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1. Introduction

In this paper, we prove a variety of interesting arithmetics enjoyed by three-dimensional

complete regular local rings of positive characteristics. We may take A := Fp[[X,Y, Z]] as

such a ring.

First, we explain Hasse principle. The classical Hasse principle is a basic theorem which

relates the Brauer group of algebraic number fields, or one-variable function fields over

finite fields, with the Brauer groups of their localizations. It was generalized to two-

dimensional global fields by K. Kato in [Ka4], as the exactness of a certain complex (he

calls Hasse principle complex) defined for each two-dimensional global field. Moreover,

he was able to formulate this complex even for arbitrary global fields and conjectured

its exactness (called cohomological Hasse principle for those fields). Until now, works of

J. Colliot-Thélène, U. Jannsen or S. Saito have given affirmative answers to this conjec-

ture (cf. [CT], [J2], [Sa3]). In particular, Colliot-Thélène proved it for arbitrary three-

dimensional global fields of positive characteristic with divisible coefficients (cf. loc. cit.).

On the other hand, for an arbitrary two-dimensional complete regular local ring R

having finite residue field, S. Saito proved the exactness of a certain complex associated to
1



R in [Sa2] which is quite similar to that of one-dimensional global fields (a cohomological

Hasse principle for R). This theorem of Saito tells us that even for local rings, there exists

a formalism connecting local and global arithmetics like one-dimensional global fields.

Then occurs a natural question whether it is possible to generalize this result of Saito

to three-dimensional local rings which also can be seen as an analogy of a cohomological

Hasse principle for two-dimensional global fields proved by Kato (cf. loc. cit.).

We show this is indeed possible at least in the positive characteristic cases. Let us state

the main result.

Theorem 1.1. (Theorem 3.1) Let A be an arbitrary three-dimensional complete regular

local ring of positive characteristic with finite residue field. Then for an arbitrary natural

number m prime to the characteristic of A, the following Hasse principle complex for A

becomes exact :

0→ H4
ét(K,µ⊗3

m )→
⊕
�∈P 1

A

H3
ét(κ(p), µ⊗2

m )→
⊕
�∈P 2

A

H2
ét(κ(m), µm)→ Z/m→ 0,

where P i
A denotes the set of height i prime ideals of A and κ(p), κ(m) denote the residue

fields of p, m, respectively.

We remark that the degree ‘four’ of the first cohomology is obtained by adding one to the

Krull-dimension of A, and the twist number three of µ⊗3
m comes from the Krull-dimension

of A. This is one of the most peculiar formalism in a cohomological Hasse principle,

which origins in the classical Hasse principle of the Brauer group of one-dimensional global

fields (one can verify this by the isomorphism Br(K)m
∼= H2

Gal(K, µ⊗1
m ) for an arbitrary

one-dimensional global field K, where Br(K)m denotes the subgroup of Br(K) consisting

of m-torsion elements).

We now explain briefly how to prove Theorem 1.1. First, in Section 2, we review the

absolute purity theorem by Fujiwara-Gabber (Theorem 2.1) which enables us to interpret

each term in the above complex as the local cohomology of certain henselian local rings.

We also review a result of Gabber on the cohomological dimension for fractional fields of

complete regular local rings over fields (Theorem 2.2). In Section 3, we prove the main

result. We consider the coniveau-spectral sequence for A. Then, thanks to Theorem 2.1,

we can reduce the exactness of the above Hasse principle complex to the vanishing of each

Ep,q
2 -term of the coniveau-spectral sequence (p + q = 4). There, Theorem 2.2 is fully used

and we finally reduce the vanishing of E0,4
2 , which is the most hard task, to the exactness

of the Gersten-Quillen complex of A. But it is exact by Quillen (cf. [Q]), thus the proof

is completed.
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Finally, we remark the relation of our result with the famous Bloch-Ogus complex(which

we do not review here). This complex is believed to be exact for an arbitrary henselian

regular local ring over a field, and it is proved only for those rings obtained from the

henselization of smooth local rings (roughly, the localization of affine rings of smooth

varieties over a field). The above complex is the special case of the Bloch-Ogus complex

for A, so our result could be seen as a partial answer to this conjecture for complete

regular local rings.

Next, we explain class field theory. The motivation for this study origins in higher-

dimensional class field theory established by Bloch, Kato-Saito and Parshin (cf. [Bl],

[Ka-Sa1], [Ka-Sa2], [P4]). Although Kato and Saito accomplished many magnificent re-

sults, there still remain many problems unsolved. Indeed, the important progress in this

direction was recently accomplished by Jannsen-Saito (cf. [J-S]). Our result in this pa-

per can be seen also as new progress in this area, and at the same time it becomes a

generalization of local class field theory. Such generalization was first accomplished suc-

cessfully by S. Saito and A. N. Parshin independently by proving class field theory for

two-dimensional complete regular local rings (cf. [Sa1], [P4]), but for complete local rings

whose dimensions are truly bigger than two, there was no result on their class field theory

at all.

Let us take a positive characteristic three-dimensional complete regular local ring having

finite residue field, and denote it by A. We also denote its fractional field by K. We may,

for example, take A = Fp[[X,Y, Z]]. Our main interest is to describe the structure of

the Galois group Gal(Kab/K) by using only the geometric information of K, where Kab

denotes the maximal abelian extension of K in the fixed algebraic closure K of K. More

precisely, we should construct the idele class group CK and the reciprocity map

ρK : CK → Gal(Kab /K)

which approximates Gal(Kab /K) reasonably by CK . This formalism is well-known by

class field theory of algebraic number fields. We define the idele class group CK in Section

1, where at the same time we put a certain nice topology on it. An important fact is that

the topology of our idele class group CK is extremely plain and understandable. Next,

the reciprocity map is defined in rather traditional way in Sections 4 and 5. Then, this

reciprocity map turns out to describe the structure of Gal(Kab /K) quite successfully.

Now, we state our main theorems.

3



Theorem 1.2 (Theorem 7.1). Let A be an arbitrary three-dimensional complete regular

local ring of odd characteristic with finite residue field. We denote by K its fractional field.

Then, the topological idele class group CK is canonically attached to K, and it holds the

following dual reciprocity isomorphism :

ρ∗
K : H1

Gal(K, Qp /Zp)
∼→ Homc(CK , Qp /Zp),

where Homc(CK , Qp /Zp) denotes the set of all continuous homomorphisms of finite order

from CK to Qp /Zp.

Remark 1. We can eliminate the assumption of ch(K) �= 2 in the theorem if we assume

the exactness of a certain complex of Gersten-Quillen type for Milnor K-groups. For

details, see Remark 7.

This theorem is the most hard part in this paper and is established in Section 5 by using

all results in Sections 3 and 4. The most important key for the proof of Theorem 1.2 is the

exact sequence (7.71) which is obtained by the deep study of the various étale cohomologies

of SpecA.

Next, we state prime to p parts.

Theorem 1.3 (Theorem 8.1). Let A be an arbitrary three-dimensional complete regular

local ring of positive characteristic with finite residue field and K be its fractional field

(we may allow the case of ch(K) = 2). Then, under the Bloch-Milnor-Kato conjecture (see

below), we have the dual reciprocity isomorphism

ρ∗
K : H1

Gal(K, Ql /Zl)
∼→ Homc(CK , Ql /Zl)

for an arbitrary prime l �= p, where Homc denotes the set of all continuous homomorphisms

of finite order.

We explain the Bloch-Milnor-Kato conjecture. For an arbitrary field F and a natural

number m, it asserts the bijectivity of the Galois symbol KM
m (F ) /n

∼→ Hm
Gal(F, µ⊗m

n ) for

an arbitrary natural number n prime to ch(K). For the proof of Theorem 1.3, we use

this conjecture by putting m = 3. The proof of Theorem 1.3 is much easier than that of

Theorem 1.2, but we mention that a cohomological Hasse principle by S. Saito (cf. [Sa1])

plays a key role in the proof.

By combining above Theorem 1.2 with Theorem 1.3, we get the following class field

theory of K.

Theorem 1.4 (Theorem 8.2). Let A be an arbitrary three-dimensional complete regu-

lar local ring of positive odd characteristic with finite residue field. Let K be its fractional
4



field. Then, under the Bloch-Milnor-Kato conjecture, we have the following dual reci-

procity isomorphism :

ρ∗
K : H1

Gal(K, Q /Z)
∼→ Homc(CK , Q /Z),

where Homc denotes the set of all continuous homomorphisms of finite order.

This theorem proves class field theory for K in its most desirable form. Indeed, through

the reciprocity isomorphism ρ∗
K , we can perfectly understand the structure of the galois

group of an arbitrary finite abelian extension of K (see corollaries below). Further, The-

orem 1.4 involves the so-called existence theorem. We give some corollaries.

Corollary 1.5 (Corollary 8.3). Let A,K and the assumptions be as in Theorem 1.4.

Then the reciprocity homomorphism

ρK : CK → Gal(Kab /K)

has a dense image in Gal(Kab /K) by the Krull topology.

This follows immediately from Theorem 1.4 by considering dual.

Next, we state the explicit reciprocity isomorphism for certain finite abelian extensions

which is familiar in the one-dimensional local or global class field theory.

Corollary 1.6 (Corollary 8.4). Let A, K and the assumptions be as in Theorem 1.4.

Then, for an arbitrary finite abelian extension L /K such that the integral closure of A in

L is regular, there exists the following canonical reciprocity isomorphism :

ρK : CK /NL /K(CL)
∼→ Gal(L /K).

This result can be seen as the first successful explicit description for the galois group

of finite abelian extension of semi-global fields in the sense of Kato-Saito (cf. [Ka-Sa2]).

Finally, in a forthcoming paper [Ma1], we prove class field theory for the fractional field

of an arbitrary power series ring Fq[[X1, ...,Xn]] with n ≥ 4.

Convention. Through the paper, for an arbitrary commutative ring, we always denote

by P i
R the set of height i prime ideals of R.

2. The absolute purity theorem by Fujiwara-Gabber

In this section, we recall the absolute purity of Fujiwara and Gabber (cf. [Fu]).

Theorem 2.1. (Fujiwara-Gabber) Let X be an arbitrary noetherian excellent regular

scheme over a field k, and Z be its regular closed subscheme over k of codimension c.
5



Then, for an arbitrary natural number m prime to the characteristic k, we have the fol-

lowing canonical isomorphism :

H i
Z(Xét , µ

⊗j
m ) ∼= H i−2c

ét (Z , µ⊗(j−c)
m ). (2.1)

Remark 2. This theorem is proved by O. Gabber and K. Fujiwara. It was conjectured

by M. Artin in SGA 4 (tome 3, XIX) about 30 years ago. Fujiwara proved this theorem

using his theory of tubular neighborhoods in rigid analytic geometry. For more details,

see Fujiwara’s paper [Fu], especially Theorem 7.1.1 and sentences just below Corollary

7.1.7 in it.

Next, we explain another useful result of Gabber on the cohomological dimension for

the fractional field of complete regular local ring k [[X1, X2, · · · Xn]] (n ≥ 1). His proof

was lectured at I.H.P.(cf. [Ga2]), and is given below. The author heartily thank him for

informing me of it.

Theorem 2.2. (Gabber) Let Kn be the fractional field of a n-dimensional complete reg-

ular local ring k [[X1, X2, · · · Xn]]. Then for an arbitrary prime number l (l �= p), the

l-cohomological dimension cdl Kn of Kn satisfies

cdl Kn ≤ cdl k + n.

Proof. We use induction on n. First, we define

An−1 : = k [[X1, X2, . . . Xn−1]] (n ≥ 1),

Kn−1 : = The fractional field of An−1,

A′
n : = the henselization of An−1[Xn] at the maximal ideal (X1, X2, · · · , Xn−1, Xn),

K ′
n : = The fractional field of A′

n,

The theorem is clear when n = 0.

As a first step, we show

cdl K
′
n ≤ cdl k + n. (2.2)

From the definition of the henselization, there exists a filtering index category Λ and an

inductive system of domains Bλ (λ ∈ Λ) which is étale over the localization of An−1[Xn]

at (X1, ...,Xn) such that A′
n can be written as the inductive limit of the form

A′
n = lim−→λ∈Λ

Bλ. (2.3)

So, we have

K ′
n = lim−→λ∈Λ

Q(Bλ), (2.4)
6



where Q(Bλ) denotes the fractional field of Bλ. Since Q(Bλ) = Q(Kn−1⊗An−1Bλ) and

Q(Kn−1⊗An−1Bλ) = lim−→f �= 0, f∈Bλ
Kn−1⊗An−1Bλ[1/f ], there exist some index category Λ′

and index system B′
λ such that each B′

λ is a normal domain and we have

K ′
n = lim−→λ∈Λ′ B

′
λ. (2.5)

Then, we see that Spec B′
λ is an affine curve over Kn−1.

Next, assume M to be a finite Gal(K ′
n/K

′
n)-module of l-power order. Since we have

Gal(K ′
n/K ′

n) = lim←− πalg
1 (Spec B′

λ), it follows that

H i
Gal(K

′
n, M) = lim−→λ∈Λ

H i
Gal(π

alg
1 (Spec B′

λ), M) = lim−→λ∈Λ
H i

ét(Spec B′
λ, M).

(2.6)

By putting B′
λ = B′

λ⊗Kn−1 Kn−1, we obtain the Hochschild-Serre spectral sequence

Ep, q
2 = Hp

Gal(Kn−1, Hq
ét(Spec B′

λ, M)) =⇒ Hp+q
ét (Spec B′

λ, M). (2.7)

Further, the induction assumption together with the weak Lefschetz theorem shows that

the Ep,q
2 -term vanishes when p > cdl k + (n − 1), or q > 1. Hence for i > cdl k + n,

we obtain H i
ét(Spec B′

λ, M) = 0, hence H i
ét(K

′
n, M) = 0 by (2.6). This proves cdl K

′
n ≤

cdl k + n.

Next, we show cdl Kn ≤ cdl k + n. We see Kn = lim−→f
An [1/f ], where f runs over all

non-zero elements of An. Put Ûf = Spec An [1/f ]. Let M be a finite Gal(Kn/Kn)-module

of l-power order. Then, M is a π1(Ûf)-module, and we have

H i
Gal(Kn, M) = lim−→f

H i
ét(π1(Ûf), M). (2.8)

But for an l-primary torsion module M (l �= p = ch Ûf), it is easily seen that

H i
ét(π1(Ûf), M) ∼= H i

ét(π1(Ûf)
tame, M), (2.9)

where π1(Ûf)
tame : = lim←− Aut (V/Ûf), where V runs over all tamely ramified Galois cov-

erings of Ûf . This is easily seen, for example, by the fact that for a pro-p subgroup P

of the pro-finite group G, H l
Gal(P, M) = 0 for l > 0 by the assumption of M , so the

Hochschild-Serre spectral sequence Ek, l
2 = Hk

Gal(G/P, H l
Gal(P, M)) =⇒ H i

Gal(G, M) de-

generates giving an isomorphism H i
Gal(G, M) ∼= H i

Gal(G/P, MP ). Now, we get (2.9) by

putting G = π1(Ûf ), G/P = π1(Ûf )
tame in the just above isomorphism. Thus, we have

H i
Gal(Kn, M) = lim−→f

H i
ét(π1(Ûf), M) ∼= lim−→f

H i
ét(π1(Ûf)

tame, M). (2.10)

Assume i > cdl k + n, and let e ∈ H i
Gal(Kn, M) be an arbitrary element of H i

Gal(Kn, M).

Then from (2.10), e can be represented by an element êf of H i
ét(π1(Ûf)

tame, M) for some
7



f , and by the Weierstrass Preparation theorem, we may assume f ∈ A′
n. Put U ′

f =

Spec A′
n[1/f ]. Now, we have the following result of M. Artin.

Theorem 2.3 (Artin, [A] Th.5.1). Let R be an arbitrary excellent equi-characteristic

henselian local ring, X/Spec R proper, Y ⊂ X a closed subscheme, and U = X − Y .

Let V̂ be an étale covering of Û , where Û is the fibre product U ×Spec R Spec R̂, where R̂

denotes the completion of R by the maximal ideal of R. Further, assume that X is normal.

Then, if the covering V̂ is tamely ramified at points of Ŷ which are of codimension 1 in

X̂, then V̂ is induced by an étale covering V of U .

From this theorem, we immediately obtain an isomorphism π1(Ûf)
tame ∼→ π1(U

′
f)

tame.

Consequently, we get an isomorphism

H i
ét(π1(U

′
f)

tame, M)
∼→ H i

ét(π1(Ûf)
tame, M). (2.11)

By this isomorphism (2.11), êf is sent to e′f ∈ H i
ét(π1(U

′
f )

tame, M).

On the other hand, we have

H i
Gal(K

′
n, M) = lim−→f∈A′

n, f �=0
H i

ét(π1(U
′
f), M) = lim−→f∈A′

n, f �=0
H i

ét(π1(U
′
f)

tame, M),

(2.12)

because an arbitrary element of M is annihilated by natural number prime to the char-

acteristic of U ′
f . We have proved in the first step that the left hand side is zero. So,

there exists some element g ∈ A′
n such that the image of e′f by the inflation map

H i
ét(π(U ′

f)
tame, M) → H i

ét(π(U ′
fg)

tame, M) is zero. It follows that also the image of êf

by the inflation map H i
ét(π1(Ûf)

tame, M) → H i
ét(π1(Ûfg)

tame, M) is zero, because the

isomorphism (2.11) commutes with the inflation maps of the étale cohomology in the

inductive limits,viz.

H i
ét(π1(U

′
f)

tame, M)
∼−−−→ H i

ét(π1(Ûf )
tame, M)�Inflation

�Inflation

H i
ét(π1(U

′
fg)

tame, M)
∼−−−→ H i

ét(π1(Ûfg)
tame, M).

(2.13)

Especially by (2.10), e is zero as an element of H i
Gal(Kn, M), which shows that H i

Gal(Kn, M) =

0. Therefore the desirable result cdl Kn ≤ cdl k + n is proved.

Remark 3. Though it seems much more difficult to prove, Theorem 2.2 would hold even

in the mixed characteristic cases. That is, for the quotient field L of a complete regular

local ring Zp [[X1, . . . Xn−1]], it would hold that cdl L ≤ n + 1. Indeed, for the case of

n = 2, i.e. L = Q (Zp [[X]]), the theorem cdl L ≤ 3 was proved by K. Kato (cf. [Sa1])
8



using his deep calculations of Milnor K-groups for higher local fields and certain results

in [MS]. See also [Ka1].

3. Proof of Hasse principle

In this section we prove a cohomological Hasse principle for A.

Theorem 3.1. Let A be the three-dimensional formal power series ring over finite field.

Then for an arbitrary natural number m prime to the characteristic of A, the following

Hasse principle complex for A becomes exact:

0→ H4
ét(K,µ⊗3

m )→
⊕
�∈P 1

A

H3
ét(κ(p), µ⊗2

m )→
⊕
�∈P 2

A

H2
ét(κ(m), µm)→ Z/m→ 0,

(3.1)

where P i
A denotes the set of height i prime ideals of A and κ(p), κ(m) denotes the residue

fields of p, m, respectively.

Proof. For the proof, we use the coniveau-spectral sequence. Let us denote X : = Spec A.

Consider the following coniveau spectral sequence for X:

Ep,q
1 =

⊕
x∈X(p)

Hp+q
x (Xét, µ⊗3

m )⇒ Hp+q
ét (X, µ⊗3

m ), (3.2)

where X(p) denotes the set of codimension p primes of X. We have an isomorphism

Hp+q
x (Xét, µ⊗3

m ) ∼= Hp+q
x (Xh

x , µ⊗3
m ) by excision, where Xh

x denotes the henselization of X

at its prime point x. As Xh
x and its maximal point x satisfy the assumption of Theorem

2.1 with Z = x and X = Xh
x , we can apply this theorem and find that each component

Hp+q
x (Xét, µ⊗3

m ) in Ep,q
1 -term of (3.2) can be replaced by Hq−p

ét (κ(x), µ
⊗(3−p)
m ). So we can

rewrite the above coniveau spectral sequence (3.2) as,

Ep,q
1 =

⊕
x∈X(p)

Hq−p
ét (κ(x), µ⊗(3−p)

m )⇒ Hp+q
ét (X,µ⊗3

m ). (3.3)

We see that each Ep,q
1 -term vanishes if p > 3, or p > q. Especially, the following complex

in Ep,q
1 -terms

0→ E0,4
1

d0,4
1→ E1,4

1

d1,4
1→ E2,4

1

d2,4
1→ E3,4

1 → 0 (3.4)

becomes

0→ H4
ét(K,µ⊗3

m )
ι1→
⊕
�∈X(1)

H3
ét(κ(p), µ⊗2

m )

ι2→
⊕

�∈X(2)

H2
ét(κ(m), µm)

addition→ (Z/m)→ 0,

9



which is nothing but a Hasse principle complex (3.1). So, Theorem 3.1 follows from the

following proposition:

Proposition 3.2. E0,4
2 = E1,4

2 = E2,4
2 = E3,4

2 = 0.

As stated above, by the theory of spectral sequence, we have only to show this propo-

sition.

Proof of Proposition 3.2. First, we state a lemma.

Lemma 3.3. For p + q > 1, the convergent term satisfies

Ep+q = Hp+q
ét (X ,µ⊗3

m ) = Hp+q
ét (Spec A, µ⊗3

m ) = 0, hence Ep,q
∞ = 0 for p + q > 1.

Proof. This follows from an isomorphism Hp+q
ét (Spec A, µ⊗3

m ) ∼= Hp+q
ét (A/mA, µ⊗3

m ), which

is deduced from the comparison theorem of the Henselian local rings (cf. [Ga1]), and the

latter group is 0 for p + q > 1, because the cohomological dimension of the finite field

A/mA for torsion sheaves is 1.

We return to the proof of Proposition 3.2.

1). First, we prove E3,4
2 = 0. Just below, we see that both E5,3

2 and E1,5
2 are zero. For

E5,3
2 = 0, because there is no codimension 5 prime in X. And for the proof of E1,5

2 = 0,

we need the following results:

Theorem 3.4. (Nagata, [Na] Chap.V,Cor.31.6) If R is a complete local integral domain,

then R contains a complete regular ring S such that R is a finite S-module and such that

S = I [[X1, . . . , Xr]] with a coefficient ring I of R and analytically independent elements

X1, . . . , Xr.

Theorem 3.5. (Serre, [Se] Chap.I, Prop.14) Let H be a closed subgroup of the pro-finite

group G. Then, one has cdp (H) ≤ cdp (G), where p is an arbitrary prime integer.

It is enough to prove E1,5
1 = 0. But E1,5

1 =
⊕

�∈X(1) H4
ét(κ(p), µ⊗2

m ) and we will prove

each component H4
ét(κ(x), µ⊗2

m ) in E1,5
1 exactly vanishes.

We apply Theorem 3.4 by putting I = Fp, r = 2 which shows that κ(p) (p ∈ X(1)) is

a finite extension of Frac(Fp[[X,Y ]]). But we already know cdl Frac (Fp[[X,Y ]]) = 3 by

Theorem 2.2, and Theorem 3.5 tells us that cdl κ(p) � cdl Frac (Fp[[X,Y ]]) = 3, because

Gal (κ(p)/κ(p)) is the closed subgroup of Gal ( Frac(Fp[[X,Y ]])/Frac (Fp[[X,Y ]])). Thus,

we obtain H4
ét(κ(p), µ⊗2

m ) = 0.

It follows that E3,4
3 = Ker(E3,4

2

d3,4
2→ E5,3

2 )/Im(E1,5
2

d1,5
2→ E3,4

2 ) = E3,4
2 . But, it is easily seen

that E3,4
3 = . . . = E3,4

∞ = 0. Hence we get the desired vanishing of E3,4
2 .
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2). Next, we show E2,4
2 = 0. This is proved as follows. First, it holds that E4,3

2 = E0,5
2 =

0 which follows from the vanishing of E4,3
1 = E0,5

1 = 0. Of course, E4,3
1 = 0 follows from

the inequality p = 4 > 3 = q and E0,5
1 = 0 follows again from Theorem 2.2. So, we

have

E2,4
3 = Ker(E2,4

2

d2,4
2→ E4,3

2 )/Im(E0,5
2

d0,5
2→ E2,4

2 ) = E2,4
2 . (3.5)

But it follows that E2,4
3 = · · · = E2,4

∞ = 0. Hence we are done.

3). Thirdly, we prove E1,4
2 = 0. We need a lemma.

Lemma 3.6. We have the vanishing E3,3
2 = 0.

Proof. By definition, E3,3
2 = Ker(E3,3

1

d3,3
1→ E4,3

1 )/Im(E2,3
1

d2,3
1→ E3,3

1 ) = Coker(E2,3
1

d2,3
1→

E3,3
1 ), where the second equality follows from the vanishing E4,3

1 = 0. But this group is

rewritten as

E3,3
2 = Coker(E2,3

1

d2,3
1→ E3,3

1 ) = Coker

 ⊕
�∈X(2)

H1
et(κ(m), µm)

d2,3
1→ Z/m

 .

(3.6)

But from the Kummer theory, we can rewrite this group as,

E3,3
2 = Coker

 ⊕
�∈X(2)

κ(m)∗/m
d2,3
1→ Z/m

 . (3.7)

But each map κ(m)∗/m → Z/m is nothing but the valuation map of one-dimensional

complete discrete valuation field κ(m). So if we choose a height two prime m such that

A/m is regular, it becomes surjective, hence d2,3
1 is also surjective which proves E3,3

2 =

0.

Now we proceed as follows. It is easily seen that E1,4
3 = . . . = E1,4

∞ = 0. Further,

E1,4
3 = Ker(E1,4

2

d1,4
2→ E3,3

2 ). But Lemma 3.6 shows E3,3
2 = 0 and it follows immediately

that E1,4
2 = 0.

4). Finally, the proof of Proposition 3.2 is finished by showing E0,4
2 = 0. For this, we

first show that E0,4
3 = 0. It is easily seen that E0,4

4 = . . . = E0,4
∞ = 0. But E0,4

4 =

Ker(E0,4
3

d0,4
3→ E3,2

3 ) and E3,2
3 = 0, which results from E3,2

1 = 0 (p = 3 > 2 = q). Putting

all together, we have E0,4
3 = E0,4

4 = 0. On the other hand, E0,4
3 = Ker(E0,4

2

d0,4
2→ E2,3

2 ), so

our desirable vanishing E0,4
2 = 0 follows directly from E2,3

2 = 0.

Claim 3.7. We have the vanishing E2,3
2 = 0.
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This is the most hard task for a Hasse principle. We prove this by the exactness of

Gersten-Quillen complex for A.

Proof of Claim 3.7. By definition,

E2,3
2 = Ker(E2,3

1

d2,3
1→ E3,3

1 )/Im(E1,3
1

d1,3
1→ E2,3

1 ).

So, the exactness of the following sequence furnishes this Claim:

E1,3
1

d1,3
1→ E2,3

1

d2,3
1→ E3,3

1 . (3.8)

This sequence (3.8) can be rewritten as⊕
�∈X(1)

H2(κ(p), µ⊗2
m )→

⊕
�∈X(2)

H1(κ(m), µm)→ Z/m. (3.9)

Further, by the theorem of Mercurjev-Suslin and the Kummer theory, (3.9) is rewritten

as ⊕
�∈X(1)

KQ
2 (κ(p)) /m→

⊕
�∈X(2)

KQ
1 (κ(m))/m→ Z/m. (3.10)

(we used the fact that KM
i (k) ∼= KQ

i (k) (i = 1, 2) for a field k). So everything is reduced

to prove the exactness of the sequence (3.10), but this is nothing but the Gersten-Quillen

complex for A which is proved exact by Quillen in [Q]. So we finished the proof of Claim

3.7, hence Proposition 3.2. Thus, the proof of Theorem 3.1 is now completely finished.

4. Construction of the idele class group CK

In this section, we introduce the K-theoretic topological idele class group CK which

plays the central role in this paper. First, we review the basic results. For an arbitrary

field k, the n-th Milnor K-group KM
n (k) is defined as follows:

Definition 1. Milnor’s K-group KM
q (k) for a field k is defined by

KM
q (k) : = ((k×)⊗q)/J,

where J is the subgroup of the q-fold tensor product (k∗)⊗k of k× (as a Z-module) gener-

ated by elements of the form a1 ⊗ . . .⊗ aq satisfying ai + aj = 1 for some i �= j.

Especially, for an arbitrary discrete valuation field F , we define the subgroups U iKM
n (F )

for i ≥ 0 as

U iKM
n (F ) : = {Image: x1 ⊗ x2 ⊗ · · · ⊗ xn �→ KM

n (F ) | s.t. x ∈ U (i)(F ), x2, . . . , xn ∈ K∗},
(4.1)

12



where U (i)(F ) denotes the multiplicative group (1 + ui
F OF )∗ ⊂ O∗

F . Here, uF and OF

denote the uniformizing parameter and the valuation ring of F , respectively.

Next, we recall the definition of higher dimensional local fields (cf. [Ka1], [P1]).

Definition 2. A complete discrete valuation field kn is said to be n-dimensional local if

there exists the following sequence of fields ki (1 ≤ i ≤ n) :

each ki is a complete discrete valuation field having ki−1 as the residue field of the

valuation ring Oki
of ki, and k0 is defined to be a finite field.

Now, we review class field theory for higher dimensional local fields established by

K. Kato and A. N. Parshin (cf. [Ka1], [P1]).

Theorem 4.1 (Kato, Parshin). For an arbitrary n-dimensional local field kn, there exists

the canonical reciprocity map

ρkn : KM
n (kn)→ Gal(kab

n /kn)

which satisfies the following two conditions :

i) for an arbitrary finite abelian extension k′/kn, ρkn induces an isomorphism

ρkn : KM
n (kn)/Nk′/kn(KM

n (k′)) ∼→ Gal(k′/kn),

ii) the correspondence k′ �→ Nk′/kn(KM
n (k′)) is a bijection between the set of all finite

abelian extensions of kn and the set of all open subgroups of KM
n (kn) of finite index.

Next, we define the idele class group CK . For this, we fix the following notation.

Notations.

P 2
A : = the set of all height 2 primes of A,

P 1
A : = the set of all height 1 primes of A,

P 1
� : = the set of all height 1 primes of A�,

A� : = lim←− n A(�)/m
n (A(�) denotes the localization of A at m),

A� : = lim←− n A(�)/p
n,

A�,�� : = lim←− n A�(��)/p
n
�,

K� : = FracA�, K� : = Frac A�, K�,�� = FracA�,�� .

Remark 4. In the above notation, A� becomes a two-dimensional complete regular local

ring whose residue field κ(m) is one-dimensional local. We also remark that K�,�� is a

three-dimensional local field defined above.
13



Under these notations, we introduce a modulus M as follows:

Definition 3. A modulus M is a formal sum

M : = Σ�∈P 1
A

n� (p)

of prime divisors (p) defined by (p = 0) in Spec A and n� is a positive integer which is

zero for almost all p.

Next, for an arbitrary modulus M and each m ∈ P 2
A, we define the group C�(M) by

C�(M) : = Coker

KM
3 (K�)

diagonal−→
⊕
��∈P 1

�

(
KM

3 (K�,��) /UM(��) KM
3 (K�,��)

) ,

(4.2)

where M(p�) is defined to be n� if p� �→ p under the canonical map Spec A�,�� → Spec A.

Now, by using these C�(M) for an arbitrary height two prime m ∈ P 2
A, we define the

topological group CK(M) as

CK(M) : = Coker

⊕
�∈P 1

A

KM
3 (K�) →

⊕
�∈P 2

A

C�(M)

 , (4.3)

and we put the discrete topology on CK(M).

We must check the well-definedness of the above definition of CK(M) in (4.3). That is,

the image of each group KM
3 (K�) in

∏
�∈P 2

A
C�(M) actually lies in the direct sum. We

prove this as the following lemma.

Lemma 4.2. For each p ∈ P 1
A, the image of KM

3 (K�) in
∏

�∈P 2
A,�⊃� C�(M) lies in⊕

�∈P 2
A,�⊃� C�(M).

Proof. Take an arbitrary height one prime λ ∈ P 1
A. Then, each element of KM

3 (Kλ)

lands in only such component C�(M) of
∏

�∈P 2
A

C�(M) as m ⊃ λ. So, we have only

to prove that an arbitrary element α ∈ KM
3 (Kλ) vanishes in CM(m) for almost all m

which contains λ. In the below, we denote by uλ� the regular parameter of λ� ∈ P 1
�.

Take an arbitrary element α from KM
3 (Kλ). First, it is easily found that there exists a

surjection KM
3 (K) � KM

3 (Kλ) /F nλKM
3 (Kλ) for an arbitrary nλ ≥ 0. So, we may assume

α ∈ KM
3 (K). If we write α = (a1, b1, c1) . . . (an, bn, cn), paying attention to the fact that

A is uniquely factorized domain, we may assume that all ai, bi, ci lies in A[ 1
u�1

, . . . , 1
�m

]

with finitely many height one primes pj (j = 1, . . . ,m). But if λ �= pj, only finite height

two primes of A can lie over both λ and pj. Thus, we may assume that α ∈ KM
3 (A�[ 1

λ
])

except for finite height two primes. Further, the definition of a modulus M shows that

for almost all p, its coefficient n� is zero.
14



So, if we complete A at a height-two prime m on λ except finitely many height two

primes which lie over both λ and some p having non-zero modulus n�, we have M(p�) = 0

for every height one prime p� �= λ� ∈ P 1
A�

. Moreover, a prime uλ in A remains as a prime

in A� except finitely many A�. So, putting all together, except for finitely many height

two primes in P 2
A which are explained above, α lies in the subgroup KM

3 (A�[ 1
uλ�

]) in

KM
3 (K�,λ�). Moreover, the above discussion assures that we may assume each modu-

lus M(p�) of p�( �= λ� ) to be zero for such m. Thus, in this situation, our assertion

immediately follows from the next sub-lemma.

Sub-lemma 4.3. For each m ∈ P 2
A, the group KM

3 (A�[ 1
uλ�

]) vanishes in C�(M) if each

modulus M(p�) is zero for all p� ∈ P 1
� such that p� �= λ�.

For the proof, we need the Gersten-Quillen complex in Milnor K-theory.

Proof of Sub-lemma 4.3. Consider the Gersten-Quillen complex

KM
3 (A�[

1

uλ�

]) → KM
3 (K�)

⊕∂��→
⊕

�� �=λ�

KM
2 ( κ(p�) ) → 0, (4.4)

where ∂�� is the boundary map ∂�� : KM
3 (K�,��) → KM

2 ( κ(p�) ) in algebraic K-theory.

By Theorem 4.6 below, the kernel of the boundary map ∂�� coincides with U 0KM
3 (K�,��).

So, the above sequence (4.4) shows that KM
3 (A�[ 1

uλ�
]) lies in U 0KM

3 (K�,��) for all p�

such that p� �= λ�. Thus, in the definition of C�(M), if we move an arbitrary element

α ∈ KM
3 (A�[ 1

uλ�
]) ⊂ KM

3 (K�,λ�) into
⊕

�� �=λ�

(
KM

3 (K�,��) /U 0 KM
3 (K�,��)

)
by the

diagonal image of α ∈ KM
3 (K�) in C�(M), it becomes 0 in U 0KM

3 (K�,��) for all p� such

that p� �= λ�. Hence, we get the desired assertion in the sub-lemma.

Now, we define the idele class group CK for K.

Definition 4. We define the topological idele class group CK as

CK : = lim←−M CK(M), (4.5)

where lim←−M is taken by the surjection CK(M ′) � CK(M) if M ′ − M is effective (⇔
n′
� − n� ≥ 0), and we endow the inverse limit topology on CK induced from the discrete

topology on each CK(M) (by definition, the fundamental open subsets of CK are the

inverse images of all open subgroups of CK(M) in CK with M running over all moduli).

Remark 5. The inverse limit topology of CK implies that for each M , the subgroup

Ker ( CK � CM(K) ) is open in CK .

15



Lemma 4.4 (Explicit Representation of CK). The above idele class group CK can be also

represented explicitly as follows :

CK = lim←−M DK /FMDK , (4.6)

where DK is defined by

DK : =

(∏′

�∈P 2
A,��∈P 1

�

KM
3 (K�,��)

)
/
∏

�∈P 2
A

KM
3 (K�)

∏
�∈P 1

A

KM
3 (K�).

(4.7)

Here,
(∏′

�,��
KM

3 (K�,��)
)

denotes the subgroup of the direct product
(∏

�,��
KM

3 (K�,��)
)

such that an arbitrary element a ∈
(∏′

�,��
KM

3 (K�,��)
)

satisfies the following conditions :

1) each (m, p�)-component a�,�� of a lies in U 0KM
3 (K�,��) if p� �→ p for almost all

p ∈ P 1
A,

2) for an arbitrary element p ∈ P 1
A, (m, p�)-component a�,�� of a lies in KM

3 (A�[ 1
u��

])

for almost all p� such that p� �→ p.

Each group FMDK in (4.6) is defined by

FMDK : = Image

(∏
�,��

′
UM(��)KM

3 (K�,��) → DK

)
, (4.8)

where M(p�) is defined in (4.2). Moreover, we have an isomorphism :

DK /FMDK
∼→ CK(M). (4.9)

Proof. This is easily proved in the similar way as in Sub-lemma 2.3.

Next, we define the subgroup F 0CK of CK which plays an important role in Section 5.

First, for each m ∈ P 2
A we define the group F 0C�(M) (⊂ C�(M) ) as follows:

F 0C�(M) : = Image

 ⊕
��∈P 1

�

U 0KM
3 (K�,��) → C�(M)

 . (4.10)

Definition 5. We define F 0CK by the inverse limit

F 0CK : = lim←−M F 0CK(M), (4.11)

where

F 0CK(M) : = Image

 ⊕
�∈P 2

A

F 0C�(M)→ CK(M)

 . (4.12)

By an easy check, we see the isomorphism

F 0DK/FMDK
∼= F 0CK(M). (4.13)
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In Section 5 and Section 6, it is proved that this group F 0CK corresponds to the

maximal unramified extension of K by the reciprocity map ρK . So, if the residue field of

A is Fq, it follows that Coker(F 0CK → CK) ∼= Gal(Fq/Fq) ∼= Ẑ.

Next, we state the Bloch-Milnor-Kato conjecture which is strongly believed to hold and

plays an important role in the proof for prime to p parts in Section 5.

Conjecture 1 (Bloch-Milnor-Kato). For an arbitrary field K and a natural number n

prime to the characteristic of K, there holds the following Galois symbol isomorphism:

KM
n (K) /m

∼→ Hn
Gal(K, µ⊗n

m ).

Here, we state the p primary version of this conjecture which is the celebrated theorem

by Bloch-Gabber-Kato.

Theorem 4.5 (Bloch-Gabber-Kato). For an arbitrary field K of positive characteristic

p, the following differential symbol becomes an isomorphism :

KM
n (K) /pm ∼→ H0

Gal(K, WmΩn
K, log), (4.14)

where WmΩn
K, log denotes the logarithmic Hodge-Witt sheaves of length m.

This theorem is also indispensable for the proof of Theorem 1.2 accomplished in Section

5.

Finally, we review the following extremely useful theorem by Kato.

Theorem 4.6 (Kato, [Ka1] I, II). Let k be a discrete valuation field with residue field F

such that (F : F p) = pd, and KM
n (k), U iKM

n (k) be defined as above. Further, we denote

by kM
n (k) the group KM

n (k)/KM
n (k)p, and denote by U ikM

n (k) the image of U iKM
n (k) in

kM
n (k). Then, each sub-quotient GrikM

n (k) : = U ikM
n (k) /U i+1kM

n (k) is completely calcu-

lated as follows :

(1)There exist the following exact sequence :

0 → KM
n (F ) → KM

n (k) / U 1KM
n (k)

∂→ KM
n−1(F ) → 0, (4.15)

and Ker (KM
n (k)

∂→ KM
n−1(F )) coincides with U 0KM

n (k).

Consequently, we have the following isomorphism :

U 0KM
n (k) / U 1KM

n (k) ∼= KM
n (F ). (4.16)

Hereafter, we assume i > 0, and uk denotes a uniformizing parameter of the valuation

ring Ok.
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(2) if p � i , there exists the following isomorphism :

Ωn−1
F

∼→ GrikM
n (k) (4.17)

by Ωn−1
F � sdt1/t1 ∧ . . . dtn−1/tn−1 �→ (1 + sui

k, t1, . . . , tn−1) ∈ GrikM
n (k).

(3) if p | i , there exists the following isomorphism :

Ωn−1
F /Ωn−1

F,d=0 ⊕ Ωn−2
F /Ωn−2

F,d=0

∼→ GrikM
n (k) (4.18)

by Ωn−2
F /Ωn−2

F,d=0 � sdt1/t1 ∧ . . . dtn−2/tn−2 �→ (1 + s ui
k, t1, . . . , tn−2, uk) ∈ GrikM

n (k), and

the map from Ωn−1
F / Ωn−1

F,d=0 to GrikM
n (k) is the same one defined in (2). (Ωi

F,d=0 denotes

the set of d-closed i-forms of F ).

(4) if ch.k = 0 and i = e p / (p− 1), there exists the following isomorphism :

Ωn−1
F / (1− C) Ωn−1

F,d=0 ⊕ Ωn−2
F / (1− C) Ωn−2

F,d=0

∼→ GrikM
n (k), (4.19)

where the maps from the left hand side to GrikM
n (k) are the same ones defined in (3).

5. Duality for two dimensional complete Gorenstein local rings

In this section, we establish the duality theorems for two-dimensional complete normal

Gorenstein local rings with finite residue field. For an arbitrary complete normal local ring

R over a field k, the Grothendieck duality theorem states that its k dual with respect to the

mR-adic topology is represented by the local hypercohomology of the dualizing complex

DR of R. What we will do in this section is to rewrite this local hypercohomology explicitly

by using differential forms, or more precisely, differential ideles. The basic reference in

this section is [H]. First, we review the following Grothendieck duality theorem.

Theorem 5.1 (Grothendieck). Let R be an arbitrary complete normal local ring of Krull

dimension n with residue field k. Then there exists a unique complex D•
R called a nor-

malized dualizing complex of R in the derived category of R, and satisfies the following

isomorphism for an arbitrary finite R-module M :

Extn−i
R (M,D•

R) ∼= Hom�−adic(Hi
�R

(R, M), k), (5.1)

where Hi
�R

(R, F•) denotes the hypercohomology of the bounded complex F• with support

at the maximal pont mR of R.

Remark 6. Let R be a complete Cohen-Macaulay local ring, then the above dualizing

complex D•
R becomes very simple. That is, D•

R becomes a single sheaf. Moreover if R is

Gorenstein, this sheaf becomes the sheaf of n-forms of R, hence we have the isomorphism

FR
∼= Ωn

R [n].
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Now, we return to our complete local ring R which is normal Gorenstein with finite

residue field. Our task is to rewrite the local cohomology H2
�(R, Ω2

R) explicitly by using

the localization sequence in étale cohomology. Let us state the first main result.

Theorem 5.2. For an arbitrary two-dimensional normal complete Gorenstein local ring

R with finite residue field, we denote by F its fractional field. Then there exists the

following canonical isomorphism :

R
∼→ Homcont

 ⊕
�∈P 1

R

(
Ω2

F� /Ω2
R�

) /(Ω2
F /Ω2

R), Z /p

 , (5.2)

where R� denotes the completion of the localized ring R(�) at its maximal prime q, and

F� denotes the fractional field of R�. In the above,
(⊕

�∈P 1
R

(
Ω2

F�
/Ω2

R�

))
/(Ω2

F /Ω2
R) is

considered as a discrete module.

Proof. Let us consider the following localization sequence which is exact :

· · · → H1
�R

(Spec R, Ω2
Spec R) → H1(Spec R, Ω2

Spec R) → H1(X, Ω2
X) →

→ H2
�R

(Spec R, Ω2
Spec R) → H2(Spec R, Ω2

Spec R) → H2(X, Ω2
X) · · · , (5.3)

where X = Spec R \ mR with the maximal ideal mR of R. We see that both groups

H1(Spec R, Ω2
Spec R) and H2(Spec R, Ω2

Spec R) in (5.3) vanish, so we obtain the isomorphism

H1 (X, Ω2
X) ∼= H2

�R
(Spec R, Ω2

Spec R). (5.4)

We analyze the group H1(X, Ω2
X). First we notice that the Krull dimension of X is 1.

By considering the localization sequence in étale cohomology of X paying attentions to

the fact that each height one prime of X corresponds bijectively to the unique height one

prime of R, we obtain the following exact sequence :

· · · → H0(X, Ω2
X) → H0(F, Ω2

F ) →
⊕
�∈X(1)

H1
� (X, Ω2

X) → H1(X, Ω2
X) → 0.

(5.5)

The final 0 is obtained by replacing the group H1(F,Ω2
F ) by 0. From (5.5), we can find

that the group H1(X, Ω2
X) is explicitly expressed as

H1(X, Ω2
X) ∼=

 ⊕
�∈X(1)

H1
� (X, Ω2

X)

 /
(
H0(F, Ω2

F ) /H0(X, Ω2
X)
)
. (5.6)

By replacing H0(F, Ω2
F ) and H0(X, Ω2

X) with Ω2
F and Ω2

R respectively, we obtain

H1(X, Ω2
X) ∼=

 ⊕
�∈X(1)

H1
� (X, Ω2

X)

 /( Ω2
F /Ω2

R ). (5.7)
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We have H1
� (X, Ω2

X) ∼= H1
� (Spec R(�), Ω2

Spec R(�)
) it holds that

H1
� (Spec R(�), Ω

2
Spec R(�)

) ∼= H0(Spec F, Ω2
Spec F )/H0(Spec R(�), Ω2

Spec R(�)
) ∼= (Ω2

F /Ω2
R(�)

)

∼= (Ω2
F� /Ω2

R�
).

(5.8)

Thus by considering (5.6), (5.7) and (5.8), Theorem 5.1, applied with M = Ω2
R, i = n = 2,

provides the desired perfectness of (5.2).

Next, we state the duality theorem for R /Rp.

Theorem 5.3. Let R be the same ring as in Theorem 5.2. Then, there exists the following

isomorphism :

(R/Rp) ∼= Homcont

⊕
�∈P 1

R

(Ω1
F�/(Ω1

F�,d=0, Ω1
R�

))

 /(Ω1
F /(Ω1

F,d=0, Ω
1
R)), Z/p

 ,

(5.9)

where the group
(⊕

�∈P 1
R

( Ω1
F�

/( Ω1
F�, d=0 , Ω1

R�
) )
)

/( Ω1
F /( Ω1

F, d=0, Ω1
R) ) is assumed to

have the discrete topology.

Proof. For the proof, we need the Cartier operator C. Consider the exact sequences

0→ R
x 
→xp→ R → R /Rp → 0 (5.10)

0→ (R/Rp)∗ →
⊕

�∈P 1
R

(
Ω2

F�/Ω2
R�

) /(Ω2
F /Ω2

R)
C→
⊕

�∈P 1
R

(
Ω2

F�/Ω2
R�

) /(Ω2
F /Ω2

R)→ 0,

(5.11)

where (5.11) is obtained by taking the Pontryagin dual of (5.10) and Theorem 3.2. But

the property of the Cartier operator C shows that

Ker ( C : Ω2
F� → Ω2

F� ) = dΩ1
F�
∼= (Ω1

F� /Ω1
F�,d=0) (5.12)

Ker ( C : Ω2
F → Ω2

F ) = dΩ1
F
∼= (Ω1

F /Ω1
F,d=0), (5.13)

where d denotes the differential operator. So, it follows that

Ker ( C : Ω2
F� /Ω2

R�
→ Ω2

F� /Ω2
R�

) = Ω1
F� /( Ω1

F�,d=0, Ω1
R�

), (5.14)

Ker ( C : Ω2
F /Ω2

R → Ω2
F /Ω2

R ) = Ω1
F /( Ω1

F,d=0, Ω1
R ). (5.15)
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Now from (5.14) and (5.15), easy arguments show

Ker
(
C : (

⊕
�∈P 1

R

(Ω2
F�/Ω2

R�
))/(Ω2

F /Ω2
R) → (

⊕
�∈P 1

R

(Ω2
F�/Ω2

R�
))/(Ω2

F /Ω2
R)
)

=

⊕
�∈P 1

R

( Ω1
F�

/ ( Ω1
F�, d=0, Ω1

R�
) )

 /( Ω1
F /(Ω1

F, d=0, Ω1
R) ).

(5.16)

Thus, we get the following commutative diagram:

0−→ R
x 
→xp−→ R�∼=

�∼=

0 →
((⊕

�∈P 1
R

(
Ω2

F�
/Ω2

R�

))
/( Ω2

F /Ω2
R )
)∗
→
((⊕

�∈P 1
R

(
Ω2

F�
/Ω2

R�

))
/( Ω2

F /Ω2
R )
)∗

−→ R /Rp −→0�f

→
( (⊕

�∈P 1
R

( Ω1
F�

/( Ω1
F�, d=0 , Ω1

R�
) )
)

/ ( Ω1
F /( Ω1

F, d=0, Ω1
R) )

)∗
→ 0, (5.17)

where the lower row in the above diagram (5.17) is exact from (5.16). A diagram chase

shows that the vertical arrow f in diagram (5.17) becomes bijective, which is the desired

result.

Here, we state the duality theorem for F , F/F p where F is the fractional field of R. For

this, we explain the differential idele class group. It is defined by

(
∏

�∈P 1
R

Ω2
F�)/Ω2

F (5.18)

or (
∏

�∈P 1
R

(Ω1
F� /Ω1

F�,d=0) )/ ( Ω1
F /Ω1

F,d=0 ), (5.19)

where the restricted product in (5.18) is defined by the condition that any element in it

lies in the group
(∏

�∈U Ω2
R�

)
⊕
(⊕

��∈U Ω2
F�

)
for some open U ⊂ Spec R. The definition

of (5.19) is given similarly to (5.18). Now, the duality results for F , F/F p are stated as

follows:

Theorem 5.4. Let R be the same ring as in Theorem 5.2 and F be its fractional field.

Then, there exists the following isomorphism :

F ∼= Homcont

(
∏
�∈P 1

R

Ω2
F�)/Ω2

F , Z/p

 , (5.20)

21



where Homcont denotes the set of homomorphism χ : (
∏

�∈P 1
R

Ω2
F�

)/Ω2
F → Z/p such that

χ annihilates qn�Ω2
R�

for each q with some n� ≥ 0 and almost all n� = 0.

Theorem 5.5. For an arbitrary complete local ring R with fractional field F which sat-

isfies the condition in Theorem 5.2, there exists the following canonical isomorphism :

(F /F p) ∼= Homcont


∏

�∈P 1
R

(Ω1
F�

/Ω1
F�,d=0)

 /(Ω1
F /Ω1

F,d=0), Z/p

 ,

(5.21)

where Homcont denotes the same meaning as in Theorem 5.4.

These theorems are immediately obtained from Theorem 5.2, Theorem 5.3 respectively

by considering the fact that F = lim−→ f∈RR[ 1
f
].

6. The complete discrete valuation field K�

The aim in this section is to construct the idele class group CK�
for each complete

discrete valuation field K� with p ∈ P 1
A. The main theorem is proved at the end of this

section. For the definition of the idele class group CK�
, we need to introduce the group

Ci
K�

for each natural number i (≥ 0). In this section, we always denote by u� the regular

parameter of p in A.

Definition 6. We define the group Ci
K�

for each natural number i (≥ 0) as follows:

Ci
K�

: = Coker

(
KM

3 (K�)
diagonal−→

∏′

�∈P 1
�A /u�

(
KM

3 (K�,�) /U iKM
3 (K�,�)

))
,

(6.1)

where Ã /u� denotes the normalization of two-dimensional complete local ring A/u�, and

each K�,� is the unique complete discrete valuation field satisfying

1) K� ⊂ K�,� and mK�
OK�,� = mK�,�, where mK�

and mK�,� denote the maximal ideals

of the valuation rings OK�
and OK�,�, respectively.

2) The residue field OK�,�/mK�,� of the valuation ring OK�,� of K�,� coincides with the

fractional field of the complete discrete valuation ring (Ã /u�)� defined by (Ã /u�)� : =

lim←− n (Ã /u�)(�) /qn.

We remark that each residue field of OK�,� in 2) is a two-dimensional local field.

Next, we give the definition of the group
∏′

�∈P 1
�A /u�

(
KM

3 (K�,�) /U iKM
3 (K�,�)

)
. If we

write ι : OK�,� � OK�,�/mK�,�, it is easily seen that ι−1((Ã /u�)�) is the subring of OK�,�

by the condition 2). Now, under these preparation, the definition of
∏′

is given as follows.
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For an arbitrary element a in
∏′

�∈P 1
�A /u�

(
KM

3 (K�,�) /U iKM
3 (K�,�)

)
, its q-component

a� belongs to Image
(

KM
3 (ι−1((Ã /u�)�)[

1
u�

])
canonical−→ KM

3 (K�,�)/U
iKM

3 (K�,�)
)

for almost

all q, and if a height one prime q in P 1
�A /u�

lies over a non-regular height one prime q′ of

A/u� (this means that the localization (A/u�)(�′) of (A/u�) at q′ does not become regular),

we put no condition on q-component a� of a.

Now, under these preparations, we can define the idele class group CK�
as follows:

Definition 7. We define the idele class group CK�
by

CK�
= lim←− i≥0 Ci

K�
. (6.2)

Now, by using CK�
defined above, we construct the reciprocity pairing

H1
Gal(K�, Q /Z)× CK�

→ Q /Z. (6.3)

We begin by defining the pairing

H1
Gal(K�, Z /p)× CK�

/p→ Z /p

which would be established at (6.15) below. First, we choose an (non-canonical) isomor-

phism

K�
∼= κ(p) ((u�)). (6.4)

Further, if we also choose an (non-canonical) isomorphism

Frac((Ã/u�)�) ∼= Fq ((s�))((t�)), (6.5)

K�,� is explicitly rewritten as

K�,�
∼= Fq ((s�))((t�))((u�)). (6.6)

On the other hand, for each three-dimensional local field K�,�, there exists the following

residue pairing by Kato-Parshin:

H1
Gal(K�,�, Z /p) × KM

3 (K�,�) /p → Z /p (6.7)

defined by(
χ�,�, (a�,�, b�,�, c�,�)

)
�→ Res ds�

s�
∧ dt�

t�
∧ du�

u�

(χ�,�
da�,�
a�,�

∧ db�,�
b�,�

∧ dc�,�
c�,�

) ∈ Z /p,

(6.8)

where Res ds�
s�

∧ dt�
t�

∧ du�
u�

denotes the value of the trace Tr�q /�p of the coefficient c−1,−1,−1 of

the logarithmic form ds�
s�
∧ dt�

t�
∧ du�

u�
in the differential three-form (χ�,�

da�,�

a�,�
∧ db�,�

b�,�
∧ dc�,�

c�,�
).
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So, by summing these residue pairings over all K�,�, we get the following pairing:

H1
Gal(K�, Z /p) × lim←− i

∏′

�∈P 1
�A /u�

( KM
3 (K�,�) /U iKM

3 (K�,�) ) /p → Z /p.

(6.9)

Here, we used the restriction homomorphism

r�,� : H1
Gal(K�, Z /p) → H1

Gal(K�,�, Z /p) (6.10)

in Galois cohomology. The well-definedness of the above pairing (6.9) is the consequence

of the definition of the product
∏′

. An important fact is that each element χ�,� ∈
H1

Gal(K�,�, Z /p) annihilates U iKM
3 (K�,�) /p for some i. On the other hand, Theorem 4.6

states that any element (a�, b�, c�) ∈ KM
3 (K�) /p can be written as

(a�, b�, c�) = (1 + α uj
�, β, γ) (6.11)

with α, β, γ ∈ κ(p). We use this fact in the proof of the following proposition. That is,

we prove the reciprocity law for K� as

Proposition 6.1. For an arbitrary element a ∈ KM
3 (K�), its diagonal image into the

right hand side of (6.9) is annihilated by the pairing (6.9).

Proof. First, we see that if we use the representation of K� in (6.4), each element χ� ∈
H1

Gal(K�, Z /p) ∼= K�/(P− 1)K�

(
(P− 1)x := xp − x

)
is explicitly represented as

χ� =
∑

n�−∞
δn un

� , (6.12)

where each δn ∈ κ(p) and δn un
� denotes the image of δn un

� in K�/(P − 1)K�. But it is

easily seen that the pair
(

δn un
� , (a�, b�, c�)

)
goes to 0 for n ≥ 1 under the pairing (6.9).

Thus, we have only to check the above proposition in the case

χ� = (
δn

un
�

) (6.13)

for an arbitrary n ≥ 0. Then, we find that the residue pairing
(
( δn

un
�

), (1 + α uj
�, β, γ)

)
becomes 0 in this situation if j � n. Otherwise, n = kj and in this case, the residue pairing

is explicitly calculated as(
(
δkj

ukj
�

), (1 + α uj
�, β, γ)

)
�→

∑
�∈P 1
�A /u�

Res ds�
s�

∧ dt�
t�

(
( (−1)k−1jδkjα

k )
d β

β
∧ d γ

γ

)
.

(6.14)

But it is found that the right hand side of (6.14) is nothing but the residue pair-

ing
(

( (−1)k−1jδkjα
k ), (β, γ)

)
with ( (−1)k−1jδkjα

k ) ∈ H1
Gal(κ(p), Z /p) and (β, γ) ∈
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KM
2 (κ(p)) /p in the class field theory for the field κ(p), which becomes zero by Kato’s

reciprocity law proved as Proposition 7 in [Ka3]. Hence, we are done.

Now, Proposition 6.1 shows that the right hand side of the pairing (6.9) factors through

CK�
/p. That is, the pairing (6.9) is rewritten as

H1
Gal(K�, Z /p) × CK�

/p → Z /p. (6.15)

By induction, we get the pairing

H1
Gal(K�, Z /pm) × CK�

/pm → Z /pm (6.16)

for an arbitrary natural number m. Similarly by using the Kummer theory, we get the

pairing

H1
Gal(K�, Z /lm) × CK�

/lm → Z /lm (6.17)

for an arbitrary prime l and m (key ingredients for the construction of this pairing (6.17)

are the canonical isomorphism H4
Gal(K�,��, µ⊗3

lm ) ∼= Z /lm (cf. [Ka1] I, II) and the Ga-

lois symbol isomorphism KM
3 (K�,��) /lm ∼= H3

Gal(K�,�� , µ⊗3
lm ) which follows from the

Bloch-Milnor-Kato conjecture. We omit details). By taking the inductive limit of (6.16)

and (6.17), we get the following reciprocity pairing:

H1
Gal(K�, Q /Z) × CK�

→ Q /Z. (6.18)

From this, we get the dual reciprocity homomorphism

ρ∗
K�

: H1
Gal(K�, Q /Z) → Hom (CK�

, Q /Z). (6.19)

Next, we give the definition of certain filtrations on CK and H1
Gal(K�, Z/p).

Definition 8. For an arbitrary positive integer n ≥ 0, we define the filtration F n CK�

on CK�
and FnH1

Gal(K�, Z/p) on H1
Gal(K�, Z/p) as follows:

1) F n CK�
: = lim←− i F

n Ci
K�

, (6.20)

where each F n Ci
K�

is defined by F n Ci
K�

: = Image

(∏′

�∈P 1
�A /u�

UnKM
3 (K�,�) → Ci

K�

)
(F n Ci

K�
= 0 if i ≤ n).

2) FnH1
Gal(K�, Z/p) : = {Im: x �→ (K� /(P− 1)K�) | x ∈ K� satisfies vu�(x) ≥ −n},

where (P− 1) is defined by (P− 1) (x) = xp − x. (Fn is the increasing filtration).

(6.21)
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We define the filtration F n(CK�
/m) on CK�

/m for a natural number m ( > 1) by

F n(CK�
/m) := Image

(
F nCK�

→ CK�
/m
)
. (6.22)

We put

Grn(CK�
/p) : = F n(CK�

/p) /F n+1(CK�
/p) (6.23)

GrnH1
Gal(K�, Z/p) : = FnH1

Gal(K�, Z/p) /Fn−1H
1
Gal(K�, Z/p). (6.24)

We see that there exists an isomorphism

F∞H1
Gal(K�, Z/p)/F0H

1
Gal(K�, Z/p) ∼= H2

� (A�, Z/p) (6.25)

which follows from the localization sequence

0→ H1
Gal(A�, Z/p)→ H1

Gal(K�, Z/p)→ H2
� (A�, Z/p)→ 0.

There is a lemma.

Lemma 6.2. There hold the following isomorphisms :

1.if p � n, κ(p)
∼→ GrnH1

Gal(K�, Z/p) by κ(p) � a �→ (
a

un
�

) ∈ GrnH1
Gal(K�, Z/p)

(6.26)

2.if p | n, κ(p)/κ(p)p ∼→ GrnH1
Gal(K�, Z/p) by κ(p) � a �→ (

a

un
�

) ∈ GrnH1
Gal(K�, Z/p).

(6.27)

This lemma is checked without any difficulty by the explicit calculations.

We state another useful lemma.

Lemma 6.3. There exist the following surjections :

1. if p � n

∏
�∈P 1
�A /u�

Ω2
κ(�)

�

 /Ω2
κ(�) � Grn(CK�

/p). (6.28)

2. if p | n

∏
�∈P 1
�A /u�

(Ω1
κ(�)

�
/Ω1

κ(�)
�
,d=0)

 /(Ω1
κ(�) /Ω1

κ(�), d=0) � Grn(CK�
/p),

(6.29)

where κ(p)
�
: = Frac ((Ã/u�)�) (recall (Ã/u�)� : = lim←− n (Ã /u�)(�) /qn) and each left hand

side of (6.28), (6.29) is the differential ideles defined at (5.18), (5.19).

Proof. This follows directly from Theorem 4.6.

Under these preliminaries, we state the main theorem in this section.
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Theorem 6.4. The dual reciprocity homomorphism ρ∗
K�

in (6.19) induces the injective

homomorphism

ρ∗
K�

: H2
� (K�, Z /p) ↪→ Hom(F 0CK�

, Z /p), (6.30)

where Hom is the set of homomorphisms between discrete groups.

Proof. We consider the pairing between each gr-quotients :

GrnH
1
Gal(K�, Z/p) × Grn(CK�

/p) → Z/p. (6.31)

The well-definedness of this pairing is easily checked. This pairing induces the homomor-

phism

GrnH1
Gal(K�, Z/p) → Hom(Grn(CK�

/p), Z/p). (6.32)

We assert that the homomorphism (6.32) is injective. We treat the case p � n (the case p | n
is proved without any change). By Lemma 6.3. 1, we have an injective homomorphism

Hom(Grn(CK�
/p), Z/p) ↪→ Hom

∏
�∈P 1
�A /u�

Ω2
κ(�)

�

 /Ω2
κ(�), Z/p

 .

Further, Theorem 5.4 gives us another injective homomorphism

κ(p) ↪→ Hom

∏
�∈P 1
�A /u�

Ω2
κ(�)

�

 /Ω2
κ(�), Z/p

 .

Now, Lemma 6.2 together with above two injective homomorphisms shows the desired

injectivity of (6.32).

We return to the proof of Theorem 6.4. By considering n = 0, . . . ,∞ of the injective

homomorphisms (6.32) together with the equality F∞H1
Gal(Kλ, Z/p)/F0H

1
Gal(Kλ, Z/p) =

H2
� (K�, Z /p) in (6.25), we get the desired injectivity (6.30) (we remark that Gr0(CKλ

/p) =

0 which follows from Lemma 7 in [Ka1], (II)).

7. Proof of the existence theorem ( p primary parts )

In this section, we prove the following existence theorem for p primary parts.

Theorem 7.1. Let A be an arbitrary three-dimensional complete regular local ring of

positive odd characteristic with finite residue field and K be its fractional field. Then

there exists the following canonical dual reciprocity isomorphism :

ρ∗
K : H1

Gal(K, Qp /Zp)
∼→ Homc(CK , Qp /Zp), (7.1)
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where Homc denotes the set of all continuous homomorphisms from CK to Qp /Zp of finite

order.

The definition of ρ∗
K (mod p) is stated in (7.29) below.

Proof. First, we begin with the following lemma which reduces the proof of the bijectivity

of ρ∗
K in (7.1) to that of ρ∗

K /p.

Lemma 7.2. The proof of the isomorphism (7.1) is reduced to that of the following

isomorphism :

ρ∗
K /p : H1

Gal(K, Z /p)
∼→ Homc(CK , Z /p). (7.2)

Proof. From the short exact sequence

0 → Z /pn → Z /pn+1 → Z /p → 0,

we get the following long exact sequence of the Galois cohomology :

0 → H1
Gal(K, Z /pn) → H1

Gal(K, Z /pn+1) → H1
Gal(K, Z /p) → 0, (7.3)

where we used the vanishing H2
Gal(K, Z /p) = 0 (cf. [SGA 4], X).

On the other hand, we have the exact sequence

CK /p → CK /pn+1 → CK /pn → 0. (7.4)

Taking the Pontryagin dual of the exact sequence (7.4), we get the exact sequence

0 → Homc(CK /pn, Z /pn) → Homc(CK /pn+1, Z /pn+1) → Homc(CK /p, Z/p).

(7.5)

Consider the commutative diagram

0→ H1
Gal(K, Z /pn) → H1

Gal(K, Z /pn+1) → H1
Gal(K, Z /p) →0�ρK

∗ /pn

�ρK
∗ /pn+1

�ρK
∗ /p

0→Homc((CK /pn), Z /pn)→Homc((CK /pn+1), Z /pn+1)→Homc((CK /p), Z /p), (7.6)

where both rows are exact from (7.3), (7.5). Applying the snake lemma to this diagram,

we see that the bijectivity of ρK
∗ /pn+1 is deduced from those of ρK

∗ /pn and ρK
∗ /p.

By this lemma, we have only to prove the bijectivity of (7.2).

Next, we state the definition of the (dual) reciprocity map ρ∗
K /p and the method of the

proof. This map has the key to analyze Gal(Kab /K). First, we see that if we construct

the pairing

H1
Gal(K, Z /p) × CK /p → Z /p, (7.7)
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then by using the above diagram (7.6), we can inductively define the pairing

H1
Gal(K, Z /pm) × CK /pm → Z /pm (7.8)

for an arbitrary positive natural number m. We will construct the pairing (7.7). The idea

is to gather the reciprocity pairing for each three-dimensional local fields K�,�� .

We begin the construction. Take χ ∈ H1
Gal(K, Z /p). Then, by the restriction map

r�,�� : H1
Gal(K, Z /p) → H1

Gal(K�,�� , Z /p) in Galois cohomology, we can send χ into

H1
Gal(K�,�� , Z /p). On the other hand, there exists the following canonical reciprocity

pairing by Kato-Parshin in three-dimensional local class field theory :

H1
Gal(K�,�� , Z /p) × KM

3 (K�,��) /p → Z /p (7.9)

by which for χ�,�� ∈ H1
Gal(K�,�� , Z /p) and (a�,�� , b�,�� , c�,��) ∈ KM

3 (K�,��) /p, the

pair ( χ�,�� , (a�,�� , b�,�� , c�,��) ) goes as

( χ�,�� , (a�,�� , b�,�� , c�,��) ) �→ Res ds��
s��

∧ dt��
t��

∧ du��
u��

(χ�,��

da�,��

a�,��

∧ db�,��

b�,��

∧ dc�,��

c�,��

)

∈ Z /p.

(7.10)

Here, we assume that each three-dimensional local field K�,�� is represented non-canonically

as K�,�� = Fq((s��))((t��))((u��)). This pairing is well defined because even if we use an-

other representation K�,�� = Fq((r��))((q��))((p��)), the residue of (χ�,��
da�,��

a�,��
∧ db�,��

b�,��
∧

dc�,��

c�,��
) does not change. By gathering the pairing (7.9) for each K�,�� , we get the pairing

H1
Gal(K, Z /p) ×

(∏′

�∈P 2
A,��∈P 1

�

KM
3 (K�,��) /p

)
→ Z /p, (7.11)

which can be written explicitly as(
χ, (a�,�� , b�,�� , c�,��)

�,��

)
�→
∑

�,��
Res ds��

s��
∧ dt��

t��
∧ du��

u��

(χ�,��

da�,��

a�,��

∧ db�,��

b�,��

∧ dc�,��

c�,��

)

∈ Z /p.

(7.12)

By conditions 1), 2) of
(∏′

�∈P 2
A,��∈P 1

�
KM

3 (K�,��) /p
)

stated in Lemma 4.4, the above

pairing (7.11) is well defined.

Next, we prove the reciprocity law for the pairing (7.11). That is,

Proposition 7.3 (Reciprocity proposition). Both KM
3 (K�) /p and KM

3 (K�) /p are an-

nihilated by an arbitrary element χ of H1
Gal(K, Z /p) by the pairing (7.11). Here, the above
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two groups are embedded diagonally into
∏′

��∈P 1
�

KM
3 (K�,��) /p,

∏′
�� 
→�

KM
3 (K�,��) /p(

⊂∏′
�∈P 2

A,��∈P 1
�

KM
3 (K�,��) /p

)
, respectively.

Proof. We begin with KM
3 (K�) /p. In this case, we have to prove that in the pairing

H1
Gal(K�, Z /p)×

∏
��∈P 1

�

KM
3 (K�,��) /p → Z /p, (7.13)

where
∏

is defined by p�-component a�� lies in U 0KM
3 (K�,��) for almost all p� ∈ P 1

�,

the diagonal image of KM
3 (K�) /p into

∏
��∈P 1

�

KM
3 (K�,��) /p is annihilated by an ar-

bitrary χ� ∈ H1
Gal(K�, Z /p). But this is nothing but Kato’s reciprocity law for two-

dimensional complete normal local rings whose residue fields are higher dimensional local

fields (Proposition 7 in [Ka3]).

Next, we prove the reciprocity law for K�. In this case, we have to prove that any pair(
χ�, (a�, b�, c�)

)
with χ� ∈ H1

Gal(K�, Z /p) and (a�, b�, c�) ∈ KM
3 (K�) /p goes to zero

under the pairing (7.11). By using Theorem 4.5, we can consider (a�, b�, c�) ∈ Ω3
K�,log.

So, by the cup product

H1
Gal(K�, Z /p)×H0

Gal(K�, Ω3
K�,log)→ H1

Gal(K�, Ω3
K�,log), (7.14)

we can consider
(
χ�, (a�, b�, c�)

)
∈ H1

Gal(K�, Ω3
K�,log). Then, we prove

Claim 7.4. There exists the following complex :

H1
Gal(K�, Ω3

K�,log) →
⊕

��∈P 1
�, �� 
→�

�∈P 2
A

H1
Gal(K�,�� , Ω3

K�,�� ,log)
addition−→ Z /p,

(7.15)

where the first map is the restriction homomorphism in Galois cohomology.

Before the proof, we remark that the reciprocity law for K� is equivalent to the existence

of the above complex (7.15).

Proof of Claim 7.4. Consider the coniveau-spectral sequence

Ep,q
1 =

⊕
x∈(SpecA)(p)

Hp+q
x (SpecA, Ω3

A, log[−3]) =⇒ Hp+q
ét (SpecA, Ω3

A,log[−3]),

(7.16)

where (SpecA)(p) denotes the set of primes of codimension p. By writing down the E1-term

sequence

E1,4
1

d1,4
1→ E2,4

1

d2,4
1→ E3,4

1 → 0, (7.17)
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we get ⊕
�∈P 1

A

H2
� (A, Ω3

A, log)→
⊕
�∈P 2

A

H3
�(A, Ω3

A, log)→ Z /p → 0 (7.18)

(we used the isomorphism H4
�A

(Spec A, Ω3
Spec A, log)

∼=Z /p). Further, localization sequence

provides the isomorphisms

H2
� (A, Ω3

A,log)
∼= H2

� (A
h
� , Ω3

Ah
� ,log)

∼= H1
Gal(K

h
� , Ω3

Kh
� ,log)

∼= H1
Gal(K�, Ω3

K�,log).

(7.19)

So, we can rewrite (7.18) as⊕
�∈P 1

A

H1
Gal(K�, Ω3

K�, log)→
⊕
�∈P 2

A

H3
�(A, Ω3

A, log)→ Z /p → 0. (7.20)

But by writing T� := Spec A�\m, the cohomology group H3
�(A, ΩA,log) in (7.20) is calcu-

lated as

H3
�(A, Ω3

A,log)
∼= H3

�(Ah
�, Ω3

Ah
�,log)

∼= H3
�(A�, Ω3

A�,log)
∼= H2

ét(T�, Ω3
T�,log),

(7.21)

where the isomorphism H3
�(Ah

�, Ω3
Ah
�,log

) ∼= H3
�(A�, Ω3

A�,log) follows from the fact that

both groups have the same order p (this fact is proved by the standard argument involving

duality Theorem 3.1). On the other hand, we have the following localization sequence on

T� :

H1
Gal(K�, Ω3

K�, log)→
⊕

��∈P 1
�

H2
��

(T�, Ω3
X�,log)→H2

ét(T�, Ω3
T�,log) → 0.

(7.22)

Moreover, there exists the isomorphism

H2
��

(T�, Ω3
X�,log)

∼= H1
ét(K

h
�,��

, Ω3
Kh
�,�� ,log)

∼= H1
ét(K�,��, Ω3

K�,�� ,log) (∼= Z /p ),

(7.23)

where Kh
�,�� denotes the fractional field of the henselian local ring Ah

�,�� obtained by

the henselization of A� at its height-one prime p� (for the final isomorphism in (7.23),

see [Ka1]).

From (7.21), (7.22), (7.23), the complex (7.20) is rewritten as⊕
�∈P 1

A

H1
Gal(K�, Ω3

K�,log) →
⊕
�∈P 2

A

⊕
��∈P 1

�

H1
ét(K�,��, Ω3

K�,�� ,log)
addition−→ Z /p.

(7.24)
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From this, for each H1
Gal(K�, Ω3

K�,log), we can deduce the following complex :

H1
Gal(K�, Ω3

K�,log)→
⊕

��∈P 1
�, �� 
→�

�∈P 2
A

H1
ét(K�,�� , Ω3

K�,�� ,log)
addition−→ Z /p,

(7.25)

which is nothing but the complex (7.15).

Thus from Proposition 5.3, the above pairing (7.11) factors as

H1
Gal(K, Z/p)×

(∏′

�∈P 2
A,��∈P 1

�

KM
3 (K�,��)/p

)
/
∏

�∈P 2
A

KM
3 (K�)/p

∏
�∈P 1

A

K3
M(K�)/p

→ Z /p,

(7.26)

where the right hand side of the pairing (7.26) is DK /p defined in (4.7). Further, it is

found that each element χ ∈ H1
Gal(K, Z /p) annihilates FMDK for some modulus M . So,

by taking the limit on M , we get the pairing

H1
Gal(K, Z /p) × lim←−M( DK /FMDK )/p → Z /p. (7.27)

Now, the equation (4.6) rewrites this pairing (7.27) as

H1
Gal(K, Z /p) × CK /p → Z /p. (7.28)

By taking dual of (7.28), we at last get the dual reciprocity homomorphism

ρ∗
K /p : H1

Gal(K, Z /p) → Hom(CK , Z /p). (7.29)

Next, we explain the method of the proof of bijectivity of (7.2). We consider the scheme

X = Spec A \ mA which is the regular excellent scheme of Krull-dimension two. Then,

we consider the closed subscheme Z = ∪i=1...m mi of X where each mi is a closed point

of X (hence Z is codimension two). For the pair (X,Z), we consider the localization

sequence ( (7.30) below ) in the étale cohomology with Z /p-coefficient. This is the first

step.

In the second step, we consider the localization sequence obtained from the pair (X \
Z, W \Z) where W = ∪j=1...n pj is the union of finite codimension one closed sub-schemes

of X (pj denotes the closure of pj in X). This is (7.31) below.

Under these settings, we consider the limit (∪mi ) → P 2
A and (∪ pj ) → P 1

A set-

theoretically, where mi and pj run over all height two primes of A and all height one

primes of A, respectively.
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The crucial fact is that under these limit procedures, the localization sequence (7.31)

below turns out to involve the very important Galois cohomology group H1
Gal(K, Z /p)

which is nothing but the Pontryagin dual of Gal(Kab /K) /p.

Now, we begin the proof. As stated above, we denote by mi, pj a height 2 prime and a

height 1 prime of X, respectively. First, we consider the following localization sequence :

· · · −→
⊕

i=1 ...n

H1
�i

(Xet, Z /p) −→ H1
et(X, Z /p) −→ H1

et(X \ ∪i mi, Z /p) −→⊕
i=1 ...n

H2
�i

(Xet, Z /p) −→ H2
et(X, Z /p) −→ H2

et(X \ ∪i mi, Z /p) −→⊕
i=1 ...n

H3
�i

(Xet, Z /p) −→ H3
et(X, Z /p) −→ H3

et(X \ ∪i mi, Z /p) −→ · · · .
(7.30)

Next, the second localization sequence is stated as follows:

→
⊕

j=1 ...m

H1
�j\(∪i �i)

(X \ (∪i mi))→ H1
et(X \ (∪i mi))→ H1

et(X \ ((∪i mi) ∪ (∪j pj)))→⊕
j=1 ...m

H2
�j\(∪i �i)

(X \ (∪i mi))→ H2
et(X \ (∪i mi))→ H2

et(X \ ((∪i mi) ∪ (∪j pj)))→,

(7.31)

where H1
et(X \ (∪i mi)) : = H1

et(X \ ( ∪
i=1,..,n

mi), Z /p) and H1
et(X \ ((∪i mi) ∪ (∪j pj))) : =

H1
et(X \ (( ∪

i=1,..,n
mi) ∪ ( ∪

j=1,..,m
pj)), Z /p), respectively.

We denote by Lk the following limit of the cohomology group:

Lk : = lim−→ Uθ
Hk

ét(Uθ, Z /p), (7.32)

where Uθ runs over all open subschemes of X such that each complement X \ Uθ is a

closed subscheme of X of codimension two. Then, under the increasing limit of (∪mi )→
P 2

A, (∪ pj )→ P 1
A, we get the following exact sequence from (7.31) :⊕

�∈P 1
A

H1
� (X(�), Z /p)→ L1 → H1

et(K, Z /p)→
⊕
�∈P 1

A

H2
� (X(�), Z /p)→ L2 → 0,

(7.33)

where the final 0 is obtained by replacing H2
et(K, Z /p) with 0 (cf. [SGA 4], X), and we

define H i
�(X(�), Z /p) : = lim−→ U ⊃ � H i

�(U, Z /p), where U runs over all open subschemes of

X containing p.

We have a lemma.
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Lemma 7.5. There hold the following isomorphisms :

1) H1
� (X(�), Z /p) ∼= H1

� (A(�), Z /p) = 0 ( A(�) is the localization of A at p ).

2) L1 ∼= Z /p.

Proof. 1) The first isomorphism is clear and the second equality is proved as follows.

Consider the following exact localization sequence :

0 → H1
� (A(�), Z /p) → H1

et(A(�), Z /p) → H1
et(K, Z /p) → H2

� (A(�), Z /p) → . . . .

(7.34)

Then the restriction map H1
et(A(�), Z /p) → H1

et(K, Z /p) in (7.34) becomes injective

because Z /p-torsors of A(�) can be seen as a Z /p-torsors of K naturally. Our assertion

follows from this injectivity considering (7.34).

2) For this, we use the exact sequence (7.30). By the standard argument involving the

duality (7.45) below, we see that H1
�i

(Xet, Z /p) = H2
�i

(Xet, Z /p) = 0 for an arbitrary

height two prime mi (notice that the isomorphism H1
�i

(Xet, Z /p) ∼= H1
�i

(Ah
�i

, Z /p) holds

which enables us to use duality (7.45)). Hence by (7.30), we get L1 ∼= H1
et(X, Z /p).

So, our task is to prove the isomorphism H1
et(X, Z /p) ∼= Z /p. By considering the long

exact sequence in the étale cohomology deduced from the following short exact sequence

0 → Z /p → OA
x 
→xp−x−→ OA → 0

on Spec Aet, we get the isomorphism

H1
et(A, Z /p) ∼= Z /p. (7.35)

On the other hand, there exists the following exact sequence :

0 →H0
�A

(A, OA) → H1
�A

(A, Z /p) → H1
�A

(A, OA) → H1
�A

(A, OA) →
→ H2

�A
(A, Z /p) → H2

�A
(A, OA) → . . . . (7.36)

But from the Grothendieck duality Theorem 5.1, we get the following isomorphism:

H i
�A

(Spec A, OA) ∼= Homc( Ext3−i
A (A, Ω3

A), Z /p ). (7.37)

From (7.37), we get H i
�A

(A, OA) = 0 (i = 0, 1, 2). So, we have H1
�A

(A, Z /p) =

H2
�A

(A, Z /p) = 0 by (7.36). Now, the exact sequence

0→ H1
�A

(A, Z/p)→ H1
et(A, Z/p)→ H1

et(X, Z/p)→ H2
�A

(A, Z/p)→ . . .

(7.38)

shows that H1
et(A, Z /p) ∼= H1

et(X, Z /p). But as we have the isomorphism H1
et(A, Z /p) ∼=

Z /p by (7.35), we get the desired isomorphism H1
et(X, Z /p) ∼= Z /p.
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Next, we analyze L2. For this, we have the following result.

Proposition 7.6. There exists the canonical injection

L2 ↪→
⊕
�∈P 2

A

Hom(KM
3 (A�), Z /p). (7.39)

Here, we consider KM
3 (A�) as a discrete module.

Proof. We use the localization sequence (7.30). First, we state a lemma.

Lemma 7.7. The group H2
et(X, Z/p) ∼= H3

�A
(A, Z/p) vanishes.

Proof. The isomorphism in the statement of lemma follows by considering (7.30) and the

theorem by M. Artin on the cohomological dimension for p-torsion sheaves (cf. loc.cit.).

Consider the following commutative diagram:

0→H3
�A

(A, Z /p)→H3
�A

(Spec A, OA)→H3
�A

(Spec A, OA)→ H4
�A

(A, Z /p) → 0� �∼=
�∼= ‖

0 −→ Homc(Ω
3
A, Z /p) → Homc(Ω

3
A, Z /p) →Homc(Ω

3
A, log, Z /p) → 0,

(7.40)

where the extreme left and right zeros in the upper row are obtained from the vanishings

H2
�A

(Spec A, OA) = H4
�A

(Spec A, OA) = 0 which follows directly from (7.37). Further,

the bottom exact sequence is obtained as follows:

Consider the short exact sequence

0→ Ω3
A,log → Ω3

A
1−C→ Ω3

A → 0, (7.41)

where the surjection Ω3
A

1−C→ Ω3
A is proved by the explicit calculation. By applying the

Pontryagin dual functor Homcont(∗ , Q /Z) to the exact sequence (7.41), we get the bottom

exact sequence of (7.40) (we put the mA-adic topology on Ω3
A). Now, the desired vanishing

H3
�A

(A, Z /p) = 0 follows from this diagram (7.40) immediately.

From this lemma combined with (7.30), we get the injectivity L2 ↪→ ⊕
�

H3
�(X, Z /p).

Further, the excision theorem in étale cohomology provides the isomorphisms

H3
�(X, Z /p) ∼= H3

�(Xh
�, Z /p) ∼= H3

�(Ah
�, Z /p). (7.42)

So, Proposition 7.6 follows from

Lemma 7.8. There exists the following injective homomorphism :

H3
�(Ah

�, Z /p) ↪→ Hom(KM
3 (A�) /p, Z /p).
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Proof. From the short exact sequence

0 → Z /p → OAh
�

xp−x→ OAh
�
→ 0, (7.43)

we deduce the long exact sequence

H2
�(Ah

�, Z /p) → H2
�(Ah

�, OAh
�
)

xp−x→ H2
�(Ah

�, OAh
�
) → H3

�(Ah
�, Z /p) → 0

(7.44)

of the local cohomology, where the final 0 is obtained by the vanishing H3
�(Ah

�, OAh
�
)

which follows from the Grothendieck duality

H i
�(Ah

�, OAh
�
) ∼= Homcont(Ext2−i

A�
(OA�

, Ω3
A�

), κ(m)). (7.45)

We need a Sub-lemma.

Sub-lemma 7.9. We put the inverse limit topology on A� induced from each locally

compact group A�/mn (notice that each A�/mn (n ≥ 1) is a finite vector space over one

dimensional local field κ(m), hence has the natural induced topology). Then, with the

natural topology on Ω3
A�

induced from the above mentioned topology on A�, we have the

following isomorphism :

H2
�(Ah

�, OAh
�
) ∼= Homcont(Ω

3
A�

, Z /p). (7.46)

Proof. By Theorem 5.1, we have the isomorphism

H2
�(Ah

�, OAh
�
) ∼= Homcont(Ω

3
A�

, κ(m)). (7.47)

Consider the map

Hom�A−adic(Ω
3
A�

, κ(m))
ι1∼→ Hom�A−adic(Ω

3
A�

, Ω1
κ(�))

ι2→ Hom(Ω3
A�

, Z/p),

(7.48)

where ι1 is induced by κ(m)
∼→ Ω1

κ(�) (a �→ a duκ(�)) and ι2 is induced by the residue

homomorphism Ω1
κ(�)

Res→ Z /p.

But it is found that the image of Hom�A−adic(Ω
3
A�

, κ(m)) by the composite homomor-

phism ι2 ◦ ι1 in (7.48) lies in Homcont(Ω
3
A�

, Z /p) (⊂ Hom(Ω3
A�

, Z/p) ) by the definition

of the inverse limit topology on A�.

Thus, we can argue after dividing Ω3
A�

by mn
A with some n, which becomes finite

dimensional vector space over κ(m). But for an arbitrary finite dimensional vector space

V over one-dimensional local field κ(m) which has the natural topology induced from that

of κ(m), there exists the isomorphism

Homκ(�)−module(V, m) ∼= Homcont(V, Z /p) (7.49)
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(exercise!), which shows our assertion. Hence, we are done.

We return to the proof of Lemma 7.8. By considering the exact sequence

0 → Ω3
A�,log → Ω3

A�

1−C→ Ω3
A�

, (7.50)

we get the following commutative diagram:

H2
�(Ah

�, OAh
�
) −→ H2

�(Ah
�, OAh

�
) −→ H3

�(Ah
�, Z /p) −→ 0�∼=

�∼=
�

Homc(Ω
3
A�

, Z /p)→Homc(Ω
3
A�

, Z /p) → Homc(Ω
3
A�,log, Z /p)→ 0,

(7.51)

where the vertical isomorphisms follow from Sub-lemma 7.9. From this diagram, we get

the isomorphism

H3
�(Ah

�, Z /p) ∼= Homc(Ω
3
A�,log, Z/p). (7.52)

As Homc(Ω
3
A�,log, Z/p) ⊂ Hom(Ω3

A�,log, Z/p) (Hom denotes the set of all homomorphisms

between discrete abelian groups), we have the injection

H3
�(Ah

�, Z/p) ↪→ Hom(Ω3
A�,log, Z/p). (7.53)

Thus, Lemma 7.8 follows from the following claim.

Claim 7.10. There exists the canonical injective homomorphism

Hom(Ω3
A�,log, Z /p) ↪→ Hom(KM

3 (A�), Z/p). (7.54)

Proof. By considering dual, we prove that there exists the surjective homomorphism

KM
3 (A�) /p � Ω3

A�,log (7.55)

between discrete modules. Consider the localization sequence on T� = Spec A� \m
0 →

⊕
��∈P 1

�

H0
��

(T�, Ω3
T�,log) → H0

et(T�, Ω3
T�,log)→ H0

et(K�, Ω3
K�,log)→⊕

��∈P 1
�

H1
��

(T�, Ω3
T�,log) → H1

et(T�, Ω3
T�,log)→ H1

et(K�, Ω3
K�,log)→ . . . .

(7.56)

From the vanishing H0
��

(T�, Ω3
T�,log) = 0 and the equality H0

et(T�, Ω3
T�,log) = Ω3

A�,log, we

get the following exact sequence from (7.56) :

0 → Ω3
A�,log → Ω3

K�,log →
⊕
��∈P 1

�

H1
��

(T�, Ω3
T�,log). (7.57)
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On the other hand, we have the following purity isomorphism:

Lemma 7.11. It holds the following isomorphism :

H1
��

(T�, Ω3
T�,log)

∼= Ω2
κ(��),log. (7.58)

Proof. By excision, there exists an isomorphism

H1
��

(T�, Ω3
T�,log)

∼= H1
��

(Ah
�,�� , Ω3

Ah
�,�� ,log), (7.59)

where Ah
�,��

denotes the henselian discrete valuation ring obtained by the henselization

of A� at its height one prime p�. So, by localization sequence on Spec Ah
�,��

, we see

H1
��

(Ah
�,�� , Ω3

Ah
�,�� ,log)

∼= Coker(Ω3
Ah
�,�� ,log → Ω3

Kh
�,�� ,log). (7.60)

From (7.60) and the exact residue sequence

Ω3
Ah
�,�� ,log → Ω3

Kh
�,�� ,log

Res→ Ω2
κ(��),log → 0, (7.61)

our desired result follows immediately.

From (7.58) just proven above, we have the exact sequence

0 → Ω3
A�,log → Ω3

K�,log →
⊕
��∈P 1

�

Ω2
κ(��),log. (7.62)

On the other hand, there exists the (mod p) Gersten-Quillen complex

KM
3 (A�) /p → KM

3 (K�) /p→
⊕

��∈P 1
�

KM
2 (κ(p�)) /p → KM

1 (κ(m)) /p → 0

(7.63)

which becomes exact (cf. [So]). Combining (7.62) and (7.63), we get the commutative

diagram

KM
3 (A�) /p −→ KM

3 (K�) /p →⊕
��∈P 1

�
KM

2 (κ(p�)) /p� �∼=
�∼=

0 −→ Ω3
A�,log −→ Ω3

K�,log −→ ⊕
��∈P 1

�
Ω2

κ(��),log ,

(7.64)

where the vertical isomorphisms follow from Theorem 4.5. From this diagram, it is easily

seen that the extreme left vertical arrow is surjective, which is nothing but our desired

result. Thus, we finished the proof of Claim 7.10, Lemma 7.8 and consequently, Proposi-

tion 7.6.
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Remark 7. The exactness of the complex (7.63) follows from the assumption of odd-

positive characteristic of K. If the characteristic of K� is 2, we must assume its exactness

(cf. [So]).

By Lemma 7.5 and Proposition 7.6, the exact sequence (7.33) becomes as follows:

0 → Z /p → H1
et(K, Z /p) →

⊕
�∈P 1

A

H2
� (A(�), Z /p) →

⊕
�∈P 2

A

Hom(KM
3 (A�), Z /p).

(7.65)

Finally, we analyze the group H2
� (A(�), Z /p).

We have a lemma.

Lemma 7.12. Let A be as above. We denote by A(�), Ah
� the localization of A at p and

the henselization of A(�) at p, respectively. Then, there holds the following isomorphisms :

H2
� (A(�), Z /p) ∼= H2

� (A
h
� , Z /p) ∼= H2

� (A�, Z /p), (7.66)

This lemma is important, so we give the full detail of the proof.

Proof of Lemma 7.12. The first isomorphism is nothing but the excision in the étale

cohomology. And for the proof of the second isomorphism, we proceed as follows. By

using the localization sequence

0 → H1
et(A

h
� , Z /p) → H1

et(K
h
� , Z /p) → H2

� (A
h
� , Z /p) → 0, (7.67)

we get the isomorphism

H2
� (A

h
� , Z /p) ∼= Homc ( Gal((Kh

� )ab /(Kh
� )ur), Z /p), (7.68)

where (Kh
� )ur denotes the maximal unramified extension of Kh

� . In the same way, we get

the following isomorphism:

H2
� (A�, Z /p) ∼= Homc (Gal(Kab

� /Kur
� ), Z /p), (7.69)

where Kur
� denotes the maximal unramified extension of K�. But, Artin’s approximation

theorem in [A] provides the isomorphism

Gal(Kh
� /Kh

� ) ∼= Gal(K� /K�). (7.70)

Now, the second isomorphism in (7.66) is immediately follows from (7.68) and (7.69)

by (7.70).

By this lemma, the above exact sequence (7.65) becomes as follows:

0 → Z /p → H1
et(K, Z /p) →

⊕
�∈P 1

A

H2
� (A�, Z /p) →

⊕
�∈P 2

A

Hom(KM
3 (A�), Z /p).

(7.71)
39



We state another important proposition.

Proposition 7.13. There exists the complex

0→ Z /p→ Homc(CK/p, Z /p)→
⊕
�∈P 1

A

Hom(F 0(CK�
/p), Z /p) →

⊕
�∈P 2

A

(KM
3 (A�) /p)∗

(7.72)

which is exact at Z /p and Homc(CK/p, Z /p).

Before the proof, we remark that this proposition combined with the exact sequence (7.71)

provides the key diagram (7.94) below by which we can accomplish the proof of Theo-

rem 7.1.

Proof of Proposition 7.13. For the proof, we use the group F 0CK in Definition 5.

We first prove the exactness of

F 0CK → CK → Z→ 0. (7.73)

By definition of F 0CK in (4.11), it is sufficient to prove the exactness

F 0CK(M)→ CK(M)→ Z→ 0 (7.74)

for each modulus M . But this sequence is rewritten as

Coker

⊕
�∈P 1

A

KM
3 (K�)→

⊕
�∈P 2

A

F 0C�(M)

→ Coker

⊕
�∈P 1

A

KM
3 (K�)→

⊕
�∈P 2

A

C�(M)

→Z.

(7.75)

For each m ∈ P 2
A, we have the canonical isomorphism

Coker
(
F 0C�(M) → C�(M)

) ∼= κ(m)∗, (7.76)

which immediately follows from Theorem 4.6 (1) and the exact Gersten-Quillen complex

KM
3 (K�)→

⊕
��∈P 1

�

KM
2 (κ(p�)) → κ(m)∗ → 0. (7.77)

(we assume the exactness of the complex (7.77) if the characteristic of K� is 2 (cf. [Q], [So])).

Hence, the proof of the exactness of (7.75) is reduced to that of the exactness of⊕
�∈P 1

A

KM
3 (K�) →

⊕
�∈P 2

A

κ(m)∗ → Z. (7.78)

Further, again by Theorem 4.6 (1), we see that each map KM
3 (K�) →

⊕
�∈P 2

A
κ(m)∗

factors as KM
3 (K�)

∂→ KM
2 ( κ(p) ) → ⊕

�∈P 2
A

κ(m)∗, where ∂ is the boundary map in
40



algebraic K-theory. Thus, for the proof of exactness of the sequence in (7.78), we have

only to prove the exactness of⊕
�∈P 1

A

KM
2 ( κ(p) ) →

⊕
�∈P 2

A

κ(m)∗ → Z. (7.79)

But this is nothing but the Gersten-Quillen theorem for A, hence is exact (cf. [Q]). Thus

we proved the exactness of (7.73).

By putting
⊗
� Z /p to (7.73), we get the exact sequence

F 0CK /p → CK /p → Z /p → 0. (7.80)

By taking the Pontryagin dual of this sequence, we get the exact sequence

0→ Z /p→ Homc(CK /p, Z /p)→ Homc(F
0CK /p, Z /p). (7.81)

Thus the proof of the exactness of the complex (7.72) at Homc(CK /p, Z /p) in Proposi-

tion 7.13 is obtained from (7.81) and the following lemma.

Lemma 7.14. For each height one prime p ∈ P 1
A, there exists the unique homomorphism

Ψ� : F 0CK�
→ F 0CK , (7.82)

which induces the injective homomorphism

Ψ∗ : Homc(F
0CK/p, Z/p) ↪→

⊕
�∈P 1

A

Hom(F 0(CK�
/p), Z/p). (7.83)

Proof. From the definition of F 0CK�
/p in (6.20), for the existence of Ψ�, we have only

to construct a homomorphism

Ψ�,� : U 0KM
3 (K�,�) → F 0CK (7.84)

for each (p, q). Now, we have the following useful theorem by Nagata.

Theorem 7.15 (Nagata, cf. [Na], cor. 37.6, 9, 10). For an arbitrary complete integral lo-

cal ring R, there exists a one-to-one correspondence between maximal ideals of the nor-

malization R̃ of R and prime ideals of zero of the completion R̂ of R.

From this, we get the following dictionary :

For each height one prime q of Ã /u�, there exists the unique prime p� ∈ P 1
� for some

m ∈ P 2
A such that p� �→ p. (7.85)
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Moreover, the above theorem by Nagata directly implies that if we take the complete

discrete valuation ring (Ã /u�)� : = lim←− i (Ã /u�)(�) /qi as before, we have an isomorphism

ζ� : Frac((Ã /u�)�)
∼= κ(p�), (7.86)

where Frac means the fractional field. So, it turns out that both K�,� and K�,�� are

complete discrete valuation fields with isomorphic residue fields. Thus, we can construct

an isomorphism

ζ�,� : K�,�
∼= K�,�� (7.87)

which induces an isomorphism

Ψ�,� : U 0KM
3 (K�,�) ∼= U 0KM

3 (K�,��). (7.88)

From this map, combined with the natural map U 0KM
3 (K�,��) → F 0CK , we get the

desired map Ψ�,� in (7.84) which at the same time also gives us the map Ψ� in (7.82).

Now, we show the injectivity (7.83). Let χ ∈ Homc(F
0CK/p, Z/p) be an arbitrary

element. Then, it is easily seen that χ annihilates

IK(Mχ) := Ker(F 0CK → F 0CK(Mχ)) (7.89)

for some modulus Mχ by the map F 0CK → F 0CK/p
χ−→ Z/p. Thus, χ belongs to the

group Homc(F
0CK/IK(Mχ), Z/p). But we have the surjective homomorphism

F 0DK � F 0CK /IK(Mχ) (⊂ F 0CK(Mχ)) (7.90)

from (4.13).

Further, by considering two definitions (4.8), (6.22), we get the surjective homomor-

phism (∏
�∈P 1

A

F 0(CK�
/p)

)
� F 0DK /p. (7.91)

From (7.90), (7.91), we get the surjective homomorphism

ΨMχ :

(∏
�∈P 1

A

F 0(CK�
/p)

)
� ( F 0CK /Iχ(K) ) /p. (7.92)

By taking the Pontryagin dual of the surjection (7.92) considering the important fact that

groups in the both hands side of (7.92) have the discrete topology (the discreteness of the

right hand side comes from that of CK(Mχ)), we get the injective homomorphism

Ψ∗
Mχ

: Hom(F 0CK /Iχ(K), Z /p) ↪→
⊕
�∈P 1

A

Hom(F 0(CK�
/p), Z /p). (7.93)
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As χ is an arbitrary element of Homc(F
0CK /p, Z /p), the desired injectivity (7.82) is

established.

From the exact sequences (7.65), (7.72), we get the following commutative diagram:

0→Z /p→ H1
Gal(K, Z /p) −→ ⊕

�
H2

� (A�, Z /p) −→⊕
�

(KM
3 (A�) /p)∗

‖
�ρK

∗ /p

�� ρ∗K�/p ‖
0→Z /p→Homc(CK/p, Z /p)

Ψ∗→⊕
�

Hom(F 0(CK�
/p), Z /p)→⊕

�
(KM

3 (A�) /p)∗,

(7.94)

where (KM
3 (A�) /p)∗ denotes Hom(KM

3 (A�) /p, Z /p) and Ψ∗ was defined at (7.83). The

bottom row is exact at Z/p and at Homc(CK/p, Z/p) by Proposition 7.13.

Now, we prove the bijectivity of ρK
∗/p by using the diagram (7.94). First, the injectivity

of ρK
∗/p immediately follows from that of each ρ∗

K�
/p proved in Theorem 6.4. Next, we

show the surjectivity of ρK
∗/p, which is the most hard task.

By the diagram chase in (7.94), the surjectivity of ρ∗
K/p is immediately obtained from

Claim 7.16. For each height one prime p ∈ P 1
A, there holds the following inclusion :

Im

(
H2

� (A�, Z/p)
ρ∗Kλ→ Hom(F 0CKλ

, Z/p)

)
⊃ Im

(
Homc(CK , Z/p)

Ψ∗
λ→ Hom(F 0CKλ

, Z/p)

)
,

(7.95)

where Im means ‘ image’.

It is easily seen that this claim immediately implies the desired surjectivity of ρ∗
K/p.

Proof of Claim 7.16. For an arbitrary continuous character χ ∈ Homc(CK , Z /p), we

show that the induced homomorphism

χ ◦Ψλ : F 0CKλ

Ψλ→ CK
χ→ Z /p (7.96)

lies in Image

(
H2

� (K�, Z /p)
ρKλ

∗
→ Z /p

)
for each height one prime λ ∈ P 1

A.

First, take an arbitrary λ ∈ P 1
A and χ ∈ Homc(CK , Z /p). We know that the continuous

homomorphism χ annihilates the subgroup CK(Mχ) for some modulus Mχ, and we write

this modulus Mχ as

Mχ =
∑
�∈P 1

A

n� (p). (7.97)
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We define the support of M and the finite subset (possibly empty) P 2
A (λ,M) ⊂ P 2

A ,

respectively as follows:

supp.M : = {p ∈ P 1
A | n� �= 0 }, (7.98)

P 2
A (λ,M) : = {m ∈ P 2

A | m ⊃ λ and m ⊃ pi, for some pi (�= λ) ∈ supp.M }.
(7.99)

From the fact that χ annihilates the subgroup CK(Mχ) (⊂ CK), it follows directly that

the subgroup F nλCKλ
(⊂ F 0CKλ

, nλ is the coefficient of λ in (7.97)) is annihilated by the

composite map χ ◦Ψλ. Besides, the next lemma holds.

Lemma 7.17. The composite homomorphism

χ ◦Ψλ : F 0CKλ
→ Z /p

annihilates the subgroup Λχ of F 0CKλ
defined by

Λχ : = Image

 ∏
(λ�,�)∈P

KM
3 (A�[

1

uλ�

])

⊕
 ⊕

(λ�,�)∈Q

Vλ�

 ��
Ψ−1

λ,�−→ F 0CKλ

 ,

where Ψλ,� is an isomorphism defined in (7.88) (put p = λ in it),P ,Q are defined by

P = {λ� ∈ P 1
�,m ∈ P 2

A |λ� �→ λ, m /∈ P 2
A(λ,M) }

Q = {λ� ∈ P 1
�,m ∈ P 2

A |λ� �→ λ, m ∈ P 2
A(λ,M) }

and each group Vλ� (⊂ KM
3 (K�,��) ) is defined by

Vλ� = Ker

KM
3 (K�)

diagonal−→
⊕

��∈P 1
�, �� �=λ�

(
KM

3 (K�,��) /UM(��) KM
3 (K�,��)

) .

Proof. This follows immediately from the reciprocity law for each KM
3 (K�) in CK proved

in Proposition 7.3 (one can argue quite similarly as in the proof of Sub-lemma 4.3).

Now, we return to the proof of Claim 7.16. From Lemma 7.17 and the fact that F nλCKλ

is annihilated by χ ◦Ψλ, if we put

Ξ: = F 0CKλ
/(Λχ, F nλCKλ

), (7.100)

the map χ ◦ Ψλ is considered as a character χ ◦ Ψλ : Ξ → Z /p. We define the filtration

on the group Ξ by

F n Ξ: = Image (F nCKλ
→ Ξ) , F n(Ξ/p) : = Image (F nΞ→ Ξ/p)
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We also put

Grn(Ξ/p) := F n(Ξ/p)/F n+1(Ξ/p). (7.101)

We remark that Gri(Ξ/p) is the discrete module. The following calculation is the key for

the proof of Claim 7.16.

Proposition 7.18. There exist surjective homomorphisms

1.

( ⊕
(λ�,�)∈P

(Ω2
κ(λ�)/Ω2

(A/uλ�))

)
⊕
( ⊕

(λ�,�)∈Q

(Ω2
κ(λ�)/cλ�Ω2

(A/uλ�))

)
Ω2

κ(λ)

� Grn (Ξ /p) (p � n)

2.( ⊕
(λ�,�)∈P

(Ω1
κ(λ�)/(Ω1

κ(λ�),d=0, Ω
1
(A/uλ�)))

)
⊕
( ⊕

(λ�,�)∈Q

(Ω1
κ(λ�)/(Ω1

κ(λ�),d=0, c
′
λ�

Ω1
(A/uλ�)))

)
(Ω1

κ(λ)/Ω1
κ(λ),d=0)

� Grn (Ξ /p) (p | n),

where Ω1
∗, d=0 denotes the set of d-closed 1-forms of ∗ and P ,Q are the same ones defined

in Lemma 7.17.

Proof. Both groups KM
3 (A�[ 1

uλ�
])/p, Vλ�/p have natural filtrations F n(KM

3 (A�[ 1
uλ�

])/p)

F n(Vλ�/p) induced from UnKM
3 (K�,λ�)/p (those are subgroups of KM

3 (K�,λ�)/p ). We

define

Grn (KM
3 (A�[

1

uλ�

])/p) : = F n(KM
3 (A�[

1

uλ�

])/p)/F n+1(KM
3 (A�[

1

uλ�

])/p),

Grn(Vλ�/p) : = F n(Vλ�/p)/F n+1(Vλ�/p).

We calculate these gr-quotients explicitly as

Ω2
κ(λ�)/Ω2

(A�/uλ� )
∼→Grn(KM

3 (A�[
1

uλ�

])/p) (p � n)

Ω1
κ(λ�)/(Ω1

κ(λ�),d=0, Ω1
(A�/uλ� ) )

∼→Grn(KM
3 (A�[

1

uλ�

])/p) (p | n)

Ω2
κ(λ�)/cλ�Ω2

(A�/uλ� )
∼→Grn(Vλ�/p) (p � n)

Ω1
κ(λ�)/(Ω1

κ(λ�),d=0, c′λ� Ω1
(A�/uλ�))

∼→Grn(Vλ�/p) (p | n),

(7.102)
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where cλ� , c′λ� are certain constants in κ(λ�). These isomorphisms are easily calculated

from Theorem 4.6. Now, we go as follows. First for each n ≥ 1, we have the obvious (from

definition) surjection

Coker

(
UnKM

3 (Kλ)/p
diagonal−→

∏′

�∈P 1
�A /u�

(
(UnKM

3 (K�,�)/p) /(UnλKM
3 (K�,�)/p)

))
� (F nCKλ

/p)/F nλ(CKλ
/p).

By using the correspondence (7.88), this surjection is rewritten as

Coker

UnKM
3 (Kλ)/p

diagonal−→
∏′

(λ�,�)∈S

(
(UnKM

3 (K�,λ�)/p)/(UnλKM
3 (Kλ,λ�)/p)

)
� (F nCKλ

/p)/F nλ(CKλ
/p),

. (7.103)

where S : = {λ� ∈ P 1
�,m ∈ P 2

A |λ� �→ λ}. Thus, by considering the definition of Ξ with a

little argument, we get the following surjection from (7.103) :

Coker

UnKM
3 (Kλ)/p→


∏

(λ�,�)∈SUnKM
3 (Kλ�,�)/p( ∏

(λ�,�)∈P

F n(KM
3 (A�[ 1

uλ�
])/p)

)
⊕
( ⊕

(λ�,�)∈Q

F n(Vλ�/p)

)

�F n(Ξ/p).

(7.104)

From (7.104) by using we get the following obvious surjection

Coker

Grn(KM
3 (Kλ)/p)→


∏′

(λ�,�)∈SGrn(KM
3 (Kλ�,�)/p)( ∏

(λ�,�)∈P

Grn(KM
3 (A�[ 1

uλ�
]) /p)

)
⊕
( ⊕

(λ�,�)∈Q

Grn(Vλ�/p)

)



� Grn(Ξ/p).

(7.105)

By replacing each term in (7.105) with results (7.102), the surjective homomorphisms in

Proposition 7.18 follow immediately.

We recall that the canonical homomorphism

GrnH1
Gal(Kλ, Z/p) → Hom(Grn(CKλ

/p), Z/p).
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was defined in (6.32). As there exists a natural surjective homomorphism

Grn(CKλ
/p) � Grn(Ξ /p) (7.106)

between discrete groups, we get the canonical injection

Hom(Grn(Ξ /p), Z/p) ↪→ Hom(Grn(CKλ
/p), Z/p). (7.107)

On this subgroup Hom(Grn(Ξ /p), Z/p), we have the following theorem.

Theorem 7.19. There exists the surjective homomorphism

ρ∗
Kλ

: GrnH
1
Gal(Kλ, Z/p) � Hom (Grn(Ξ /p), Z/p) (7.108)

for an arbitrary positive natural number n ≥ 1.

Proof. For brevity, we treats only the case p � n (the case p | n is proved quite similarly).

We consider the surjective homomorphism

(
∏

(λ�,�)∈S

Ω2
κ(λ�))/Ω2

κ(λ) �

( ⊕
(λ�,�)∈P

(Ω2
κ(λ�)/Ω2

(A/uλ�))

)
⊕
( ⊕

(λ�,�)∈Q

(Ω2
κ(λ�)/cλ�Ω2

(A/uλ�))

)
Ω2

κ(λ)

.

(7.109)

Now, the surjection 1. in Proposition 7.18 and the surjection (7.109) provide the surjection

π : (
∏

(λ�,�)∈S

Ω2
κ(λ�) )/Ω2

κ(λ) � Grn(Ξ /p). (7.110)

Further, (7.110) shows that any character χ : Grn(Ξ /p) → Z/p induces the continuous

character

χ ◦ π : (
∏

(λ�,�)∈S

Ω2
κ(λ�) )/Ω2

κ(λ) → Z/p (7.111)

in the sense of duality Theorem 5.4. Thus, by applying Theorem 5.4 with F = κ(λ),

we see that the character χ ◦ π in (7.111) comes from κ(λ). But Lemma 6.2 in Section

4 provides an isomorphism GrnH
1
Gal(Kλ, Z/p) ∼= κ(λ). Thus, we see that χ ◦ π exactly

comes from GrnH
1
Gal(Kλ, Z/p) which is what is wanted.

Now, by using Theorem 7.19, we can prove Claim 7.16. We prove this, by downward

induction, which is the original method by Kato in his proof of higher dimensional lo-

cal class field theory [Ka1]. Our task is to show that the map χ ◦ Ψλ, which lives in

Hom(F 0CKλ
/p, Z/p), actually lies in the image of the homomorphism

ρ∗
Kλ

: H2
λ(Aλ, Z /p)→ Hom(F 0CKλ

, Z /p). (7.112)
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First, we see that χ ◦Ψλ annihilates F nλ (Ξ /p) (nλ is the coefficient of λ in the modulus

Mχ, see (7.97)). Thus, when it is restricted on F nλ−1 (Ξ /p), it induces the character

χ ◦Ψλ : Grnλ−1(Ξ /p) → Z/p. (7.113)

But Theorem 7.19 tells us that there exists a some element χλ,nλ−1 ∈ Grnλ−1H
1
Gal(Kλ, Z/p)

which coincides with the above character χ ◦ Ψλ. Thus, if we fix one lift χ̃λ,nλ−1 of the

character χλ,nλ−1 in Fnλ−1H
1
Gal(Kλ, Z/p), it follows that χ ◦Ψλ − χ̃λ,nλ−1 annihilates the

subgroup F nλ−1 (Ξ/p). So by restriction to F nλ−2 (Ξ/p), χ ◦ Ψλ − χ̃λ,nλ−1 can be con-

sidered as an element of Hom(Grnλ−2(Ξ/p), Z/p). By taking the same procedure and

arguing similarly as above, we obtain a character χ̃λ,nλ−2 ∈ Fnλ−2H
1
Gal(Kλ, Z/p) such

that χ ◦ Ψλ − χ̃λ,nλ−1 − χ̃λ,nλ−2 annihilates F nλ−2 (Ξ/p). Continuing like this, we finally

reach an element χ̃λ,0 ∈ F0H
1
Gal(Kλ, Z/p) such that χ◦Ψλ− χ̃λ,nλ−1− χ̃λ,nλ−2− · · ·− χ̃λ,0

annihilates the subgroup F 0(Ξ/p) = Ξ/p which implies that

Fnλ−1H
1
Gal(Kλ, Z/p) � χ̃λ,nλ−1 + χ̃λ,nλ−2 + · · ·+ χ̃λ,0 = χ ◦Ψλ

(7.114)

as characters of Ξ/p. But as F0H
1
Gal(Kλ, Z/p) annihilates F 0CKλ

/p, hence Ξ/p, we find

that

χ̃λ,nλ−1 + χ̃λ,nλ−2 + · · ·+ χ̃λ,0 ∈ Fnλ−1H
1
Gal(Kλ, Z/p)/F0H

1
Gal(Kλ, Z/p).

(7.115)

Together with (7.114) and (7.115), the isomorphism

F∞H1
Gal(Kλ, Z/p)/F0H

1
Gal(Kλ, Z/p) ∼= H2

λ(Aλ, Zp)

in (6.25) shows that χ ◦ Ψλ(∈ Fnλ−1H
1
Gal(Kλ, Z/p)/F0H

1
Gal(Kλ, Z/p)) actually lies in

H2
λ(Aλ, Zp). Thus, the proof of Claim 7.16 is finished, hence now, Theorem 7.1 is proved

rigorously.

8. Proof of the existence theorem ( prime to p parts )

In this section, we prove the bijectivity of the dual reciprocity map ρ∗
K modulo arbitrary

natural number m prime to the characteristic of K. Though we use some deep results in

algebraic K-Theory, the proof of the existence theorem for prime to p parts is much easier

than that for p primary parts accomplished in the previous section. The key tools in this

section are Saito’s Hasse Principle for two-dimensional normal complete local rings which

are not necessarily regular, and the Bloch-Milnor-Kato Conjecture. Our purpose in this

section is to prove the following theorem:
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Theorem 8.1. Let A be an arbitrary positive characteristic three-dimensional complete

regular local ring with finite residue field. Then, under the Bloch-Milnor-Kato conjecture

for K (see Conjecture 1), there exists the canonical dual reciprocity isomorphism

ρ∗
K : H1

Gal(K, Ql /Zl)
∼→ Homc(CK , Ql /Zl) (8.1)

for an arbitrary prime l �= p, where Homc denotes the set of all continuous homomorphisms

of finite order.

By combining Theorem 7.1 and Theorem 8.1, we get the class field theory for K.

Theorem 8.2. Let A be an arbitrary positive odd characteristic three-dimensional com-

plete regular local ring with finite residue field. Then, under the Bloch-Milnor-Kato conjec-

ture for K (see loc.cit.), there exists the following canonical dual reciprocity isomorphism :

ρ∗
K : H1

Gal(K, Q /Z)
∼→ Homc(CK , Q /Z), (8.2)

where Homc(CK , Q /Z) means the set of all continuous homomorphisms of finite order

from CK to Q /Z.

Remark 8. As stated in Remark 7, even for the case of ch(K) = 2, we have the same

result in Theorem 8.2 if we may assume the exactness of the Gersten-Quillen complex in

Milnor K-theory.

We give some corollaries.

Corollary 8.3. Let A and K be as above. Then under the same assumption in the above

Theorem 8.2, the canonical reciprocity map

ρK : CK → Gal(Kab /K) (8.3)

has a dense image in Gal(Kab /K) by the Krull topology.

Proof. This follows immediately from the injectivity of (8.2) by considering dual.

Next, we give explicit isomorphisms for certain finite abelian extensions.

Corollary 8.4. Let A, K and the assumptions be as in Theorem 8.2. Then, for an

arbitrary finite abelian extension L /K such that the integral closure of A in L is regular,

there exists the following canonical reciprocity isomorphism :

ρK : CK /NL /K(CL)
∼→ Gal(L /K). (8.4)
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Proof. Consider the following commutative diagram:

0 → Homc(Gal(L /K), Q /Z)→ H1
Gal(K, Q /Z) → H1

Gal(L, Q /Z) →0� �∼=
�∼=

0 →Homc(CK /NL /K(CL), Q /Z)→Homc(CK , Q /Z)→Homc(CL, Q /Z).

(8.5)

From this, we get the bijectivity of the extreme left vertical arrow. Corollary follows by

taking dual of the isomorphism Homc(Gal(L /K), Q /Z)
∼→ Homc(CK /NL /K(CL), Q /Z)

proved just now noticing that the group CK /NL /K(CL) is discrete because NL /K(CL)

contains Ker
(
CK → CK(M)

)
for some modulus M (this follows from [Ka1], II ).

Remark 9. For general abelian extension L /K that does not satisfy the above condition

in Corollary 8.4, there would occur the inequality |CK /NL /K(CL)| > [L : K]. Indeed

in the case of class field theory for two-dimensional complete regular local rings, such

examples exist ! (cf. [Sh]).

Proof of Theorem 8.1. For verifying the isomorphism (8.1), we have only to prove the

following isomorphism:

ρ∗
K /l : H1

Gal(K, Z /l)
∼→ Homc(CK , Z /l) (8.6)

for an arbitrary prime l �= p (the isomorphism of the reciprocity map ρ∗
K /lm for m > 1

is also proved in the same way to the case m = 1 without any essential change).

We begin the proof of the isomorphism (8.6). As l is prime to the characteristic K, the

group CK /l becomes discrete. By norm arguments, we may assume µl ∈ K, where µl

denotes the group of l-th power of unity. By Kummer theory, we have the isomorphism

H1
Gal(K, µl) ∼= K∗/K∗l. (8.7)

Moreover, as A is a unique factorial domain, we have the factorization

K∗/K∗l ∼= µl ×
⊕
�∈P 1

A

u
� /l
� , (8.8)

where µl comes from the isomorphism A∗/A∗l ∼= µl and u� denotes the regular parameter

of a prime p. Then, there exists the following exact sequences :

F 0CK /l →CK /l → Z /l → 0, (8.9)

0 → µl → H1
Gal(K, µl) →

⊕
�∈P 1

A

Z /l → 0, (8.10)
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where the exactness of (8.9) is obtained by putting
⊗
� Z /l to the exact sequence (7.73).

And the exactness of (8.10) is obvious from (8.7) and (8.8). Now, we have the key theorem.

Theorem 8.5. There exists the canonical isomorphism

F 0CK /l ∼=
∏

�∈P 1
A

µl. (8.11)

The proof of this theorem is given below, and we continue to prove Theorem 8.1 as-

suming Theorem 8.5. By (8.11), we can rewrite (8.9) as∏
�∈P 1

A

µl → CK /l → Z /l → 0. (8.12)

By (8.10) and the Pontryagin dual of (8.6) tensored with µl, we get the following com-

mutative diagram:

0 −→ µl −→ H1
Gal(K, µl) −→

⊕
�∈P 1

A
Z /l → 0�∼=

�ρ∗K /l

�∼=

0 → Homc(Z /l, µl)→Homc(CK , µl) → Homc(
∏

�∈P 1
A

Z /l, µl).

(8.13)

The bijectivity of the middle vertical arrow, which is nothing but the reciprocity map

ρ∗
K /l, follows immediately from this diagram.

Now, we begin to prove Theorem 8.5.

Proof of Theorem 8.5. We analyze the group F 0CK /l. Recall that by using

F 0CK(M) : = Image

 ⊕
�∈P 2

A

F 0C�(M)→ CK(M)

 ,

the group F 0CK was defined in (4.11) as

F 0CK : = lim←−M F 0CK(M).

But it is easily checked by using Theorem 4.6 that we have an isomorphism

F 0CK(M) ∼= Coker

⊕
�∈P 1

A

U 0KM
3 (K�)→

⊕
�∈P 2

A

F 0C�(M)

 .

(8.14)

We prove Theorem 8.5 by the following two results.

Proposition 8.6. There holds the isomorphism

F 0C�(M) /l ∼=
⊕

��∈P 1
�

KM
3 ( κ(p�) )/l. (8.15)

for an arbitrary modulus M .
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Theorem 8.7. For each p ∈ P 1
A, we have the isomorphism

Coker

KM
3 (K�)/l →

⊕
��∈P 1

A�
,�� 
→�

�∈P 2
A

KM
3 (κ(p�)) /l

 ∼= µl. (8.16)

From Proposition 8.6 and Theorem 8.7, the isomorphism (8.14) shows

F 0CK(M)/l ∼=
∏
�∈P 1

A

µl

for an arbitrary modulus M . By taking the inverse limit of all M , we have

F 0CK/l ∼=
∏
�∈P 1

A

µl

which is nothing but the desired isomorphism (8.11).

Proof of Proposition 8.6. From (4.10), F 0C�(M)/l is rewritten as

F 0C�(M)/l : = Image
(⊕

��∈P 1
�

U 0KM
3 (K�,��)/l→ C�(M)/l

)
.

(8.17)

We have a lemma.

Lemma 8.8. We have the following isomorphism :

U 0KM
3 (K�,��)/l ∼= KM

3 (κ(p�))/l. (8.18)

Proof. By Theorem 4.6 (1), we have the exact sequence

U 1KM
3 (K�,��) → U 0KM

3 (K�,��) → KM
3 ( κ(p�) ) → 0. (8.19)

By putting
⊗
� Z /l to (8.19), we get

U 1KM
3 (K�,��)/l → U 0KM

3 (K�,��)/l → KM
3 (κ(p�))/l→ 0. (8.20)

But as KM
3 (K�,��) is l-divisible, we have U 1KM

3 (K�,��)/l = 0. From this, by consider-

ing (8.20), we have the desired isomorphism (8.18).

By Lemma 8.8 and the definition of C�(M) stated at (4.2), (8.17) is rewritten as

F 0C�(M)/l ∼= Coker
(
KM

3 (K�)/l
diagonal−→

⊕
��∈P 1

�

KM
3 (κ(p�))/l

)
.

(8.21)

We have the following claim.

Claim 8.9. The diagonal map in (8.21) is the zero map.
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Before the proof, we see that Proposition 8.6 follows immediately from this claim.

Proof of Claim 8.9. As κ(p�) is two-dimensional local field, it has the valuation ring

Oκ(��). If we denote by k�� the residue field of Oκ(��), Theorem 4.6 (1) provides the

following exact sequence :

U 0KM
3 (κ(p�))/l→ KM

3 (κ(p�))/l→ KM
2 (k��)/l→ 0. (8.22)

Lemma 8.10. We have the vanishing

U 0KM
3 ( κ(p�) )/l = 0. (8.23)

Proof. By applying Theorem 4.6 (1) to κ(p�), we obtain the exact sequence

U 1KM
3 ( κ(p�) ) → U 0KM

3 ( κ(p�) ) → KM
3 (k��) → 0. (8.24)

Putting
⊗
� Z /l to (8.24), we get the following exact sequence :

U 1KM
3 ( κ(p�) )/l → U 0KM

3 ( κ(p�) )/l → KM
3 (k��)/l → 0. (8.25)

For one-dimensional local field k�� , Kato proved KM
3 (k��)/l = 0 in [Ka2]. Thus from (8.25),

together with U 1KM
3 ( κ(p�) )/l = 0, we get the desired vanishing.

So, combining (8.22) and (8.23), we get the isomorphism

KM
3 ( κ(p�) )/l ∼= KM

2 ( k�� ) /l . (8.26)

We use the following result of Moore.

Theorem 8.11 (Moore, [Mo]). For an arbitrary one-dimensional local field F , there

exists the isomorphism

KM
2 (F ) ∼= V ⊕ µ(F ), (8.27)

where V is the uniquely divisible subgroup of KM
2 (F ) and µ(F ) denotes the group of all

powers of unity contained in F .

By putting
⊗
� µl to the isomorphism (8.27) with F = k�� , we get the isomorphism

KM
2 (k��) /l ∼= µl, (8.28)

where we used the fact that µl ∈ k�� . Further, as κ(m)∗ /l ∼= µl, it also holds that

KM
3 (κ(p�))/l ∼= κ(m)∗/l. (8.29)
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Now, from the Gersten-Quillen complex (we do not need its exactness)

KM
3 (K�)/l →

⊕
��∈P 1

�

KM
2 (κ(p�)) /l → κ(m)∗/l → 0, (8.30)

we see KM
3 (K�)/l → κ(m)∗/l is the zero map, hence by considering the isomorphism (8.29),

we see that the map KM
3 (K�)/l → KM

3 ( κ(p�) )/l is also zero map. Thus, Claim 8.9 is

proved, hence Proposition 8.6 is proved completely.

Proof of Theorem 8.7. By the correspondence (7.85) and the isomorphism κ(p�) ∼=
Frac((Ã/u�)�) stated in (7.86), we can rewrite (8.16) as

Coker

KM
3 (K�)/l →

⊕
�∈P 1
�A /u�

KM
3 (Frac((Ã/u�)�))/l

 . (8.31)

By using Theorem 4.6 (1) repeatedly, we see that the group (8.31) is isomorphic to

Coker

KM
3 ( κ(p) )/l →

⊕
�∈P 1
�A /u�

KM
2 ( κ(q) )/l

 . (8.32)

Thus our task is to prove that the group (8.32) is isomorphic to µl. Now, we can use the

following cohomological Hasse principle by S. Saito :

Theorem 8.12 (S. Saito, [Sa1]). For an arbitrary two-dimensional excellent normal com-

plete local ring R with a finite residue field, and an arbitrary natural number m prime to

the characteristic of R, the following sequence is exact :

0 → (Z/m)rR → H3
Gal(F, µ⊗2

m ) →
⊕
�∈P 1

R

H2
Gal(κ(q), µm) → Z/m → 0,

(8.33)

where F denotes the fractional field of R, P 1
R denotes the set of all height one primes of

R, and rR is the rank of R (for details, we refer the original paper).

As µl ∈ R, by putting
⊗
� µl to (8.33) with m = l, we get the following short exact

sequence :

H3
et(F, µ⊗3

l ) →
⊕
�∈P 1

R

H2
et(κ(q), µ⊗2

l ) → µl → 0 (8.34)

Now, we have isomorphisms KM
3 (κ(p))/l ∼= H3

Gal(κ(p), µ⊗3
l ) by the Bloch-Milnor-Kato

conjecture, KM
2 (κ(q))/l ∼= H2

Gal(κ(q), µ⊗2
l ) by Merkur’ev-Suslin, and κ(mR)∗/l ∼= µl by

Kummer theory and assumption.
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By using these isomorphisms, if we apply the above theorem of Saito with R = Ã /u�,

the exact sequence (8.34) is rewritten as

KM
3 (κ(p))/l →

⊕
�∈P 1
�A /u�

KM
2 (κ(q))/l → µl → 0

which immediately shows that the group (8.32) is isomorphic to µl. Thus, Theorem 8.7

is proved. Finally, the proof of Theorem 8.1 is now completely finished.
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