bar{z}, u)$ on X with the parameter z, let U and V be neighbourhoods of the set of the points $\left\{P_{0}, P_{\infty}\right\}$ which satisfy the following conditions:
(1) $\left\{P_{0}, P_{\infty}\right\} \subset U \subset V \subset X_{I}$.
(2) $\phi(z, \bar{z}, u)$ is a holomorphic section of $\mathcal{O}_{X}(M)$ on $X \backslash U$ for any $z \in \mathbb{C}$, where M is a divisor on $X \backslash V$.
(3) $\phi(z, \bar{z}, u) \exp \left(-z \zeta^{-1}+\bar{z} \zeta\right)$ is a holomorphic section of $\mathcal{O}_{X}(N)$ on V for any $z \in \mathbb{C}$, where N is a divisor on U.

Then $\phi(z, \bar{z}, u) \theta_{A}(z)$ belongs to $H^{0}(X, \mathcal{F} \otimes L(z))$ for any $z \in \mathbb{C}$, where $\mathcal{F} \cong \mathcal{O}_{X}(M+$ $N)$.

Proof. From the condition (2), $\phi(z, \bar{z}, u) \otimes \theta_{A}(z)$ clearly belongs to $H^{0}\left(X \backslash U, \mathcal{O}_{X}(M) \otimes\right.$ $L(z))=H^{0}(X \backslash U, \mathcal{F} \otimes L(z))$. It suffices to show that $\phi(z, \bar{z}, u) \otimes \theta_{A}(z)$ belongs to $H^{0}\left(V, \mathcal{O}_{X}(N) \otimes L(z)\right)=H^{0}(V, \mathcal{F} \otimes L(z))$. By using (2.4), we see that $\phi(z, \bar{z}, u) \otimes \theta_{A}(z)=\phi(z, \bar{z}, u) \exp \left(-z \zeta^{-1}+\bar{z} \zeta\right) \otimes \theta_{I}(z)$ on $V\left(\subset X_{I}\right)$. On the other hand, from the condition (3) it follows that $\phi(z, \bar{z}, u) \exp \left(-z \zeta^{-1}+\bar{z} \zeta\right)$ is an element of $H^{0}(V, \mathcal{F})$ and hence $\phi(z, \bar{z}, u) \otimes \theta_{A}(z)$ belongs to $H^{0}(V, \mathcal{F} \otimes L(z))$. Thus $\phi(z, \bar{z}, u) \theta_{A}(z)$ is a global holomorphic section of $\mathcal{F} \otimes L(z)$ on X.

3. Proof of the harmonicity of corresponding maps

In this section, we shall prove the harmonicity of those maps constructed in the previous section. For this purpose, we shall show that a primitive map from a Riemann surface M into a certain flag bundle $F^{r}\left(\mathbb{C} P^{n}\right)$ over $\mathbb{C} P^{n}$ is harmonic. Moreover, a map from M to $\mathbb{C} P^{n}$ obtained as the projection of the above map is also harmonic. Since the maps constructed in the previous section conicide with such projections, this completes the proof.
3.1. Primitive maps. First, we will recall the definition of primitive maps. Let $p r: F^{r}\left(\mathbb{C} P^{n}\right) \rightarrow \mathbb{C} P^{n}$ donote the bundle of flags in the holomorphic tangent bundle $T^{1,0} \mathbb{C} P^{n}$ with fiber

$$
F_{x}^{r}\left(\mathbb{C} P^{n}\right)=\left\{w_{1} \subset \cdots \subset w_{r} \subset T_{x}^{1,0} \mathbb{C} P^{n} \mid \operatorname{dim} \mathrm{w}_{\mathrm{j}}=\mathrm{j}\right\} .
$$

Let U_{i} denote the unitary group of degree i. For convenience, set $m=r+1$. We denote by G and H the groups U_{n+1} and $\underbrace{U_{1} \times \cdots \times U_{1}}_{m+1 \text { times }} \times U_{n-m}$, respectively. Then, we can represent $F^{r}\left(\mathbb{C} P^{n}\right)=G / H$ as a homogeneous space. Denote by \mathfrak{g} and \mathfrak{h} the Lie algebras of G and H, respectively. Then we have the canonical decomposition $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$.

It is known that $F^{r}\left(\mathbb{C} P^{n}\right)$ have the structure of $(r+2)$-symmetric space in the sense of Kowalski [15]. In fact, let ν be an automorphism on G defined by $g \mapsto \operatorname{Ad}(\sigma) \mathrm{g}$ with σ the diagonal matrix $\operatorname{diag}\left(1, \omega, \ldots, \omega^{-\mathrm{r}}, \omega^{-\mathrm{r}-1}, \ldots, \omega^{-\mathrm{r}-1}\right)$ for $\omega=\exp (2 \pi \sqrt{-1} /(r+$ 2)). Let τ be the automorphism indueced by ν of order $(r+2)$ on G / H which gives the $(r+2)$-symmetric structure on G / H. Let \mathfrak{g}_{i} be the ω^{i} - eigenspace of τ, where $\omega=\exp (2 \pi \sqrt{-1} /(r+2))$. Then we have

$$
\begin{aligned}
\mathfrak{g}^{\mathbb{C}} & =\sum_{i=0}^{r} \mathfrak{g}_{i}, \quad \mathfrak{h}^{\mathbb{C}}=\mathfrak{g}_{0}, \quad \mathfrak{m}^{\mathbb{C}}=\sum_{i=1}^{r+1} \mathfrak{g}_{i}, \\
\mathfrak{g}_{-i} & =\overline{\mathfrak{g}}_{i}, \quad\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j} .
\end{aligned}
$$

The map $\mathfrak{g} \longrightarrow T_{x}(G / H)$ given by $\xi \mapsto d /\left.d t\right|_{t=0} \exp t \xi \cdot x$ restricts to an isomorphism
$\operatorname{Ad}(\mathrm{g}) \cdot \mathfrak{m} \longrightarrow \mathrm{T}_{\mathrm{x}}(\mathrm{G} / \mathrm{H})$. We denote its inverse map by $\beta: T_{x}(G / H) \longrightarrow \operatorname{Ad}(\mathrm{g}) \cdot \mathfrak{m} \subset \mathfrak{g}$ and we may regard β as a \mathfrak{g}-valued 1 -form on G / H, which is called the Maurer-Cartan form for G / H. Denote by $\left[\mathfrak{g}_{i}\right]$ the vector bundle over G / H, for which the fiber at $x=g \cdot o \in G / H$ is given by $\operatorname{Ad}(\mathrm{g}) \mathfrak{g}_{\mathrm{i}}$.

Definition 2. The map $\psi: \mathbb{C} \rightarrow F^{r}\left(\mathbb{C} P^{n}\right)$ is said to be primitive if $\left(\psi^{*} \beta\right)(\partial / \partial z)$ is $\left[\mathfrak{g}_{-1}\right]$-valued, where β is the Maurer-Cartan form for G / H.
3.2. A parallel transport. In order to construct a desired map from \mathbb{R}^{2} and a connection for a line bundle over \mathbb{R}^{2}, we need to define a parallel transport of a section of \mathcal{L} to that of a line bundle over \mathbb{R}^{2}. Let $J(X)$ denote the Jacobian variety of the spectral curve X, i.e., $J(X)=H^{1}(X, \mathcal{O}) / H^{1}(X, \mathbb{Z})$, which is a p-dimensional complex torus, p being the genus of X, and defined by the long exact sequence induced from the short exact sequence

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \mathcal{O} \xrightarrow{\exp } \mathcal{O}^{*} \longrightarrow 0 .
$$

The set of all line bundles $L \in J(X)$ which satisfy $\overline{\rho_{X *} L} \cong L^{-1}$ forms a subgroup of $J(X)$ by tensor product. We denote by $J_{\mathbb{R}}(X)$ the connected component of the identity of this subgroup (the identity is given by trivial line bundles). Then, it is known that $J_{\mathbb{R}}(X)$ is a p-dimensional real torus. For any $L \in J_{\mathbb{R}}(X)$, we see that a line bundle $\mathcal{L} \otimes L$ satisfies $(\mathcal{L} \otimes L) \otimes \overline{\rho_{X *}(\mathcal{L} \otimes L)} \cong \mathcal{O}_{X}(R)$. In this case, we say that $\mathcal{L} \otimes L$ is real. Note that when we replace \mathcal{L} by $\mathcal{L} \otimes L$ for $L \in J_{\mathbb{R}}(X)$, we see that f is still non-negative on the preimage $X_{\mathbb{R}}$ of the equator S^{1}. In fact, f is independent of L. Since $\operatorname{deg}(\mathcal{L} \otimes L)=\operatorname{deg}(\mathcal{L})=\mathrm{n}+\mathrm{p}$, it follows from Theorem 2 that $\pi_{*}(\mathcal{L} \otimes L)$ is a trivial bundle of rank $n+1$ and $h^{0}(X, \mathcal{L} \otimes L)=n+1$.

Now, consider a complex vector bundle $H^{0}(X) \mapsto J_{\mathbb{R}}(X)$ for which the fiber at $L \in J_{\mathbb{R}}(X)$ is given by a $(n+1)$-dimensional complex vector space $H^{0}(X, \mathcal{L} \otimes L)$. Recall that $X=X_{A} \cup X_{I}$. A given line bundle $L \in J(X)$ can be trivialized over X_{A} or X_{I}. We denote by θ_{A} and θ_{I} its trivializing sections over X_{A} and X_{I}, respectively,
i.e.,

$$
\left.L\right|_{X_{A}} \stackrel{\theta_{A}}{=} X_{A} \times \mathbb{C},\left.\quad L\right|_{X_{I}} \stackrel{\theta_{I}}{=} X_{I} \times \mathbb{C} .
$$

Over $X_{A} \cap X_{I}$, we have a transition relation $\theta_{I}=e^{a} \theta_{A}$. Thus, for $L \in J_{\mathbb{R}}(X)$, we have a 1-cocycle $\left(e^{a}, X_{A}, X_{I}\right)$. Conversely, each 1-cocycle $\left(e^{a}, X_{A}, X_{I}\right)$ defines a line bundle L with e^{a} as a transition function. Then, consider a map $L: \mathcal{G}=$ $H^{0}\left(X_{A} \cap X_{I}, \mathcal{O}_{X}\right) \longrightarrow J(X)$ defined by $a \mapsto L(a)$, where $L(a)$ denotes a line bundle with a transition function e^{a}. Set

$$
\mathcal{G}_{\mathbb{R}}=\left\{a \in \mathcal{G} \mid \overline{\rho_{X *} a}=-a\right\}
$$

Then, we see that $\operatorname{Im}\left(\left.L\right|_{\mathcal{G}_{\mathbb{R}}}\right)=J_{\mathbb{R}}(\mathrm{X})$.
Now, fix a trivializing section θ for \mathcal{L} over X_{I} such that $\operatorname{Tr}\left(\mathrm{f} \cdot \theta \otimes \overline{\rho_{\mathrm{X} *} \theta}\right)=1$. Here Tr is the trace homomorphism, which sends each element of $H^{0}\left(X, \mathcal{O}_{X}(R)\right)$ to those of $H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}\right)$. For $a \in \mathcal{G}_{\mathbb{R}}$, set $\theta_{a}=\theta \otimes \theta_{I}$, which gives a trivializing section for $\mathcal{L} \otimes L(a)$ over X_{I}. We now want to define a map

$$
\iota_{a}: H^{0}\left(X_{A}, \mathcal{L} \otimes L(a)\right) \longrightarrow H^{0}\left(X_{A}, \mathcal{L}\right)
$$

Lemma 3. For $\sigma_{a} \in H^{0}\left(X_{A}, \mathcal{L} \otimes L(a)\right)$, define $\iota_{a}\left(\sigma_{a}\right)$ by

$$
\iota_{a}\left(\sigma_{a}\right)=e^{a}\left(\sigma_{a} \theta_{a}^{-1}\right) \theta
$$

Then, we have $\iota_{a}\left(\sigma_{a}\right) \in H^{0}\left(X_{A}, \mathcal{L}\right)$.
Proof. Let τ be a trivializing section of \mathcal{L} over X_{A}. We may write $\theta=e^{c} \tau$. Hence we have $\theta_{a}=e^{a+c} \tau \otimes \theta_{A}$. Now, we calculate

$$
\begin{align*}
\iota_{a}\left(\sigma_{a}\right) & =e^{a}\left(\sigma_{a} \theta_{a}^{-1}\right) \theta \\
& =e^{-c} \sigma_{a}\left(\tau \otimes \theta_{A}\right)^{-1} \theta=\sigma_{a}\left(\tau \otimes \theta_{A}\right)^{-1} \tau \tag{3.1}
\end{align*}
$$

where $\sigma_{a}\left(\tau \otimes \theta_{a}\right)^{-1}$ is a holomorphic function over X_{A} and τ is a trivializing section of \mathcal{L} over X_{A}. Therefore we have $\iota_{a}\left(\sigma_{a}\right) \in H^{0}\left(X_{A}, \mathcal{L}\right)$.

In fact, $\iota_{a}: H^{0}\left(X_{A}, \mathcal{L} \otimes L(a)\right) \longrightarrow H^{0}\left(X_{A}, \mathcal{L}\right)$ is an isomorphism. The injectivity of ι_{a} is obvious. To show the surjectivity of ι_{a}, take an arbitrary $\sigma \in H^{0}\left(X_{A}, \mathcal{L}\right)$. Then, we may write $\sigma=b \tau$ for some $b \in H^{0}\left(X_{A}, \mathcal{O}\right)$. Choose $\sigma_{a}=b\left(\tau \otimes \theta_{A}\right)$. Then we have $\iota_{a}\left(\sigma_{a}\right)=b \tau=\sigma$ by (3.1), proving the surjectivity of ι_{a}.

Let $L^{*} H^{0}(X) \rightarrow \mathcal{G}_{\mathbb{R}}$ deonte the pull-back bundle of the bundle $H^{0}(X) \rightarrow J_{\mathbb{R}}(X)$ by $L: \mathcal{G}_{\mathbb{R}} \longrightarrow J_{\mathbb{R}}(X)$. Let $\left\{\tau_{0}, \cdots, \tau_{n}\right\}$ be an orthonormal frame of global sections of \mathcal{L}, and denote by B the algebra of holomorphic maps $A \rightarrow \mathbb{C}$. Then we have $H^{0}\left(X_{A}, \mathcal{L}\right)=\left.\operatorname{Span}\left\{\tau_{0}, \cdots, \tau_{\mathrm{n}}\right\}\right|_{\mathrm{x}_{\mathrm{A}}}$, since $H^{0}\left(X_{A}, \mathcal{L}\right)$ is a free B-module of rank $(n+1)$ by the fact that $H^{0}\left(X_{A}, \mathcal{L}\right)=H^{0}\left(A, \pi_{*} \mathcal{L}\right)$ and $\pi_{*} \mathcal{L}$ is a trivial bundle of rank $(n+1)$. Any element of $H^{0}\left(X_{A}, \mathcal{L}\right)$ is expressed as $\sum \sigma_{j}(\lambda) \tau_{j}$. Define an evaluation map $e v_{1}$: $H^{0}\left(X_{A}, \mathcal{L}\right) \longrightarrow H^{0}(X, \mathcal{L})$ by $\sum \sigma_{j}(\lambda) \tau_{j} \mapsto \sum \sigma_{j}(1) \tau_{j}$, where $\sigma_{j}(1)$ is the value of $\sigma_{j}(\lambda)$ at $\lambda=1$. Then the composition $\left.e v_{1} \circ \iota_{a}\right|_{H^{0}(X, \mathcal{L} \otimes L(a))}: H^{0}(X, \mathcal{L} \otimes L(a)) \longrightarrow H^{0}(X, \mathcal{L})$ gives rise to an isomorphism. Indeed, clearly it is surjective by its construction and is injective by the fact that $h^{0}(X, \mathcal{L} \otimes L(a))=h^{0}(X, \mathcal{L})=n+1$.

Lemma 4. Let $\sigma_{1}, \sigma_{2} \in H^{0}(X, \mathcal{L} \otimes L(a))$, and set $s_{j}=\iota_{a}\left(\sigma_{j}\right)$ for $j=1,2$. Then $h\left(s_{1}, s_{2}\right)$ is constant.

Proof. For simplicity, set $\mathcal{L}(a)=\mathcal{L} \otimes L(a)$.
We first note that the map $\iota_{a}: H^{0}\left(X_{A}, \mathcal{L}(a)\right) \longrightarrow H^{0}\left(X_{A}, \mathcal{L}\right)$ induces an isomorphism $\kappa_{a}: H^{0}\left(X_{A}, \mathcal{L}(a) \otimes \overline{\rho_{X *} \mathcal{L}(a)}\right) \longrightarrow H^{0}\left(X_{A}, \mathcal{L} \otimes \overline{\rho_{X *} \mathcal{L}}\right)$. In fact, $\kappa_{a}(\sigma)=$ $\sigma\left(\theta_{a} \otimes \overline{\rho_{X *} \theta_{a}}\right)^{-1} \theta \otimes \overline{\rho_{X *} \theta}$, because the transition functions e^{a} for $L(a)$ and e^{-a} for $\overline{\rho_{X *} L(a)}$ cancel out each other. Set $s_{12}=\kappa_{a}\left(\sigma_{1} \otimes \overline{\rho_{X *} \sigma_{2}}\right)$. We claim that s_{12} is a globally defined holomorphic section of $\mathcal{L} \otimes \overline{\rho_{X *} \mathcal{L}}$. Indeed, s_{12} is holomorphic over X_{A}. In order to see that it is also holomorphic over X_{I}, set $f_{j}=\sigma_{j} \theta_{a}^{-1}$ for $j=1,2$, which is a holomorphic function on X_{I}. Then we have

$$
\begin{aligned}
s_{12} & =\sigma_{1} \otimes \overline{\rho_{X *} \sigma_{2}}\left(\theta_{a} \otimes \overline{\rho_{X *} \theta_{a}}\right)^{-1} \theta \otimes \overline{\rho_{X *} \theta} \\
& =f_{1} \theta \otimes \overline{\rho_{X *}\left(f_{2} \theta\right)},
\end{aligned}
$$

which shows that s_{12} is also holomorphic over X_{I}, since θ is a holomorphic frame field over X_{I}. Thus, s_{12} is a globally holomorphic section as claimed.

Now we have

$$
\begin{aligned}
h\left(s_{1}, s_{2}\right) & =h\left(\iota_{a}\left(\sigma_{1}\right), \iota_{a}\left(\sigma_{2}\right)\right) \\
& =\operatorname{Tr}\left(\mathrm{f} \cdot \iota_{\mathrm{a}}\left(\sigma_{1}\right) \otimes \overline{\rho_{\mathrm{X} *} \iota_{\mathrm{a}}\left(\sigma_{2}\right)}\right) \\
& =\operatorname{Tr}\left(\mathrm{f} \cdot \kappa_{\mathrm{a}}\left(\sigma_{1} \otimes \overline{\rho_{\mathrm{X} *} \sigma_{2}}\right)\right)=\operatorname{Tr}\left(\mathrm{f} \cdot \mathrm{~s}_{12}\right) .
\end{aligned}
$$

Since $\operatorname{Tr}\left(\mathrm{f} \cdot \mathrm{s}_{12}\right) \in \mathrm{H}^{0}\left(\mathbb{P}^{1}, \mathcal{O}\right)$ (notice that $f \cdot s_{12} \in H^{0}\left(X, \mathcal{O}_{X}(R)\right)$), we see that $h\left(s_{1}, s_{2}\right)$ is constant.
3.3. Ideal sheaves on spectral curves. Define a map $a: \mathbb{R}^{2} \longrightarrow \mathcal{G}_{\mathbb{R}}$ by $z \mapsto$ $a(z, \bar{z})=z \zeta^{-1}-\bar{z} \zeta$, where ζ is considered only on $X_{A} \cap\left(U_{0} \cup U_{\infty}\right), U_{0}$ (resp. U_{∞}) being a connected component of X_{0} (resp. X_{∞}) which contains P_{0} (resp. Q_{0}). Then $L(a)=L\left(z \zeta^{-1}-\bar{z} \zeta\right)$ is a 2-parameter subgroup of $J_{\mathbb{R}}(X)$. We have the following diagram:

We also write $L(a)^{*} H^{0}(X)$ as $H^{0}(X)$ if there is no confusion. Fix a h-orthonormal basis $\left\{\tau_{j}\right\}$ for $H^{0}(X, \mathcal{L})$ so that $\left(H^{0}(X, \mathcal{L}), h\right) \longrightarrow\left(\mathbb{C}^{n+1},\langle\rangle,\right)$ is an isometry. We want to decompose the vector bundle $H^{0}(X) \rightarrow \mathbb{R}^{2}$ into line subbundles which are orthogonal to each other. To this end, we first define the following line bundles, whose sheaves of germs of holomorphic sections are subsheaves of the sheaf of germs of holomorphic sections for \mathcal{L} :

$$
\left\{\begin{array}{l}
\mathcal{L}_{j}=\mathcal{L} \otimes \mathcal{O}_{X}\left(-(m-j) P_{0}-j Q_{0}-\sum_{i=1}^{n-m} P_{i}\right) \quad \text { for } \mathrm{j}=0,1, \cdots, \mathrm{~m}-1 \tag{3.2}\\
\mathcal{L}_{m}=\mathcal{L} \otimes \mathcal{O}_{X}\left(-m Q_{0}\right)
\end{array}\right.
$$

Lemma 5. For $j=0,1, \cdots, m$, each \mathcal{L}_{j} is non-special, i.e., $h^{1}\left(X, \mathcal{L}_{j}\right)=0$.

Proof. Set $\mathcal{I}_{j}=\mathcal{L} \otimes \mathcal{O}_{X}\left(j P_{0}-j Q_{0}\right)$ for $j=0,1, \cdots, m$. Note that \mathcal{I}_{j} is a real line bundle, i.e., it satisfies $\mathcal{I}_{j} \otimes \overline{\rho_{X *} \mathcal{I}_{j}} \cong \mathcal{O}_{X}(R)$. It follows from Lemma 2 that $\pi_{*} \mathcal{I}_{j}$ is a trivial bundle of rank $n+1$. Define \mathcal{F}_{j} by $\mathcal{F}_{j}=\mathcal{I}_{j} \otimes \mathcal{O}_{X}\left(-(m+1) P_{0}-\sum_{i=1}^{n-m} P_{i}\right)$. Then we obtain

$$
\mathcal{F}_{j}= \begin{cases}\mathcal{L}_{j}\left(-P_{0}\right) & \text { for } \mathrm{j}=0, \cdots, \mathrm{~m}-1 \\ \mathcal{L}_{m}\left(-P_{0}-\sum_{i=1}^{n-m} P_{i}\right) & \text { for } \mathrm{j}=\mathrm{m}\end{cases}
$$

Note that $\operatorname{deg}\left(\mathcal{F}_{\mathrm{j}}\right)=\mathrm{p}-1$ for $j=0,1, \cdots, m$.
In general, for any non-special line bundle L we know that $H^{0}(X, L(-P)) \cong\{s \in$ $\left.H^{0}(X, L) \mid s(P)=0\right\}$, where $L(D)=L \otimes \mathcal{O}_{X}(D)$ for a divisor D on X. In fact, if we fix a meromorphic section τ with the divisor $(\tau)=(-P)$, then taking the tensor product of each element with τ or τ^{-1} gives an isomorphism. Now, suppose that \mathcal{F}_{j} has a non-trivial global section. Then there is a global section of $\pi_{*} \mathcal{I}_{j}$ which vanishes at $\lambda=0$, since any global holomorphic section of \mathcal{F}_{j} gives rise to a global holomorphic section of \mathcal{I}_{j} with divisor $(m+1) P_{0}+\sum P_{i}$. However, since $\pi_{*} \mathcal{I}_{j}$ is a trivial bundle, it must be identically zero. Thus, we see that $h^{0}\left(X, \mathcal{F}_{j}\right)=0$. Now, the Riemann-Roch formula implies that $h^{1}\left(X, \mathcal{F}_{j}\right)=0$, because $\operatorname{deg}\left(\mathcal{F}_{\mathrm{j}}\right)=\mathrm{p}-1$ for $j=0,1, \cdots, m$.

In general, for any line bundle L and any point $P \in X, h^{1}(X, L)=0$ implies that $h^{1}(X, L(P))=0$. Indeed, it follows from the Serre duality theorem that $0=$ $h^{1}(X, \mathcal{L})=h^{0}\left(X, \Omega_{X}^{1,0} \otimes L^{-1}\right)$, where $\Omega_{X}^{1,0}$ is the holomorphic cotangent bundle $(=$ the canonical bundle) of X. Again, it follows from the Serre duality that $h^{1}(X, L(P))=$ $h^{0}\left(X, \Omega_{X}^{1,0} \otimes L^{-1}(-P)\right)$. Therefore, if there is a non-trivial element of $H^{1}(X, L(P))$, then there is a global section of $\Omega_{X}^{1,0} \otimes L^{-1}$ vanishing at P. However, it must be identically zero, because $h^{0}\left(X, \Omega_{X}^{1,0} \otimes L^{-1}\right)=0$.

To complete of the proof, it suffices to notice that $\mathcal{L}_{j}=\mathcal{F}_{j}\left(P_{0}\right)$ for $j=0,1, \cdots m-1$ and $\mathcal{L}_{m}=\mathcal{F}_{m}\left(P_{0}+\sum P_{i}\right)$, and then apply the general theory above to these line bundles once or successively.

Corollary 1. Given any $a \in \mathcal{G}_{\mathbb{R}}$, we have $h^{1}\left(X, \mathcal{L}_{j} \otimes L(a)\right)=0$ for $j=0,1, \cdots, m$.

Proof. We only need to replace \mathcal{L} by $\mathcal{L} \otimes L(a)$ in the definition of \mathcal{I}_{j} in the proof of Lemma 5.

Corollary 1, together with the Riemann-Roch theorem, yields that

$$
h^{0}\left(X, \mathcal{L}_{j} \otimes L(a)\right)= \begin{cases}1 & \text { for } \quad \mathrm{j}=0,1, \cdots, \mathrm{~m}-1 \\ n+1-m & \text { for } \mathrm{j}=\mathrm{m}\end{cases}
$$

Then, obviously we obtain:

$$
H^{0}(X, \mathcal{L} \otimes L(a))=\bigoplus_{j=0}^{m} H^{0}\left(X, \mathcal{L}_{j} \otimes L(a)\right) \quad \text { (h-orthogonal sum) }
$$

Define a map $\tau^{1}: H^{0}\left(X_{A}, \mathcal{L}\right) \longrightarrow \mathbb{C}^{n+1}$ by the composition of $\left\{\tau_{j}\right\}$, which identifies $H^{0}(X, \mathcal{L})$ with \mathbb{C}^{n+1}, and the map $e v_{1}$. We thus have the following diagram:

$$
\begin{aligned}
& H^{0}\left(X_{A}, \mathcal{L}\right) \xrightarrow{e v_{1}} H^{0}(X, \mathcal{L}) \xrightarrow{\left\{\tau_{j}\right\}} \mathbb{C}^{n+1} \\
& \quad \iota_{a} \uparrow \\
& H^{0}\left(X_{A}, \mathcal{L} \otimes L(a)\right) \supset H^{0}(X, \mathcal{L} \otimes L(a))=\bigoplus_{j=0}^{m} H^{0}\left(X, \mathcal{L}_{j} \otimes L(a)\right) .
\end{aligned}
$$

Define line subbundles l_{j} of the trivial bundle $\mathbb{R}^{2} \times \mathbb{C}^{n+1}$ by

$$
l_{j}=\tau^{1} \circ \iota_{a}\left(H^{0}\left(X, \mathcal{L}_{j} \otimes L(a)\right) \quad \text { for } \quad \mathrm{j}=0,1, \cdots, \mathrm{~m}\right.
$$

Then it follows that $\mathbb{R}^{2} \times \mathbb{C}^{n+1}=\bigoplus_{j=0}^{m} l_{j}$, which is an orthogonal direct sum with respect to the inner product \langle,$\rangle on \mathbb{C}^{n+1}$. To see this, it suffices to prove the following

Lemma 6. For $z \in \mathbb{R}^{2}$ and $j=0,1, \cdots$, m, let $\sigma_{j} \in H^{0}\left(\mathcal{L}_{j} \otimes L(a)\right)$. Set $s_{j}=\iota_{a}\left(\sigma_{j}\right)$. Then $h\left(s_{j}, s_{k}\right)=0$ for $j \neq k$.

Proof. From Lemma 4 we know that $h\left(s_{j}, s_{k}\right)$ is constant. Therefore, it suffices to show that when $j \neq k, h\left(s_{j}, s_{k}\right)$ is zero at some point of \mathbb{P}^{1}. Setting $f_{j}=\sigma_{j} \theta_{a}^{-1}$, we see that f_{j} is a holomorphic function over X_{I} and $s_{j}=e^{a}\left(\sigma_{j} \theta_{a}^{-1}\right) \theta=e^{a} f_{j} \theta$. Since σ_{j}
is a global holomorphic section of $\mathcal{L} \otimes L(a)$, which has a divisor $(m-j) P_{0}+j Q_{0}+\sum P_{i}$ for $j=0, \cdots, m-1$ or a divisor $m Q_{0}$ for $j=m$, it follows that f_{j} has a divisor

$$
\begin{cases}(m-j) P_{0}+j Q_{0}+\sum P_{i} & \text { for } \quad \mathrm{j}=0,1, \cdots, \mathrm{~m}-1 \\ m Q_{0} & \text { for } \mathrm{j}=\mathrm{m} .\end{cases}
$$

Set $r_{j k}=f \cdot \theta \otimes \overline{\rho_{X *} \theta} f_{j} \overline{\rho_{X *} f_{k}}$. Then we have $h\left(s_{j}, s_{k}\right)=\operatorname{Tr}\left(\mathrm{r}_{\mathrm{jk}}\right)$. Recall that $X_{I}=$ $X_{0} \cup X_{\infty}$. Denote by U_{0} (resp. U_{∞}) a connected component of X_{0} (resp. X_{∞}) which contains P_{0} (resp. Q_{0}). Recall that there are no branch points on X_{0} and X_{∞} except P_{0} and Q_{0}. Since $f \cdot \theta \otimes \overline{\rho_{X *} \theta}$ is a meromorphic function with a divisor $(-R)$, it then follows that

$$
f \cdot \theta \otimes \overline{\rho_{X *} \theta}= \begin{cases}\zeta^{-m} & \text { in } \mathrm{U}_{0} \\ \zeta^{m} & \text { in } \mathrm{U}_{\infty} \\ 1 & \text { elsewhere in } X_{I}\end{cases}
$$

Therefore, $r_{j k}$ has a divisor

$$
\begin{cases}(k-j) P_{0}+(j-k) Q_{0}+\sum P_{i}+\sum Q_{i} & \text { for } \quad \mathrm{j}, \mathrm{k}=0,1, \cdots, \mathrm{~m}-1 \tag{3.3}\\ (m-j) P_{0}+(j-m) Q_{0}+\sum P_{i} & \text { for } \quad \mathrm{k}=\mathrm{m} ; \mathrm{j}=0,1, \cdots, \mathrm{~m}-1 .\end{cases}
$$

Note that $\pi^{-1}(0)=\left\{(m+1) P_{0}, P_{1}, \cdots, P_{n-m}\right\}$ and $\pi^{-1}(\infty)=\left\{(m+1) Q_{0}, Q_{1}, \cdots\right.$, $\left.Q_{n-m}\right\}$, where $(m+1) P_{0}$ (resp. $\left.(m+1) Q_{0}\right)$ stands for the point P_{0} (resp. Q_{0}) with multiplicity $(m+1)$. This, together with (3.3), yields that if $j, k<m$, then

$$
\begin{aligned}
& \operatorname{Tr}\left(\mathrm{r}_{\mathrm{jk}}\right)=\sum_{\pi^{-1}(0)} r_{j k}=0 \quad \text { when } \quad \mathrm{k}>\mathrm{j}, \\
& \operatorname{Tr}\left(\mathrm{r}_{\mathrm{jk}}\right)=\sum_{\pi^{-1}(\infty)} r_{j k}=0 \quad \text { when } \quad \mathrm{j}>\mathrm{k},
\end{aligned}
$$

and if $j<k=m$, then

$$
\operatorname{Tr}\left(\mathrm{r}_{\mathrm{jm}}\right)=\sum_{\pi^{-1}(0)} \mathrm{r}_{\mathrm{jm}}=0
$$

proving our assertion.

Lemma 7. Let $\sigma: \mathbb{R}^{2} \longrightarrow H^{0}(X)$ be a smooth section for which $\sigma(z, \bar{z})$ is a globally holomorphic section of $\mathcal{F} \otimes L(a)$ for some ideal sheaf \mathcal{F} of \mathcal{L}. Let D be the covariant differentiation on $H^{0}(X)$ induced by the parallel transport of the vector bundle $H^{0}(X) \rightarrow \mathbb{R}^{2}$. Then, $D_{\partial / \partial z} \sigma\left(\right.$ resp. $\left.D_{\partial / \partial \bar{z}} \sigma\right)$ is a globally defined holomorphic section of $\mathcal{F}\left(P_{0}\right) \otimes L(a)\left(\right.$ resp. $\left.\mathcal{F}\left(Q_{0}\right) \otimes L(a)\right)$.

Remark. Each \mathcal{L}_{j} is an ideal sheaf of \mathcal{L}.
Proof. We can define a connection D on the bundle $H^{0}(X)$ by

$$
D_{Z} \sigma=\iota_{a}^{-1}\left(Z \iota_{a}(\sigma)\right),
$$

where σ is a section of the bundle $H^{0}(X) \rightarrow \mathbb{R}^{2}$ and Z is an arbitrary vector field on \mathbb{R}^{2}. Setting $s=\iota_{a}(\sigma)$ and $f=\sigma \theta_{a}^{-1}$, we see that $s=e^{a} f \theta: \mathbb{R}^{2} \longrightarrow H^{0}\left(X_{A}, \mathcal{L}\right)$ and $f: \mathbb{R}^{2} \longrightarrow H^{0}\left(X_{I}, \mathcal{F} \otimes \mathcal{L}^{-1}\right)$. Recall that $a=z \zeta^{-1}-\bar{z} \zeta$. Then we obtain

$$
\left\{\begin{array}{l}
\frac{\partial s}{\partial z}=\zeta^{-1} e^{a} f \theta+\frac{\partial f}{\partial z} e^{a} \theta=\left(\zeta^{-1} f+\frac{\partial f}{\partial z}\right) e^{a} \theta \in H^{0}\left(X_{A}, \mathcal{F}\left(P_{0}\right)\right) \\
\frac{\partial s}{\partial \bar{z}}=-\zeta e^{a} f \theta+\frac{\partial f}{\partial \bar{z}} e^{a} \theta=\left(-\zeta f+\frac{\partial f}{\partial \bar{z}}\right) e^{a} \theta \in H^{0}\left(X_{A}, \mathcal{F}\left(Q_{0}\right)\right)
\end{array}\right.
$$

Thus, it follows from the definition of D that

$$
\left\{\begin{array}{l}
D_{\partial / \partial z} \sigma=\left(\zeta^{-1} f+\frac{\partial f}{\partial z}\right) \theta_{a} \in H^{0}\left(X_{I}, \mathcal{F}\left(P_{0}\right) \otimes L(a)\right), \\
D_{\partial / \partial \bar{z}} \sigma=\left(-\zeta f+\frac{\partial f}{\partial \bar{z}}\right) \theta_{a} \in H^{0}\left(X_{I}, \mathcal{F}\left(Q_{0}\right) \otimes L(a)\right)
\end{array}\right.
$$

Since $\partial s / \partial z$ is holomorphic over X_{A}, so is $D_{\partial / \partial z} \sigma$ over X_{A}. In consequence, $D_{\partial / \partial z} \sigma$ is holomorphic over $X=X_{A} \cup X_{I}$ and defines a global holomorphic section of $\mathcal{F}\left(P_{0}\right) \otimes$ $L(a)$.

The proof for the case of $D_{\partial / \partial \bar{z}} \sigma$ is similar.
Let $\sigma_{0}, \sigma_{1}, \cdots, \sigma_{n}$ be global holomolphic sections of the bundle $H^{0}(X) \rightarrow \mathbb{R}^{2}$, for which $H^{0}\left(X, \mathcal{L}_{j} \otimes L(a)\right)=\operatorname{Span}\left\{\sigma_{\mathrm{j}}\right\}$ for $j=0,1, \cdots, m-1$ and $H^{0}\left(X, \mathcal{L}_{m} \otimes L(a)\right)=$ $\operatorname{Span}\left\{\sigma_{\mathrm{m}}, \cdots, \sigma_{\mathrm{n}}\right\}$. Set $s_{j}=\iota_{a}\left(\sigma_{j}\right)$ for $j=0,1, \cdots, n$. Then, $\left\{s_{0}, \cdots, s_{n}\right\}$ defines a free system of generators for $H^{0}\left(X_{A}, \mathcal{L}\right)$. Recall that B denotes the algebra of
holomorphic maps $A \rightarrow \mathbb{C}$. Let V_{j} and V_{m} be B-modules generated, respectively, by s_{j} and s_{m}, \cdots, s_{n}, where $j=0,1, \cdots, m-1$. We then have

$$
H^{0}\left(X_{A}, \mathcal{L}\right)=\sum_{j=0}^{m} V_{j}
$$

which is a h-orthogonal direct sum by Lemma 6 . We denote by $\Pi_{j}: H^{0}\left(X_{A}, \mathcal{L}\right) \longrightarrow V_{j}$ the h-orthogonal projection onto V_{j}.

Lemma 8. Each map $s_{j}: \mathbb{R}^{2} \longrightarrow H^{0}\left(X_{A}, \mathcal{L}\right)$ satisfies

$$
\begin{cases}\frac{\partial s_{j}}{\partial z} \in V_{j} \bigoplus V_{j+1} & \text { for } \quad \mathrm{j}=0,1, \cdots, \mathrm{~m}-1 \\ \frac{\partial s_{k}}{\partial z} \in V_{m} \bigoplus V_{0} & \text { for } \quad \mathrm{k}=\mathrm{m}, \cdots, \mathrm{n}\end{cases}
$$

and

$$
\left\{\begin{aligned}
& \Pi_{j+1}\left(\frac{\partial s_{j}}{\partial z}\right) \neq 0 \quad \text { for } \quad \mathrm{j}=0,1, \cdots, \mathrm{~m}-1 \\
\Pi_{0}\left(\frac{\partial^{2} s_{m-1}}{\partial z^{2}}\right) & \neq 0
\end{aligned}\right.
$$

Proof. As in the proof of Lemma 7, write $s_{j}=e^{a} f_{j} \theta$ with $f_{j}=\sigma_{j} \theta_{a}^{-1}$, where $\sigma_{j} \in$ $H^{0}\left(X, \mathcal{L}_{j} \otimes L(a)\right)$.
[Case 1: $j=0,1, \cdots, m-2]$ By Lemma 7 we have $D_{\partial / \partial z} \sigma_{j} \in H^{0}\left(X, \mathcal{L}_{j}\left(P_{0}\right) \otimes L(a)\right)$. Recall that if L is non-special, then so is $L(P)$ for any point $P \in X$. Therefore we see that $\mathcal{L}_{j}\left(P_{0}\right) \otimes L(a)$ is non-special by Corollary 1 . Then it follows from the RiemannRoch formula that $h^{0}\left(X, \mathcal{L}_{j}\left(P_{0}\right) \otimes L(a)\right)=2$.

Now, obviously, $H^{0}\left(X, \mathcal{L}_{j}\left(P_{0}\right) \otimes L(a)\right)$ is generated by σ_{j} and σ_{j+1}, since $\mathcal{L}_{j}=$ $\mathcal{L}_{j}\left(P_{0}\right) \otimes \mathcal{O}_{X}\left(-P_{0}\right)$ and $\mathcal{L}_{j+1}=\mathcal{L}_{j}\left(P_{0}\right) \otimes \mathcal{O}_{X}\left(-Q_{0}\right)$, which show that \mathcal{L}_{j} and \mathcal{L}_{j+1} are subsheaves of $\mathcal{L}_{j}\left(P_{0}\right)$. Therefore we obtain

$$
\frac{\partial s_{j}}{\partial z} \in V_{j} \bigoplus V_{j+1}
$$

Moreover, since $\iota_{a}^{-1}\left(\partial s_{j} / \partial z\right)=\left(\zeta^{-1} f_{j}+\partial f_{j} / \partial z\right) \theta_{a}$ and $\zeta^{-1} f_{j} \theta_{a}=\zeta^{-1} \sigma_{j}$ cannot be an element of $H^{0}\left(X_{I}, \mathcal{L}_{j} \otimes L(a)\right)$, we must have $\Pi_{j+1}\left(\partial s_{j} / \partial z\right) \neq 0$.
[Case 2: $j=m-1]$ As in Case 1, we have $\partial s_{m-1} / \partial z \in V_{m-1} \bigoplus V_{m}, \iota_{a}^{-1}\left(\partial s_{m-1} / \partial z\right) \in$ $H^{0}\left(X, \mathcal{L}_{m-1}\left(P_{0}\right) \otimes L(a)\right)$ and $\Pi_{m}\left(\partial s_{m-1} / \partial z\right) \neq 0$. In this case, although \mathcal{L}_{m} is not a subsheaf of $\mathcal{L}_{m-1}\left(P_{0}\right)$, it is enough to consider $\mathcal{L}_{m}\left(-\sum P_{i}\right)$, which is a subsheaf of \mathcal{L}_{m}.

Next, we show $\Pi_{0}\left(\partial^{2} s_{m-1} / \partial z^{2}\right) \neq 0$. We have

$$
\begin{aligned}
\iota_{a}^{-1}\left(\frac{\partial^{2} s_{m-1}}{\partial z^{2}}\right) & =\left(\zeta^{-2} f_{m-1}+2 \zeta^{-1} \frac{\partial f_{m-1}}{\partial z}+\frac{\partial^{2} f_{m-1}}{\partial z^{2}}\right) \theta_{a} \\
& \in H^{0}\left(X, \mathcal{L}_{m-1}\left(2 P_{0}\right) \otimes L(a)\right)
\end{aligned}
$$

Notice that $\mathcal{L}_{m-1}\left(2 P_{0}\right)=\mathcal{L}\left(P_{0}-(m-1) Q_{0}-\sum P_{i}\right)$ and $h^{0}\left(X, \mathcal{L}_{m-1}\left(2 P_{0}\right) \otimes L(a)\right)=$ 3 by the Riemann-Roch formula. Hence, $H^{0}\left(X, \mathcal{L}_{m-1}\left(2 P_{0}\right) \otimes L(a)\right)$ has a section induced from a meromorphic section of $\mathcal{L} \otimes L(a)$, which has a pole of order 1 at P_{0}. Indeed, $\zeta^{-2} f_{m-1} \theta_{a}$ gives rise to such a section. We observe that $\mathcal{L}_{m-1}, \mathcal{L}_{m}\left(-\sum P_{i}\right)$ and $\mathcal{L}\left(P_{0}-(m+1) Q_{0}-\sum P_{i}\right)$ are subsheaves of $\mathcal{L}_{m-1}\left(2 P_{0}\right)$. Since $\lambda^{-1} \sigma_{0}$ is a section of $\mathcal{L}\left(P_{0}-(m+1) Q_{0}-\sum P_{i}\right)$ (note that $(\lambda)=(m+1) P_{0}-(m+1) Q_{0}$ on $\left.U_{0} \cup U_{\infty}\right)$, it follows that $\mathcal{L}_{m-1}\left(2 P_{0}\right)$ is generated by $\sigma_{m-1}, \sigma_{m}, \cdots \sigma_{n}$ and $\lambda^{-1} \sigma_{0}$. Among them, $\lambda^{-1} \sigma_{0}$ is the only one which has a pole of order 1 at P_{0}. This implies that $\Pi_{0}\left(\partial^{2} s_{m-1} / \partial z^{2}\right) \neq 0$.
[Case 3:k=m, $3, n]$ Similarly, we have $\iota_{a}^{-1}\left(\partial s_{k} / \partial z\right) \in H^{0}\left(X, \mathcal{L}_{m}\left(P_{0}\right) \otimes L(a)\right)$ and $h^{0}\left(X, \mathcal{L}_{m}\left(P_{0}\right) \otimes L(a)\right)=n-m+2$. In this case, \mathcal{L}_{m} and $\mathcal{L}\left(P_{0}-(m+1) Q_{0}-\sum P_{i}\right)$ are subsheaves of $\mathcal{L}_{m}\left(P_{0}\right)$, and $\mathcal{L}_{m}\left(P_{0}\right)$ is generated by $\sigma_{m}, \cdots, \sigma_{n}$ and $\lambda^{-1} \sigma_{0}$. Thus we have $\partial s_{k} / \partial z \in V_{m} \bigoplus V_{0}$.

Now, we are in a position to prove the following theorem.
Theorem 3. Let $l_{0}, \cdots, l_{m}(m \geq 2)$ be the subbundles of $\mathbb{R}^{2} \times \mathbb{C}^{n+1}$ constructed above. Then l_{0} determines a harmonic map $\psi_{0}: \mathbb{R}^{2} \longrightarrow \mathbb{C} P^{n}$ of isotropy order m, where the isotropy order m is defined by

$$
m=\max \left\{\mathrm{j}: \text { all line bundles } \mathrm{V}_{0}, \ldots, \mathrm{~V}_{\mathrm{j}} \text { are mutually orthogonal }\right\} .
$$

Here $V_{0}=l_{0}$ and for $i \geqq 1$, under the orthogonal projection $\pi_{i-1}^{\perp}: \mathbb{C}^{n+1} \longrightarrow V_{i-1}^{\perp}$ onto the orthogonal bundle V_{i-1}^{\perp} of V_{i-1}, V_{i} is a line bundle defined by $V_{i}=\pi_{i-1}^{\perp}\left(\partial V_{i-1} / \partial z\right)$.

Note that this theorem implies the harmonicity of the map associated with (X, π, \mathcal{L}), which is constructed in the previous section, since it is equal to ψ_{0} by definition.

Proof of Theorem 3. Recall the map $\tau^{1}: H^{0}\left(X_{A}, \mathcal{L}\right) \longrightarrow \mathbb{C}^{n+1}$. We see that $\tau^{1}\left(V_{j}\right)=l_{j}$. Obviously, the map τ^{1} and the differentiation $\partial / \partial z$ commute. Denote by $\pi_{j}: \mathbb{C}^{n+1} \longrightarrow l_{j}$ the orthogonal projection onto l_{j}. Then we observe that $\tau^{1} \circ \Pi_{j}=$ $\pi_{j} \circ \tau^{1}$.

It then follows from Lemma 8 that

$$
\begin{cases}\frac{\partial}{\partial z} l_{j} \subset l_{j} \oplus l_{j+1} & \text { for } \quad \mathrm{j}=0,1, \cdots, \mathrm{~m} \tag{3.4}\\ \pi_{j+1}\left(\frac{\partial l_{j}}{\partial z}\right) \neq 0 & \text { for } \quad \mathrm{j}=0,1, \cdots, \mathrm{~m}-1 \\ \pi_{0}\left(\frac{\partial^{2} l_{m-1}}{\partial z^{2}}\right) \neq 0, & \end{cases}
$$

where we use the convention that $l_{m+1}=l_{0}$. Thus, a map $\psi=\left(l_{0}, l_{1}, \cdots, l_{m}\right)$: $\mathbb{R}^{2} \longrightarrow F^{r}\left(\mathbb{C} P^{n}\right)$ is a primitive map. In fact, the complexification of the tangent bundle of $F^{r}\left(\mathbb{C} P^{n}\right)$ is given by $T^{\mathbb{C}}\left(F^{r}\left(\mathbb{C} P^{n}\right)\right)=\bigoplus_{i \neq j} \operatorname{Hom}\left(l_{\mathrm{i}}, l_{\mathrm{j}}\right)$. On the other hand, $\left(\psi^{*} \beta\right)(\partial / \partial z)$ takes values in $\bigoplus_{i=0}^{m} \operatorname{Hom}\left(l_{\mathrm{i}}, \mathrm{l}_{\mathrm{i}+1}\right)$ with $l_{m+1}=l_{0}$ by (3.4). Recall that $F^{r}\left(\mathbb{C} P^{n}\right)$ has the structure of $(m+1)$-symmetric space such that $\left(l_{j}\right)_{x}$ is a $\omega^{j}-$ eigenspace of the automorphism τ_{x} of order $(m+1)$, where $\omega=\exp (2 \pi \sqrt{-1} /(m+1))$. Then we have $\left[\mathcal{G}_{1}\right]=\bigoplus_{i=0}^{m} \operatorname{Hom}\left(\mathrm{l}_{\mathrm{i}}, \mathrm{l}_{\mathrm{i}+1}\right)$ with $l_{m+1}=l_{0}$. In consequence, we see that ψ is a primitive map.

Now, if $m \geq 2$, then $\varphi=\tilde{\pi} \circ \psi: \mathbb{R}^{2} \longrightarrow \mathbb{C} P^{n}$ is a harmonic map, where $\tilde{\pi}$: $F^{r}\left(\mathbb{C} P^{n}\right) \longrightarrow \mathbb{C} P^{n}$ is the homogeneous projection.

When $m=1$, we have a map $\psi: \mathbb{R}^{2} \longrightarrow F^{1}\left(\mathbb{C} P^{n}\right)=\mathbb{C} P^{n}$. Since the condition of the primitivity of ψ is meaningless in this case, the above argument is not applicable. However, we can show that ψ is also harmonic by calculating a holomorphic section of l_{0} and investigating the divisor of this section.

4. Reconstruction of spectral curves from harmonic tori

In this section, we shall recover the spectral data (X, π, \mathcal{L}) from a given nonisotropic harmonic torus $\psi_{0}: T^{2} \rightarrow \mathbb{C} P^{n}$. Throughout this section, it is convenient to work with $G=U_{n+1}, H=\underbrace{U_{1} \times \cdots \times U_{1}}_{r+2 \text { times }} \times U_{n-r-1}$ and $\mathfrak{g}=\mathfrak{u}_{n+1}$. Here $0 \leqq r \leqq n-1$.

4.1. Extended frames and loop groups. First we recall the following

Theorem 4 ([1]). Every non-isotropic weakly conformal harmonic map ψ_{0} of a Riemann surface M into $\mathbb{C} P^{n}$ of isotropy order $r+1$ is covered by a unique bprimitive map $M \rightarrow F^{r}\left(\mathbb{C} P^{n}\right)=G / H$.

Thus there exists a unique primitive lift $\psi: T^{2} \rightarrow G / H$ for ψ_{0} (if ψ_{0} is nonconformal, we set $\psi=\psi_{0}$; 'primitive' will simply mean 'harmonic' for $m=1$). We may frame this by $\Phi: \mathbb{R}^{2} \rightarrow G$ over the universal cover $\mathbb{R}^{2} \rightarrow T^{2}$ of T^{2} and normalize the frame so that $\Phi(0)=\mathrm{Id}$.

Set $\alpha=\Phi^{-1} d \Phi$, which is the pull back of the Maurer-Cartan form by Φ, and write

$$
\alpha=\alpha_{\mathfrak{h}}+\alpha_{\mathfrak{p}},
$$

according to the reductive decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{p}$. If we define

$$
\alpha_{\zeta}=\zeta^{-1} \alpha_{\mathfrak{p}}^{\prime}+\alpha_{\mathfrak{h}}+\zeta \alpha_{\mathfrak{p}}^{\prime \prime}, \quad \zeta \in \mathbb{C}^{*}
$$

then we get

$$
d \alpha_{\zeta}+\frac{1}{2}\left[\alpha_{\zeta} \wedge \alpha_{\zeta}\right]=0
$$

Moreover, since $\alpha_{\mathfrak{p}}^{\prime}$ takes values in \mathfrak{g}_{-1}, this map $\alpha_{\zeta}: \mathbb{C}^{*} \times \mathbb{R}^{2} \rightarrow \mathfrak{g}^{\mathbb{C}}$ is ν-equivariant in ζ, i.e., $\nu\left(\alpha_{\zeta}\right)=\alpha_{\omega \zeta}$ (here ω is a primitive $(m+1)$-st root of unity). It follows that we can integrate α_{ζ} to find an extended frame $\Phi_{\zeta}: \mathbb{C}^{*} \times \mathbb{R}^{2} \rightarrow G^{\mathbb{C}}$ which satisfies

$$
\alpha_{\zeta}=\Phi_{\zeta}^{-1} d \Phi_{\zeta} .
$$

Moreover, we may always choose the integration constants so that Φ_{ζ} is ν-equivariant and $\Phi_{1 / \bar{\zeta}}=\Phi_{\zeta}^{\dagger}$, where \dagger denotes Hermitian transpose. We are going to view Φ_{ζ} as a map from \mathbb{R}^{2} into a certain loop group, defined as follows.

Let $C=C_{\epsilon}$ be the union of circles C_{1} and C_{2} in the ζ-plane of radii ϵ and ϵ^{-1} respectively, where $0<\epsilon<1$. Define

$$
\Lambda_{C}^{\epsilon}\left(G^{\mathbb{C}}, \nu\right)=\left\{g: C \rightarrow G^{\mathbb{C}} \mid g \text { is real-analytic, } \nu(g(\zeta))=g(\omega \zeta)\right\}
$$

and write $g_{i}=\left.g\right|_{C_{i}}$ for $i=1,2$. We also denote the Lie algebra of $\Lambda_{C}^{\epsilon}\left(G^{\mathbb{C}}, \nu\right)$ by $\Lambda_{C}^{\epsilon}\left(\mathfrak{g}^{\mathbb{C}}, \nu\right)$. For a subgroup K of $G^{\mathbb{C}}$ and the Lie algebra \mathfrak{k} of K, we define $\Lambda_{C}^{\epsilon}(K, \nu)$ and $\Lambda_{C}^{\epsilon}(k, \nu)$ in a similar way. On this group $\Lambda_{C}^{\epsilon}\left(G^{\mathbb{C}}, \nu\right)$ there is an anti-holomorphic involution given by

$$
g \mapsto \bar{g}=g\left(\bar{\zeta}^{-1}\right)^{\dagger-1}
$$

We will denote the fixed point subgroup of this involution by $\Lambda^{\epsilon}(G, \nu)$, which is the group (for any choice of ϵ) that Φ_{ζ} takes values in. We also write $\Lambda(G, \nu)$ for $\Lambda^{\epsilon}(G, \nu)$ if there is no confusion.

A crucial fact about this subgroup is that it admits an 'Iwasawa decomposition' in the following sense. First recall that $H^{\mathbb{C}}$ has an Iwasawa decomposition, which we will write as $H^{\mathbb{C}}=H B_{0}$, inherited from $G^{\mathbb{C}}$. Here B_{0} is a subgroup of upper triangular matrices with positive real diagonal entries and $B_{0}=\exp \left(\mathfrak{b}_{0}\right)$, where $\mathfrak{h}^{\mathbb{C}}=\mathfrak{h} \oplus \mathfrak{b}_{0}$ is the corresponding Lie algebra decomposition. Next, we view C as a pair of circles on the ζ-sphere \mathbb{P}_{ζ} so that C is the common boundary for a closed annulus E and a union I of closed discs $I_{\epsilon}=\left\{\zeta \in \mathbb{P}_{\zeta}| | \zeta \mid<\epsilon\right\}$ and $I_{1 / \epsilon}=\left\{\zeta \in \mathbb{P}_{\zeta}| | \zeta \mid>1 / \epsilon\right\}$. Then we can define the following three subgroups of $\Lambda(G, \nu)$:

$$
\begin{aligned}
& \Lambda_{E}^{\epsilon}=\left\{g \in \Lambda^{\epsilon}(G, \nu) \mid \text { boundary of a holomorphic map } g: E \rightarrow G^{\mathbb{C}}\right\} \\
& \Lambda_{I}^{\epsilon}=\left\{g \in \Lambda^{\epsilon}(G, \nu) \mid \text { boundary of a holomorphic map } g: I \rightarrow G^{\mathbb{C}} \text { with } g(0)=\mathrm{Id}\right\} \\
& B=\left\{(b, \bar{b}) \mid b \in B_{0}\right\}
\end{aligned}
$$

For simplicity, we also denote Λ_{E}^{ϵ} and Λ_{I}^{ϵ} by Λ_{E} and Λ_{I}, respectively. Then it follows from a result in [19], [20] that every element $g \in \Lambda(G, \nu)$ has a unique factorization $g=u b n$ where $u \in \Lambda_{E}, b \in B$ and $n \in \Lambda_{I}$. We will refer to this as the Iwasawa decomposition for $\Lambda(G, \nu)$.

The corresponding Lie algebra decomposition is denoted by

$$
\Lambda^{\epsilon}(\mathfrak{g}, \nu)=\Lambda_{E}^{\epsilon}(\mathfrak{g}, \nu) \oplus \mathfrak{b} \oplus \Lambda_{I}^{\epsilon}(\mathfrak{g}, \nu) .
$$

When there is no confusion, we shall often drop superscript ϵ.
4.2. The dressing orbit of a vacuum solution. One of the results we will need from [5] is that, up to isometries, every non-isotropic harmonic torus possesses an extended frame belonging to a particular class which we will now describe. In the terminology of [5], these are the extended frames which lie in the dressing orbit of a vacuum solution.

For any positive integer k, let $\Lambda_{k} \subset \Lambda_{E}(\mathfrak{g}, \nu)$ denote the subspace of Laurent polynomials in ζ of degree $\leqq k$. We define

$$
\Delta^{\epsilon}=\Lambda_{1} \oplus \mathfrak{b} \oplus \Lambda_{I}(\mathfrak{g}, \nu) \subset \Lambda(\mathfrak{g}, \nu)
$$

We also write Δ for Δ^{ϵ}. Let $\Lambda_{I, B}=\Lambda_{I, B}^{\epsilon}$ denote the subgroup of $\Lambda^{\epsilon}(G, \nu)$ generated by the subgroup B and Λ_{I}. Then $\Lambda_{I, B}$ acts on the subspace Δ as an adjoint action. For a given $(\xi, \bar{\xi}) \in \Delta$, define

$$
e(\xi)=\exp [(z \xi, \bar{z} \bar{\xi})]
$$

which gives rise to a 2-parameter subgroup of $\Lambda(G, \nu)$. Using the Iwasawa decomposition in $\Lambda(G, \nu)$, we write

$$
e(\xi)=\Phi(\xi) b(\xi) n(\xi)
$$

and observe that $\Phi(\xi)$ equals the identity at $z=0$.
It can be shown quite readily that $\Phi(\xi)$ is the extended frame for some primitive harmonic map of \mathbb{R}^{2} into G / H. In fact, if we use \mathcal{F} to denote the set of all normalized
extended frames (i.e., those with $\Phi_{\zeta}(0)=\mathrm{Id}$) for primitive harmonic maps $\mathbb{R}^{2} \rightarrow$ G / H, then we have defined a map $\Phi: \Delta \rightarrow \mathcal{F}$. Now, following [5], we observe that, for any $g \in \Lambda_{I, B}$,

$$
\Phi(\operatorname{Adg} \xi)=\mathrm{g} \sharp \Phi(\xi),
$$

where $g \sharp \Phi(\xi)$ is the Λ_{E}-factor in the Iwasawa decomposition of $g \Phi(\xi)$. It is not hard to show that the latter defines an action of $\Lambda_{I, B}$ on \mathcal{F}, called the dressing action, and the equation shows that Φ intertwines the two actions.

Now let \mathcal{H} denote the space of all primitive maps $\mathbb{R}^{2} \rightarrow G / H$ based by $\psi(0)=H$. Then $\mathcal{H} \cong \mathcal{F} / C^{\infty}\left(\mathbb{R}^{2}, H\right)$, i.e., the space of based primitive maps is the quotient of \mathcal{F} by the group of gauge transformations. From [5] we know that the dressing action descends to \mathcal{H}; we will denote the gauge equivalence class of $\Phi(\xi)$ by $[\Phi(\xi)]$ and then $g \sharp[\Phi(\xi)]=[g \sharp \Phi(\xi)]$. The orbit $O_{\xi}=\left\{g \sharp[\Phi(\xi)] \mid g \in \Lambda_{I, B}\right\} \subset \mathcal{H}$ is called the dressing orbit of $[\Phi(\xi)]$. One of the principal results of [5] is the following

Theorem $5([5])$. Let $(\xi, \bar{\xi}) \in \Delta$ and write $\xi=\zeta^{-1} \xi_{-1}+\xi_{0}+\zeta \xi_{1}+\zeta^{2} \xi_{2}+\cdots$. When ξ_{-1} is semisimple, we can find (possibly after shrinking ϵ) an element $g \in \Lambda_{I, B}$ for which $[\Phi(\xi)]=g \sharp\left[\Phi\left(\zeta^{-1} \xi_{-1}\right)\right]$.

The proof of this theorem needs the following lemmas. Concerning the adjoint and dressing actions of Λ_{I}^{ϵ}, we have

Lemma 9 ([5]). For $g \in \Lambda_{I}^{\epsilon}$ and $\eta \in \Delta^{\epsilon}$,

$$
[\Phi(\operatorname{Adg} \eta)]=g \sharp[\Phi(\eta)] .
$$

Lemma $10([5])$. Let $\mu, \eta \in \Delta^{\epsilon}$. Then $[\Phi(\mu)]=[\Phi(\eta)]$ if and only if $(\zeta \mu)(0)=$ $(\zeta \eta)(0)$ and

$$
\begin{equation*}
(\operatorname{ad} \eta)^{\mathrm{n}} \mu \in \Lambda_{\mathrm{I}}^{\epsilon}(\mathfrak{g}, \nu), \tag{4.1}
\end{equation*}
$$

for all $n \geqq 1$.

Proof. $[\Phi(\mu)]=[\Phi(\eta)]$ if and only if $\Phi(\mu)=\Phi(\eta) k$ for some $k \in C^{\infty}\left(\mathbb{R}^{2}, H\right)$. Using the definitions of $\Phi(\mu)$ and $\Phi(\eta)$, it is straightforward to see that this is the case precisely when

$$
e(z):=\exp (-z \mu) \exp (z \eta) \in \Lambda_{I}^{\epsilon}
$$

for $z \in \mathbb{R}^{2}$. This, in turn, is the same as demanding that

$$
e^{-1} d e=(-\operatorname{Ad} \exp (-\mathrm{z} \eta) \mu+\eta) \mathrm{dz}
$$

be $\Lambda_{I}^{\epsilon}(\mathfrak{g}, \nu)$-valued, that is,

$$
e^{-\mathrm{ad} z \eta} \mu-\eta \in \Lambda_{I}^{\epsilon}(\mathfrak{g}, \nu)
$$

for all $z \in \mathbb{R}^{2}$. Expanding this last relation in powers of z and comparing coefficients proves the lemma.

Let A be an element of \mathfrak{g}_{-1} such thah $[A, \bar{A}]=0$. Set $\eta_{A}=\zeta^{-1} A$. Then applying this to the case where $\eta=\eta_{A}$, we have the following proposition.

Proposition $1([5]) .[\Phi(\mu)]=\left[\Phi\left(\eta_{A}\right)\right]$ if and only if $(\zeta \mu)(0)=A$ and $[\mu, A]=0$.
Proof. Write $\mu=\sum_{n \geqq-1} \zeta^{n} \mu_{n}$ on C_{ϵ}. Comparing coefficients of ζ in (4.1) gives

$$
(\operatorname{adA})^{\mathrm{n}} \mu_{\mathrm{n}-1}=0
$$

for all $n \geqq 1$. However, since A is semisimple, $\operatorname{ker}(\operatorname{adA})^{\mathrm{n}}=\operatorname{ker}(\operatorname{adA})$. Hence $[\mu, A]=$ 0 as required.

Moreover we have
Proposition 2 ([5]). For $\mu \in \Delta^{\epsilon}$ and $g \in \Lambda_{I, B}^{\epsilon},[\Phi(\mu)]=g \sharp\left[\Phi\left(\eta_{A}\right)\right] \in \mathcal{O}_{A}$ if and only if $(\zeta \mu)(0)=\operatorname{Adg}(0) \mathrm{A}$ and

$$
[\mu, \operatorname{AdgA}]=0
$$

Proof. By Lemma 9, $[\Phi(\mu)]=g \sharp\left[\Phi\left(\eta_{A}\right)\right]$ if and only if $\left[\Phi\left(\operatorname{Adg}^{-1} \mu\right)\right]=\left[\Phi\left(\eta_{\mathrm{A}}\right)\right]$. From Proposition 1, we see that this is the case precisely when

$$
\left(\zeta \operatorname{Adg}^{-1} \mu\right)(0)=\mathrm{A}
$$

and

$$
\left[\mathrm{Adg}^{-1} \mu, \mathrm{~A}\right]=0
$$

Hence the result follows.
Now we are in a position to prove Theorem 5.
Proof of Theorem 5. First we can find $A \in \mathrm{AdB} \eta_{-1}$ such that $[A, \bar{A}]=0$, and, after dressing by an element of B, we may assume that $\eta_{-1}=A$. By Proposition 4.3, it now suffices to find $g \in \Lambda_{I, B}^{\epsilon}$, for some $0<\epsilon \leqq \epsilon^{\prime}$, such that

$$
\operatorname{Adg}(0) \mathrm{A}=\mathrm{A}, \quad[\mathrm{~A}, \operatorname{Adg} \eta]=0
$$

We shall construct g via the inverse function thorem.
Since A is semisimple,

$$
\mathfrak{g}^{\mathbb{C}}=\operatorname{ker} \operatorname{adA} \oplus\left[\mathrm{A}, \mathfrak{g}^{\mathbb{C}}\right],
$$

and we define $\phi: \operatorname{ker} \operatorname{adA} \oplus\left[\mathrm{A}, \mathfrak{g}^{\mathbb{C}}\right] \rightarrow \mathfrak{g}^{\mathbb{C}}$ by

$$
\phi(x, y)=\operatorname{Ad} \exp (\mathrm{y}) \mathrm{x} .
$$

Observe that ϕ is equivariant in the following sense:

$$
\begin{equation*}
\omega \nu \phi(x, y)=\phi(\omega \nu x, \nu y) \tag{4.2}
\end{equation*}
$$

for all $(x, y) \in \operatorname{ker} \operatorname{adA} \oplus\left[\mathrm{A}, \mathfrak{g}^{\mathbb{C}}\right]$.
Differentiating ϕ at $(A, 0)$ gives

$$
\mathrm{d}_{(\mathrm{A}, 0)} \phi(\mathrm{v}, \mathrm{w})=\mathrm{v}+[\mathrm{w}, \mathrm{~A}]
$$

for $(v, w) \in \operatorname{ker} \operatorname{adA} \oplus\left[\mathrm{A}, \mathfrak{g}^{\mathbb{C}}\right]$, so that $\mathrm{d}_{(\mathrm{A}, 0)} \phi$ is an isomorphism. By the holomorphic inverse function theorem there are open neighbourhoods Ω_{1} of $(A, 0)$ and Ω_{2} of A such
that $\phi: \Omega_{1} \rightarrow \Omega_{2}$ is a biholomorphism. Moreover, since $(A, 0)$ is fixed by the linear automorphism $T:(x, y) \mapsto(\omega \nu x, \nu y)$ of order $(r+2)$, we may assume, shringking Ω_{1} if necessary, that Ω_{1} is T-stable.

Let $\left(\psi_{1}, \psi_{2}\right)=\phi^{-1}: \Omega_{2} \rightarrow \Omega_{1}$ so that, for $\chi \in \Omega_{2}$,

$$
\chi=\operatorname{Ad}\left(\exp \left(\psi_{2}(\chi)\right)\right) \psi_{1}(\chi)
$$

or, equivalently,

$$
\begin{equation*}
\operatorname{Ad} \exp \left(-\psi_{2}(\chi)\right) \chi=\psi_{1} \in \operatorname{ker} \operatorname{adA} \tag{4.3}
\end{equation*}
$$

From (4.2) and the T-stability of Ω_{1}, we observe that ψ_{2} has the following equivariant property:

$$
\psi_{2}(\omega \nu \chi)=\nu \psi_{2}(\chi)
$$

for all $\chi \in \Omega_{2}$.
Since $\eta \in \Delta^{\epsilon^{\prime}}, \zeta \eta$ is holomorphic on $I_{\epsilon^{\prime}}$ with $(\zeta \eta)(0)=A$. Hence we can find $0<\epsilon \leqq \epsilon^{\prime}$ such that $C_{\epsilon} \cup I_{\epsilon} \subset(\zeta \eta)^{-1}\left(\Omega_{2}\right)$. We may therefore define $g: C_{1} \cup I_{\epsilon} \rightarrow G^{\mathbb{C}}$ by

$$
g(\zeta)=\exp \left(-\psi_{2}(\zeta \eta(\zeta))\right)
$$

By construction, g is holomorphic on I_{ϵ} and $g(0)=\exp \left(-\psi_{2}(A)\right)=-1 \in B$ so that

$$
\operatorname{Adg}(0) \mathrm{A}=\mathrm{A}
$$

Moreover, from (4.3), for $\zeta \in C_{1}$ we have

$$
\operatorname{Adg}(\zeta) \eta(\zeta)=\zeta^{-1} \operatorname{Ad} \exp \left(-\psi_{2}(\zeta \eta(\zeta))\right) \zeta \eta(\zeta)=\zeta^{-1} \psi_{1}(\zeta \eta(\zeta)) \in \text { ker adA }
$$

so that

$$
[A, \operatorname{Adg} \eta]=0
$$

on C_{1}. Hence g will define our desired element of $\Lambda_{I, B}^{\epsilon}$ so long as it satisfies the equivariant condition $g(\omega \zeta)=\nu g(\zeta)$. For this, recall that $\eta(\omega \zeta)=\nu \eta(\zeta)$ so that,
using (4.4),

$$
\begin{aligned}
g(\omega \zeta) & =\exp \left(-\psi_{2}(\omega \zeta \eta(\omega \zeta))\right)=\exp \left(-\psi_{2}(\psi \nu \zeta \eta(\zeta))\right) \\
& =\exp \left(-\nu \psi_{2}(\zeta \eta(\zeta))\right)=\nu g(\zeta)
\end{aligned}
$$

as required. This completes the proof.

Our aim for the rest of this subsection is to prove:

Theorem 6. Each primitive lift $\psi: T^{2} \rightarrow G / H$ admits, possibly up to an isometry, an extended frame Φ_{ζ} given by $\Phi_{\zeta}=g \nexists \Phi\left(\zeta^{-1} \Lambda\right)$, where $g \in \Lambda_{I, B}$ and $\Lambda \in \mathfrak{g}_{-1}$ is a non-zero semisimple element fixed a priori.

This is actually a fact about primitive maps of finite type, in the sense of [1], [4], which includes all tori worked out by Burstall [1]. The proof relies on the following results.

Lemma 11 ([4]). Each primitive map ψ of finite type admits an element $(\xi, \bar{\xi}) \in \Delta$ for which $\Phi(\xi)$ is an extended frame.

Lemma 12 ([29]). G/H is a rank one $m+1$-symmetric space, that is, every semisimple element of \mathfrak{g}_{-1} is $\operatorname{Ad}\left(\mathrm{H}^{\mathbb{C}}\right)$-conjugate to some scalar multiple of a fixed non-zero semisimple $\Lambda \in \mathfrak{g}_{-1}$.

Lemma 13 ([5]). Let $g \in \Lambda(G, \nu)$ be extended holomorphically into I and define $g \sharp \Phi(\xi)$ to be the Λ_{E}-component of $g \Phi(\xi)$ in its Iwasawa decomposition. Then $\Phi(\operatorname{Adg} \xi)=\mathrm{g} \sharp \Phi(\xi) \widetilde{\mathrm{k}}$ for some $\widetilde{k}: \mathbb{R}^{2} \rightarrow H$.

Proof. This lemma follows immediately from Lemma 9.
Now we can prove Theorem 6. Fix a non-zero seimisimple $\Lambda \in \mathfrak{g}_{-1}$. By Lemma 11, ψ has an extended frame $\Phi(\xi)$, which is, by Theorem 5, gauge equivalent to $\widetilde{g} \sharp \Phi\left(\zeta^{-1} \xi_{-1}\right)$ for some $\widetilde{g} \in \Lambda_{I, B}$. By Lemma 12 there is some $h \in H^{\mathbb{C}}$ for which $\xi_{-1}=\operatorname{Adh} \Lambda$, so
that $\Phi\left(\operatorname{Ad}(\widetilde{g} h) \zeta^{-1} \Lambda\right)$ is an extended frame for ψ. By Lemma 13 this is gauge equivalent to the frame $(\widetilde{g} h) \sharp \Phi\left(\zeta^{-1} \Lambda\right)$. Finally, we may write $\widetilde{g} h=k g$ for some $k \in H$, $g \in \Lambda_{I, B}$, so that

$$
(k g) \sharp \Phi\left(\zeta^{-1} \Lambda\right)=k\left(g \sharp \Phi\left(\zeta^{-1} \Lambda\right)\right)
$$

yields an extended frame for ψ. Thus $g \sharp \Phi\left(\zeta^{-1} \Lambda\right)$ is an extended frame for the map obtained, up to an isometry of G / H determined by k, from ψ (indeed this isometry preserves the base point $\psi(0))$.
4.2.1. Λ and its centralizer. Now we fix an element $\Lambda \in \mathfrak{g}_{-1}$ as follows. Let δ_{j} denote the column vector ${ }^{t}(0, \ldots, 1, \ldots, 0)$, where the ' 1 ' lies in the j-th column with $0 \leqq j \leqq n$. Take $\mathbb{C} P^{n}$ to be the G-orbit of the line $\left\langle\delta_{0}\right\rangle$. Then $F^{r}\left(\mathbb{C} P^{n}\right)$ is the G-orbit of the flag

$$
\left\langle\delta_{0}\right\rangle \subset\left\langle\delta_{0}, \delta_{1}\right\rangle \subset\left\langle\delta_{0}, \ldots, \delta_{r}\right\rangle \subset \mathbb{C}^{n+1}
$$

which is isomorphic to G / H, where H is the fixed point subgroup of the automor$\operatorname{phism} \nu: g \mapsto \operatorname{Ad} \sigma$ g with σ the diagonal matrix $\operatorname{diag}\left(1, \omega^{-1}, \ldots, \omega^{-m}, \omega^{-m}, \ldots, \omega^{-m}\right)$ for $m=r+1$ and $\omega=\exp (2 \pi i /(m+1))$. Thus we may fix Λ to be the following matrix of rank $m+1$

$$
\Lambda:=\left(\begin{array}{llllll}
0 & & & 1 & & \\
1 & \ddots & & & & \\
& \ddots & 0 & & & \\
& & 1 & 0 & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right)
$$

Later on we will need to work with the centralizer \mathfrak{z} of Λ in $\mathfrak{g}^{\mathbb{C}}$ and its center \mathfrak{c}. It is not hard to see that $\mathfrak{c}=\mathfrak{c}_{*} \oplus\langle\mathrm{Id}\rangle$, where

$$
\mathfrak{c}_{*}=\left\langle\Lambda, \Lambda^{2}, \ldots, \Lambda^{m+1}\right\rangle
$$

It is worth noting that \mathbf{c} is a reductive Lie algebra, whose single semisimple component is a subalgebra of \mathfrak{g}_{0}. It will be useful to observe that each element of \mathfrak{z} has a
block decomposition according to the splitting $\mathfrak{z}=\mathfrak{c}_{*} \oplus \mathfrak{z}_{*}$, where $\mathfrak{z}_{*}=\mathfrak{g l}_{\mathfrak{n}-\mathfrak{m}}$ is the subalgebra of matrices of rank $n-m$, whose non-zero entries occupy the bottom right-hand corner.
4.2.2. Higher flows in O_{Λ}. For simplicity (and consistency with the previous work) we will write Φ^{0} for $\Phi\left(\zeta^{-1} \Lambda\right)$. As a result of Theorem 6 , we see that every primitive map of finite type $\mathbb{R}^{2} \rightarrow G / H$ is, possibly up to an isometry, found in the dressing orbit of the vacuum solution $\left[\Phi^{(0)}\right]$. From Theorem 6 we know that this orbit O_{Λ} is isomorphic to $\Lambda_{I, B} / \Gamma_{I, B}$, where $\Gamma_{I, B}$ is the stabilizer of $\zeta^{-1} \Lambda$ for the adjoint action of $\Lambda_{I, B}$. Let $[g]$ denote the coset $g \Gamma_{I, B}$. Then this isomorphism is given by $[g] \mapsto g \sharp\left[\Phi^{(0)}\right]$.

We will now describe the action of an abelian Lie subgroup of $\Lambda(G, \nu)$ on this orbit, whose 1-parameter subgroups generate the so-called 'higher flows' (the terminology comes from soliton theory, from which the idea of dressing actions originated). These matters will be of use later on.

Observe that $\Lambda(\mathfrak{c}, \nu)$ is the center of the centralizer for $\zeta^{-1} \Lambda$ in $\Lambda(\mathfrak{g}, \nu)$. Let \mathfrak{C}_{R} denote the subalgebra of finite order elements of $\Lambda(\mathfrak{c}, \nu)$ (that is, those whose projections to $\Lambda_{E}(\mathfrak{g}, \nu)$ are Laurent polynomials). The abelian Lie group $\exp \left(\mathfrak{C}_{R}\right)$ has a right action on $\Lambda_{I, B} / \Gamma_{I, B}$, which is defined by $\exp a[g]=\left[(g \exp (a))_{I}\right]$, where $(\cdot)_{I}$ denotes the $\Lambda_{I, B}$ factor in the Iwasawa decomposition. Note that, in particular, the subgroup $\exp \left(\mathfrak{C}_{R}\right) \cap \Gamma_{I, B}$ acts trivially.

We now examine the action of the 2-parameter $\operatorname{subgroup} \exp (\mathfrak{m})$, where

$$
\mathfrak{m}=\left\{w \zeta^{-1} \Lambda+\bar{w} \zeta \bar{\Lambda} \mid w \in \mathbb{C}\right\}
$$

Clearly, the $\exp (\mathfrak{m})$-orbit of $[g]$ can be written as $\left\{\left[\left(g \Phi^{(0)}(w)\right)_{I}\right] \mid w \in \mathbb{C}\right\}$. The corresponding points in O_{Λ} have extended frames of the form

$$
\begin{align*}
\left(g \Phi^{(0)}(w)\right)_{I} \sharp \Phi^{(0)}(z) & =\left(g \Phi^{(0)}(w)\right)_{E}^{-1} \sharp \Phi^{(0)}(z+w) \tag{4.4}\\
& =\Phi_{\zeta}(w)^{-1} \Phi_{\zeta}(z+w)
\end{align*}
$$

for $\Phi_{\zeta}(z)=g \sharp \Phi^{(0)}(z)$. The right-hand side is clearly an extended frame for the
primitive map ψ^{w} defined by $\psi^{w}(z)=\Phi_{1}(w)^{-1} \psi(z+w)$. Thus the corresponding $\exp (\mathfrak{m})$-orbit in O_{Λ} is nothing but the set of all primitive maps obtained from ψ by the translation $z \mapsto z+w$.

4.3. Affine schemes corresponding to rings of polynomial Killing fields.

 The key to recovering the spectral curve is to understand the Lie algebras of formal and polynomial Killing fields. These give us those local deformations of an extended frame, which correspond to moving along the Jacobi variety of the spectral curve. Hence we will see that we can recover the tangent space $H^{1}\left(X, \mathcal{O}_{X}\right)$ to the Jacobi variety from the formal Killing fields and that polynomial Killing fields will give us the the coordinate ring $H^{0}\left(X_{A}, \mathcal{O}\right)$ of an affine open subset $X_{A} \subset X$. (For more details, we refer the reader to the appendix of [21]. However, since in general the Lie algebra of polynomial Killing fields is not abelian, the theory requires more care.)By Theorem 6 our primitive lift possesses an extended frame Φ_{ζ} of the form $g \sharp \Phi^{(0)}$ for some $g \in \Lambda_{I, B}$. This means that there is a map $\chi: \mathbb{R}^{2} \rightarrow \Lambda_{I, B}$ for which

$$
\begin{equation*}
g \Phi^{(0)}=\Phi_{\zeta} \chi \tag{4.5}
\end{equation*}
$$

Observe that $\chi(0)=g$. From now on, for convenience, let us drop the subscript ' ζ ' from α_{ζ}, etc. By a real Killing field for $\alpha=\Phi^{-1} d \Phi$ we mean a map $\eta: \mathbb{R}^{2} \rightarrow \Lambda(\mathfrak{g}, \nu)$ such that
(1) $d \eta=[\eta, \alpha]$, and
(2) η has finite order.

Recall that an element η of $\Lambda(\mathfrak{g}, \nu)$ is said to have finite order when its projection η_{E} to $\Lambda_{E}(\mathfrak{g}, \nu)$ is a Laurent polynomial in ζ (and more generally, an element of $\Lambda_{C}\left(\mathfrak{g}^{\mathbb{C}}, \nu\right)$ will be said to have finite order if it extends meromorphically into I, where it has at worst poles). A real polynomial Killing field is a real formal Killing field η for which $\eta=\eta_{E}$. To define the space of all formal or polynomial Killing fields we take the complexification of the space of real ones; this gives us maps with values in $\Lambda_{C}(\mathfrak{g}, \nu)$.

Let $\mathfrak{Z}=\left\{\right.$ finite order $\left.a \in \Lambda_{C}\left(\mathfrak{g}^{\mathbb{C}}, \nu\right) \mid[a, \Lambda]=0\right\}$ and observe that this is identical with the subset of $\Lambda_{C}(\mathfrak{z}, \nu)$ consisting of only the finite order elements. Denote $\mathfrak{Z} \cap$ $\Lambda(\mathfrak{g}, \nu)$ by \mathfrak{Z}_{R}. We are interested in the subalgebra $\mathfrak{Z}_{R}^{\text {pol }}=\left\{a \in \mathfrak{Z}_{R} \mid(\operatorname{Adga})_{\mathrm{E}}=\right.$ Adga\} and its complexification $\mathfrak{Z}^{\text {pol }} \subset \mathfrak{Z}$. The following lemma is derived from a lemma in the appendix of [21].

Lemma 14. The map $\operatorname{Ad} \chi: \mathfrak{Z} \rightarrow$ \{formal Killing fields $\}$ is an isomorphism of Lie algebras. It identifies $\mathfrak{Z}^{\text {pol }}$ with $\{$ polynomial Killing fields $\}$.

In the general case, however, \mathfrak{Z} is not abelian and, as we have seen above, the Lie group acting on the dressing orbit O_{Λ} of $\Phi^{(0)}$ is the center $\exp \left(\mathfrak{C}_{R}\right)$ of $\exp \left(\mathfrak{Z}_{R}\right)$. We will regard this as an action of \mathfrak{C}_{R} and let $\mathfrak{C}_{R}^{[g]}$ denote the stabilizer of $[g]$ for this action; it is not hard to see that this coincides with $\left(\mathfrak{C}_{R} \cap \mathfrak{Z}_{R}\right) \oplus \mathfrak{Z}_{R}^{\text {pol }}$. Then the following result is proved in [5].

Lemma $15([5]) \cdot g \sharp \Phi^{(0)}$ is an extended frame for a primitive map of finite type if and only if $\mathfrak{C}_{R} / \mathfrak{C}_{R}^{[g]}$ is finite dimensional.

It follows that ψ is of finite type precisely when $\mathfrak{C} / \mathfrak{C}^{[g]}$ is finite dimensional. Owing to this we are interested in the vector space $\mathfrak{S}(z)$ of polynomial Killing fields, which is given by the complexification of

$$
\mathfrak{S}_{R}(z)=\left\{(\operatorname{Ad} \chi(\mathrm{z}) \mathrm{c})_{\mathrm{E}} \mid \mathrm{c} \in \mathfrak{C}_{\mathrm{R}}^{[\mathrm{g}]}\right\} .
$$

Lemma 16. For each $z, \mathfrak{S}(z)$ is a space of commuting elements of $\Lambda_{E}\left(\mathfrak{g}^{\mathbb{C}}, \nu\right)$, each of which is semisimple-valued on the unit circle.

Proof. Let $c_{1}, c_{2} \in \mathfrak{C}_{R}^{[g]}$. Then by the definition $\operatorname{Ad} \chi^{-1}\left(\operatorname{Ad} \chi \mathrm{c}_{\mathrm{i}}\right)_{\mathrm{E}} \in \mathfrak{z}_{\mathrm{R}}$. So

$$
\left[\operatorname{Ad} \chi \mathrm{c}_{\mathrm{i}},\left(\operatorname{Ad} \chi \mathrm{c}_{\mathrm{j}}\right)_{\mathrm{E}}\right]=0=\left[\operatorname{Ad} \chi \mathrm{c}_{\mathrm{i}},\left(\operatorname{Ad} \chi \mathrm{c}_{\mathrm{j}}\right)_{\mathrm{I}}\right],
$$

since each c_{i} is central. From this we obtain

$$
\begin{aligned}
{\left[\left(\operatorname{Ad} \chi \mathrm{c}_{1}\right)_{\mathrm{E}},\left(\operatorname{Ad} \chi \mathrm{c}_{2}\right)_{\mathrm{E}}\right] } & =-\left[\operatorname{Ad} \chi \mathrm{c}_{1 \mathrm{E}},\left(\operatorname{Ad} \chi \mathrm{c}_{2}\right)_{\mathrm{I}}\right] \\
& =\left[\operatorname{Ad} \chi \mathrm{c}_{1 \mathrm{I}},\left(\operatorname{Ad} \chi \mathrm{c}_{2}\right)_{\mathrm{I}}\right],
\end{aligned}
$$

which implies that each side is identically zero. Therefore the elements of $\mathfrak{S}_{R}(z)$ (and hence of $\mathfrak{S}(z)$) commute. By definition, if $\xi \in \mathfrak{S}(z)$, so does its conjugate $\bar{\xi}=-\xi\left(\bar{\zeta}^{-1}\right)^{\dagger}$. Hence $[\xi, \bar{\xi}]=0$. Conversely, on $|\zeta|=1$ we see that ξ is normal and therefore semisimple.

Now, let $\mathfrak{R}(z)$ denote the \mathbb{C}-algebra generated by $\mathfrak{S}(z)$, and let $\mathfrak{R}=\mathfrak{R}(0)$. Observe that \mathfrak{S} contains the \mathbb{C}-algebra $\mathfrak{B}=\mathbb{C}\left[\lambda^{-1} \mathrm{Id}, \lambda \mathrm{Id}\right]$, where $\lambda=\zeta^{m+1}$. Hence \mathfrak{R} is a commutative unital \mathbb{C}-algebra without nilpotents, and also is a \mathfrak{B}-module.

Lemma 17. \mathfrak{R} is a torsion free, finitely generated \mathfrak{B}-module.

Proof. It is obvious that \mathfrak{R} is torsion free. To see that \mathfrak{R} is finitely generated as a \mathfrak{B}-module, we observe that
$M=\left\{v: C \rightarrow \mathbb{C}^{n+1} \mid v\right.$ extends to a Laurent polynomial on \mathbb{C}^{*} and $\left.v(\omega \zeta)=\sigma v(\zeta)\right\}$ is a \mathfrak{B}-module of $\operatorname{rank}(n+1)$ and also is a faithful \mathfrak{R}-module, where the multiplication is defined by that of matrices on column vectors.

Let us define $\mathfrak{U}=\operatorname{Adg}^{-1} \mathfrak{R}$, which is an abelian subalgebra of $\Lambda(\mathfrak{z}, \nu)$. Using the splitting $\mathfrak{z}=\mathfrak{c}_{*} \oplus \mathfrak{z}_{*}$, we may write each $a \in \mathfrak{U}$ as $a=a_{0}+a_{\bullet}$, where a_{0} takes values in \mathfrak{c}_{*} and a_{\bullet} takes values in \mathfrak{z}_{*}. Note that a_{\bullet} is a function of ζ^{m+1}, since $\mathfrak{z}_{*} \subset \mathfrak{g}_{0}$. For $a, b \in \mathfrak{U}$ we have

$$
a b=a_{0} b_{0}+a_{\bullet} b_{\bullet}
$$

We will also define $W(z)=\chi^{-1} M$ so that $W(z)$ is a faithful \mathfrak{U}-module (of boundaries of meromorphic maps from I to \mathbb{C}^{n+1}, each component of which has finite order).

Finally, let us observe that for $\xi(z) \in \mathfrak{R}(z)$ there exists $a \in \mathfrak{U}$ such that $\xi(z)=$ $\operatorname{Ad} \chi(\mathrm{z}) \mathrm{a}=\operatorname{Ad} \Phi(\mathrm{z})^{-1} \xi(0)$, using $g=\chi(0)$. Therefore $\mathfrak{R}(z)=\operatorname{Ad} \Phi^{-1}(\mathrm{z}) \mathfrak{R}$, which is a property we will find useful later.
4.4. Construction of Valuations. By the previous remarks we have a commutative unital \mathbb{C}-algebra \mathfrak{R} and therefore an affine variety $\operatorname{Spec}(\mathfrak{R})$. Our aim is to show that, when ψ_{0} is linearly full (i.e., its image does not lie in a hyperplane of $\mathbb{C} P^{n}$), this is an affine algebraic curve whose completion X by non-singular points has the properties required to be the spectral curve. That is, we shall show that X admits a rational function π of the right type and a line bundle (or rank 1 torsion free coherent sheaf) \mathcal{L} from which we recover ψ_{0}. In this subsection, we will discuss the construction over the affine curve and show that if ψ_{0} is full, then the curve must be connected. This will allow us to complete the construction over X in the following subsection.

As a corollary of Lemma 17 , we see that \mathfrak{R} is an integral extension of \mathfrak{B}, therefore $\operatorname{Spec}(\mathfrak{R})$ is an affine curve and the inclusion $\mathfrak{B} \rightarrow \mathfrak{R}$ is dual to a finite morphism

$$
\pi: \operatorname{Spec}(\mathfrak{R}) \rightarrow \operatorname{Spec}(\mathfrak{B}) \cong \mathbb{C}^{*}
$$

Since \mathfrak{B} is a principal ideal domain, \mathfrak{R} is actually a free \mathfrak{B}-module and its rank k equals the degree of π. Since M has rank $n+1$ over \mathfrak{B}, we see that $k \leqq n+1$. Now let X denote the completion of $X_{A}=\operatorname{Spec}(\mathfrak{R})$ by smooth points.

Proposition 3. The curve X is real and admits a rational function $\pi: X \rightarrow \mathbb{P}^{1}$ with a zero P_{0} of degree $m+1$. Thus π has $k \geqq m+1$.

Proof. The algebra \mathfrak{R} possesses the involution $\xi \mapsto \bar{\xi}$, which is dual to a real involution on $\operatorname{Spec}(\mathfrak{R})$ and extends to X. Now we must show that the fiber of the morphism π over $\lambda=0$ contains a point P_{0} with ramification index m.

We take the point of view that each smooth point of X corresponds to a valuation on some subfield of the ring of fractions $\mathfrak{F}=S^{-1} \mathfrak{A}$, where S is the set of all non-zero divisors. Because \mathfrak{A} need not be an integral domain, \mathfrak{F} itself need not be a field. However, each smooth point corresponds to a surjection $\nu: \mathfrak{F}^{*} \rightarrow \mathbb{Z}$, which is a multiplicative homomorphism (i.e. $\nu(a b)=\nu(a)+\nu(b))$ and has $\nu(a+b) \geqq$ $\min (\nu(\mathrm{a}), \nu(\mathrm{b}))$. The subring $I=\{a \in \mathfrak{F} \mid \nu(a) \geqq 0\} \cup\{0\}$ is easily seen to be a
discrete valuation ring of its field of fractions. We will describe one of the valuations covering the point $\lambda=0$.

For each $a=\left(a_{1}, a_{2}\right)$ in \mathfrak{A}, the component a_{1} has a block decomposition into the sum

$$
a_{10}(\zeta)+a_{1} \bullet\left(\zeta^{m+1}\right)
$$

derived from the decomposition described earlier. This provides us with a grading $o_{0}: \mathfrak{A} \rightarrow \mathbb{Z}$ for the ring \mathfrak{A}, defined by taking $o_{0}(a)$ to be the order of a_{10} in ζ^{-1}. With this we define a multiplicative homomorphism

$$
\nu_{0}: \mathfrak{F}^{*} \rightarrow \mathbb{Z}, \quad \nu_{0}(r / s)=o_{0}(s)-o_{0}(r)
$$

If we can show that this is surjective, then we are done, for in that case $I_{0}=\{a \in \mathfrak{F} \mid$ $\left.\nu_{0} \geqq 0\right\} \cup\{0\}$ is isomorphic to the regular local ring \mathcal{O}_{ζ}. Around the corresponding smooth point P_{0} the map π behaves like $\zeta \mapsto \zeta^{m+1}$.

To show that ν_{0} is onto, we use Lemma 15. First observe that \mathfrak{A} contains, by definition, $\operatorname{Ad} \chi^{-1} \mathfrak{S}(\mathrm{z})$ and that for any $c \in \mathfrak{C}_{R}^{[g]}$

$$
\operatorname{Ad} \chi^{-1}(\operatorname{Ad} \chi c)_{\mathrm{E}} \in \mathrm{c}_{\mathrm{E}}+\mathfrak{Z}_{\mathrm{R}}^{\mathrm{I}}
$$

Now observe that $o_{0}: \mathfrak{C}_{R} \rightarrow \mathbb{Z}$ is onto. It follows from Lemma 15 that $o_{0}\left(\mathfrak{C}_{R}^{[g]}\right)$ contains all but a finite number of positive integers and therefore so does $\operatorname{Ad}^{-1} \mathfrak{S}(z) \subset \mathfrak{A}$. So, for every integer k, there exist $r, s \in \mathfrak{A}$ for which $\nu_{0}(r / s)=k$.

Remark. We see from this proof that, with respect to the isomorphism $\mathbb{C}\left[X_{A}\right] \cong \mathfrak{A}$, a regular function on X_{A} vanishes on the irreducible component barring P_{0} precisely when the corresponding component a_{10} is identically zero.

It is not hard to see that π intertwines the real involution on X with the map $\zeta \mapsto \bar{\zeta}^{-1}$ and so it has a pole P_{∞} of order $m+1$. Now we are going to show that the irreducible component X_{0} of X, which carries the points P_{0} and P_{∞}, is the completion
of $\operatorname{Spec}\left(\mathfrak{A}_{0}\right)$, where

$$
\mathfrak{A}_{0}=\left\{a_{0} \mid a \in \mathfrak{A}\right\} .
$$

Thus \mathfrak{A}_{0} is a subalgebra of $\Lambda_{C}\left(\mathfrak{c}_{*}, \nu\right)$ and also is a quotient algebra of \mathfrak{A}.

Lemma 18. \mathfrak{A}_{0} is an integral domain.

Proof. From now on, for an open subset U of X, we denote by $\operatorname{Hol}\left(\mathrm{U}, \mathbb{C}^{\mathrm{k}}\right)$ the space of \mathbb{C}^{k}-valued holomorphic functions on U. Observe that each element of $\Lambda_{C}\left(\mathfrak{c}_{*}, \nu\right)$ can be written as a Fourier series in $\zeta^{-1} \Lambda$, and we obtain a \mathbb{C}-algebra morphism of \mathfrak{A}_{0} into $\operatorname{Hol}\left(I^{*}, \mathbb{C}\right)\left(\right.$ where $\left.I^{*}=I \cap A\right)$ given by $a_{0}\left(\zeta^{-1}\right)$. Its image consists solely of holomorphic maps which, unless they are identically zero, do not vanish on either of the connected components of I^{*}. Therefore, $a_{0} b_{0}=0$ if and only if a_{0} or b_{0} is the zero element.

It follows from the previous remark that $\operatorname{Spec}\left(\mathfrak{A}_{0}\right)$ is the irreducible component of $\operatorname{Spec}(\mathfrak{A}) \cong \mathrm{X}_{\mathrm{A}}$ carrying the point P_{0} and its conjugate P_{∞}. Although X_{A} need not be irreducible, we will shortly see that when ψ_{0} is full, it must be connected. First we must introduce a sheaf over X_{A} whose sections provide the harmonic map.

Recall the \mathfrak{R}-module M, which is torsion free as a \mathfrak{B}-module. Since \mathfrak{B} is an integral domain, it is elementary to show that M must also be torision free over \mathfrak{R}, so that it determines a torsion free coherent sheaf \mathcal{L}_{A} over X_{A}. We want to show that its restriction to $X_{0 A}=\operatorname{Spec}\left(\mathfrak{A}_{0}\right)$ is rank one. This is easily seen by looking at the equivalent picture of $W(0)=\chi(0)^{-1} M$ as an \mathfrak{A}-module. For any $f={ }^{t}\left(f_{0}, \ldots, f_{n}\right) \in W(0)$, let us write

$$
f=f^{0}+f_{\bullet}={ }^{t}\left(f_{0}, \ldots, f_{m}, 0, \ldots, 0\right)+{ }^{t}\left(0, \ldots, 0, f_{m+1}, \ldots, f_{n}\right)
$$

So, for $a \in \mathfrak{A}$, we clearly have $(a f)^{0}=a_{0} f^{0}$. Therefore the vector space $W^{0}(0)=$ $\left\{f^{0} \mid f \in W(0)\right\}$ is an \mathfrak{A}_{0}-module, which is clearly torsion free. Now observe that the
injection

$$
\Sigma: W^{0}(0) \rightarrow \operatorname{Hol}\left(\mathrm{I}^{*}, \mathbb{C}\right) ; \quad \mathrm{f}^{0} \mapsto \mathrm{f}_{0}+\cdots+\mathrm{f}_{\mathrm{m}}
$$

is an \mathfrak{A}-module morphism (one readily verifies that $\Sigma\left(a_{0} f^{0}\right)=a_{0}\left(\zeta^{-1}\right) \Sigma\left(f^{0}\right)$, using the representation $\left.a_{0}\left(\zeta^{-1} \Lambda\right) \mapsto a_{0}\left(\zeta^{-1}\right)\right)$. Therefore, in a smooth neighbourhood of P_{0}, each stalk of \mathcal{L}_{A} is a module of regular \mathbb{C}-valued functions of ζ with respect to the appropriate regular local ring, so that \mathcal{L}_{A} has rank one in this neighbourhood. Thus we have shown:

Proposition 4. The restriction of \mathcal{L}_{A} to $X_{0 A}$ (and therefore to the connected component of X_{A} containing it) is a rank one torsion free coherent sheaf. In particular, when X_{A} is connected, \mathcal{L}_{A} has rank one.

We can easily repeat the previous results for each z, replacing \mathfrak{R} by $\mathfrak{R}(z)$ and $W(0)$ by $W(z)$. This gives us, for each z, a sheaf $\mathcal{L}_{A}(z)$ over X_{A} whose restriction to $X_{0 A}$ has rank one and whose direct image under π is the vector bundle \mathcal{E}_{A} of rank $n+1$, corresponding to the \mathfrak{B}-module M. This vector bundle comes equipped with a trivialization determined by the isomorphism

$$
\begin{aligned}
\Gamma\left(A, \mathcal{E}_{A}\right) & \cong M \\
f(\zeta) & \mapsto(\kappa f)(\lambda)
\end{aligned}
$$

where $A=\mathbb{C}_{\lambda}^{*}$ and $\kappa=\operatorname{diag}\left(1, \zeta, \ldots, \zeta^{\mathrm{m}}, \ldots, \zeta^{\mathrm{m}}\right)$, so that $\kappa(\omega \zeta)=\kappa(\zeta) \sigma^{-1}$ and therefore κf is a function of λ.

The effect of this isomorphism is to remove the ν-equivalence, which has permeated into the construction so far. Because of this we will find it most convenient to remove the effects of ν-equivalence from all the objects we are dealing with. To this end we
redefine, throughout this subsection and the next,

$$
\begin{aligned}
M & =\left\{\text { Laurent polynomial } f: A \rightarrow \mathbb{C}^{n+1}\right\} \\
\mathfrak{A} & =\operatorname{Ad} \kappa \mathfrak{A} \\
\Phi(z) & =\operatorname{Ad} \kappa \Phi(\mathrm{z}) \\
\chi(z) & =\operatorname{Ad} \kappa \chi(\mathrm{z})
\end{aligned}
$$

and so forth. Observe that, in particular, Φ and χ are still holomorphic in their vector bundle $\mathcal{E}(z)$ over \mathbb{P}^{1} characterized by the transition relations

$$
\chi(z) \hat{\tau}_{z}=\tau_{z} \quad \text { on } A \cap I,
$$

where τ_{z} is a trivialization over A and $\hat{\tau}_{z}$ a trivialization over I. Furthermore, we can always choose I so that it contains no branch points of π other than 0 and ∞ and that $\pi^{-1}(I)$ contains only smooth points.

Eventually, we will be able to show that when ψ_{0} is full, $\mathcal{E}(z)$ is the direct image of a rank one torsion free coherent sheaf $\mathcal{L}(z)$ over X obtained by moving \mathcal{L} (the extension of \mathcal{L}_{A} to X) linearly around the Picard variety. Before we can do this we must establish that, for ψ_{0} to be full, the curve X must be connected, so that \mathcal{L}_{A} must be rank one by the previous proposition.

Proposition 5. X is disconnected if and only if ψ_{0} is not full.

Proof. First we will show that if X is disconnected, then $\Phi_{1} \delta_{0}$ (i.e., $\Phi \delta_{0}$ evaluated at $\lambda=1$) takes values in a proper subspace of \mathbb{C}^{n+1}. When X is disconnected, we may write $X=Y+Z$, where Y is the connected component carrying the irreducible component X_{0}. For each z, there must be $\varepsilon_{Y}(z), \varepsilon_{Z} \in \mathfrak{R}(z)$ representing the globally regular characteristic functions $1_{Y}, 1_{Z}$ on X (i.e., 1_{Y} is identically one on Y and identically zero on Z). Each of these is clearly independent of λ. Thus we obtain a direct sum decomposition

$$
M=\varepsilon_{Y}(z) M \oplus \varepsilon_{Z} M
$$

corresponding to a global decomposition of $\mathcal{E}(z)$ into a sum of trivial bundles.
Consider now the global section $\sigma_{0}(z)$ of $\mathcal{E}(z)$ defined by $\tau_{z}\left(\sigma_{0}(z)\right)=\delta_{0}$. Since $\mathfrak{R}(z)=\operatorname{Ad} \Phi(\mathrm{z})^{-1} \mathfrak{R}$, we deduce $\Phi \tau_{z}=\tau_{0}$ and therefore $\Phi \delta_{0}=\tau_{0}\left(\sigma_{0}(z)\right)$. The proof that ψ_{0} is not full will be finished if we can show

$$
\varepsilon_{Z}(z) \tau_{z}\left(\sigma_{0}(z)\right)=0,
$$

since then $\varepsilon_{Z}(0) \Phi \delta_{0}=0$ and therefore $\Phi_{1} \delta_{0}$, where $a_{Z}=\operatorname{Ad} \chi^{-1} \varepsilon_{Z}$ represents 1_{Z} in \mathfrak{A}. Since 1_{Z} vanishes identically on X_{0}, we know $\left(a_{Z}\right)_{0}=0$ (recall an earlier remark). From the Fourier series for χ^{-1} on the circle C_{1} we see that $\chi^{-1} \delta_{0}$ has the form

$$
\chi^{-1} \delta_{0}=\left(\alpha_{0}, 0, \ldots, 0\right)+O(\lambda)
$$

about $\lambda=0$. Therefore $a_{Z} \chi^{-1} \delta_{0}$ vanishes at $\lambda=0$, whence it vanishes everywhere, since it represents a global section of $\mathcal{E}(z)$.

Now let us show that when ψ_{0} is not full, the algebra \mathfrak{R} possesses idempotent ε different from the identity. For then $\varepsilon, \operatorname{Id}-\varepsilon$ are a pair of 'orthogonal idempotent', whence $\operatorname{Spec}(\mathfrak{R})$ is disconnected from the next Lemma (see, for example, [11]):

Lemma 19 ([11]). Let A be a ring. Then the following conditions are equivalent:
(1) Spec A is disconnected.
(2) There exist nonzero elements $e_{1}, e_{2} \in A$ such that $e_{1} e_{2}=0, e_{1}^{2}=e_{1}, e_{2}^{2}=e_{2}$, $e_{1}+e_{2}=1$ (these elements are called orthogonal idempotents).
(3) A is isomorphic to a direct product $A_{1} \times A_{2}$ of two nonzero rings.

We may assume without loss of generality that ψ_{0} is full in the projective k-plane of points whose last $n-k$ coordinates vanish. From the preceding argument ψ_{0} determines a subalgebra $\mathfrak{R}_{k} \subset \Lambda_{C}\left(\mathfrak{g l}_{\mathfrak{k}+1}, \nu\right)$ which must contain the identity matrix in $\mathfrak{g l}_{\mathfrak{k}+1}$. We take this for ε. Now observe that \mathfrak{R} is a unital subalgbra of $\Lambda_{C}\left(\mathfrak{g l}_{\mathfrak{n}+1}, \nu\right)$ containing \mathfrak{R}_{k}, and therefore $\varepsilon \in \mathfrak{R}$ satisfies the conditions required.
4.5. Completion of the affine curve and the line bundle. From now on we will assume that ψ_{0} is full and thus, by the previous result, X is connected. It follows that $\mathcal{L}_{A}(z)$ has rank one and therefore π has degree $n+1$. Using these facts, we will describe the extension $\mathcal{L}(z)$ of $\mathcal{L}_{A}(z)$ to all X and produce from it global sections which reconstruct the map ψ. We aim to prove:

Theorem 7. $\mathcal{L}(z)$ has degree $p+n$, is real (i.e., satisfies Condition (2.1)) and moves linearly with z, \bar{z} around the Picard variety of X. The primitive lift ψ determines (and is determined by), up to scaling, global sections $\sigma_{0}(z), \ldots, \sigma_{m-1}(z)$, where each $\sigma_{j}(z)$ has a divisor of zeros at least $(m-j) P_{0}+j P_{\infty}+E_{0}\left(\right.$ while $(m+1) P_{0}+E_{0}$ is the divisor of zeros of π).

Remark. In the statement of this theorem, by 'Picard variety' we mean the moduli space of maximal rank 1 torsion free coherent sheaves, when this is relevant (we will see later on that \mathcal{L} must be maximal, after Proposition 7).

Before proving this theorem, we need to describe $\mathcal{L}(z)$. First, recall that $I \subset \mathbb{P}^{1}$ has chosen so that $X_{I}=\pi^{-1}(I)$ consists of smooth points and has ramification points only over $\lambda=0, \infty$. Using the direct image isomorphism $\operatorname{Hol}\left(\mathrm{X}_{\mathrm{I}}, \mathbb{C}\right) \rightarrow \operatorname{Hol}\left(\mathrm{I}, \mathbb{C}^{\mathrm{n}+1}\right)$ (see, for example, [8]), it is easy to see that $\operatorname{Hol}\left(\mathrm{X}_{\mathrm{I}}, \mathbb{C}\right)$ can be represented, as an algebra of endomorphisms on $\operatorname{Hol}\left(\mathrm{I}, \mathbb{C}^{\mathrm{n}+1}\right)$, by $\mathfrak{g}^{\mathbb{C}}$-valued functions on I which are diagonalisable at each value of λ (indeed, for $\lambda \neq 0, \infty$, the eigenvalues give the $n+1$ values of the function on X_{I}).

We deduce from these remarks that for each $\lambda \in I \backslash\{0, \infty\}$ the commutative Lie algebra $\mathfrak{A}_{\lambda} \subset \mathfrak{z}$ obtained by evaluating elements of \mathfrak{A} at λ, consists of semisimple elements. Moreover, \mathfrak{A} has rank $n+1$ as a \mathfrak{B}-module and therefore \mathfrak{A}_{λ} is a maximal torus subalgebra of semisimple elements - a Cartan subalgebra for $\mathfrak{g}^{\mathbb{C}}$. We also deduce that we can complete this holomorphic family at $\lambda=0, \infty$. Since all Cartan subalgebras of $\mathfrak{g}^{\mathbb{C}}$ are conjugate and ours lie in \mathfrak{z}, there is a holomorphic map $\gamma: I \rightarrow Z$ (where the Lie subgroup $Z \subset G^{\mathbb{C}}$ is the stabilizer of Λ), for which $\operatorname{Ad} \gamma_{\lambda}^{-1} \mathfrak{A}_{\lambda}=\mathfrak{a}$,
where \mathfrak{a} can be any fixed Cartan subalgebra in \mathfrak{z}. In particular, we will fix $\mathfrak{a}=\mathfrak{c}_{*}+\mathfrak{d}$, where \mathfrak{d} is the torus of diagonal matrices in \mathfrak{z}_{*}. Therefore, we define $\widetilde{\mathfrak{A}}=\operatorname{Ad} \gamma^{-1} \mathfrak{A}$. Then each element of $\widetilde{\mathfrak{A}}$ takes values in \mathfrak{a}, so that it has a block decomposition

$$
a=a_{0}+a_{1}+\cdots+a_{n-m},
$$

where a_{0} takes values in \mathfrak{c}_{*}, and $a_{j} \neq 0$ is a diagonal matrix function whose non-zero entry lies only in the $m+j$-th place with $0 \leqq j \leqq n$. In the proof of Proposition 3 , we saw how to use the components a_{0} to obtain a discrete valuation ring in the ring of fraction \mathfrak{F}, and this provided us with the ramification point P_{0}. To get all the points lying over $\lambda=0$, it is not hard to show that one defines gradings $o_{j}: \widetilde{\mathfrak{A}} \rightarrow \mathbb{Z}$, for which $o_{j}(a)$ is the order of $a_{1 j}$ in λ^{-1} (for $a=\left(a_{1}, a_{2}\right)$ we define $\left(a_{1 j}, a_{2 j}\right)=a_{j}$, using the block decomposition above). We use these to define valuations of the ring of fractions $\widetilde{\mathfrak{A}}$ of \widetilde{A} in a manner described earlier.

Next, we will describe explicitly the extension $\mathcal{L}(z)$ of $\mathcal{L}_{A}(z)$ to all of X. In what follows, let us suppose we are dealing with the generic case in which $\pi^{-1}(0)$ has $n+1-m$ distinct points. First, define $\widetilde{W}(z)=\gamma^{-1} W(z)$ so that this represents the module of sections of $\mathcal{L}_{A}(z)$ over $X_{A} \cong \operatorname{Spec}(\widetilde{\mathfrak{A}})$. Then define \mathcal{W} to be the $\widetilde{\mathcal{F}}$-module of fractions $\widetilde{S} \widetilde{W}(z)$ (where \widetilde{S} is the set of all non-zero divisors of $\widetilde{\mathfrak{A}} \backslash\{0\}$). For each point P in $X \backslash X_{A}$, we can construct an \mathcal{O}_{p}-module $\mathcal{W}_{P} \subset \mathcal{W}$ which is torsion free (and therefore free, since \mathcal{O}_{P} is a discrete valuation ring). This will be the stalk for $\mathcal{L}(z)$ over P. For a point over λ, for example, we get each \mathcal{W}_{P} in the following manner.

On $\widetilde{W}(z)$, define a map $o_{P}: \widetilde{W}(z) \backslash\{0\} \rightarrow \mathbb{Z}$ such that: (i) $o_{P}\left(w_{1}+w_{2}\right) \geqq$ $\min \left(o_{P}\left(w_{1}\right), o_{P}\left(w_{2}\right)\right)$ and, (ii) $o_{P}(a w)=\nu_{P}(a)+o_{P}(w)$ whenever $a \in \tilde{\mathfrak{A}}$, where ν_{P} is the valuation for \mathcal{O}_{P}. This extends to give $o_{P}: \mathcal{W} \backslash\{0\} \rightarrow \mathbb{Z}$ by setting $o_{P}(w / a)=o_{P}-\nu_{P}$. So we define

$$
\mathcal{W}_{P}=\left\{w \in \mathcal{W} \backslash\{0\} \mid o_{P}(w) \geqq 0\right\} \cup\{0\}
$$

This is clearly a torsion free \mathcal{O}_{P}-module, since $\widetilde{W}(z)$ is torsion free. Now we need to describe precisely what the map o_{P} is.

Let $w \in \widetilde{W}(z)$ and write its restriction w_{1} to C_{1} as the column vector

$$
w_{1}={ }^{t}\left(f_{0}(\lambda), \ldots, f_{n}(\lambda)\right)
$$

For $j=1, \ldots, n-m$, define

$$
o_{j}(w)=-\left(\text { order of pole of } f_{m+j} \text { at } \lambda=0\right) .
$$

For any $a \in \tilde{\mathfrak{A}}$ it is easy to see that the correspondence $w \mapsto a w$ multiplies each f_{m+j} by a function of λ whose order is $\nu_{j}(a)$. It follows that o_{j} satisfies both properties (i) and (ii) above. For $j=0$ define

$$
f(\zeta)=\zeta^{m+1} \sum_{j=0}^{m} \zeta^{-j} f_{j}\left(\zeta^{m+1}\right)
$$

and

$$
o_{0}(w)=-(\text { order of pole of } f(\zeta) \text { at } \zeta=0)
$$

This clearly satisfies property (ii), so we only have to check (i). Recall that the ν-equivalent representation of a, that is $\alpha=\operatorname{Ad} \kappa^{-1}$ a, has a block decomposition $\alpha_{0}+\alpha_{1}+\cdots+\alpha_{n-m}$ for which the restriction α_{10} of α_{0} to C_{1} has a Fourier expansion of the form

$$
\alpha_{10}=\sum \beta_{j} \zeta^{-j} \Lambda^{j}
$$

with only finitely many negative powers of ζ. Let us define

$$
\beta(\zeta)=\sum \beta_{j} \zeta^{-j}
$$

Then we have

$$
o_{0}(a w)=-(\text { order of } \beta f \text { at } \zeta=0)=\nu_{0}(a)+o_{0}(w)
$$

In fact, set $\mathbf{1}={ }^{t}(1, \ldots, 1,0, \ldots, 0)$ with $m+1$ entries. Then $f(\zeta)=\zeta^{m t} \mathbf{1} \kappa^{-1} w_{1}$. Using the fact ${ }^{t} \mathbf{1} \Lambda^{j}={ }^{t} \mathbf{1}$, we compute

$$
\begin{aligned}
{ }^{t} \mathbf{1} \kappa^{-1} a_{1} w_{1} & ={ }^{t} \mathbf{1} \alpha_{10} \kappa^{-1} w_{1} \\
& ={ }^{t} \mathbf{1}\left(\sum \beta_{j} \zeta^{-j} \Lambda^{j}\right) \kappa^{-1} w_{1} \\
& =\beta f,
\end{aligned}
$$

from which the result easily follows.
By its construction, the direct image $\pi_{*} \mathcal{L}(z)$ over \mathbb{P}^{1} has transition relations

$$
\begin{equation*}
\tilde{\chi} \widetilde{\tau}_{z}=\tau_{z}, \tag{4.6}
\end{equation*}
$$

where $\widetilde{\chi}=\chi \gamma$ and $\widetilde{\tau}_{z}=\gamma \widehat{\tau}_{z}$. The advantage of these transition relations over I is that $\widetilde{\tau}_{z}$ now occurs as a direct image from a trivialization of θ_{z} for $\mathcal{L}(z)$ over X_{I} (we will write $\widetilde{\tau_{z}}=\pi_{*} \theta_{z}$). To see this, let s be a section of $\mathcal{L}(z)$ over $\pi^{-1}(I)$ (and identify it with the corresponding section of $\mathcal{E}(z))$. Then

$$
\widetilde{W}(z) \ni \widetilde{\tau}_{z}(s)= \begin{cases}{ }^{t}\left(f_{0}, \ldots, f_{n}\right) & \text { about } \lambda=0, \\ { }^{t}\left(h_{0}, \ldots, h_{n}\right) & \text { about } \lambda^{-1}=0 .\end{cases}
$$

In the construction of $\mathcal{L}(z)$ over X_{I} we used the one-to-one correspondence

$$
\begin{gather*}
\left(f_{j}\right) \leftrightarrow\left(f, f_{m+1}, \ldots, f_{n}\right), \quad \text { where } f(\zeta)=\zeta^{m+1} \sum_{0}^{m} f_{j}\left(\zeta^{m+1}\right) \zeta^{-j}, \tag{4.7}\\
\left(h_{j}\right) \leftrightarrow\left(h, h_{m+1}, \ldots, h_{n}\right), \quad \text { where } h(\zeta)=\sum_{0}^{m} h_{j}\left(\zeta^{m+1}\right) \zeta^{-j}
\end{gather*}
$$

The right-hand side above gives us a trivialization over X_{I}, since this is a union of $n+1-m$ distinct pairs of discs. Moreover, the definitions of $f(\zeta)$ and $h(\zeta)$ describe the property of direct image about a point of ramification (see, for example, [8]).

Lemma 20. Let $\left[e^{a}\right]$ denote the line bundle of degree zero over X determined by the 1 -cocycle $\left(e^{a}, X_{A}, X_{I}\right)$. Then $\mathcal{L}(z) \otimes \mathcal{L} \cong\left[e^{a}\right]$ for $a=z \zeta^{-1}-\bar{z} \zeta$.

Proof. We have already observed that $\Phi \tau_{z}=\tau_{0}$, from which it follows (using (4.6) and (4.5)) that $\Phi^{(0)} \pi_{*} \theta_{z}=\pi_{*} \theta_{0}$. It suffices to show that this implies $\theta_{z}=e^{a} \theta_{0}$, where
we regard θ_{z} as a non-vanishing local section of $\mathcal{L}(z)$. This identity follows if we see

$$
\begin{equation*}
\pi_{*} \theta_{z}\left(\zeta^{-1} s\right)=\Lambda \pi_{*} \theta_{z}(s) \tag{4.8}
\end{equation*}
$$

for any local section s, where ζ is defined to be zero except in the discs about P_{0} and P_{∞}. Indeed, then we see that $\pi_{*} \theta_{z}\left(e^{a} s\right)=\Phi^{(0)} \pi_{*} \theta_{z}(s)=\pi_{*} \theta_{0}(s)$, whence $e^{a} s / \theta_{z}=$ s / θ_{0}. So let us prove (4.8) about $\lambda=0$ - the argument about $\lambda^{-1}=0$ is much the same.

From (4.7) we know that if $\pi_{*} \theta_{z}(s)={ }^{t}\left(f_{0}, \ldots, f_{n}\right)$ about $\lambda=0$, then $s / \theta_{z}=$ $\zeta^{m+1} \sum_{0}^{m} \zeta^{-j} f_{j}\left(\zeta^{m+1}\right)$ about P_{0}. Now a simple calculation shows that

$$
\pi_{*} \theta_{z}\left(\zeta^{-1} s\right)={ }^{t}\left(\lambda^{-1} f_{m}, f_{0}, \ldots, f_{m-1}, 0, \ldots, 0\right)=\Lambda \pi_{*} \theta_{z}(s)
$$

as required.
Now we can prove Theorem 7.
Proof of Theorem 7. Since $\pi_{*} \mathcal{L}(z)$ is trivial, $\mathcal{L}(z)$ must have degree $p+n$ and the transition relations (4.6) show that $\mathcal{L}(z)$ is real. Also, by the previous lemma, $\mathcal{L}(z) \cong \mathcal{L} \otimes\left[e^{a}\right]$ moves linearly around the Picard variety.

Now define a global section $\sigma_{j}(z)$ of $\mathcal{L}(z)$ by $\delta_{j}=\tau_{z}\left(\sigma_{j}(z)\right)$. Thus $\tau_{0}\left(\sigma_{j}(z)\right)=\Phi \delta_{j}$ arises from the map ψ. We must show that the global section $\sigma_{j}(z)$ has a divisor of zeros $(m-j) P_{0}+j P_{\infty}+E_{0}$. Near $\lambda=0$, we have

$$
\pi_{*} \theta_{z}\left(\sigma_{j}(z)\right)=\widetilde{\chi}(z)^{-1} \delta_{j}
$$

Examining the leading order terms in the two Fourier series' for $\widetilde{\chi}$ (one on C_{1} and the other on C_{2}), we see that

$$
\widetilde{\chi}(z)^{-1} \delta_{j}= \begin{cases}{ }^{t}\left(a_{0}, \ldots, a_{j}, 0, \ldots, 0\right)+O(\lambda) & \text { about } \lambda=0 \\ { }^{t}\left(0, \ldots, 0, b_{j}, \ldots, b_{n}\right)+O\left(\lambda^{-1}\right) & \text { about } \lambda^{-1}=0\end{cases}
$$

It follows from (4.7) that

$$
\sigma_{j}(z) / \theta_{z}^{0}= \begin{cases}\zeta^{m+1} \sum_{0}^{j} a_{i} \zeta^{-i}+O\left(\zeta^{m+1}\right) & \text { about } P_{0} \\ 0+O(\lambda) & \text { about } P_{0} \in X_{0}, \quad k \neq 0 \\ \sum_{j}^{m} b_{i} \zeta^{-i}+O\left(\zeta^{-m-1}\right) & \text { about } P_{\infty}\end{cases}
$$

This shows that $\sigma_{j}(z)$ has a divisor of zeros at least $(m-j) P_{0}+j P_{\infty}+E_{0}$.
4.6. Computation of arithmetic genus of spectral curves. Recall that the dressing orbit O_{Λ} is isomorphic to $\Lambda_{I, B} / \Gamma_{I, B}$ and therefore every primitive map in this orbit corresponds to a coset $g \Gamma_{I, B}$. An examination of the definition of the ring \mathfrak{R} (via \mathfrak{S}) shows that it depends only upon this coset and not the particular choice of g. Given \mathfrak{R}, the module M fixes \mathcal{L} and we see that the results above provide a bijective corresponding between (i) 'full' primitive maps $\mathbb{R}^{2} \rightarrow G / H$ of finite type, based by $\psi(0)=H$, up to base point preserving isometries, and (ii) triplets (X, π, \mathcal{L}) satisfying the conditions described at the beginning of Subsection 2.1 (including the possibility that X is singular or reducible).

Recall also that the group of higher flows $\exp \left(\mathfrak{C}_{R}\right)$ acts on O_{Λ} and, in particular, its two parameter subgroup $\exp (\mathfrak{m})$ induces the translation flow $\psi \mapsto \psi^{w}$ corresponding to the translation $z \mapsto z+w$ in $\mathbb{R}^{2} \cong \mathbb{C}$. One readily sees (from the previous subsection) that in terms of the triplet (X, π, \mathcal{L}) this action fixes X, π and maps \mathcal{L} to $\mathcal{L}(w)$. In particular, whenever $\psi(z)$ is doubly periodic (and therefore of finite type) with periods z_{1}, z_{2}, we must have $\psi^{z_{j}}=\psi$ and therefore $\mathcal{L}\left(z_{j}\right)=\mathcal{L}$. We obtain

Proposition 6. A necessary condition for (X, π, \mathcal{L}) to correspond to a harmonic 2 -torus is that there exist linearly independent $z_{1}, z_{2} \in \mathbb{C}$ for which $\mathcal{L}\left(z_{j}\right) \cong \mathcal{L}$.

Remark. This is not a sufficient condition. An examination of (4.4) shows that $\psi^{w}=\psi$ is not sufficient to imply $\psi(z+w)=\psi(z)$; they will in general differ by a factor depending upon the extended frame $\Phi_{\zeta}(w)$.

It should be possible (with some extra work) to exhibit an analytic isomorphism between the $\exp \left(\mathfrak{C}_{R}\right)$-orbit of a map of finite type and the $J_{R}(X)$-orbit of the corresponding \mathcal{L}. Since the $J_{R}(X)$-orbit of (a maximal sheaf) \mathcal{L} is isomorphic to $J_{R}(X)$ itself, this would identify the arithmetic genus p of X with the dimension of the $\exp \left(\mathfrak{C}_{R}\right)$-orbit. But we can get this useful result more quickly from:

Proposition 7. $H^{1}\left(X, \mathcal{O}_{X}\right) \cong \mathfrak{C} / \mathfrak{C}{ }^{[g]}$.

Proof. For convenience, let U_{0}, U_{∞} be the open discs about P_{0}, P_{∞} obtained from X_{I}. Let U denote their union and set $U^{*}=U \backslash\left\{P_{0}, P_{\infty}\right\}, X^{*}=X \backslash\left\{P_{0}, P_{\infty}\right\}$. Since X is connected, X^{*} is a Stein manifold and therefore the sequence

$$
0 \rightarrow \operatorname{Hol}(\mathrm{U}, \mathbb{C})+\operatorname{Hol}\left(\mathrm{X}^{*}, \mathbb{C}\right)^{\mathrm{alg}} \rightarrow \operatorname{Hol}\left(\mathrm{U}^{*}, \mathbb{C}\right)^{\mathrm{alg}} \rightarrow \mathrm{H}^{1}\left(\mathrm{X}, \mathcal{O}_{\mathrm{X}}\right) \rightarrow 0
$$

is exact, where the subscript 'alg' denotes functions with only finite order poles at P_{0}, P_{∞}. Now observe that $\mathcal{C}_{*}=\Lambda_{C}\left(\mathfrak{c}_{*}, \nu\right)^{\text {alg }}$ is isomorphic to $\operatorname{Hol}\left(\mathrm{U}^{*}, \mathbb{C}\right)$. The isomorphism is given, as we have already seen, by $c\left(\zeta^{-1} \Lambda\right) \mapsto c\left(\zeta^{-1}\right)$. Moreover, we observe that $\mathfrak{C}=\widehat{\mathfrak{B}} \oplus \mathfrak{C}_{*}$, where $\widehat{\mathfrak{B}}$ is the subspace of all multiples of the identity matrix, and that $\widehat{\mathfrak{B}}$ is clearly contained in $\mathfrak{C}^{[g]}$. Therefore $\mathfrak{C} / \mathfrak{C}^{[g]} \cong \mathfrak{C}_{*} / \mathfrak{C}_{*}^{[g]}$, where $\mathfrak{C}_{*}^{[g]}=\mathfrak{C}_{*} \cap \mathfrak{C}^{[g]}$. So it remains to show that $\mathfrak{C}_{*}^{[g]}$ corresponds to the kernel of the exact sequence above.

Clearly, $\operatorname{Hol}\left(\mathrm{X}^{*}, \mathbb{C}\right)^{\text {alg }}$ is isomorphic to $\mathbb{C}\left[X^{*}\right]$, which can be realized as the subalgebra $\widetilde{\mathfrak{A}^{0}}$ of $\widetilde{\mathfrak{A}}$ consisting of those elements which extend holomorphically to every point except P_{0}, P_{∞}. That is, in the decomposition $a=a_{0}+a_{1}+\cdots+a_{n-m}$, each a_{j} for $j \neq 0$ extends holomorphically into I. Let \mathfrak{C}_{*}^{0} denote the image of this subspace under the projection of $\Lambda_{C}(\mathfrak{a}, \nu)^{\text {alg }}$ onto \mathfrak{C}_{*}. Note that this identifies these two spaces. First, we see that the kernel is $\left\{a \in \widetilde{\mathfrak{A}^{0}} \mid a_{0}=0\right\}$. Moreover each element of the kernel represents a regular function on X^{*} which vanishes on the irreducible component $X_{0} \cap X^{*}$, where X_{0} carries P_{0}. But such function must be identically zero, since its restriction to other irreducible components of X^{*} (which are complete subvarieties) must be globally regular. Now take \mathfrak{C}_{*}^{I} to be the complexification of $\Lambda\left(\mathfrak{c}_{*}, \nu\right) \cap\left(\mathfrak{b}+\Lambda_{I}(\mathfrak{g}, \nu)\right)$. Then it is not hard to see that \mathfrak{C}_{*}^{I} is identified with $\operatorname{Hol}(\mathrm{U}, \mathbb{C})$ under the isomorphism $\mathfrak{C}_{*} \cong \operatorname{Hol}\left(\mathrm{U}^{*}, \mathbb{C}\right)$. So it remains to show that $\mathfrak{c} \in \mathfrak{C}_{*}^{[g]}$ if and only if $c=a_{0}+b_{0}$, where $a_{0} \in \mathfrak{C}_{*}^{0}$ and $b_{0} \in \mathfrak{C}_{*}^{I}$. In fact, it suffices to prove this when c is real.

First, observe that $c=c_{0}$. When $c=a_{0}+b_{0}$, we can define $b=b_{0}-a_{1}-\cdots-a_{n-m}$ so that $c=a+b$. This exhibits c as an element of $\left(\mathfrak{C}_{*}^{[g]}\right)_{R}=\mathfrak{C}_{*} \cap \mathfrak{Z}_{R}^{\text {pol }} \oplus \mathfrak{\mathcal { Z }}_{R}^{I}$. Conversely,
if $c \in\left(\mathfrak{C}_{*}^{[g]}\right)_{R}$, then $c=a+b$, where $a \in \widetilde{\mathfrak{A}}_{R}$ and we see that $b \in \mathfrak{Z}_{R}^{I}$ commutes with every element of $\widetilde{\mathfrak{A}}_{R}$ by the proof of Lemma 16 . Since X is connected, $\widetilde{\mathfrak{A}}$ is a \mathfrak{B}-module of rank $n+1$, so elements of $\widetilde{\mathfrak{A}}$ have maximal rank almost everywhere. Thus b must take values in \mathfrak{a} so that $c=a_{0}+b_{0}$.

5. Properties of spectral data with a compact connected Riemann SURFACE

This section is devoted to the proof of Theorem 1. First, properties of smooth real curves are described, from which we choose spectral curves. Second, properties of meromorphic functions on the above spectral curves which satisfy Conditions (2) and (4) in Definition 2.1 are determined (Proposition 8). Finally, after preparing a tool (Proposition 9) useful to select line bundles satisfying Condition (3) in Definition 2.1, we prove Theorem 1.
5.1. Properties of smooth real curves. First, we define subsets in the rational curve \mathbb{P}^{1}. Let S^{+}(resp. S^{-}) be the northern (resp. southern) hemisphere defined by $S^{+}=\left\{\lambda \in \mathbb{P}^{1}| | \lambda \mid>1\right\}$ (resp. $S^{-}=\left\{\lambda \in \mathbb{P}^{1}| | \lambda \mid<1\right\}$). Let X be a compact connected Riemann surface. Let ρ_{X} be an anti-holomorphic involution on X and X^{ρ} a subset of X formed by the fixed points for ρ_{X}.

It should be remarked that it is not suitable for our purpose to choose a Riemann surface with an anti-holomorphic involution ρ_{X} such that $X^{\rho}=\emptyset$, since ρ_{X} has no fixed points on X and hence violates Condition (4) in Definition 2.1.

Theorem 8 ([6]). Let $\left(X, \rho_{X}\right)$ be as above and $X^{\rho} \neq \emptyset$. Then $X \backslash X^{\rho}$ consists of (F0) two connected components or (F1) one connected component.

If X is a Riemann surface of type (F0), then X^{ρ} consists of $\nu(X) \operatorname{circles} S_{1}^{1}, \ldots, S_{\nu(X)}^{1}$.

Proposition 8. Let π be a non-constant holomorphic map from X to \mathbb{P}^{1} satisfying the following conditions:
(1) $\pi \circ \rho_{X}=\rho \circ \pi$,
(2) ρ_{X} fixes every point of $\pi^{-1}\left(S^{1}\right)$,
(3) π has no branch points on S^{1}.

Then X is a Riemann surface of type (F0). Moreover, π is a meromorphic function on X of degree $N=n+1$ satisfying all poles are contained in X^{N} and all zeros are
contained in X^{S}, or all poles are contained in X^{S} and all zeros are contained in X^{N}. Moreover π has a zero P_{0} of order $\geqq 2$ and has a point $x \in X^{\rho}$ such that $|\pi(x)|=1$ and the set of poles is the image of the set of zeros by ρ_{X}.

Proof of Proposition 8. The proof is divided into several lemmas.
Lemma 21. There exist no non-constant holomorphic maps from a connected compact Riemann surface X of type (F1) to \mathbb{P}^{1} satisfying Condition (2) in Proposition 8.

Proof. Suppose that such a map exists. Let $X^{*}=X \backslash X^{\rho}, X^{+}=\left\{x \in X^{*} \mid \pi(x) \in\right.$ $\left.S^{+}\right\}$, and $X^{-}=\left\{x \in X^{*} \mid \pi(x) \in S^{-}\right\}$. Then X^{+}and X^{-}are open and $X^{*}=$ $X^{+} \cup X^{-}$. Since X^{*} is connected, X^{*} coincides with either X^{+}or X^{-}. In particular, π is not surjective, which is a contradiction.

On account of Lemma 21, we may assume that X is a compact connected Riemann surface of type (F0).

Lemma 22. The map π satisfies Condition (1) in Proposition 8 if and only if π is a meromorphic function on X of degree $N=n+1$ satisfying all poles are contained in X^{N} and all zeros are contained in X^{S}, or all poles are contained in X^{S} and all zeros are contained in X^{N}. Moreover π has a point $x \in X^{\rho}$ such that $|\pi(x)|=1$.

Proof. The map π intertwines the involution ρ_{X} on X and ρ on \mathbb{P}^{1} if and only if

$$
\begin{equation*}
\pi(u) \overline{\pi\left(\rho_{X}(u)\right)}=1 \tag{5.1}
\end{equation*}
$$

From this it follows that if π has a pole (resp. zero) of order k at p, then $\rho_{X}(p)$ is the zero (resp. pole) of π of order k. Since ρ_{X} fixes every point of X^{ρ}, there exist no zeros and poles on X^{ρ}. Suppose that $\pi: X \rightarrow \mathbb{P}^{1}$ satisfies Condition (1) in Proposition 8. Then the divisor of π must be of the following form

$$
\begin{equation*}
(\pi)=\left(\alpha_{1}\right)+\cdots+\left(\alpha_{k}\right)-\left(\beta_{1}\right)-\cdots-\left(\beta_{k}\right) \tag{5.2}
\end{equation*}
$$

where α_{i}, β_{i} are points on $X \backslash X^{\rho}$ which satisfy $\beta_{i}=\rho_{X}\left(\alpha_{i}\right)$. Take a point P on X^{ρ}. Using (5.1), we get $\pi(P) \overline{\pi(P)}=1$, that is, $|\pi(P)|=1$.

Conversely, let π be the map which satisies (5.2) and has a point $p \in X^{\rho}$ with $|\pi(p)|=1$. Then, clearly π satisfies the equation (5.1).

Lemma 23. Let π be a map as in Lemma 22. Then π satisfies Condition (2) in Proposition 8 if and only if π is either (A) χ or (B) $1 / \chi$, where χ is the meromorphic function as in Proposition 8.

Proof. Since X is a compact connected Riemann surface of type (F0), $X^{*}=X \backslash X^{\rho}$ consists of two connected components. More precisely, $X^{*}=X^{N} \cup X^{S}$. Let $X^{N,+}$ and $X^{N,-}$ be the subsets of X defined by $X^{N, \pm}=\left\{x \in X^{N} \mid \pi(x) \in S^{ \pm}\right\}$, respectively. Similarly, define $X^{S, \pm}=\left\{x \in X^{S} \mid \pi(x) \in S^{ \pm}\right\}$.

Suppose that π satisfies Condition (2) in Proposition 8. Then we see that $\pi\left(X^{*}\right) \cap$ $S^{1}=\emptyset$. It then follows that $X^{N}=X^{N,+} \cup X^{N,-}$ and $X^{S}=X^{S,+} \cup X^{S,-}$. Since X^{N} and X^{S} are connected, we see that (a) $X^{N}=X^{N,+}, X^{S}=X^{S,-}$ or (b) $X^{N}=X^{N,-}$, $X^{S}=X^{S,+}$. In the case (a) (resp. (b)), π must be a function of type (A) (resp. (B)) as in Proposition 8.

Conversely, if π is either (A) χ or (B) $1 / \chi$, then it is easy to see that π maps $S_{1}^{1}, \ldots, S_{\nu(X)}^{1}$ into S^{1}. Let π_{i} denotes the restriction of π to S_{i}^{1} and d_{i} be the degree of the map $\pi_{i}: S_{i}^{1} \rightarrow S^{1}$ for $1 \leqq i \leqq \nu(X)$. Since $\left|d_{i}\right|+\cdots+\left|d_{\nu(X)}\right|$ coincides with the degree of π by the residue theorem, we see that for any point $p \in S^{1}, \pi^{-1}(p)$ is contained in $X^{\rho}=S_{1}^{1} \cup \cdots \cup S_{\nu(X)}^{1}$. This implies that π satisfies Condition (2) in Proposition 8.

Lemma 24. Let π be a map as in Proposition 8. Then the ramification divisor does not intersect $X^{\rho}=S_{1}^{1} \cup \cdots \cup S_{\nu(X)}^{1}$.

Proof. Let π be a meromorphic function of type (A) as in Proposition 8. Note that the number of zeros of π on X^{S} is given by the integral

$$
\frac{1}{2 \pi \sqrt{-1}} \int_{\partial X^{S}} \frac{1}{\pi(u)} d \pi(u)
$$

which is equal to $N=n+1$ from Proposition 12. Since π maps $S_{1}^{1}, \ldots, S_{\nu(X)}^{1}$ into S^{1}, for every point $p \in S^{1}$ we have

$$
\begin{equation*}
\sharp\left\{\pi^{-1}(p)\right\}=N . \tag{5.3}
\end{equation*}
$$

Suppose that there exists a point x such that $x \in R \cap\left(S_{1}^{1} \cup \cdots \cup S_{\nu(X)}^{1}\right)$, where R is the ramification divisor of π. Setting $q=\pi(x)$, we see that $\sharp\left\{\pi^{-1}(q)\right\}=N$ by the identity (5.3).

Let $\pi^{-1}(q)=\left\{P_{1}, \ldots, P_{N}\right\}$ and U_{i} a neighbourhood of P_{i} such that $U_{i} \cap U_{j}=\emptyset$ for $i \neq j$. Let $V(q)$ be the neighbourhood of q defined by $V(q)=\bigcap_{i} \pi\left(U_{i}\right)$. Denote by e the degree of π at x. It then follows from the assumption $e \geqq 2$ that there exists a neighbourhood $W(x)$ of x such that $\pi(W(x)) \subset V(q)$ and the degree of $\left.\pi\right|_{W(x) \backslash\{x\}}$, the restriction of π to $W(x) \backslash\{x\}$, is e. Take a point $y \in \pi(W(x)) \backslash\{q\}$. Then, there exist a point $Y_{i} \in U_{i}$ for each $i \neq 1$ and points $Z_{1}, \ldots, Z_{e} \in U_{1}$ such that π maps all of these points to y. Also, we see that $\sharp\left\{\pi^{-1}(y)\right\} \geqq N-1+e \geqq N+1$. This contradicts that the degree of π is N. Hence R does not intersect $S_{1}^{1} \cup \cdots \cup S_{\nu(X)}^{1}$.

The proof for a meromorphic function of type (B) as in Proposition 8 proceeds in a similar manner.

By Lemma 22, Lemma 23 and Lemma 24, Proposition 8 has been proved.

5.2. Δ-invariants of divisors on Riemann surfaces.

Proposition 9. Let $\left(X, \rho_{X}\right)$ be a compact connected Riemann surface of type (F0). Let E and F be divisors on X

$$
\begin{equation*}
E+\rho_{X}(E) \cong F+\rho_{X}(F) \tag{5.4}
\end{equation*}
$$

where \cong means linearly equivalence. Let f be a non-constant meromorphic function such that

$$
\begin{equation*}
(f)=E+\rho_{X}(E)-\left(F+\rho_{X}(F)\right), \quad \overline{\rho_{X}^{*} f}=f \tag{5.5}
\end{equation*}
$$

where (f) is the divisor of f. Then f^{ρ}, the restriction of f to $S_{1}^{1} \cup \cdots \cup S_{\nu(X)}^{1}$, is a non-negative or non-positive real function if and only if $\Delta(E-F)=0$ where $\Delta(E-F)$ is a number defined as follows:

$$
\Delta(E-F)=\nu(X)-\left|\sharp\left\{s_{i} \in \Lambda \mid f\left(s_{i}\right) / f\left(s_{1}\right)>0\right\}-\sharp\left\{s_{i} \in \Lambda \mid f\left(s_{i}\right) / f\left(s_{1}\right)<0\right\}\right| .
$$

Here Λ is a set consisting of points $s_{1}, s_{2}, \ldots, s_{\nu(X)}$ such that $s_{i} \in S_{i}^{1}, f\left(s_{i}\right) \neq 0, \infty$.
Proof. Let $S_{z p}$ be a intersection of $S_{1}^{1} \cup \cdots \cup S_{\nu(X)}^{1}$ with the set of zeros and poles of f^{ρ}. Restricting f^{ρ} to $\left(S_{1}^{1} \cup \cdots \cup S_{\nu(X)}^{1}\right) \backslash S_{z p}$, we get a real function f^{*}. Considering the restriction of $\left(E+\rho_{X}(E)-F-\rho_{X *}(F)\right)$ to $S_{1}^{1} \cup \cdots \cup S_{\nu(X)}^{1}$, we see that f^{ρ} has only zeros and poles with even order. So the sign of f^{*} does not change at each point of $S_{z p}$. Thus f^{ρ} is non-negative or non-positive on each connected component of $S_{1}^{1} \cup \cdots \cup S_{\nu(X)}^{1}$. Hence f^{ρ} is a non-negative or non-positive real function on $S_{1}^{1} \cup \cdots \cup S_{\nu(X)}^{1}$ if and only if there exist points $p_{1} \in S_{1}^{1} \backslash S_{z p}, \ldots, p_{\nu(X)} \in S_{\nu(X)}^{1} \backslash S_{z p}$ such that $f\left(p_{i}\right) / f\left(p_{1}\right)>0$ for $1 \leqq i \leqq \nu(X)$, that is, $\Delta(E-F)=0$.

Now we are in a position to prove Theorem 1.
Proof of Theorem 1. Conditions (2) and (4) in Definition 2.1 are equivalent to the following assertions:
(1) π is a meromorphic function as in Proposition 8.
(2) π has a zero P_{0} of order $m+1 \geqq 2$.

This means that Conditions (2) and (4) in Definition 2.1 are satisfied precisely when π satisfies Condition (2) in Theorem 1. It is clear that $R=R_{+}+\rho_{X *}\left(R_{+}\right)$. Applying Proposition 9 to $E=D$ and $F=R_{+}$, we see that $\delta(\mathcal{L})=\Delta\left(D-R_{+}\right)$. Thus Condition (3) in Definition 2.1 is equivalent to Condition (3) in Theorem 1. Hence Theorem 1 is proved.

6. Rational or elliptic spectral curves

6.1. Jacobi's theta functions and Weierstrass' zeta functions. C. G. J. Jacobi introduced four functions $\theta_{1}, \theta_{2}, \theta_{3}$ and θ_{4} of variables $p(u)=\exp (\pi \sqrt{-1} u)$ and $q=$ $\exp (\pi \sqrt{-1} \tau)$, where u is the usual covering coordinate of an elliptic curve $X=\mathbb{C} / \mathbb{L}$ and τ stands for its period ratio with familiar standardization that the imaginary part $\operatorname{Im} \tau$ of τ is positive. If we take \mathbb{L} to be $\mathbb{Z} \oplus \tau \mathbb{Z}$ for simplicity, then these Jacobi's theta functions are given as follows:

$$
\begin{aligned}
& \theta_{1}(u)=\theta_{1}(u \mid \tau)=\sqrt{-1} \sum(-1)^{n} p^{2 n-1} q^{(n-1 / 2)^{2}} \\
& \theta_{2}(u)=\theta_{2}(u \mid \tau)=\sum p^{2 n-1} q^{(n-1 / 2)^{2}} \\
& \theta_{3}(u)=\theta_{3}(u \mid \tau)=\sum p^{2 n} q^{n^{2}} \\
& \theta_{4}(u)=\theta_{4}(u \mid \tau)=\sum(-1)^{n} p^{2 n} q^{n^{2}}
\end{aligned}
$$

Here the sums are taken over $n \in \mathbb{Z}$. Under the addition of half-periods, these functions transform according to the following table.

	$u+1 / 2$	$u+\tau / 2$	$u+1 / 2+\tau / 2$	$u+1$	$u+\tau$	$u+1+\tau$
θ_{1}	θ_{2}	$-\sqrt{-1} a \theta_{4}$	$-a \theta_{3}$	$-\theta_{1}$	$-b \theta_{1}$	$b \theta_{1}$
θ_{2}	$-\theta_{1}$	$-a \theta_{3}$	$\sqrt{-1} a \theta_{4}$	$-\theta_{2}$	$b \theta_{2}$	$-b \theta_{2}$
θ_{3}	θ_{4}	$a \theta_{2}$	$\sqrt{-1} a \theta_{1}$	θ_{3}	$b \theta_{3}$	$b \theta_{3}$
θ_{4}	θ_{3}	$\sqrt{-1} a \theta_{1}$	$a \theta_{2}$	θ_{4}	$-b \theta_{4}$	$-b \theta_{4}$

For example, we have the transformation rules

$$
\begin{align*}
\theta_{1}(u+\tau) & =-b(u) \theta_{1}(u), \tag{6.1}\\
\theta_{1}(u+1 / 2) & =\theta_{2}(u), \tag{6.2}\\
\theta_{1}(u+\tau / 2) & =-\sqrt{-1} a(u) \theta_{4}(u), \tag{6.3}\\
\theta_{3}(u+\tau / 2) & =a(u) \theta_{2}(u), \tag{6.4}\\
\theta_{4}(u+1 / 2) & =\theta_{3}(u), \tag{6.5}
\end{align*}
$$

where $a(u)=p(u)^{-1} q^{-1 / 4}$ and $b(u)=p(u)^{-2} q^{-1}$. Special values of these functions are obtained as follows:

$$
\begin{align*}
\lim _{t \rightarrow \infty} q^{-1 / 4} \frac{\partial \theta_{1}}{\partial u}(0 \mid \sqrt{-1} t) & =2 \pi, \quad \lim _{t \rightarrow \infty} q^{-1 / 4} \theta_{2}(0 \mid \sqrt{-1} t)=2, \tag{6.6}\\
\lim _{t \rightarrow \infty} \theta_{3}(0 \mid \sqrt{-1} t) & =1, \quad \lim _{t \rightarrow \infty} \theta_{4}(0 \mid \sqrt{-1} t)=1 .
\end{align*}
$$

On the other hand, Weierstrass' zeta function ζ_{w} is defined by

$$
\begin{equation*}
\zeta_{w}(u)=\zeta_{w, \tau}(u)=\frac{1}{u}+\sum_{\omega \in \mathbb{L} \backslash(0,0)}\left\{\frac{1}{(u-\omega)}+\frac{u}{\omega^{2}}+\frac{1}{\omega}\right\} . \tag{6.7}
\end{equation*}
$$

Note that these functions have the following properties. θ_{1} is a odd function. θ_{2}, θ_{3} and θ_{4} are even functions. Concerning ζ_{w}, there exist complex numbers $A=A_{\tau}$ and $B=B_{\tau}$ depending only on τ such that

$$
\begin{equation*}
\zeta_{w}(u+1)-\zeta_{w}(u)=A, \quad \zeta_{w}(u+\tau)-\zeta_{w}(u)=B, \quad A \tau-B=2 \pi \sqrt{-1} . \tag{6.8}
\end{equation*}
$$

Moreover, if τ is pure imaginary, we have $\overline{\theta_{1}(u)}=\theta_{1}(\bar{u}), \overline{\zeta_{w}(u)}=\zeta_{w}(\bar{u}), \bar{A}=A$ and $\bar{B}=-B$.

For further details and formulas regarding these functions, we refer the reader to McKean and Moll [22, Chapter 3].
6.2. Main results. Our main theorems which refine the correspondence proved by McIntosh may be stated as follows. (See Section 2.2 for the detail of this correspondence.)

Theorem 9. Let X be the smooth rational curve. Then (X, π, \mathcal{L}) is a spectral data if and only if the following conditions are satisfied:
(1) $\left(X, \rho_{X}\right)$ is real isomorphic to $\left(\mathbb{P}^{1}, \rho\right)$. By the affine coordinate λ, π is expressed as

$$
\pi(\lambda)=\alpha_{0} \lambda^{m+1} \frac{\prod_{j=1}^{n-m}\left(\lambda-P_{j}\right)}{\prod_{j=1}^{n-m}\left(\lambda-Q_{j}\right)}, \quad P_{0}=0, \quad \alpha_{0}=\frac{\prod_{j=1}^{n-m}\left(1-Q_{j}\right)}{\prod_{j=1}^{n-m}\left(1-P_{j}\right)}
$$

for some m and n with $1 \leqq m \leqq n-1$. Here $P_{j} \in X^{S}=\{\lambda \in X|0<|\lambda|<1\}$ and $Q_{j}=1 / \overline{P_{j}}$ for any $1 \leqq j \leqq n-m$.
(2) \mathcal{L} is a line bundle of degree n.

Theorem 10. Choosing a complex coordinate on the source suitably, the harmonic map $\Psi: \mathbb{R}^{2} \rightarrow \mathbb{C} P^{n}$ corresponding to the spectral data $\left(X, \pi, \mathcal{L}=\mathcal{O}_{X}(D)\right)$ in Theo-
rem 9 is given by

$$
z=x+\sqrt{-1} y \mapsto\left[\Psi_{0}(z): \Psi_{1}(z): \cdots: \Psi_{n}(z)\right]
$$

where $\Psi_{i}(z)$ is a function defined by

$$
\begin{equation*}
\Psi_{i}(z)=\exp \left(\eta_{i}^{-1} z-\eta_{i} \bar{z}\right) \cdot \frac{\prod_{j=1}^{n-m}\left(\eta_{i}-P_{j}\right)}{\prod_{j=1}^{n-m}\left(\eta_{i}-R_{j}\right)} \tag{6.9}
\end{equation*}
$$

Here $\left\{\eta_{0}, \ldots, \eta_{n}\right\}$ is the inverse image $\pi^{-1}(1)$ of 1 by π and $R_{+}=\sum_{j=1}^{n} R_{j}$ is a divisor given by the intersection of X^{S} with R, that is, $R_{+}=X^{S} \cap R$.

Furthermore we obtain the following

Theorem 11. Ψ is doubly periodic with periods $v_{1}, v_{2} \in \mathbb{C}$ if and only if the set

$$
\begin{equation*}
V=\bigcap_{1 \leqq i \leqq n} \frac{\pi}{\beta_{i}}(\mathbb{R} \oplus \sqrt{-1} \mathbb{Z}) \tag{6.10}
\end{equation*}
$$

contains the 2-dimensional lattice $M=\mathbb{Z} v_{1} \oplus \mathbb{Z} v_{2}$, where $\beta_{1}, \ldots, \beta_{n}$ are complex numbers defined by $\beta_{i}=\eta_{i}^{-1}-\eta_{0}^{-1}$.

Proof. Let $T^{n}=\left\{\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{C}^{n}| | w_{i} \mid=1(1 \leqq i \leqq n)\right\}$ be a real n-dimensional torus group defined by the rule

$$
\left(a_{1}, \ldots, a_{n}\right) \times\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right) .
$$

We define a group homomorphism $\Phi=\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ from the additive group \mathbb{R}^{2} to T^{n} by $z=x+\sqrt{-1} y \mapsto\left(\Psi_{1} / \Psi_{0}, \ldots, \Psi_{n} / \Psi_{0}\right)$.

Note that Ψ has two periods v_{1}, v_{2} if and only if so is Φ. If Φ has two periods v_{1}, v_{2}, then the set $\mathbb{Z} v_{1} \oplus \mathbb{Z} v_{2}$ is contained in V, since V is the set of all points on which the value of Φ is equal to the initial value $\Phi(0)=(1, \ldots, 1) \in T^{n}$. Conversely, if V contains a 2-dimensional lattice $M=\mathbb{Z} v_{1} \oplus \mathbb{Z} v_{2}$, then clearly v_{1} and v_{2} are periods of Φ, since Φ is a homomorphism. Hence condition (6.10) is a necessary and sufficient condition for Ψ to be doubly periodic with periods v_{1}, v_{2}.

Corollary 2. Let (X, π, \mathcal{L}) be a spectral data in Theorem 9 such that the degree of π is 3 . Then the corresponding harmonic map $\Psi: \mathbb{R}^{2} \rightarrow \mathbb{C} P^{2}$ in Theorem 10 is always doubly periodic with periods v_{1}, v_{2}, where v_{1} and v_{2} are complex numbers in the set

$$
\mathbb{Z} v_{+} \oplus \mathbb{Z} v_{-}=\mathbb{Z} \pi\left(\beta_{1} \operatorname{Im}\left(\beta_{2} / \beta_{1}\right)\right)^{-1} \oplus \mathbb{Z} \pi\left(\beta_{2} \operatorname{Im}\left(\beta_{1} / \beta_{2}\right)\right)^{-1}
$$

Proof. In this case, the set V in Theorem 11 reduces to $\mathbb{Z} v_{+} \oplus \mathbb{Z} v_{-}$. Hence Corollary 2 follows from Theorem 11.

Now we turn to the case of a smooth elliptic spectral curve X. Let us denote by $\operatorname{Pic}^{\mathrm{d}}(\mathrm{X})$ and $J(X)$ the set of line bundles on X of degree d and the Jacobian of X, respectively. Note that $J(X)$ can be identified with $X=\mathbb{C} /(\mathbb{Z} \oplus \mathbb{Z} \tau)$. We then define a biholomorphic map $J: \operatorname{Pic}^{0}(\mathrm{X}) \rightarrow \mathrm{J}(\mathrm{X})$ by $J(L)=\sum_{j=1}^{k}\left(P_{j}-Q_{j}\right)(\bmod \mathbb{Z} \oplus \mathbb{Z} \tau)$, provided that $L \in \operatorname{Pic}^{0}(\mathrm{X})$ is expressed as a divisor line bundle $\mathcal{O}_{X}\left(\sum_{j=1}^{k}\left(P_{j}-Q_{j}\right)\right)$.

Theorem 12. Let X be a smooth elliptic curve. Then (X, π, \mathcal{L}) is a spectral data if and only if the following conditions are satisfied:
(1) X is an elliptic curve $X_{\tau}=\mathbb{C} /(\mathbb{Z} \oplus \mathbb{Z} \tau)$, where τ is a pure imaginary number $\sqrt{-1} t$ with $t>0 . \rho_{X}$ is an anti-holomorphic involution induced by the usual conjugation of \mathbb{C}. Regarded as a doubly periodic meromorphic function on \mathbb{C}, π is expressed as

$$
\pi(u)=C \frac{\theta_{1}\left(u-P_{0}\right)^{m+1} \prod_{j=1}^{n-m-1} \theta_{1}\left(u-P_{j}\right) \cdot \theta_{1}\left(u-P_{n-m}+W\right)}{\theta_{1}\left(u-Q_{0}\right)^{m+1} \prod_{j=1}^{n-m} \theta_{1}\left(u-Q_{j}\right)}
$$

for some m and n with $1 \leqq m \leqq n-1$. Here $P_{i} \in X^{S}=\{x \in X \mid 0<\operatorname{Im} \mathrm{x}<$ $\operatorname{Im} \tau / 2(\bmod \operatorname{Im} \tau \mathbb{Z})\}$ and $Q_{i}=\overline{P_{i}}(\bmod \mathbb{Z} \oplus \mathbb{Z} \tau)$ for any $0 \leqq i \leqq n-m$; $W=(m+1) P_{0}+\sum_{i=1}^{n-m} P_{i}-(m+1) Q_{0}-\sum_{i=1}^{n-m} Q_{i} ; P_{0} \neq P_{i}$ for $i \neq 0 ; W$ belongs to $\mathbb{Z} \oplus \mathbb{Z} \tau$; and C is the unique constant such that $\pi(0)=1$.
(2) Let $r: \operatorname{Pic}^{\mathrm{n}+1}(\mathrm{X}) \rightarrow \operatorname{Pic}^{0}(\mathrm{X})$ be a map defined by $\mathcal{F} \mapsto \mathcal{F} \otimes \mathcal{O}_{X}\left(-R_{+}\right)$, where $R_{+}=\sum_{j=0}^{n} R_{j}$ is a divisor of degree $n+1$ given by the intersection of X^{S} with R, that is, $R_{+}=X^{S} \cap R$. Then, \mathcal{L} is an element of the inverse image of $(\mathbb{Z} \oplus \sqrt{-1} \mathbb{R}) /(\mathbb{Z} \oplus \tau \mathbb{Z})$ by the composition $J \circ r$.

Theorem 13. Choosing a complex coordinate on the source suitably, the harmonic map $\Psi: \mathbb{R}^{2} \rightarrow \mathbb{C} P^{n}$ corresponding to the spectral data $\left(X_{\tau}, \pi, \mathcal{L}=\mathcal{O}_{X}(D)\right)$ in Theorem 12 is given by

$$
z=x+\sqrt{-1} y \mapsto\left[\Psi_{0}(z): \Psi_{1}(z): \cdots: \Psi_{n}(z)\right]
$$

where $\Psi_{i}(z)$ is a function defined by

$$
\Psi_{i}(z)=\mu_{i}^{-1} \exp \left(z\left[\zeta_{w}\left(\eta_{i}-P_{0}\right)-A \eta_{i}\right]-\bar{z}\left[\zeta_{w}\left(\eta_{i}-Q_{0}\right)-A \eta_{i}\right]\right)
$$

$$
\begin{equation*}
\cdot \frac{\theta_{1}\left(\eta_{i}-P_{0}\right)^{m} \prod_{j=1}^{n-m} \theta_{1}\left(\eta_{i}-P_{j}\right) \theta_{1}\left(\eta_{i}+m P_{0}+\sum_{j=1}^{n-m} P_{j}-D-z+\bar{z}\right)}{\prod_{j=0}^{n} \theta_{1}\left(\eta_{i}-R_{j}\right)} \tag{6.11}
\end{equation*}
$$

Here $\left\{\eta_{0}, \ldots, \eta_{n}\right\}$ is the inverse image $\pi^{-1}(1)$ of 1 by π, μ_{i} is a constant given by $\mu_{i}=\exp \left(2 \pi \sqrt{-1}\left(D-R_{+}\right) \operatorname{Im} \eta_{\mathrm{i}} / \mathrm{t}\right)$, and A is a constant given in the equation (6.8).

Moreover we prove the following
Theorem 14. The harmonic map $\Psi: \mathbb{R}^{2} \rightarrow \mathbb{C} P^{n}$ in Theorem 13 is doubly periodic with periods $v_{1}, v_{2} \in \mathbb{C}$ if and only if the set $V=\bigcap_{0 \leqq i \leqq n} V_{i}$ contains the 2-dimensional lattice $M=\mathbb{Z} v_{1} \oplus \mathbb{Z} v_{2}$, where V_{0}, \ldots, V_{n} are the sets defined by

$$
V_{i}= \begin{cases}\pi \beta_{i}^{-1}(\mathbb{R} \oplus \sqrt{-1} \mathbb{Z}), & \text { if } \beta_{i} \neq 0 \\ \mathbb{C}, & \text { otherwise }\end{cases}
$$

Here $\beta_{0}, \beta_{1}, \ldots, \beta_{n}$ are complex numbers defined by

$$
\beta_{0}=-2 \pi / t, \quad \beta_{i}=\left[\zeta_{w}\left(\eta_{0}-P_{0}\right)-\zeta_{w}\left(\eta_{i}-P_{0}\right)-B\left(\eta_{0}-\eta_{i}\right) \tau^{-1}\right] \quad(1 \leqq i \leqq n)
$$

Corollary 3. Let (X, π, \mathcal{L}) be a spectral data in Theorem 12 such that the degree of π is 2 and $\operatorname{Im} \beta_{1} \neq 0$. Then the corresponding harmonic map $\Psi: \mathbb{R}^{2} \rightarrow \mathbb{C} P^{1}$ in Theorem 13 is always doubly periodic with periods v_{1}, v_{2}, where v_{1} and v_{2} are complex numbers in the set

$$
\mathbb{Z} v_{+} \oplus \mathbb{Z} v_{-}=\mathbb{Z} \pi\left(\operatorname{Im} \beta_{1}\right)^{-1} \oplus \mathbb{Z} \overline{\beta_{1}}\left(\operatorname{Im} \beta_{1}\right)^{-1} t / 2
$$

Proof. In this case, the set V in Theorem 14 reduces to $\mathbb{Z} v_{+} \oplus \mathbb{Z} v_{-}$. Hence Corollary 3 follows from Theorem 14.

We now give some explicit examples of harmonic maps by applying the theorems above.

Example 1. Let $\left(X=\mathbb{P}^{1}, \pi, \mathcal{L}\right)$ be a spectral data defined as follows. The map $\pi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ is given by $\lambda \mapsto \lambda^{n+1} . \mathcal{L}$ is the divisor line bundle

$$
\mathcal{L}=O_{X}(n 0),
$$

and $P_{0}=0$, a point as in Condition (2) of Definition 1. Then we choose the constant function $f=1$ as a meromorphic function in Condition (3) of Definition 1. Setting $\omega=\exp (2 \pi \sqrt{-1} /(n+1))$, we see that $\pi^{-1}(1)$ is given by $\left\{1, \omega, \omega^{2}, \ldots, \omega^{n}\right\}$. Then the corresponding harmonic map $\Psi: \mathbb{R}^{2} \rightarrow \mathbb{C} P^{n}$ is given by

$$
z=x+\sqrt{-1} y \mapsto\left[\Psi_{0}(z): \cdots: \Psi_{n}(z)\right]
$$

where $\Psi_{i}=\exp \left(\omega^{-j} z-\omega^{j} \bar{z}\right)$. Note that Ψ is a superconformal map. Moreover, if n $=1,2,3$ or 5 , then ψ is doubly periodic.

Example 2. Let $\left(X=\mathbb{P}^{1}, \pi, \mathcal{L}\right)$ be a spectral data defined as follows. The map $\pi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ is now given by

$$
\lambda \mapsto \frac{1-\beta}{1-\alpha} \lambda^{2}\left(\frac{\lambda-\alpha}{\lambda-\beta}\right),
$$

where α is a real number such that $0<|\alpha|<1$ and $\beta=1 / \alpha$. The ramification divisor R of π is given by $R=\left(R_{1}\right)+(0)+\left(\rho_{X}\left(R_{1}\right)\right)+(\infty)$, where $R_{1}=\left(\alpha^{2}+3-\right.$ $\left.\sqrt{\alpha^{4}-10 \alpha^{2}+9}\right) / 4 \alpha . \mathcal{L}$ is the divisor line bundle given by

$$
\mathcal{L}=O_{X}\left(R_{1}+\infty\right)
$$

and $P_{0}=0$. Moreover, $\pi^{-1}(1)=\left\{\eta_{0}, \eta_{1}, \eta_{2}\right\}$ is given by

$$
\eta_{0}=1, \quad \eta_{1}=\frac{\alpha-1+\sqrt{4-(\alpha-1)^{2}} \sqrt{-1}}{2}, \quad \eta_{2}=\frac{\alpha-1-\sqrt{4-(\alpha-1)^{2}} \sqrt{-1}}{2} .
$$

Then the corresponding harmonic map $\Psi: \mathbb{R}^{2} \rightarrow \mathbb{C} P^{2}$ is given by

$$
z=x+\sqrt{-1} y \mapsto\left[\Psi_{0}(z): \Psi_{1}(z): \Psi_{2}(z)\right],
$$

where

$$
\Psi_{i}(z)=\exp \left(\eta_{i}^{-1} z-\eta_{i} \bar{z}\right) \cdot \frac{\left(\eta_{i}-\alpha\right)}{\left(\eta_{i}-R_{1}\right)}
$$

Note that Ψ is a harmonic map of isotropy order 1 and is nowhere conformal. Moreover, by Corollary 2, Ψ has two complex periods v_{1} and v_{2}, which are in the lattice $\mathbb{Z} v_{+} \oplus \mathbb{Z} v_{-}$defined by

$$
v_{+}=\left(-\frac{1}{\sqrt{4-(\alpha-1)^{2}}}+\frac{\sqrt{-1}}{\alpha-3}\right) \pi, \quad v_{-}=\left(\frac{1}{\sqrt{4-(\alpha-1)^{2}}}+\frac{\sqrt{-1}}{\alpha-3}\right) \pi
$$

Example 3. Let $\left(X_{\tau}=X_{\sqrt{-1}}, \pi, \mathcal{L}\right)$ be a spectral data defined as follows. We define the map $\pi: X_{\tau} \rightarrow \mathbb{P}^{1}$ by $u \mapsto \lambda=g(u) / g(1 / 2)$, where $g(u)$ is a meromorphic function on X given by

$$
g(u)=\frac{\theta_{1}\left(u-R_{0}\right)^{2} \theta_{1}\left(u-R_{0}-2 \sqrt{-1}\right)}{\theta_{1}\left(u-R_{3}\right)^{3}}
$$

with $R_{0}=1 / 2+\sqrt{-1} / 6$ and $R_{3}=1 / 2+5 \sqrt{-1} / 6$. In this case, there exists a point $R_{2} \in X^{S}$ such that the ramification divisor R is expressed as $2 R_{0}+R_{2}+\rho_{X}\left(2 R_{0}+R_{2}\right)$. We define the divisor line bundle \mathcal{L} by

$$
\mathcal{L}=O_{X}\left(2 R_{0}+R_{2}\right) .
$$

Set $P_{0}=R_{0}$ as a distinguished zero of π as in Condition (2) of Definition 1. We choose the constant function $f=1$ as a meromorphic function in Condition (3) of Definition 1. In this case, $\zeta_{w}(\sqrt{-1} r)=-\sqrt{-1} \zeta_{w}(r)$ for $r \in \mathbb{R}$. From this, together with (6.8), we get $A=\pi$. Since $\pi^{-1}(1)$ is $\{0,1 / 2, \sqrt{-1} / 2\}$, the corresponding harmonic map $\Psi: \mathbb{R}^{2} \rightarrow \mathbb{C} P^{2}$ is given by

$$
z=x+\sqrt{-1} y \mapsto[\psi(0, z): \psi(1 / 2, z): \psi(\sqrt{-1} / 2, z)]
$$

where

$$
\psi(u, z)=\exp \left[z\left\{\zeta_{w, \tau}\left(u-R_{0}\right)-\pi u\right\}-\bar{z}\left\{\zeta_{w, \tau}\left(u-R_{3}\right)-\pi u\right\}\right] \frac{\theta_{1}\left(u-R_{2}-z+\bar{z}\right)}{\theta_{1}\left(u-R_{2}\right)}
$$

Note that Ψ is a superconformal map into $\mathbb{C} P^{2}$.

Example 4. Let $\left(X_{\tau}=X_{\sqrt{-1}}, \pi, \mathcal{L}\right)$ be a spectral data defined as follows. We now define the map $\pi: X_{\tau} \rightarrow \mathbb{P}^{1}$ by $u \mapsto \lambda=\mathfrak{p}\left(u-R_{2}\right) / \mathfrak{p}(-3 \sqrt{-1} / 4)$, where $R_{2}=3 \sqrt{-1} / 4$ and \mathfrak{p} is Weierstrass' \mathfrak{p} function defined by

$$
\mathfrak{p}(u)=\frac{1}{u^{2}}+\sum_{(m, n) \neq(0,0)}\left\{\frac{1}{(u-(m+\sqrt{-1} n))^{2}}-\frac{1}{(m+\sqrt{-1} n)^{2}}\right\}
$$

The ramification divisor R of π is given by $R=R_{0}+R_{1}+R_{2}+R_{3}$, where $R_{0}=\sqrt{-1} / 4$, $R_{1}=(2+\sqrt{-1}) / 4$ and $R_{3}=(2+3 \sqrt{-1}) / 4$. Define the divisor line bundle \mathcal{L} by

$$
\mathcal{L}=O_{X}\left(R_{0}+R_{1}\right) .
$$

Set $P_{0}=R_{0}$ as a distinguished zero of π as in Condition (2) of Definition 1. The constant function $f=1$ can be taken as a meromorphic function in Condition (3) of Definition 1. Since $\pi^{-1}(1)$ is $\{0, \sqrt{-1} / 2\}$, the corresponding harmonic map $\Psi: \mathbb{R}^{2} \rightarrow$ $\mathbb{C} P^{1}$ is given by

$$
z=x+\sqrt{-1} y \mapsto[\psi(0, z): \psi(\sqrt{-1} / 2, z)]
$$

where

$$
\psi(u, z)=\exp \left[z\left\{\zeta_{w, \tau}\left(u-R_{0}\right)-\pi u\right\}-\bar{z}\left\{\zeta_{w, \tau}\left(u-R_{2}\right)-\pi u\right\}\right] \frac{\theta_{1}\left(u-R_{1}-z+\bar{z}\right)}{\theta_{1}\left(u-R_{1}\right)}
$$

Note that Ψ is a harmonic map of isotropy order 1 and is nowhere conformal.
Concerning the periodicity of Ψ, the corresponding set V in Theorem 14 then consists of the lattice points in Figure 1.

Figure 1.

From Corollary 3, we see that Ψ has two periods v_{+}and v_{-}defined by

$$
v_{+}=2 \pi /\left(4 \zeta_{w}(1 / 4)-\pi\right) \fallingdotseq 0.4962 \ldots . ., \quad v_{-}=\sqrt{-1} / 2
$$

that is, $\Psi\left(v_{-}+z\right)=\Psi\left(v_{+}+z\right)=\Psi(z)$. Moreover, Ψ maps the torus $T=\mathbb{C} /\left(\mathbb{Z} v_{+} \oplus\right.$ $\left.\mathbb{Z} v_{-}\right)$to an annulus in the Riemann sphere $\mathbb{C} P^{1}$.
6.3. Classification of spectral data with the smooth rational spectral curve. This section is devoted to the proof of Theorem 9. First, we shall describe the real structures of the smooth rational curve \mathbb{P}^{1}.

We first note that there are two real structures on $\mathbb{P}^{1}($ cf. $\S 2.1$ in $[6])$. One is $\left(\mathbb{P}^{1}, \rho\right)$. The other is $\left(\mathbb{P}^{1}, \sigma\right)$, where σ is the anti-holomorphic involution defined by

$$
\lambda \mapsto-1 / \bar{\lambda} .
$$

However, it is not suitable to choose the latter as the involution of the spectral curve $X=\mathbb{P}^{1}$, since it has no fixed points on \mathbb{P}^{1} and does not satisfy Condition (4) in Definition 1.

Throughout this section, we shall always assume that $X=\mathbb{P}^{1}$ and $\rho_{X}=\rho$.
Proposition 10. Let π be a non-constant holomorphic map from X to \mathbb{P}^{1} satisfying Conditions (1) and (2) in Theorem 1.

Then π is either (A) χ or (B) $1 / \chi$, where χ is a meromorphic function defined by

$$
\chi(\lambda)=\alpha_{0} \lambda^{k} \frac{\prod_{j=1}^{l}\left(\lambda-\alpha_{j}\right)}{\prod_{j=1}^{l}\left(\lambda-\beta_{j}\right)} .
$$

Here k and l are some non-negative integers with $k+l \neq 0 ; \alpha_{0} \in \mathbb{C}^{*}=\mathbb{C} \backslash 0$; $\alpha_{1}, \ldots, \alpha_{l}$ are non zero complex numbers satisfying $\left|\alpha_{i}\right|<1$ and $\left|\alpha_{0} \alpha_{1} \cdots \alpha_{l}\right|=1$; and $\beta_{i}=1 / \bar{\alpha}_{i}$. Moreover π has a zero P_{0} of order $\geqq 2$.

Conversely, any map π expressed as above satisfies Conditions (2) in Theorem 1.
Proof. Assume that X and π satisfy Condition (1) and (2) in Theorem 1. From Condition (2), π has a zero P_{0} of order $\geqq 2$, and the divisor of π must be of the following form

$$
\begin{equation*}
(\pi)=\left(\alpha_{1}\right)+\cdots+\left(\alpha_{l}\right)-\left(\beta_{1}\right)-\cdots-\left(\beta_{l}\right), \tag{6.12}
\end{equation*}
$$

where $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ is a subset of S^{+}or $S^{-}, \beta_{i}=\rho_{X}\left(\alpha_{i}\right)$, that is, $\beta_{i}=1 / \bar{\alpha}_{i}$.
Thus π is either (A) χ or (B) $1 / \chi$, where χ is a meromorphic function defined by

$$
\begin{equation*}
\pi(\lambda)=\alpha_{0} \lambda^{k} \frac{\prod_{j=1}^{l}\left(\lambda-\alpha_{j}\right)}{\prod_{j=1}^{l}\left(\lambda-\beta_{j}\right)}, \tag{6.13}
\end{equation*}
$$

where $\alpha_{1}, \ldots, \alpha_{l}, \beta_{1}, \ldots, \beta_{l}$ are all complex numbers contained in $\mathbb{C}^{*} \backslash S^{1}$ with $\left|\alpha_{i}\right|<1$ and $\alpha_{0} \in \mathbb{C}^{*}$.

The function $\pi \overline{\rho_{X}^{*} \pi}$ is a constant function since its divisor vanishes. By the assumption that π has the point $x \in X^{\rho}$ with $|\pi(x)|=1$, we see that

$$
\pi(0) \overline{\rho_{X}^{*} \pi(0)}=\pi(0) \overline{\pi(0)}=\pi(x) \overline{\pi(x)}=1 .
$$

Using the above equation, we get

$$
\begin{equation*}
\left|\alpha_{0} \alpha_{1} \cdots \alpha_{l}\right|=1 . \tag{6.14}
\end{equation*}
$$

Moreover, from Condition (2) in Theorem $1, \pi$ has a zero P_{0} of order $\geqq 2$.
Conversely, let π be the map defined as above. Then, clearly π satisfies Conditions (1) and (2) in Theorem 1.

Proposition 11. Let π be a meromorphic function on $X=\mathbb{P}^{1}$ and \mathcal{L} a line bundle over X. Then (X, π, \mathcal{L}) is a spectral data if and only if it satisfies the following conditions:
(1) π is a meromorphic function as in Proposition 10.
(2) The degree of \mathcal{L} is $N-1$, where N is the degree of π.

Proof. Conditions (1) and (2) in Theorem 1 are equivalent to that Condition (1) in Proposition 11 by Proposition 10. Let $\mathcal{L} \cong \mathcal{O}_{X}(D)$ be a line bundle which satisfy Condition (3) in Theorem 1. Then the degree of D must be equal to $N-1$ since the degree of R is equal to $2 N-2$.

Conversely let $\mathcal{L}=\mathcal{O}_{X}(D)$ be any line bundle of degree $N-1$. We see that $\delta(\mathcal{L})$ is automatically 0 . Thus Condition (3) in Theorem 1 is equivalent to Condition (2) in Proposition 11. Hence Proposition 11 is proved.

Now let us prove Theorem 9.

Proof of Theorem 9. To prove this theorem, it suffices to show that for every spectral data (X, π, \mathcal{L}) with P_{0} as in Proposition 11, there exists a real automorphism ϕ on (X, ρ_{X}) such that the value of λ at $\phi^{-1}\left(P_{0}\right)$ is equal to 0 and the pull-back of π by ϕ is of a form in Condition (1) of Theorem 9. But this is quite straightforward.

6.4. Classification of spectral data with smooth elliptic spectral curves.

 This section is devoted to the proof of Theorem 12. First, we describe all smooth real elliptic curves which can be spectral curves. Second, meromorphic functions on these spectral curves, which satisfy Condition (2) in Theorem 1, are determined (Proposition 12). Finally, after preparing a device (Proposition 13) useful to select line bundles satisfying Condition (3) in Theorem 1, we prove Theorem 12Let $X=X_{\tau}=\mathbb{C} /(\mathbb{Z} \oplus \tau \mathbb{Z})$ be an elliptic curve, where τ belongs to the upper half plane $\mathfrak{H}:=\{\operatorname{Im} \tau>0\}$. Let ρ_{X} be an anti-holomorphic involution of X and X^{ρ} the fixed point set of ρ_{X}.

It should be remarked that a real elliptic curve $\left(X, \rho_{X}\right)$ with $X^{\rho}=\emptyset$ is not suitable for our purpose, since ρ_{X} has no fixed points on X and hence violates Condition (4) in Definition 1.

Theorem $15([6])$. Let $\left(X, \rho_{X}\right)$ be as above and $X^{\rho} \neq \emptyset$. Then $\left(X, \rho_{X}\right)$ is isomorphic to ($\mathbb{C} /(\mathbb{Z} \oplus \tau \mathbb{Z}), \sigma)$, where τ belongs to (F0) $\{\sqrt{-1} t \mid t \in \mathbb{R}, t>0\}$ or (F1) $\{1 / 2+$ $\sqrt{-1} t \mid t \in \mathbb{R}, t>0\}$, and σ is the anti-holomorphic involution on $\mathbb{C} /(\mathbb{Z} \oplus \tau \mathbb{Z})$ induced by the usual conjugation of \mathbb{C}.

If X is an elliptic curve of type (F0), then X^{ρ} consists of two circles S_{A}^{1} and S_{B}^{1} defined by

$$
S_{A}^{1}=(\mathbb{R} \oplus \tau \mathbb{Z}) /(\mathbb{Z} \oplus \mathbb{Z} \tau), \quad S_{B}^{1}=(\mathbb{R} \oplus \tau(1 / 2+\mathbb{Z})) /(\mathbb{Z} \oplus \mathbb{Z} \tau)
$$

and $X \backslash X^{\rho}$ consists of two tubes X^{N} and X^{S} defined by

$$
\begin{aligned}
X^{N} & =(\{x \in \mathbb{C} \mid \operatorname{Im} \tau / 2<\operatorname{Im} \mathrm{x}<\operatorname{Im} \tau\} \oplus \mathbb{Z} \tau) /(\mathbb{Z} \oplus \mathbb{Z} \tau), \\
X^{S} & =(\{x \in \mathbb{C} \mid 0<\operatorname{Im} \mathrm{x}<\operatorname{Im} \tau / 2\} \oplus \mathbb{Z} \tau) /(\mathbb{Z} \oplus \mathbb{Z} \tau)
\end{aligned}
$$

Proposition 12. Let X_{τ} be an elliptic curve and ρ_{X} an anti-holomorphic involution on X_{τ} with $X^{\rho} \neq \emptyset$. Let π be a non-constant holomorphic map from X_{τ} to \mathbb{P}^{1} satisfying Conditions (1) and (2) in Theorem 1.

Then X_{τ} is an elliptic curve of type (F0). Moreover, regarded as a doubly periodic meromorphic function on \mathbb{C}, π is either $(\mathrm{A}) \chi$ or $(\mathrm{B}) 1 / \chi$, where χ is a meromorphic function defined by

$$
\chi(u)=C \exp (-2 \pi \sqrt{-1} q u) \prod_{i=1}^{n+1} \frac{\theta_{1}\left(u-\alpha_{i}\right)}{\theta_{1}\left(u-\beta_{i}\right)} .
$$

Here θ_{1} is Jacobi's theta function as in Section 6.1; n is a positive integer; q, $\alpha_{1}, \ldots, \alpha_{n+1}, \beta_{1}, \ldots, \beta_{n+1}$, and C are constants satisfying the following conditions:
(1) $\alpha_{i} \in X^{S}$ and $\sum_{i}\left(\alpha_{i}-\beta_{i}\right)$ is expressed as $p+q \tau \in \mathbb{Z} \oplus \mathbb{Z} \tau$.
(2) $\beta_{i}=\rho_{X}\left(\alpha_{i}\right)$, that is, $\alpha_{i}+\beta_{i}$ is expressed as $r_{i}+s_{i} \tau \in \mathbb{R} \oplus \mathbb{Z} \tau$.
(3) $|C|=\exp \left(\pi \sqrt{-1} \sum_{i} s_{i}\left(\alpha_{i}-\beta_{i}\right)\right)$.

Moreover π has a zero P_{0} of order $\geqq 2$. Conversely any map π expressed as above satisfies Conditions (2) and (3) in Theorem 1.

Proof. Assume that X and π Condition (1) and (2) in Theorem 1. From Condition (1) in Theorem 1, the number of connected components of $X \backslash X^{\rho}$ is 2 , and hence X is an elliptic curve of type (F0).

From Condition (2) in Theorem 1, the divisor of π must be of the following form

$$
\begin{equation*}
(\pi)=\left(\alpha_{1}\right)+\left(\alpha_{2}\right)+\cdots+\left(\alpha_{n+1}\right)-\left(\beta_{1}\right)-\left(\beta_{1}\right)-\cdots-\left(\beta_{n+1}\right), \tag{6.15}
\end{equation*}
$$

where $\left\{\alpha_{1}, \ldots, \alpha_{n+1}\right\}$ is a subset of X^{N} or $X^{S}, \beta_{i}=\rho_{X}\left(\alpha_{i}\right)$, that is, $\alpha_{i}+\beta_{i}$ is expressed as $r_{i}+s_{i} \tau \in \mathbb{R} \oplus \mathbb{Z} \tau(0 \leqq \mathrm{i} \leqq \mathrm{n}-\mathrm{m})$.

By Abel's theorem, $\sum_{i=1}^{n+1}\left(\alpha_{i}-\beta_{i}\right)$ belongs to $\mathbb{Z} \oplus \tau \mathbb{Z}$, and hence there exist integers p and q such that $\sum_{i=1}^{n+1}\left(\alpha_{i}-\beta_{i}\right)=p+q \tau$. Thus π is either (A) χ or (B) $1 / \chi$, where χ is a meromorphic function defined by

$$
\begin{equation*}
\chi(u)=C \exp (-2 \pi \sqrt{-1} q u) \prod_{i=1}^{n+1} \frac{\theta_{1}\left(u-\alpha_{i}\right)}{\theta_{1}\left(u-\beta_{i}\right)} \tag{6.16}
\end{equation*}
$$

Here θ_{1} is Jacobi's theta function as in Section 6.1; n is a positive integer; q, $\alpha_{1}, \ldots, \alpha_{n+1}, \beta_{1}, \ldots, \beta_{n+1}$, and C are constants satisfying Conditions (1) and (2)
in Proposition 12.
The function $\pi \overline{\rho_{X}^{*} \pi}$ is a constant function since its divisor vanishes. By the assumption that π has the point $x \in X^{\rho}$ with $|\pi(x)|=1$, we see that

$$
\pi(0) \overline{\rho_{X}^{*} \pi(0)}=\pi(0) \overline{\pi(0)}=\pi(x) \overline{\pi(x)}=1 .
$$

Using the above equation, we get

$$
\begin{equation*}
|C|=\exp \left(\pi \sqrt{-1} \sum_{i} s_{i}\left(\alpha_{i}-\beta_{i}\right)\right) \tag{6.17}
\end{equation*}
$$

Moreover, from Condition (2) in Theorem $1, \pi$ has a zero P_{0} of order $\geqq 2$.
Conversely, let π be the map defined as above. Then, clearly π satisfies Conditions (1) and (2) in Theorem 1.

Proposition 13. Let $\left(X=\mathbb{C} /(\mathbb{Z} \oplus \sqrt{-1} t \mathbb{Z}), \rho_{X}\right)$ be a real curve of type (F0), which is identified with its Jacobian $J(X)$. Let E and F be divisors on X satisfying

$$
\begin{equation*}
E+\rho_{X}(E) \cong F+\rho_{X}(F) \tag{6.18}
\end{equation*}
$$

where \cong means linear equivalence. Let f be a non-constant meromorphic function such that

$$
\begin{equation*}
(f)=E+\rho_{X}(E)-\left(F+\rho_{X}(F)\right), \quad \overline{\rho_{X}^{*} f}=f \tag{6.19}
\end{equation*}
$$

where (f) is the divisor of f. Then f^{ρ}, the restriction of f to $X^{\rho}=S_{A}^{1} \cup S_{B}^{1}$, is a non-negative or a non-positive real function if and only if

$$
\begin{equation*}
J(E-F) \in(\mathbb{Z} \oplus \sqrt{-1} \mathbb{R}) /(\mathbb{Z} \oplus \sqrt{-1} t \mathbb{Z}) \tag{6.20}
\end{equation*}
$$

where $J(E-F)$ is defined by

$$
\sum_{i}\left(P_{i}-Q_{i}\right) \quad \bmod \mathbb{Z} \oplus \mathbb{Z} \sqrt{-1} t
$$

provided $E-F$ is expressed as $E-F=\sum_{i}\left(P_{i}-Q_{i}\right)$.
Proof. Let $S_{z p}$ be the intersection of $S_{A}^{1} \cup S_{B}^{1}$ with the set of zeros and poles of f^{ρ}. Restricting f^{ρ} to $\left(S_{A}^{1} \cup S_{B}^{1}\right) \backslash S_{z p}$, we get a real function f^{*}. Considering the restriction of $\left(E+\rho_{X}(E)-F-\rho_{X}(F)\right)$ to $S_{A}^{1} \cup S_{B}^{1}$, we see that f^{ρ} has only zeros and poles with even order. So the sign of f^{*} remains invariant at each point of $S_{z p}$, and hence f^{ρ} is
non-negative or non-positive on each connected component of $S_{A}^{1} \cup S_{B}^{1}$. Consequently, f^{ρ} is a non-negative or a non-positive real function on $S_{A}^{1} \cup S_{B}^{1}$ if and only if there exist points $\alpha \in S_{A}^{1} \backslash S_{z p}$ and $\beta \in S_{B}^{1} \backslash S_{z p}$ such that $f(\beta) / f(\alpha)>0$.

Note that the divisors E and F satisfy the equivalence (6.18) precisely when $J(E-F)$ belongs to $L(0)$ or $L(1 / 2)$, where $L(s)(0 \leqq s<1)$ is defined by $L(s)=$ $((\mathbb{Z}+s) \oplus \sqrt{-1} \mathbb{R}) /(\mathbb{Z} \oplus \sqrt{-1} t \mathbb{Z})$. Then the following lemma completes the proof of Proposition 13.

Lemma 25. In the case $J(E-F) \in L(0)$, there exist $\alpha \in S_{A}^{1}$ and $\beta \in S_{B}^{1}$ such that $f(\beta) / f(\alpha)>0$. In the case $J(E-F) \in L(1 / 2)$, there exist $\alpha \in S_{A}^{1}$ and $\beta \in S_{B}^{1}$ such that $f(\beta) / f(\alpha)<0$.

Proof. The divisor $E+\rho_{X}(E)-\left(F+\rho_{X}(F)\right)$ is expressed as $\sum_{i=1}^{2 k}\left(P_{i}-Q_{i}\right)$ with $P_{i} \neq Q_{j}(1 \leqq i, j \leqq 2 k)$. By Abel's theorem, there exist integers p and q such that

$$
\begin{equation*}
p+q \tau=\sum_{i=1}^{2 k}\left(P_{i}-Q_{i}\right) \tag{6.21}
\end{equation*}
$$

Then the meromorphic function g having this divisor is determined up to a non-zero constant and is expressed as follows:

$$
\begin{equation*}
g(u)=\gamma \exp (-2 \pi \sqrt{-1} q u) \frac{\theta_{1}\left(u-P_{1}\right) \cdots \theta_{1}\left(u-P_{2 k}\right)}{\theta_{1}\left(u-Q_{1}\right) \cdots \theta_{1}\left(u-Q_{2 k}\right)} \tag{6.22}
\end{equation*}
$$

where γ is a non-zero complex number and q is the integer given in (6.21).
It is not hand to see by moving the points $P_{1}, \ldots, P_{2 k}, Q_{1}, \ldots, Q_{2 k}$ appropriately that we can construct a 1-parameter family g_{s} of meromorphic functions on X which satisfies the following conditions:
(1) If $J(E-F) \in L(0)$, then $g_{0}=g$ and $g_{1}= \begin{cases}\gamma G_{k}^{(0)} & \text { for } k \geqq 2, \\ \gamma G_{k}^{(0)} \text { or } \gamma / G_{k}^{(0)} & \text { for } k=1 .\end{cases}$ If $J(E-F) \in L(1 / 2)$, then $g_{0}=g$ and $g_{1}=\gamma G_{k}^{(1 / 2)}$. Here $G_{k}^{(0)}$ and $G_{k}^{(1 / 2)}$ are meromorphic functions on X_{τ} defined by

$$
\begin{gathered}
G_{k}^{(0)}(u)=\exp (-2 \pi \sqrt{-1} k u)\left(\frac{\theta_{1}(u-1 / 2-\tau / 2)}{\theta_{1}(u-1 / 2)}\right)^{2 k} \\
G_{k}^{(1 / 2)}(u)=\left(\frac{\theta_{1}(u-1 / 2-\tau / 2)}{\theta_{1}(u-\tau / 2)}\right)^{2} G_{k-1}^{(0)}(u)
\end{gathered}
$$

(2) g_{s} depends smoothly on the parameter s for $0 \leqq s \leqq 1$. If we denote the divisors consisting of poles and zeros of g_{s} by $\sum_{i} P_{i}^{s}$ and $\sum_{i} Q_{i}^{s}$ respectively, then they are invariant under ρ_{X} and $P_{i}^{s} \neq Q_{j}^{s}$ for $1 \leqq i, j \leqq 2 k$.
Also, we can construct 1-parameter families of points $\alpha_{s} \in S_{A}^{1}$ and $\beta_{s} \in S_{B}^{1}$ satisfying the following conditions:
(1) For each $0 \leqq s \leqq 1, \alpha_{s}$ and β_{s} do not belong to $\left\{P_{1}^{s}, \ldots, P_{2 k}^{s}, Q_{1}^{s}, \ldots, Q_{2 k}^{s}\right\}$.
(2) $\alpha_{1}=\epsilon+1 / 2$ and $\beta_{1}=\epsilon+1 / 2+\tau / 2=\epsilon+1 / 2+\sqrt{-1} t / 2$, where ϵ is a small positive constant.
We see that the sign of $g_{s}\left(\beta_{s}\right) / g_{s}\left(\alpha_{s}\right)$ does not depend on the choice of s, and hence $f\left(\beta_{0}\right) / f\left(\alpha_{0}\right)=g_{0}\left(\beta_{0}\right) / g_{0}\left(\alpha_{0}\right)$ and $g_{1}\left(\beta_{1}\right) / g_{1}\left(\alpha_{1}\right)$ have the same sign.

Assume that $J(E-F) \in L(0)$ and $k \geqq 2$. Let us determine the sign of $g_{1}\left(\beta_{1}\right) / g_{1}\left(\alpha_{1}\right)=$ $G_{k}^{(0)}(\epsilon+1 / 2+\tau / 2) / G_{k}^{(0)}(\epsilon+1 / 2)$. Using the identities (6.1) and (6.3), we see that

$$
\begin{aligned}
G_{k}^{(0)} & (\epsilon+1 / 2+\tau / 2) / G_{k}^{(0)}(\epsilon+1 / 2) \\
& =\exp (-2 \pi \sqrt{-1} k(\tau / 2))\left(\frac{\theta_{1}(\epsilon)^{2}}{\theta_{1}(\epsilon-\tau / 2) \theta_{1}(\epsilon+\tau / 2)}\right)^{2 k} \\
& =\exp (-2 \pi \sqrt{-1} k(\tau / 2))\left(\frac{\theta_{1}(\epsilon)^{2}}{\left(\sqrt{-1} a(-\epsilon) \theta_{4}(\epsilon)\right)\left(-\sqrt{-1} a(\epsilon) \theta_{4}(\epsilon)\right)}\right)^{2 k} \\
& =\left(\frac{\theta_{1}(\epsilon)}{\theta_{4}(\epsilon)}\right)^{4 k}=\left(\frac{\theta_{1}(\epsilon \mid \sqrt{-1} t)}{\theta_{4}(\epsilon \mid \sqrt{-1} t)}\right)^{4 k}
\end{aligned}
$$

If we fix ϵ, we get a nowhere vanishing real function ϕ defined by

$$
\phi(t)=\left(\frac{\theta_{1}(\epsilon \mid \sqrt{-1} t)}{\theta_{4}(\epsilon \mid \sqrt{-1} t)}\right)^{4 k} \quad(t>0) .
$$

By (6.6), we get the following Taylor expansion:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} q^{-k} \phi(t)=(2 \pi)^{4 k} \epsilon^{4 k}+O\left(\epsilon^{4 k+1}\right) \tag{6.23}
\end{equation*}
$$

from which we see that for a small positive ϵ, this is positive. If $k=1$, then we can see that the sign of $f\left(\beta_{0}\right) / f\left(\alpha_{0}\right)$ is positive in a similar fashion. Thus Lemma 25 is verified in the case that $J(E-F) \in L(0)$.

In the case $J(E-F) \in L(1 / 2)$, the sign of $g_{1}\left(\beta_{1}\right) / g_{1}\left(\alpha_{1}\right)=G_{k}^{(1 / 2)}(\epsilon+1 / 2+$ $\tau / 2) / G_{k}^{(1 / 2)}(\epsilon+1 / 2)$ is similarly determined as follows. Using the identities (6.1),
(6.2), (6.3), (6.4) and (6.5), we obtain

$$
\begin{aligned}
& G_{k}^{(1 / 2)}(\epsilon+1 / 2+\tau / 2) / G_{k}^{(1 / 2)}(\epsilon+1 / 2) \\
& =\left(\frac{\theta_{1}(\epsilon)}{\theta_{1}(\epsilon+1 / 2)}\right)^{2}\left(\frac{\theta_{1}(\epsilon-\tau / 2)}{\theta_{1}(\epsilon+1 / 2-\tau / 2)}\right)^{-2} \frac{G_{k-1}^{(0)}(\epsilon+1 / 2+\tau / 2)}{G_{k-1}^{(0)}(\epsilon+1 / 2)} \\
& =\left(\frac{\theta_{1}(\epsilon)}{\theta_{2}(\epsilon)}\right)^{2}\left(\frac{\theta_{1}(\epsilon+\tau / 2) / b(\epsilon-\tau / 2)}{\theta_{1}(\epsilon+1 / 2+\tau / 2) / b(\epsilon+1 / 2-\tau / 2)}\right)^{-2} \frac{G_{k-1}^{(0)}(\epsilon+1 / 2+\tau / 2)}{G_{k-1}^{(0)}(\epsilon+1 / 2)} \\
& =\left(\frac{b(\epsilon+1 / 2-\tau / 2)}{b(\epsilon-\tau / 2)}\right)^{-2}\left(\frac{\theta_{1}(\epsilon)}{\theta_{2}(\epsilon)}\right)^{2}\left(\frac{\theta_{1}(\epsilon+\tau / 2)}{\theta_{1}(\epsilon+1 / 2+\tau / 2)}\right)^{-2} \frac{G_{k-1}^{(0)}(\epsilon+1 / 2+\tau / 2)}{G_{k-1}^{(0)}(\epsilon+1 / 2)} \\
& =\left(\frac{b(\epsilon+1 / 2-\tau / 2)}{b(\epsilon-\tau / 2)}\right)^{-2}\left(\frac{\theta_{1}(\epsilon)}{\theta_{2}(\epsilon)}\right)^{2}\left(\frac{\sqrt{-1} a(\epsilon) \theta_{4}(\epsilon)}{\sqrt{-1} a(\epsilon+1 / 2) \theta_{4}(\epsilon+1 / 2)}\right)^{-2} \frac{G_{k-1}^{(0)}(\epsilon+1 / 2+\tau / 2)}{G_{k-1}^{(0)}(\epsilon+1 / 2)} \\
& =\left(\frac{b(\epsilon+1 / 2-\tau / 2) a(\epsilon)}{b(\epsilon-\tau / 2) a(\epsilon+1 / 2)}\right)^{-2}\left(\frac{\theta_{1}(\epsilon)}{\theta_{2}(\epsilon)}\right)^{2}\left(\frac{\theta_{4}(\epsilon)}{\theta_{4}(\epsilon+1 / 2)}\right)^{-2} \frac{G_{k-1}^{(0)}(\epsilon+1 / 2+\tau / 2)}{G_{k-1}^{(0)}(\epsilon+1 / 2)} \\
& =\left(\frac{b(\epsilon+1 / 2-\tau / 2) a(\epsilon)}{b(\epsilon-\tau / 2) a(\epsilon+1 / 2)}\right)^{-2}\left(\frac{\theta_{1}(\epsilon)}{\theta_{2}(\epsilon)}\right)^{2}\left(\frac{\theta_{4}(\epsilon)}{\theta_{3}(\epsilon)}\right)^{-2} \frac{G_{k-1}^{(0)}(\epsilon+1 / 2+\tau / 2)}{G_{k-1}^{(0)}(\epsilon+1 / 2)} \\
& =-\left(\frac{\theta_{3}(\epsilon)}{\theta_{2}(\epsilon) \theta_{4}(\epsilon)}\right)^{2} \theta_{1}(\epsilon)^{2} \frac{G_{k-1}^{(0)}(\epsilon+1 / 2+\tau / 2)}{G_{k-1}^{(0)}(\epsilon+1 / 2)} .
\end{aligned}
$$

From (6.23), together with (6.6), we get the following Taylor expansion:

$$
\lim _{t \rightarrow \infty} q^{-(k-1)} G_{k}^{(1 / 2)}(\epsilon+1 / 2+\tau / 2) / G_{k}^{(1 / 2)}(\epsilon+1 / 2)=-2^{4(k-1)} \pi^{4 k-2} \epsilon^{4 k-2}+O\left(\epsilon^{4 k-1}\right)
$$

If we take a small positive ϵ, this is negative. Thus Lemma 25 also holds in the case $J(E-F) \in L(1 / 2)$.

Now we are in a position to prove Theorem 12.
Proof of Theorem 12. Conditions (1) and (2) in Theorem 1 are equivalent to the following assertion: π is a meromorphic function as in Proposition 12.

It is clear that $R=R_{+}+\rho_{X_{*}}\left(R_{+}\right)$. Applying Proposition 13 to $E=D$ and $F=R_{+}$, we see that Condition (3) in Theorem 1 is equivalent to Condition (2) in Theorem 12.

Take any spectral data, that is, a triple (X, π, \mathcal{L}) with P_{0}, which satisfies the above assertions and Condition (2) in Theorem 12. Consider the following real automor-
phism ϕ_{a} on $\left(X, \rho_{X}\right)$ defined by $u \mapsto u+a$, where a is a real number. Then, by using ϕ_{a} and ρ_{X}, we can construct a real automorphism ϕ on $\left(X, \rho_{X}\right)$ such that $\left(X, \phi^{*} \pi, \phi^{*} \mathcal{L}\right)$ is a triplet in Theorem 12, where $\phi^{*} \pi$ and $\phi^{*} \mathcal{L}$ denote the pull-backs by ϕ of π and \mathcal{L}, respectively. Hence Theorem 12 follows.

6.5. Construction of harmonic maps in terms of the rational spectral curve.

Using the results in Section 2.2, let us now construct harmonic maps corresponding to spectral data whose spectral curves are smooth rational curves, and prove Theorem 10.

Let (X, π, \mathcal{L}) be a spectral data as in Theorem 9 . We may assume that π, R and \mathcal{L} are of the following form:

$$
\pi(\lambda)=\alpha_{0} \lambda^{m+1} \frac{\prod_{j=1}^{n-m}\left(\lambda-P_{j}\right)}{\prod_{j=1}^{n-m}\left(\lambda-Q_{j}\right)}, \quad P_{0}=0, \quad R=D+\rho_{X}(D), \quad \mathcal{L}=\mathcal{O}_{X}(D)
$$

where α_{0} is a constant as in Theorem 9 and D is a divisor defined by $D=m P_{0}+$ $\sum_{i=1}^{n-m} R_{i}$. First we prove the following

Lemma 26. Let (X, π, \mathcal{L}) be a spectral data as above. Define a function $\psi(z, \bar{z}, \lambda)$ on X with parameter z by

$$
\begin{equation*}
\psi(z, \bar{z}, \lambda)=\exp \left(\frac{z}{\kappa} \lambda^{-1}-\overline{\left(\frac{z}{\kappa}\right)} \lambda\right) \cdot \frac{\prod_{j=1}^{n-m}\left(\lambda-P_{j}\right)}{\prod_{j=1}^{n-m}\left(\lambda-R_{j}\right)} . \tag{6.24}
\end{equation*}
$$

Here $\kappa=\left.(\partial \zeta / \partial \lambda)\right|_{\lambda=P_{0}}$ is the value of the differential of the meromorphic function ζ as in (2.4) at $\lambda=P_{0}$. Then $\psi(z, \bar{z}, u) \theta_{A}(z)$ is an element of $H^{0}\left(X, \mathcal{L}_{0} \otimes L(z)\right)$ for any $z \in \mathbb{C}$.

Proof. Denote by $\left.D\right|_{P_{0} \cup Q_{0}}$ the restriction of the divisor $D=m P_{0}+\sum_{i=1}^{n-m} R_{i}$ to $P_{0} \cup Q_{0}$. Then, applying Lemma 2 to $M=D-\left.D\right|_{P_{0} \cup Q_{0}}-E_{0}, N=\left.D\right|_{P_{0} \cup Q_{0}}-m P_{0}$, and $\phi=\psi$, we get the assertion.

Next we construct a special orthonormal basis of global sections of $\mathcal{L}=\mathcal{O}_{X}\left(m P_{0}+\right.$ $\sum_{i=1}^{n-m} R_{i}$) following the method explained above. Here we choose $f=1$ as a meromorphic function on X in Condition (3) of Definition 1. For $0 \leqq i \leqq n$, let us denote
by σ_{i} the following element

$$
\sigma_{i}=\frac{\eta_{i}^{m} \prod_{j=1}^{i-1}\left(\eta_{i}-R_{j}\right)}{\prod_{j=0}^{i-1}\left(\eta_{i}-\eta_{j}\right) \cdot \prod_{j=i+1}^{n}\left(\eta_{i}-\eta_{j}\right)} \frac{\prod_{j=0}^{i-1}\left(\lambda-\eta_{j}\right) \cdot \prod_{j=i+1}^{n}\left(\lambda-\eta_{j}\right)}{\lambda^{m} \prod_{j=1}^{i-1}\left(\lambda-R_{j}\right)}
$$

Then we see that $\sigma_{i} \in H^{0}\left(X, \mathcal{L}\left(-\eta_{0}-\cdots-\eta_{i-1}-\eta_{i+1}-\cdots-\eta_{n}\right)\right)$ and $h\left(\sigma_{i}, \sigma_{i}\right)=1$ for $0 \leqq i \leqq n$. Thus we get an orthonormal basis $\left\{\sigma_{i}\right\}_{0 \leqq i \leqq n}$ of $H^{0}(X, \mathcal{L})$, that is, $h\left(\sigma_{i}, \sigma_{j}\right)=\delta_{i j}$.

Owing to (2.11), the corresponding harmonic map : $\mathbb{R}^{2} \rightarrow \mathbb{C} P^{n}$ is given by

$$
z=x+\sqrt{-1} y \mapsto\left[\psi_{0}^{z}(1): \psi_{1}^{z}(1): \cdots: \psi_{n}^{z}(1)\right]
$$

where each $\psi_{i}^{z}(1)$ is a function defined by

$$
\begin{equation*}
\psi_{i}^{z}(1)=\exp \left(\frac{z}{\kappa} \eta_{i}^{-1}-\overline{\left(\frac{z}{\kappa}\right)} \eta_{i}\right) \cdot \frac{\prod_{j=1}^{n-m}\left(\eta_{i}-P_{j}\right)}{\prod_{j=1}^{n-m}\left(\eta_{i}-R_{1}\right)} \tag{6.25}
\end{equation*}
$$

Define a map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $z=x+\sqrt{-1} y \mapsto \kappa z$. Then the composition $\psi \circ F$ gives rise to the harmonic map given in (6.9). This completes the proof of Theorem 10
6.6. Construction of harmonic maps in terms of elliptic spectral curves.

By an argument similar to that in section 6.2, we now construct harmonic maps corresponding to spectral data whose spectral curves are smooth elliptic curves, and prove Theorem 13.

Lemma 27. Let $\left(X=X_{\sqrt{-1} t}, \pi, \mathcal{L}=\mathcal{O}_{X}\left(\sum_{i=1}^{k+n+1} E_{i}-\sum_{i=1}^{k} F_{i}\right)\right)$ be a spectral data as in Theorem 12. Define a function $\psi(z, \bar{z}, u)$ on X with parameter z by

$$
\begin{align*}
\psi(z, \bar{z}, u)= & \exp \left(\frac{z}{\kappa}\left[\zeta_{w}\left(u-P_{0}\right)-A u\right]-\overline{\left(\frac{z}{\kappa}\right)}\left[\zeta_{w}\left(u-Q_{0}\right)-A u\right]\right) \\
.26) \quad & \frac{\prod_{j=1}^{k} \theta_{1}\left(u-F_{j}\right) \cdot \theta_{1}\left(u-P_{0}\right)^{m} \cdot \prod_{j=1}^{n-m} \theta_{1}\left(u-P_{j}\right) \cdot \theta_{1}(u-G-H)}{\prod_{j=1}^{k+n+1} \theta_{1}\left(u-E_{j}\right)} . \tag{6.26}
\end{align*}
$$

Here ζ_{w} is Weierstrass' zeta function as in (6.7),

$$
G=\sum_{i=1}^{k+n+1} E_{i}-\sum_{i=1}^{k} F_{i}-m P_{0}-\sum_{i=1}^{n-m} P_{i}, \quad H=H(z, \bar{z})=\frac{z}{\kappa}-\overline{\left(\frac{z}{\kappa}\right)}
$$

A is the constant as in (6.8), and $\kappa=\left.(\partial \zeta / \partial u)\right|_{u=P_{0}}$ is the value of the differential of the meromorphic function ζ in (2.4) at $u=P_{0}$. Then $\psi(z, \bar{z}, u) \theta_{A}(z)$ is an element of $H^{0}\left(X, \mathcal{L}_{0} \otimes L(z)\right)$ for any $z \in \mathbb{C}$.

Proof. The proof of this lemma is similar to that of Lemma 26
Next we construct a special orthonormal basis of global sections of $\mathcal{L}=\mathcal{O}_{X}\left(\sum_{i=1}^{k+n+1} E_{i}-\right.$ $\sum_{i=1}^{k} F_{i}$) following the method used in Section 2.2. Here we choose

$$
f=\frac{\prod_{j=1}^{k+n+1} \theta_{1}\left(u-E_{j}\right)}{\prod_{j=1}^{k} \theta_{1}\left(u-F_{j}\right) \prod_{j=0}^{n} \theta_{1}\left(u-R_{j}\right)} \cdot \frac{\prod_{j=1}^{k+n+1} \theta_{1}\left(u-\overline{E_{j}}\right)}{\prod_{j=1}^{k} \theta_{1}\left(u-\overline{F_{j}}\right) \prod_{j=0}^{n} \theta_{1}\left(u-\overline{R_{j}}\right)}
$$

as a meromorphic function on X in Condition (3) of Definition 1. Let μ_{i} be the constant in Theorem 13 and set $\widehat{\eta_{i}}=\sum_{i=1}^{k+n+1} E_{i}-\sum_{i=1}^{k} F_{i}-\left(\eta_{0}+\cdots+\eta_{i-1}+\eta_{i+1}+\cdots+\eta_{n}\right)$. Denoting by σ_{i} the element
$\mu_{i}^{-1} \frac{\prod_{j=0}^{n} \theta_{1}\left(\eta_{i}-R_{j}\right) \cdot \prod_{j=1}^{k} \theta_{1}\left(u-F_{j}\right) \cdot \prod_{j=0}^{i-1} \theta_{1}\left(u-\eta_{j}\right) \cdot \theta_{1}\left(u-\widehat{\eta}_{i}\right) \cdot \prod_{j=i+1}^{n} \theta_{1}\left(u-\eta_{j}\right)}{\prod_{j=1}^{i-1} \theta_{1}\left(\eta_{i}-\eta_{j}\right) \cdot \theta_{1}\left(\eta_{i}-\widehat{\eta}_{i}\right) \cdot \prod_{j=i+1}^{n} \theta_{1}\left(\eta_{i}-\eta_{j}\right) \cdot \prod_{j=1}^{k+n+1} \theta_{1}\left(u-E_{j}\right)}$,
we see that $\sigma_{i} \in H^{0}\left(X, \mathcal{L}\left(-\eta_{0}-\cdots-\eta_{i-1}-\eta_{i+1}-\cdots-\eta_{n}\right)\right)$ and $h\left(\sigma_{i}, \sigma_{i}\right)=1$ for $0 \leqq i \leqq n$. Thus we get an orthonormal basis $\left\{\sigma_{i}\right\}_{0 \leqq i \leqq n}$ of $H^{0}(X, \mathcal{L})$, that is, $h\left(\sigma_{i}, \sigma_{j}\right)=\delta_{i j}$. These are well-defined by the following lemma.

Lemma 28. The above constants $\widehat{\eta_{i}}$ are not equal to $\eta_{i}(\bmod \mathbb{Z} \oplus \mathbb{Z} \tau)$.
Proof. If $\widehat{\eta}_{i}=\eta_{i} \bmod \mathbb{Z} \oplus \mathbb{Z} \tau$, then $h\left(\sigma_{i}, \sigma_{i}\right)=0$, which is a contradiction because h is positive definite.

On account of (2.11), the corresponding harmonic map : $\mathbb{R}^{2} \rightarrow \mathbb{C} P^{n}$ is given by

$$
z=x+\sqrt{-1} y \mapsto\left[\psi_{0}^{z}(1): \psi_{1}^{z}(1): \cdots: \psi_{n}^{z}(1)\right]
$$

where each $\psi_{i}^{z}(1)$ is a function defined by

$$
\begin{align*}
\psi_{i}^{z}(1)= & \mu_{i} \exp \left(\frac{z}{\kappa}\left[\zeta_{w}\left(\eta_{i}-P_{0}\right)-A \eta_{i}\right]-\overline{\left(\frac{z}{\kappa}\right)}\left[\zeta_{w}\left(\eta_{i}-Q_{0}\right)-A \eta_{i}\right]\right) \\
& \cdot \frac{\theta_{1}\left(\eta_{i}-P_{0}\right)^{m} \prod_{j=1}^{n-m} \theta_{1}\left(\eta_{i}-P_{j}\right) \cdot \theta_{1}\left(\eta_{i}-G-H(z, \bar{z})\right)}{\prod_{j=0}^{n} \theta_{1}\left(\eta_{i}-R_{j}\right)} . \tag{6.27}
\end{align*}
$$

Define a map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $z=x+\sqrt{-1} y \mapsto \kappa z$. Then the composition $\psi \circ F$ gives rise to the harmonic map given in (6.11). This completes the proof of Theorem 13.

6.7. Periodicity conditions of harmonic maps in terms of generalized Jaco-

bians. McIntosh studied periodicity conditions of the corresponding harmonic maps by introducing certain homomorphisms into generalized Jacobians. In this section, when X is a smooth elliptic curve, we reformulate McIntosh's periodicity conditions by introducing certain families of lines on the complex plane \mathbb{C}, and prove Theorem 14.

Let (X, π, \mathcal{L}) be a spectral data as in Definition 1. Let $L(z)$ be the line bundle as in Section 2.2 and $\theta_{A}(z)$ the local trivialization of $L(z)$ over X_{A} as in (2.4). Let $J\left(X_{0}\right)$ be a generalized Jacobian defined by

$$
J\left(X_{\mathfrak{o}}\right)=\bigcup_{L \in J(X)}\left\{\left(\operatorname{Hom}\left(\left.\mathrm{L}\right|_{\eta_{1}},\left.\mathrm{~L}\right|_{\eta_{0}}\right) \backslash\{0\}\right) \times \cdots \times\left(\operatorname{Hom}\left(\left.\mathrm{L}\right|_{\eta_{\mathrm{n}}},\left.\mathrm{~L}\right|_{\eta_{0}}\right) \backslash\{0\}\right)\right\} .
$$

We define a map $\widehat{L}: \mathbb{R}^{2} \rightarrow J\left(X_{\mathfrak{o}}\right)$ by $z=x+\sqrt{-1} \mapsto\left(L(z), h_{1}(z), \ldots, h_{n}(z)\right)$, where $h_{i}(z)$ is an element of $\operatorname{Hom}\left(\left.\mathrm{L}(\mathrm{z})\right|_{\eta_{\mathrm{i}}},\left.\mathrm{L}(\mathrm{z})\right|_{\eta_{0}}\right) \backslash\{0\}\left(\cong \mathbb{C}^{*}\right)$ defined by the condition that $h_{i}(z)$ maps $\left.\theta_{A}(z)\right|_{\eta_{i}}$ to $\left.\theta_{A}(z)\right|_{\eta_{0}}$. Then McIntosh proved the following

Theorem 16 ([18]). The harmonic map $\psi: \mathbb{R}^{2} \rightarrow \mathbb{C} P^{n}$ corresponding to the above spectral data is doubly periodic if and only if $\widehat{L}: \mathbb{R}^{2} \rightarrow J\left(X_{\mathfrak{o}}\right)$ is doubly periodic.

In the case of the smooth rational curve X, the maps Φ in the proof of Theorem 11 and \widehat{L} are essentially the same.

Let us determine the map \widehat{L} when (X, π, \mathcal{L}) is a spectral data with a smooth elliptic curve as its spectral curve. First, we compute the map $L: \mathbb{R}^{2} \rightarrow J(X)$ defined by $z=x+\sqrt{-1} y \mapsto L(z)$. Let T_{z} be a divisor defined by

$$
\begin{equation*}
T_{z}=(D)-m\left(P_{0}\right)-(S)-E_{0}, \tag{6.28}
\end{equation*}
$$

where S is a point on X defined by $S=G+H$ and E_{0} is the divisor given in Section 2.2. Then $\psi(z, \bar{z}, u) \otimes \theta_{A}(z)$ belongs to $H^{0}\left(X, \mathcal{O}_{X}\left(T_{z}\right) \otimes L(z)\right)\left(\cong H^{0}\left(X, \mathcal{L}_{0}(-S) \otimes\right.\right.$ $L(z))$) by Lemma 27. Moreover, we see that $\psi(z, \bar{z}, u) \otimes \theta_{A}(z)$ is a non-vanishing global holomorphic section of $\mathcal{O}_{X}\left(T_{z}\right) \otimes L(z)$. In particular, the line bundle $L(z) \otimes$ $\mathcal{O}_{X}\left(T_{z}\right)$ is trivial, that is, $L(z) \otimes \mathcal{O}_{X}\left(T_{z}\right) \cong \mathcal{O}_{X}$, and hence $L(z) \cong \mathcal{O}_{X}\left(-T_{z}\right)$. Using (6.28) and identifying Jacobian $J(X)$ with $X \cong \mathbb{C} /(\mathbb{Z} \oplus \sqrt{-1} t \mathbb{Z})$, we see that $L: \mathbb{R}^{2} \rightarrow J(X)$ is given by
$z=x+\sqrt{-1} y \mapsto-D+m P_{0}+S+E_{0}=H(z, \bar{z})=z / \kappa-\overline{(z / \kappa)} \quad \bmod \mathbb{Z} \oplus \mathbb{Z} \sqrt{-1} t$,
where κ is the complex number in Lemma 27 .
Second, we determine $\theta_{A}(z)$. Let Θ be a meromorphic function on \mathbb{C}^{2} defined by

$$
\Theta(w, u)=\frac{\prod_{j=1}^{k+n+1} \theta_{1}\left(u-E_{j}\right)}{\prod_{j=1}^{k} \theta_{1}\left(u-F_{j}\right) \cdot \theta_{1}\left(u-P_{0}\right)^{m} \prod_{j=1}^{n-m} \theta_{1}\left(u-P_{j}\right) \cdot \theta_{1}(u-G-w)} .
$$

Using $\psi(z, \bar{z}, u) \otimes \theta_{A}(z) \in H^{0}\left(X, L(z) \otimes \mathcal{O}_{X}\left(T_{z}\right)\right)=H^{0}\left(X, \mathcal{O}_{X}\right) \cong \mathbb{C}$, we see that

$$
\theta_{A}(z)=C \exp \left(-\frac{z}{\kappa}\left[\zeta_{w}\left(u-P_{0}\right)-A u\right]+\overline{\left(\frac{z}{\kappa}\right)}\left[\zeta_{w}\left(u-Q_{0}\right)-A u\right]\right) \Theta(H(z, \bar{z}), u)
$$

where C is a non-zero constant.
Now we give an explicit description of \widehat{L}. Let $v: S_{J}^{1}=\left\{e^{\sqrt{-1} \theta} \mid 0 \leqq \theta<2 \pi\right\} \rightarrow$ $J(X)$ be a map defined by $e^{\sqrt{-1} \theta} \mapsto \sqrt{-1} t \theta / 2 \pi \bmod \mathbb{Z} \oplus \mathbb{Z} \sqrt{-1 t}$. Let $J_{S} \rightarrow S_{J}^{1}$ be the pull-back of $J\left(X_{\mathfrak{o}}\right)$ by v. For $0 \leqq i \leqq n$, we define $B_{i}: e^{\sqrt{-1} \theta} \in S_{J}^{1} \mapsto B_{i}\left(e^{\sqrt{-1} \theta}\right) \in$ $\operatorname{Hom}\left(\left.\mathrm{v}\left(\mathrm{e}^{\sqrt{-1} \theta}\right)\right|_{\eta_{\mathrm{i}}},\left.\mathrm{v}\left(\mathrm{e}^{\sqrt{-1} \theta}\right)\right|_{\eta_{0}}\right)$, sections of $J_{S} \rightarrow S_{J}^{1}$, by the condition that each $B_{i}\left(e^{\sqrt{-1} \theta}\right)$ maps the element $\exp \left(\sqrt{-1} \eta_{i} \theta\right) \Theta\left(\sqrt{-1} t \theta /(2 \pi), \eta_{i}\right)$ of $\left.\mathcal{O}_{X}\left(-T_{z}\right)\right|_{\eta_{i}}$ to the element
$\exp \left(\sqrt{-1} \eta_{0} \theta\right) \Theta\left(\sqrt{-1} t \theta /(2 \pi), \eta_{0}\right)$ of $\left.\mathcal{O}_{X}\left(-T_{z}\right)\right|_{\eta_{0}}$. Since the image of \mathbb{R}^{2} by L is contained in $\mathbb{Z} \oplus \mathbb{R} \tau \bmod \mathbb{Z} \oplus \mathbb{Z} \tau(\subset J(X))$, we can regard $\widehat{L}: \mathbb{R}^{2} \rightarrow J\left(X_{\mathfrak{v}}\right)$ as a map $\mathbb{R}^{2} \rightarrow J_{S}$. Using this identification, the map $\widehat{L}: \mathbb{R}^{2} \rightarrow J_{S}$ is given by

$$
z=x+\sqrt{-1} y \mapsto\left(\exp (2 \pi H(z, \bar{z}) / t) \in S_{J}^{1}, h_{1}(z, \bar{z}), h_{2}(z, \bar{z}), \cdots, h_{n}(z, \bar{z})\right)
$$

where $h_{i}(z, \bar{z})$ is an element of $\operatorname{Hom}\left(\left.\mathrm{v}(\exp (2 \pi \mathrm{H}(\mathrm{z}, \overline{\mathrm{z}}) / \mathrm{t}))\right|_{\eta_{\mathrm{i}}},\left.\mathrm{v}(\exp (2 \pi \mathrm{H}(\mathrm{z}, \overline{\mathrm{z}}) / \mathrm{t}))\right|_{\eta_{0}}\right)$ being defined by $h_{i}(z, \bar{z})=\exp \left(b_{i}(z, \bar{z})\right) B_{i}(\exp (2 \pi H(z, \bar{z}) / t))$ with

$$
\begin{aligned}
b_{i}(z, \bar{z}) & =\frac{z}{\kappa}\left[\zeta_{w}\left(\eta_{0}-P_{0}\right)-\zeta_{w}\left(\eta_{i}-P_{0}\right)-\frac{B}{\tau}\left(\eta_{0}-\eta_{i}\right)\right] \\
& -\left(\frac{z}{\kappa}\right)\left[\zeta_{w}\left(\eta_{0}-Q_{0}\right)-\zeta_{w}\left(\eta_{i}-Q_{0}\right)-\frac{B}{\tau}\left(\eta_{0}-\eta_{i}\right)\right] .
\end{aligned}
$$

Lemma 29. For $1 \leqq i \leqq n$, each $b_{i}(z, \bar{z})$ is pure imaginary.
Proof. We may assume that $0 \leqq \operatorname{Im} \mathrm{P}_{0}, \operatorname{Im} \mathrm{Q}_{0}, \operatorname{Im} \eta_{0}, \ldots, \operatorname{Im} \eta_{\mathrm{n}}<\operatorname{Im} \tau$. On this assumption, $Q_{0}=\overline{P_{0}}+\tau$. Using $\overline{\zeta_{w}(u)}=\zeta_{w}(\bar{u})$ and $\bar{B}=-B$, we then get

$$
\begin{align*}
& \left.\overline{\left[\zeta_{w}(\right.}\left(\eta_{0}-P_{0}\right)-\zeta_{w}\left(\eta_{i}-P_{0}\right)-B \tau^{-1}\left(\eta_{0}-\eta_{i}\right)\right] \\
& \quad=\left[\zeta_{w}\left(\overline{\eta_{0}-P_{0}}\right)-\zeta_{w}\left(\overline{\eta_{i}-P_{0}}\right)\right]-B \tau^{-1} \overline{\left(\eta_{0}-\eta_{i}\right)} \tag{6.29}\\
& \quad=\left[\zeta_{w}\left(\overline{\eta_{0}}-Q_{0}+\tau\right)-\zeta_{w}\left(\overline{\eta_{i}}-Q_{0}+\tau\right)\right]-B \tau^{-1} \overline{\left(\eta_{0}-\eta_{i}\right)} .
\end{align*}
$$

In the case that $\eta_{0} \in S_{A}^{1}$ and $\eta_{i} \in S_{B}^{1}$, it follows from $\zeta_{w}(u+\tau)=\zeta_{w}(u)+B$ that the right hand side of (6.29) is equal to

$$
\begin{aligned}
& {\left[\zeta_{w}\left(\eta_{0}-Q_{0}+\tau\right)-\zeta_{w}\left(\eta_{i}-\tau-Q_{0}+\tau\right)\right]-B \tau^{-1}\left(\eta_{0}-\eta_{i}+\tau\right)} \\
& \quad=\left[\zeta_{w}\left(\eta_{0}-Q_{0}\right)-\zeta_{w}\left(\eta_{i}-Q_{0}\right)\right]-B \tau^{-1}\left(\eta_{0}-\eta_{i}\right),
\end{aligned}
$$

which implies see that b_{i} is pure imaginary. Similarly, we can also see that b_{i} is pure imaginary in other cases.

Thus we can consider $\widehat{L}: \mathbb{R}^{2} \rightarrow J_{S}$ to be a map $L_{T}: \mathbb{R}^{2} \rightarrow T^{n+1}=S_{J}^{1} \times S^{1} \times \cdots \times S^{1}$ defined by

$$
z=x+\sqrt{-1} y \mapsto\left(\exp (2 \pi H(z, \bar{z}) / t), \exp \left(b_{1}(z, \bar{z})\right), \ldots, \exp \left(b_{n}(z, \bar{z})\right)\right)
$$

Evidently, \widehat{L} is doubly periodic if and only if L_{T} is doubly periodic. Then we have the following

Proposition 14. The harmonic map $\psi: \mathbb{R}^{2} \rightarrow \mathbb{C} P^{n}$, defined by (6.27), corresponding to a spectral data (X, π, \mathcal{L}) is doubly periodic with periods $v_{1}, v_{2} \in \mathbb{C}$ if and only if the set $V=\bigcap_{0 \leqq i \leqq n} V_{i}$ contains the 2-dimensional lattice $M=\mathbb{Z} v_{1} \oplus \mathbb{Z} v_{2}$, where V_{0}, \ldots, V_{n} are the sets defined by

$$
V_{i}= \begin{cases}\pi \beta_{i}^{-1}(\mathbb{R} \oplus \sqrt{-1} \mathbb{Z}), & \text { if } \beta_{i} \neq 0 \tag{6.30}\\ \mathbb{C}, & \text { otherwise }\end{cases}
$$

Here $\beta_{0}, \beta_{1}, \ldots, \beta_{n}$ are complex constants defined by
$\beta_{0}=2 \pi /(\kappa t), t, \quad \beta_{i}=\left[\zeta_{w}\left(\eta_{0}-P_{0}\right)-\zeta_{w}\left(\eta_{i}-P_{0}\right)-B\left(\eta_{0}-\eta_{i}\right) \tau^{-1}\right] / \kappa \quad(1 \leqq i \leqq n)$.
Proof. Recall that ψ has two periods v_{1}, v_{2} if and only if L_{T} has two periods v_{1}, v_{2} by Theorem 16. If L_{T} has two periods v_{1}, v_{2}, then the set $\mathbb{Z} v_{1} \oplus \mathbb{Z} v_{2}$ is contained in V, since V is the set of all points on which the value of L_{T} is equal to the initial value $L_{T}(0)=(1, \ldots, 1) \in T^{n+1}$.

Conversely, if V contains a 2-dimensional lattice $M=\mathbb{Z} v_{1} \oplus \mathbb{Z} v_{2}$, then clearly v_{1} and v_{2} are periods of L_{T}, since L_{T} is a homomorphism from the additive group \mathbb{R}^{2} to T^{n+1}. Hence Condition (6.30) is a necessary and sufficient condition for L_{T} to be doubly periodic with periods v_{1}, v_{2}.

Now let us prove Theorem 14.
Proof of Theorem 14. From the argument in the proof of Theorem 13, we see that the map given in Theorem 14 is a composition $\psi \circ F$, where ψ is the map in Proposition 14 and F is a map defined by $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, z=x+\sqrt{-1} y \mapsto \kappa z$. Thus Theorem 14 follows immediately from Proposition 14.

References

[1] F. E. Burstall, Harmonic tori in spheres and complex projective spaces, J. Reine Angew. Math. 469 (1995), 149-177.
[2] F. E. Burstall, D. Ferus, F. Pedit and U. Pinkall, Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras, Ann. of Math. 138 (1993), 173-212.
[3] F. E. Burstall and J. C. Wood, The construction of harmonic maps into complex Grassmannians, J. Differential Geom. 23 (1986), 255-297.
[4] F. E. Burstall and F. Pedit, Harmonic maps via Adler-Kostant-Symes theory, Harmonic maps and Integrable Systems edited by A. P. Fordy and J. C. Wood, 221-272, Aspects of Mathematics 23, Vieweg, Braunshweigh/Wiesbaden, 1994.
[5] F. E. Burstall and F. E.Pedit, Dressing orbits of harmonic maps, Duke Math. J. 80 (1995), 353-382.
[6] C. Ciliberto and C. Pedrini, Real abelian varieties and real algebraic curves, Lectures in Real Geometry edited by Fabrizio Broglia, 167-256, Walter de Gruyter, Berlin-New York, 1996.
[7] D. Ferus, F. Pedit, U. Pinkall and I. Sterling, Minimal tori in S^{4}, J. Reine Angew. Math. 429 (1992), 1-47.
[8] R. C. Gunning, Lectures on vector bundles over Riemann surfaces, Math. Notes, Princeton Univ. Press, New Jersey, 1967.
[9] M. A. Guest and Y. Ohnita, Actions of loop groups, deformations of harmonic maps, and their applications, Selected Papers on Harmonic Analysis, Groups, and Invariants edited by K. Nomizu, 33-50, American Mathematical Society Translations, Series 2, 183, Amer. Math. Soc., Providence, RI, 1998.
[10] B. Gross and J. Harris, Real Algebraic Curves, Ann. Sci. École Norm. Sup. Paris 14 (1981), 157-182.
[11] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, SpringerVerlag, New York-Heidelberg, 1977.
[12] N. J. Hitchin, Harmonic Maps from a 2-torus to the 3-sphere, J. Differential Geom. 31 (1990), 627-710.
[13] G. R. Jensen and R. Liao, Families of flat minimal tori in $\mathbb{C P}^{n}$, J. Differential Geom. 42 (1995), 113-132.
[14] O. Kowalski, Generalizecd Symmetric Spaces, Lecture Notes in Math. 805, Springer-Verlag, Berlin-New York, 1980.
[15] K. Kenmotsu, On minimal immersions of \mathbb{R}^{2} into $P^{n}(\mathbb{C})$, J. Math. Soc. Japan

37 (1985), 665-682.
[16] I. M. Krichever, Methods of algebraic geometry in the theory of nonlinear equations, Russ. Math. Surv. 32 (1977), 185-213.
[17] I. McIntosh, A construction of all non-isotropic harmonic tori in complex projective space, Internat. J. Math. 6 (1995), 831-879.
[18] I. McIntosh, Two remarks on the construction of harmonic tori in $\mathbb{C} P^{n}$, Internat. J. Math. 7 (1996), 515-520.
[19] I. McIntosh, Global solutions of the elliptic 2D periodic Toda lattice, Nonlinearity 7 (1996), 85-108.
[20] I. McIntosh, Infinite dimensional Lie groups and the two-dimensional Toda lattice, Harmonic Maps and Integrable Systems edited by A. P. Fordy and J. C. Wood, 205-220, Aspects of Mathematics 23, Vieweg, Braunshweigh Wiesbaden, 1994.
[21] I. McIntosh, On the existence of superconformal 2-tori and doubly periodic affine Toda fields, J. Geom. Phys. 24 (1998), 223-243.
[22] R. H. McKean and V. Moll, Elliptic curves, Cambridge University Press, Cambridge, 1997.
[23] R. Miyaoka, The family of isometric superconformal harmonic maps and the affine Toda equations, J. Reine Angew. Math. 481, (1996), 1-25.
[24] M. Namba, Branched Coverings and Algebraic Functions, Research Notes in Math. 161, Pitman-Longman, New York, 1987.
[25] E. Previato, Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation, Duke Math. J. 52 (1985), 329-377.
[26] J-P. Serre, Algebraic Groups and Class of Fields, Graduate Texts in Math. 117, Springer-Verlag, New York-Berlin, 1988.
[27] S. R. Silhol, Real abelian varieties and the theory of Comesatti, Math. Z. 181 (1982), 345-364.
[28] S. Udagawa, Harmonic maps from a two-torus into a complex Grassmann manifold, Internat. J. Math. 6 (1995), 447-459.
[29] E. B. Vinberg, The Weyl group of a graded Lie algebra, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), 488-526, Math. USSR Izv. 10 (1976), 463-495.
[30] J. G. Wolfson, Harmonic sequences and harmonic maps of surfaces into complex Grassmann manifolds, J. Differential Geom. 27 (1988), 161-178.
[31] J. C. Wood, The explicit construction and parametrization of all harmonic maps from the two-sphere to a complex Grassmannians, J. Reine Angew. Math. 386 (1988), 1-31.

Tohoku Mathematical Publications

No. 1 Hitoshi Furuhata: Isometric pluriharmonic immersions of Kähler manifolds into semi-Euclidean spaces, 1995.

No. 2 Tomokuni Takahashi: Certain algebraic surfaces of general type with irregularity one and their canonical mappings, 1996.

No. 3 Takeshi Ikeda: Coset constructions of conformal blocks, 1996.
No. 4 Masami Fujimori: Integral and rational points on algebraic curves of certain types and their Jacobian varieties over number fields, 1997.

No. 5 Hisatoshi Ikai: Some prehomogeneous representations defined by cubic forms, 1997.

No. 6 Setsuro Fujiié: Solutions ramifiées des problèmes de Cauchy caractéristiques et fonctions hypergéométriques à deux variables, 1997.

No. 7 Miho Tanigaki: Saturation of the approximation by spectral decompositions associated with the Schrödinger operator, 1998.

No. 8 Y. Nishiura, I. Takagi and E. Yanagida: Proceedings of the International Conference on Asymptotics in Nonlinear Diffusive Systems - towards the Understanding of Singularities in Dissipative Structures -, 1998.

No. 9 Hideaki Izumi: Non-commutative L^{p}-spaces constructed by the complex interpolation method, 1998.

No. 10 Youngho Jang: Non-Archimedean quantum mechanics, 1998.
No. 11 Kazuhiro Horihata: The evolution of harmonic maps, 1999.
No. 12 Tatsuya Tate: Asymptotic behavior of eigenfunctions and eigenvalues for ergodic and periodic systems, 1999.

No. 13 Kazuya Matsumi: Arithmetic of three-dimensional complete regular local rings of positive characteristics, 1999.

No. 14 Tetsuya Taniguchi: Non-isotropic harmonic tori in complex projective spaces and configurations of points on Riemann surfaces, 1999.

