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Introduction

The logarithmic absolute height function is a fundamental tool when

we investigate the distribution of rational points on a projective variety

V over the rational number field Q.

Let Q̄ be an algebraic closure of Q. A (logarithmic absolute) height

function is a real-valued function on the set V (Q̄) = Hom(Spec Q̄, V ) of

Q̄-valued points on the variety V . It is defined up to a bounded function

for the pair V and a line bundle L on V . We denote one of the represen-

tatives by hV (L, ·), or simply, by h(L, ·). The set of rational points, or

Q-valued points, on V is denoted by V (Q). A standard height function

on the N -dimensional projective space PN is given on PN (Q) by

h((1 : x1 : . . . : xN)) =
∑
v

− log
1

max{1, |x1|v, . . . , |xN |v} , xi ∈ Q,

where v runs through the set of rational prime numbers and the infinite

prime, and | · |v is the standard absolute value on Q defined by v. This

is a height function attached to the hyperplane section sheaf O(1) on

PN . The function 1/max{1, |x1|v, . . . , |xN |v} is a kind of local distance

from the point (1 : x1 : . . . : xN ) to the hyperplane {X0 = 0} at infinity.

Schanuel [19] has shown for PN and the sheaf O(1) on PN

#{P ∈ PN (Q) | h(O(1), P ) < H} =
2N

ζ(N + 1)
e(N+1)H +O(1)HeNH ,
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H ∈ R. Here # is the cardinality function of sets, ζ(z) is the Riemann

zeta function, and O(1) is a bounded function of a suitable variable (H

in this case). Given another projective variety W over Q and a morphism

φ : V →W , we have the inverse image φ∗L of L under φ and

hV (φ∗L, P ) = hW (L, φP ) +O(1), P ∈ V (Q̄).(0.1)

Taking an embedding ι : V → PN , we obtain

#{P ∈ V (Q) | hV (ι∗O(1), P ) < H} < const. e(N+1)H , H ∈ R.

A height function is additive with respect to the tensor operation on

the group PicV of line bundles on the projective variety V . For L and

M∈ PicV , we have

h(L ⊗M, P ) = h(L, P ) + h(M, P ) +O(1), P ∈ V (Q̄).(0.2)

Hence for an abelian variety A over Q, Theorem of the cube implies that

a height function is essentially a polynomial function of degree at most

two on the abelian group A(Q̄) of Q̄-valued points. A Néron-Tate height

function [18] is the unique representative of the class of height functions

attached to a line bundle that is in reality a function of degree at most two,

namely, a quadratic form plus a linear functional on A(Q̄). The quadratic

part of a Néron-Tate height function associated with an ample line bundle

N on A gives a non-degenerate non-negative quadratic form on the real
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vector space R⊗�A(Q̄). The Mordell-Weil theorem says the group A(Q)

of rational points on the abelian variety A is finitely generated, which was

substantially proved in [16] and [25]. Let R be the rank of A(Q). The

quadratic form attached to the ample line bundle N on A determines an

R-dimensional Euclidean space structure on R⊗� A(Q) and we see

#{P ∈ A(Q) | hA(N , P ) < H} = O(1) ·HR/2, H ∈ R

because A(Q) modulo torsion is a lattice in R⊗� A(Q).

If we start from polynomial equations with coefficients in the rational

integer ring Z, which define a quasi-projective variety over Q, we naturally

think about the integral solutions of the equations, which we call the

integral points of the variety. Progresses in the Baker theory have made

it possible to bound the heights of integral points of a curve over Q

of positive genus with several basic quantities of the curve, which the

author does not explain here. For more information, see [8], [1, p. 40],

[13], [9], etc. Silverman [21] estimated the number of integral points on

the so-called Thue curve by mapping them into the Jacobian variety of

the curve. The image of rational points on the curve under a morphism

over the base field into the Jacobian variety is a set of rational points

on the Jacobian variety, therefore it can be considered up to the torsion

subgroup as a set of lattice points of a Euclidean space as in the previous
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paragraph. He gave a lower bound for the norms of lattice points and an

explicit (but not effective) upper bound for those of integral points and

counted all the lattice points with norms smaller than the given upper

bound.

Theorem 0.1 (Silverman). Let a be a nonzero rational integer and

T (X,Y ) a homogeneous binary polynomial of degree n ≥ 3 with coef-

ficients in Z whose discriminant is not zero. There exists a constant

a0 = a0(T ) such that if a is n-th power-free and |a| > a0, then

#{(x, y) ∈ Z2 | T (x, y) = a} < exp(2n2 log n) · (8n3)r(T,a),

where r(T, a) is the rank of the group of rational points on the Jacobian

variety of the plane curve over Q defined by T (X,Y ) = a · Zn.

Mumford [17] deduced the following theorem from the property that

a height function associated with an effective divisor is bounded below

outside the support of the divisor. This point of view is fundamental in

Vojta’s proof [24] of the Mordell conjecture (see also [3]). The Jacobian

variety J of a curve C over Q of genus g > 1 is canonically provided with

a Néron-Tate height by the Poincaré sheaf and the principal polarization

attached to a theta divisor. The Néron-Tate height gives a non-degenerate

non-negative symmetric bilinear form on R ⊗� J(Q̄) × R ⊗� J(Q̄). We
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denote it by 〈·, ·〉 and the associated norm by ‖ · ‖. Let ΩC/� be the

invertible sheaf of holomorphic differentials of C over Q. We have a

canonical morphism f of C into J over Q defined by

C(Q̄) � P 	→ ΩC/� ⊗OC(−(2g − 2)P ) ∈ Pic◦(C ×� Q̄) 
 J(Q̄),

where OC(−(2g − 2)P ) is the line bundle on C one of whose rational

sections has −(2g − 2)P as the corresponding divisor, and Pic◦ is the

functor which associates the group of isomorphism classes of line bun-

dles algebraically equivalent to zero. The function ‖f(·)‖2 on C(Q̄) is a

height function attached to the invertible sheaf Ω
⊗2(2g−2)g
C/k . We call it the

canonical height function on the curve C.

Theorem 0.2 (Mumford). As a function of (P,Q) on C(Q̄)×C(Q̄) 


(C × C)(Q̄),

‖fP‖2
2g

+
‖fQ‖2

2g
− 〈fP, fQ〉

is bounded below outside of the support of the diagonal divisor ∆ on C×C

This is because the function is a height function attached to the divisor

(2g − 2)2∆.

Corollary 0.3. For distinct P and Q ∈ C(Q̄) with sufficiently large

norms, if ‖fP‖ ≤ ‖fQ‖ and 〈fP, fQ〉/‖fP‖‖fQ‖ > 3/4, then

3g

5
‖fP‖ < ‖fQ‖.
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This implies the discreteness of f(C(Q̄)) outside a big ball in the in-

finite dimensional normed real vector space R ⊗� J(Q̄). Bogomolov [2]

conjectured that the whole image of C(Q̄) under f should be discrete in

R⊗� J(Q̄). Zhang [26] gave the affirmative answer in several cases.

Suppose we want to estimate the number of rational points P on the

curve C whose canonical heights ‖f(P )‖2 are less than a given large upper

bound in the Euclidean space (R ⊗� J(Q), 〈·, ·〉). Theoretically, thanks

to Corollary 0.3, we do not have to take into consideration all the lattice

points coming from the rational points of the Jacobian variety J . The

author [5] refined Theorem 0.1 in the case where the genus is greater

than one. As before, let a be a nonzero rational integer and T (X,Y ) a

homogeneous binary polynomial of degree n > 3 with coefficients in Z

whose discriminant is not zero. The set of integral solutions

I := {(x, y) ∈ Z2 | T (x, y) = a}

is naturally regarded as a subset of the set of rational points on the plane

curve over Q

Ca : T (X,Y ) = a · Zn.

We denote by Ja the Jacobian variety of Ca.

Theorem 0.4. There exists a constant a1 = a1(T ) such that if a is
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n-th power-free and |a| > a1, then the image f(I) under the canonical

morphism f : Ca → Ja contains no torsion points of Ja and, when we

take any cone K of the Euclidean space (R ⊗� Ja(Q), 〈·, ·〉) that satisfies

〈v, w〉/‖v‖‖w‖ > 3/4 for v and w ∈ K, the number of elements of I which

are mapped into K under f : I ⊂ Ca(Q)→ R⊗� Ja(Q) is at most four.

Corollary 0.5. If a is n-th power-free and |a| > a1, then

#I = #{(x, y) ∈ Z2 | T (x, y) = a} ≤ 4 · 7r(T,a),

where r(T, a) is the rank of the group Ja(Q) of rational points on the

Jacobian variety Ja of the plane curve Ca.

Manin [12, Propositions 15 and 19] was aware that if the rank of the

Néron-Severi group of the Jacobian variety J is larger than one, then the

image of C(Q̄) in R ⊗� J(Q̄) is contained in a region near some quadric

hypersurface defined by a height function on J . When a projective variety

V is nonsingular, boundedness of a height function hV (L, ·) attached to

L ∈ PicV is equivalent to the condition that the invertible sheaf L is a

torsion sheaf (see [20, Section 3.11]). By the additive nature (0.2), when

V is regular, a Q-vector space Q ⊗� PicV can be considered as a Q-

subspace of the space of real valued functions on V (Q̄) modulo bounded

functions under the functor hV : L 	→ hV (L, ·). Property (0.1) assures the
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functoriality of hV . Applying this to the canonical morphism f : C → J ,

we see the Néron-Tate height functions associated with nonzero elements

of the kernel of the Q-linear map f∗ : Q ⊗� Pic J → Q ⊗� PicC are

polynomial functions of degree two on J(Q̄), and are bounded on C(Q̄).

Theorem 0.6 (Manin). Let r be the rank of the Néron-Severi group

NS(J) of the Jacobian variety J of the curve C. There exist r−1 quadric

hypersurfaces in R ⊗� J(Q̄) defined as the zero loci of some Néron-Tate

height functions, with Q-linearly independent defining equations such that

the image of Q̄-valued points of C under the canonical map f : C → J is

in the intersection of the neighborhoods of the hypersurfaces.

Over the algebraic closure Q̄, the Q-vector space Q⊗� NS(A×� Q̄) for

an abelian variety A over Q is identified with the subalgebra of elements

in Q ⊗� End(A ×� Q̄) fixed by an involution (called Rosati involution).

When the curve C has a nontrivial automorphism over the base field, it

induces an automorphism of the Jacobian variety J and this may yield

a nontrivial element of the endomorphism algebra Q ⊗� End(J), hence

Q ⊗� NS(J). Of an automorphism of C the author [6] constructed a

line bundle on J whose inverse image under the canonical morphism f

becomes the structure sheaf on C. The associated Néron-Tate height is

fairly explicitly described.
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Theorem 0.7. Given a nontrivial automorphism ψ of the curve C, set

D := (1C , ψ)∗∆ ∈ DivC and d := degD,

where (1C , ψ) : C → C × C is the morphism whose composition with the

first projection is the identity map of C and the composition with the

second is ψ, and ∆ is the diagonal divisor on C×C. We denote by Ψ the

isometric linear transformation of (R⊗� J(Q̄), 〈·, ·〉) induced by ψ. Then

the canonical image of C(Q̄) in R ⊗� J(Q̄) is in a neighborhood of the

quadric hypersurface given by

〈
v,

(
Ψ +

d− 2

2g

)
v +OC((2g − 2)D)⊗ Ω

⊗(−d)
C/�

〉
= 0, v ∈ R⊗� J(Q̄),

where g is the genus of C and OC((2g−2)D)⊗Ω
⊗(−d)
C/� is considered as an

element of J(Q) 
 Pic◦ C. The phrase “in a neighborhood” means that

the function of v on the left side of the equation becomes bounded on the

image of C(Q̄).

For P ∈ C(Q̄), we see by the theorem

〈f(P ), f(ψ(P ))〉
‖f(P )‖‖f(ψ(P ))‖ −→ −

d− 2

2g
as ‖f(P )‖ = ‖f(ψ(P ))‖ −→ ∞.

This leads to a new proof of a fact which is usually an application of the

Riemann-Hurwitz formula.

Corollary 0.8. The number of fixed points of a nontrivial automor-

phism of a curve over a number field of genus g > 1 is at most 2g + 2.
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If we estimate the number of integral or rational points of a curve in

its Jacobian variety, Theorem 0.7 may be useful. When deducing Corol-

lary 0.5 from Theorem 0.4, we covered the entire space R ⊗� Ja(Q) by

cones. If the Thue curve Ca has a nontrivial automorphism, we might

be able to manage with fewer number of cones. As an extreme case, we

obtain another proof of the theorem of Dem’yanenko.

Theorem 0.9 (Dem’yanenko [4, Example 1]). Let Q be the plane quar-

tic curve over Q defined by

Q : X4 + Y 4 = aZ4

and E an elliptic curve given by a Weierstrass equation

E : y2 = x3 − ax.

If the rank of E(Q) is at most one, then the canonical heights of rational

points on the curve Q are bounded by an absolute constant. Especially,

the number of rational points is finite.

Making use of the lower bound for the canonical heights on a Thue

curve, we derive the following:

Corollary 0.10 (Silverman [23, Corollary 1 to Theorem 1]). Except

a finite number of a mod (Q×)4, where Q× = Q \ {0}, the condition
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rankE(Q) ≤ 1 implies

{(x, y) ∈ Q2 | x4 + y4 = a} = ∅.

Notation and Terminology 0.11. For the objects X,Y, Z and the

morphisms f : X → Y , g : Y → Z in a category, the composition map is

denoted by g ◦ f , or simply by gf . Given another morphism h : Y → W ,

the morphism determined by the pair g and h of Y into Z×W is denoted

as (g, h). If Y = Y1 × Y2 and there exist morphisms g′ : Y1 → Z and

h′ : Y2 → W such that g = g′ ◦ p and h = h′ ◦ q, where p and q are the

respective projections of Y1 × Y2 onto the first and the second factors,

then (g, h) : Y1 × Y2 → Z ×W is abbreviated to g′ × h′.

We denote respectively by Z, Q, and R the ring of rational integers, the

field of rational numbers, and the field of real numbers. A finite extension

field of Q is called a number field.

Let k be a number field and k̄ an algebraic closure of k. For a scheme

V over k, the scheme V ×Spec k Spec k̄ over k̄ is denoted by V̄ . We denote

respectively by V (k), V (k̄), and V̄ (k̄) the set Homk(Spec k, V ) of rational

points on V , the set Homk(Spec k̄, V ) of k̄-valued points on V , and the

set Homk̄(Spec k̄, V̄ ) of k̄-valued points on V̄ . We do not distinguish the

elements of V (k) or V (k̄) 
 V̄ (k̄) from the corresponding closed points of

V or V̄ , respectively. The N -dimensional affine space over Z is denoted
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by AN . When we speak of AN , coordinate functions are specified and

are written by capital letters, for example by Y1, Y2, . . . , YN . A k or k̄-

valued point of AN is designated with the values of coordinate functions

at the point such as (y1, y2, . . . , yN ) ∈ AN(k) or AN (k̄). The same is

valid for the N -dimensional projective space PN over Z with its homoge-

neous coordinate functions specified. The schemes AN ×Spec� Spec k and

PN ×Spec� Spec k are respectively denoted as AN
k and PNk .

When V is a nonsingular variety over k or k̄, the Weil divisor group on

V is denoted by Div V . An element F of Div V determines an invertible

sheaf on V one of whose rational sections has F as its divisor. We denote it

by OV (F ). The structure sheaf on V is denoted as OV . The set of sections

of a sheaf F on V over an open subset U is denoted by Γ(U,F). The set of

isomorphism classes, which is designated as PicV , of invertible sheaves on

V is a group under the tensor operation ⊗. The subgroup whose elements

are algebraically equivalent to zero is denoted by Pic◦ V . For a morphism

f : V → W of varieties and a sheaf G on W of OW -modules, we denote

the inverse image by f∗G. For a nonsingular complete curve C over k, a

divisor F on C is a formal sum of closed points of C:

F =
∑

x∈C: a closed point

mx · x, mx ∈ Z.

xiv



The degree of F is given by

degF =
∑
x

mx[k(x) : k],

where k(x) is the residue field of the local ring at x and [k(x) : k] is the

extension degree of k(x) over k.

The symbol O(1) expresses a bounded function of appropriate variables

in a given context.
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1. Standard height on a projective space

We specify what we call the standard height function on a projective

space over a number field and see a property. Lemma 1.2 is of technical

nature. The reader who is familiar with usual height functions can skip

this section until it is needed.

Let k be a number field. For a finite extension field K of k, we de-

fine M(K) as the set of normalized absolute values on K so that for an

Archimedean v ∈M(K),

| · |v = the usual absolute value if restricted to Q;

for a non-Archimedean v ∈M(K),

|p|v = 1/p for some prime p ∈ Q.

Denoting by Kv the completion of K at v ∈M(K), set

ε(v) :=
[Kv : Qv]

[K : Q]
,

where [Kv : Qv] and [K : Q] are the respective extension degrees.

For a closed point x of the projective space PNk = PN×Spec� Spec k over

k, we denote by k(x) the residue field of the local ring at x. This is the

field of definition for x over k. The value of a rational function R on PNk

at x is denoted by R(x), which is an element of k(x). If the closed point
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x is not on the hyperplane {X0 = 0}, let

xi :=
Xi

X0

(x) ∈ k(x).

We call the standard height function on PNk the following function h of

the closed points x on PNk :

h(x) :=
∑

v∈M(k(x))

−ε(v) log
1

max{|x0|v, . . . , |xN |v}

The function 1/max{|x0|v, . . . , |xN |v} can be regarded as a local distance

from the closed point x to the hyperplane {X0 = 0} at infinity. By virtue

of the product formula

∏
v∈M(K)

|y|ε(v)v = 1 for y ∈ K \ {0},

where K is a finite extension field of k, the hyperplane {X0 = 0} may be

changed to any hyperplane, for example, the hyperplane {Xj = 0}, and

we can well-define h(x) for all closed points x of PNk .

Lemma 1.1 (Silverman [22, Theorem 2]). For a closed point x on PNk ,

the field k(x) of definition for x over k (the residue field at x) is a finite

extension field of k, so we can consider the discriminant ideal D
k(x)
k . If

δ = [k(x) : k] > 1, we have

h(x) ≥ 1

2
· 1

δ − 1

(
1

δd
log |Nk

�D
k(x)
k | − log δ

)
,

where d = [k : Q] and Nk
� is the norm function of fractional ideals in k.
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There is an obvious identification of the field k with the set A1(k) of

k-valued points on the one-dimensional affine space A1. The affine space

A1 is naturally isomorphic to the open subscheme {X0 �= 0} of the one-

dimensional projective space P1. The height function hk on k is defined

by

hk(z) := h((1 : z) ∈ P1(k))

for z ∈ k.

Lemma 1.2 (Silverman [21, Proposition 2 (b)]). There exists a con-

stant ck depending only on k and satisfying the following property: Let

S be a finite set of normalized absolute values on k containing the set

M∞(k) of normalized Archimedean absolute values on k, and n a positive

rational integer. For any non-zero S-integer a ∈ oS \ {0}, there exists an

S-unit u ∈ o×S such that

hk(au
n) <

∣∣∣∣∣
∑
v∈S

ε(v) log |a|v
∣∣∣∣∣+ ck · n

=

∣∣∣∣∣∣
1

d
log |Nk

� a|+
∑

v∈S\M∞(k)

ε(v) log |a|v
∣∣∣∣∣∣+ ck · n,

where d = [k : Q] and Nk
� is the norm function on k.

Let k̄ be an algebraic closure of k. For a k̄-valued point P ∈ PNk (k̄) =

Hom(Spec k̄,

3



PN), we define the standard height of P (denoted also by h) as the stan-

dard height of the closed point on PNk determined by P .

4



2. Canonical height on a curve and the Mumford inequality

In this section, we find a canonically defined height function on a curve

over a number field of genus at least two. These height functions are

invariant under isomorphisms of curves over the algebraic closure of the

ground field. When we use this height function, the Mumford type in-

equality has a simple form.

Let k be a number field, C a nonsingular complete curve over k of genus

g > 1, J the Jacobian variety of C over k, and k̄ an algebraic closure of k.

(For the definition and properties of a Jacobian variety, see, for example,

[15].)

Fix a point P0 ∈ C(k̄). A divisor Θ on J̄ = J ×Spec k Spec k̄ is defined

by

Θ(k̄) : = {OC̄(Q1 + · · ·+Qg−1 − (g − 1)P0) | Qj ∈ C(k̄)}

⊂ J̄(k̄) 
 Pic◦(C̄),

(2.1)

where C̄ = C ×Spec k Spec k̄. We denote by s, p and q : J̄ × J̄ → J̄ the

sum, the projections onto the first and the second factors, respectively.

Define an invertible sheaf N0 on J̄ × J̄ by

N0 := s∗OJ̄(Θ)⊗ p∗OJ̄(−Θ)⊗ q∗OJ̄(−Θ).(2.2)

Lemma 2.1. The isomorphism class of the invertible sheaf N0 on an

5



abelian variety J̄ × J̄ over k̄ does not depend on the choice of P0.

Proof. See Lemma 4.9 (i) below.

The Néron-Tate height function 〈·, ·〉 attached to N0 is a symmetric

bilinear form on (J × J)(k̄) 
 J(k̄) × J(k̄) which is non-degenerate and

non-negative on R⊗� J(k̄)×R⊗� J(k̄). (For general facts about Néron-

Tate height functions, see [10] or [20].) The induced inner product on

R ⊗ J(k̄) is also denoted by 〈·, ·〉. The norm on R ⊗ J(k̄) associated

with 〈·, ·〉 is denoted by ‖ · ‖. Since Néron-Tate height functions are

uniquely determined by invertible sheaves, Lemma 2.1 shows that for a

and b ∈ J(k̄), the quantities 〈a, b〉 and ‖a‖ are independent of the the

base point of Θ and are canonically defined. We say the functions 〈·, ·〉

and ‖ · ‖ are associated with a theta divisor or are attached to a theta

divisor.

Let ΩC/k be the invertible sheaf of regular differentials of C over k. We

have a canonical morphism f : C → J given by

C(k̄) � P 	→ ΩC/k ⊗OC̄(−(2g − 2)P ) ∈ Pic◦(C̄) 
 J(k̄).(2.3)

For another curve C ′ over k, define J ′, Θ′, and N ′
0, similarly. An isomor-

phism φ of C̄ onto C̄ ′ over k̄ induces an isomorphism Φ of J̄ onto J̄ ′ over

6



k̄:

J(k̄) 
 Pic◦(C̄) � L 	→ Φ(L) := φ∗L ∈ Pic◦(C̄ ′) 
 J ′(k̄)

and the next diagram is commutative:

C̄
f−−−→ J̄

φ

�
�Φ

C̄ ′ −−−→
f

J̄ ′

Here, by abuse of notation, f : C̄ → J̄ denotes the canonical morphism

over k̄ obtained by the base change of the canonical morphism f : C → J

over k. The norm ‖ · ‖ on R ⊗ J(k̄) (resp. R ⊗ J ′(k̄)) was defined with

the help of the Néron-Tate height function associated with the invertible

sheaf N0 (resp. N ′
0) on J̄ × J̄ (resp. J̄ ′ × J̄ ′). Since the divisor Θ on J̄ is

mapped under Φ to a translate of Θ′, the sheaf (Φ×Φ)∗N0 on J̄ ′×J̄ ′ is N ′
0

with Θ′ replaced by the translate of Θ′. Lemma 2.1 says this is isomorphic

to the previous N ′
0, therefore Φ is norm-preserving by the functoriality of

Néron-Tate height functions (cf. Lemma 4.7):

〈Φ(L),Φ(M)〉 = 〈L,M〉;

in particular, for elements P and Q of C(k̄)

〈f(φ(P )), f(φ(Q))〉 = 〈f(P ), f(Q)〉 and ‖f(φ(P ))‖ = ‖f(P )‖.

(2.4)
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Proposition 2.2. There exists a canonically defined scalar product

〈·, ·〉 on the real vector space R ⊗� J(k̄) which is preserved from the iso-

morphisms of Jacobian varieties over k̄ induced by isomorphisms of curves

over k̄. Letting ‖ · ‖ be the associated norm, we have

〈f(P ), f(Q)〉 = hC̄(Ω
⊗(2g−2)

C̄/k̄
, P ) + hC̄(Ω

⊗(2g−2)

C̄/k̄
, Q)

− hC̄×C̄
(
OC̄×C̄((2g − 2)2∆), (P,Q)

)
+O(1)

for (P,Q) ∈ (C × C)(k̄)

and

‖f(P )‖2 = hC̄(Ω
⊗2(2g−2)g

C̄/k̄
, P ) +O(1) for P ∈ C(k̄),

where f : C → J is the canonical map defined by (2.3), hV (L, ·) is a loga-

rithmic absolute height function on a projective variety V over k̄ attached

to an invertible sheaf L on V , ΩC̄/k̄ is the sheaf of differentials of C̄ over

k̄, and ∆ is the diagonal divisor on C × C.

Proof. See Lemma 4.11.

Theorem 2.3 (Mumford). The function of (P,Q) on (C × C)(k̄)

1

2g
‖f(P )‖2 +

1

2g
‖f(Q)‖2 − 〈f(P ), f(Q)〉

is bounded below outside of the diagonal subset ∆(k̄).

8



Proof. By Proposition 2.2 and the additive property of heights (cf.

Lemma 4.6), the expression is a height function attached to the divisor

(2g − 2)2∆ on C ×C. The claim is true, for a height function associated

with an effective divisor is positive up to a constant outside the support

of the divisor (cf. for example, [20, Section 2.10]).

We call the height function ‖f(·)‖2 attached to the invertible sheaf

Ω
⊗2(2g−2)g
C/k on the curve C the canonical height function on C.

9



3. Integral points on a Thue curve

We prove in this section a theorem concerning the distribution of inte-

gral points of what we call a Thue curve under a canonical morphism of

the curve into its Jacobian variety.

Let k be a number field, T (X,Y ) ∈ k[X,Y ] a homogeneous binary

polynomial of degree n > 3 with non-zero discriminant, and a ∈ k \ {0}.

Let Ca be the nonsingular complete curve on the projective plane P2
k over

k defined by

Ca : T (X,Y ) = aZn(3.1)

and Ja the Jacobian variety of Ca over k. We call the curve Ca a Thue

curve.

Let ok be the ring of integers in k and aok =
∏

� ps(�) the prime ideal

decomposition of the fractional ideal aok in k. If s(p) = r(p) + q(p) · n

for r(p) and q(p) ∈ Z with 0 ≤ r(p) < n, then we can so arrange that

aok =
∏

� pr(�)(
∏

� pq(�))n. Set a :=
∏

� pr(�) and b :=
∏

� pq(�). Then

aok = abn, a ⊂ ok,

and a is n-th power-free. Such a decomposition is easily seen to be unique.

Let S be a finite set of normalized absolute values on k which contains the

set M∞(k) of Archimedean absolute values on k. We define a real-valued

10



function eS of a by

eS(a) :=
(log |Nk

� bn|)/d+
∑
v∈S\M∞(k) ε(v) log |a|v

(log |Nk
� a|)/d .(3.2)

The value of eS is a sort of number which measures the defect of the n-th

power freeness. If a is an unramified rational prime number and cannot

be divided by the prime ideals corresponding to the absolute values in

S \M∞(k), then eS(a) = 0.

Theorem 3.1. Suppose the coefficients of the polynomial T are in the

ring oS of S-integers in k. Let K be a closed cone of the Euclidean

space R⊗� Ja(k) such that 〈v, w〉/‖v‖ ‖w‖ ≥ 21/(20(n− 2)1/2) for v and

w ∈ K\{0}. If |1+eS(a)| < 2 and |Nk
� a| is sufficiently large compared with

the degree n of the polynomial T and some other quantities not depending

on K, then

#({(x, y) ∈ oS | T (x, y) = a} ∩ f−1K) ≤




1 when n ≥ 194

2 when n ≥ 7

3 when n ≥ 5

4 when n ≥ 4,

where the set {(x, y) ∈ oS | T (x, y) = a} of S-integral solutions is regarded

as a subset of Ca(k) in the natural way and f : Ca → Ja is the canonical

11



map given by

Ca(k̄) � P 	→ ΩCa/k ⊗OC̄a
(−(n− 3)nP ) ∈ Pic◦ C̄a 
 Ja(k̄).

Corollary 3.2. If |1+eS(a)| < 2 and |Nk
� a| is sufficiently large, then

#{(x, y) ∈ ok | T (x, y) = a} ≤ 4 · 7r(T,a),

where r(T, a) is the rank of the group Ja(k) of rational points of the Ja-

cobian variety Ja of the Thue curve Ca.

Proof. Notice that 21/(20(n−2)1/2) < 3/4, because n > 3. We know

that RN can be covered by 7N closed cones K such that 〈v, w〉/‖v‖ ‖w‖ ≥

3/4 for v and w ∈ K \{0} (cf. [3, § 10]), hence, by the theorem, we obtain

the result.

Here follow many lemmas to show the theorem.

Choose an element α of an algebraic closure k̄ of k such that αn = a

and define an isomorphism φ of C̄a = Ca ×Spec k Spec k̄ onto C̄1 over k̄ by

Ca(k̄) � (x : y : z) 	→ (x : y : αz) ∈ C1(k̄).(3.3)

We have a canonical map f : Ca → Ja over k given by

Ca(k̄) � P 	→ Ω⊗O(−(2g − 2)P ) ∈ Pic◦(C̄a) 
 Ja(k̄),

where Ω is the sheaf of differentials of Ca over k and g substitutes for the

genus (n− 1)(n− 2)/2 of Ca.

12



Lemma 3.3. There exists a positive constant L = L(T ) = L(T (X,Y ))

such that

−L < 1

2g

(
‖fP‖2 + ‖fQ‖2

)
− 〈fP, fQ〉

for (P,Q) ∈ (Ca × Ca)(k̄) \∆(k̄).

Proof. Owing to Theorem 2.3, we have a positive number L = L(T )

satisfying

−L < 1

2g

(
‖fP1‖2 + ‖fQ1‖2

)
− 〈fP1, fQ1〉

for (P1, Q1) ∈ (C1 × C1)(k̄) \∆(k̄). By the invariance (2.4) of the scalar

products applied to the twisting map φ : C̄a → C̄1, we are done.

Lemma 3.4. Let P and Q ∈ Ca(k̄) be distinct points such that ‖fP‖ ≤

‖fQ‖. If

‖fP‖2 > 20(n− 2)1/2L

for the constant L = L(T ) in the previous lemma and

〈fP, fQ〉
‖fP‖ ‖fQ‖ >

21

20(n− 2)1/2
,

then we have

‖fQ‖ > g

(n− 2)1/2
‖fP‖.

In other words, if a k̄-valued point P ∈ Ca(k̄) with large norm ap-

pears in a cone K in the normed real vector space R ⊗� Ja(k̄) such that
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〈v, w〉/‖v‖ ‖w‖ > 21/(20(n − 2)1/2) for v and w ∈ K, then another k̄-

valued point Q ∈ Ca(k̄) with the next smallest norm which appears in the

cone K, if any, has the norm at least g/(n− 2)1/2 times the norm of P .

Proof . By the above lemma, we see that

− L

‖fP‖ ‖fQ‖ <
1

2g

(‖fP‖
‖fQ‖ +

‖fQ‖
‖fP‖

)
− 〈fP, fQ〉
‖fP‖ ‖fQ‖

<
1

g
· ‖fQ‖‖fP‖ −

21

20(n− 2)1/2
.

From the assumptions ‖fQ‖2 ≥ ‖fP‖2 > 20(n− 2)1/2L, we have

− 1

20(n− 2)1/2
<

1

g
· ‖fQ‖‖fP‖ −

21

20(n− 2)1/2
.

We regard Ca(k̄) as a subset of P2(k̄) in the natural way and denote

the standard height on P2
k by h.

Lemma 3.5. There exist non-negative constants m = m(T ) = m(T (X,Y ))

and M = M(T ) such that

−m < ‖fP‖2 − (n− 3)2(n− 2)(n− 1)n · h(φP ) < M

for P ∈ Ca(k), where n = deg T (X,Y ) and φ : C̄a → C̄1 is the twisting

map (3.3).

Proof. By Proposition 2.2, we have for P1 ∈ C1(k̄)

‖fP1‖2 = 2(2g − 2)g · h(Ω, P1) +O(1).
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Since the canonical sheaf of a nonsingular plane curve of degree n is

isomorphic to the pull-back of n − 3 times the hyperplane section sheaf

(see, for example, [7, II 8.20.3]),

‖fP1‖2 = 2(n− 3)(2g − 2)g · h(P1) +O(1), P1 ∈ C1(k̄) ⊂ P2(k̄),

that is, there are non-negative numbers m = m(T ) and M = M(T )

satisfying

−m < ‖fP1‖2 − 2(n− 3)(2g − 2)g · h(P1) < M

for P1 ∈ C1(k̄) ⊂ P2(k̄). Substitute φP (P ∈ Ca(k̄)) for P1. Then, the

invariance of norms (2.4) means

‖fP1‖ = ‖fφP‖ = ‖fP‖,

and the desired inequalities follow because g = (n− 2)(n− 1)/2.

Proposition 3.6. For P ∈ Ca(k) such that the Z-coordinate of the

defining equation (3.1) is not zero, we have

‖fP‖2 > (n− 3)2

2

n− 2

n− 1

log |Nk
� a|

d
− log 2

2
νn−m,

where d = [k : Q], n is the degree of Ca in the projective plane P2
k, ν is the

integer (n− 3)2(n− 2)(n− 1), and m is the constant in Proposition 3.5.

Proof. We see from Proposition 3.5 that

‖fP‖2 > (n− 3)2(n− 2)(n− 1)n · h(φP )−m.
15



Since the Z-coordinate of P is not zero and φ : C̄a → C̄1 was defined as

(x : y : z) 	→ (x : y : αz), we have k(φP ) = k(α), where k(φP ) is the field

of definition for the image in C1 of the k̄-valued point φP ∈ C̄1(k̄). Then,

if δ = [k(α) : k] > 1, we find from Lemma 1.1 and the fact 2 ≤ δ ≤ n that

‖fP‖2 > (n− 3)2(n− 2)(n− 1)n

2(δ − 1)δd
log |Nk

�D
k(α)
k |

− log δ

2(δ − 1)
(n− 3)2(n− 2)(n− 1)n−m

>
(n− 3)2(n− 2)

2d
log |Nk

�D
k(α)
k | − log 2

2
νn−m.

The right hand side of the last inequality is negative if k(α) = k, because

we then have |Nk
�D

k(α)
k | = 1. Hence this inequality is valid also when

δ = 1. If we look at the ramification in the extension k(α) over k, then

we find that a divides (D
k(α)
k )n−1. Thus |Nk

�D
k(α)
k |n−1 ≥ |Nk

� a|.

Fix a number λ such that 2 < λ < n = deg T (X,Y ), where T (X,Y ) is

the homogeneous polynomial defining Ca.

Lemma 3.7. When the coefficients of the homogeneous polynomial T (X,Y )

are in the S-integer ring oS, there exists a constant c = c(k, S, T (X,Y ), λ)

such that

h((x : y : 1)) <
1

n− λhk(T (x, y)) + c

for x and y ∈ oS. Here hk is the height function on k defined § 1.

Proof. See [21, Theorem 1].

16



Remark 3.8. The lemma means in particular that the set of S-integral

points of a Thue curve is finite.

From now in this section , we assume that the coefficients of T (X,Y )

are in oS.

Let aok = abn be the ideal decomposition such that a is integral and

n-th power-free, eS(a) is the real-valued function (3.2), and

Ia := {(x, y) ∈ o2
S | T (x, y) = a}.

We naturally regard Ia as a subset of Ca(k).

We now bound the norms of S-integral points from above.

Lemma 3.9. For an S-integral point P of Ca, the Z-coordinate of P is

not zero and

‖fP‖2 <
(
1 +

n

n− λ
)
ν|1 + eS(a)|

log |Nk
� a|

d

+
(
1 +

n

n− λ
)
νn · ck + νnc+M,

where ν is the integer (n − 3)2(n − 2)(n − 1); λ is a number such that

2 < λ < n; ck, c = c(k, S, T (X,Y ), λ), and M = M(T (X,Y )) are the

constants in Lemma 1.2 and Lemma 3.7 as well as Lemma 3.5, respec-

tively.

Proof. Note first that for x, y, z, α ∈ k̄ and a normalized absolute
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value v on k̄, we have

max{|x|v, |y|v, |αz|v} ≤ max{|1|v, |αn|v}1/n ·max{|x|v, |y|v, |z|v}.

If we use this for P = (x : y : z) and α which was used in defining the

twisting map φ : C̄a → C̄1 (cf. (3.3)), and take the logarithms of both

sides, then we see that

h(φP ) ≤ 1

n
h(a) + h(P ).(3.4)

To the second inequality

‖fP‖2 < νn · h(φP ) +M

of Lemma 3.5 we apply the inequality (3.4) and Lemma 3.7, and we obtain

‖fP‖2 <
(
1 +

n

n− λ
)
ν · h(a) + νnc+M.

Now, for an arbitrary u ∈ o×S , let ψ : Ca → Caun be an isomorphism over

k given by (x : y : z) 	→ (x : y : u−1z). Then we see that ψ(Ia) = Iaun ,

hence by the invariance (2.4) of heights

‖fP‖2 = ‖f(ψP )‖2 ≤
(
1 +

n

n− λ
)
ν inf
u∈�×S

h(aun) + νnc+M.

By Lemma 1.2, we see that

‖fP‖2 <
(
1 +

n

n− λ
)
ν

∣∣∣∣∣∣
log |Nk

� a|
d

+
∑

v∈S\M∞(k)

ε(v) log |a|v
∣∣∣∣∣∣

+
(
1 +

n

n− λ
)
νn · ck + νnc+M.
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By the definition of eS, we are done.

Let K be a closed cone of R ⊗� Ja(k) such that 〈v, w〉/‖v‖ ‖w‖ ≥

21/(20(n− 2)1/2) for v and w ∈ V \ {0}.

Lemma 3.10. Let t = #(Ia ∩ f−1K)− 1 and assume t ≥ 0. If |Nk
� a| is

sufficiently large, then we have

(
(n− 1)2(n− 2)

4

)t
< 4(1 + |1 + eS(a)|)

(
1 +

n

n− λ
)

(n− 1)2.

Proof . Let Ia ∩ f−1K = {P0, P1, . . . , Pt} and ‖fP0‖ ≤ ‖fP1‖ ≤ · · · ≤

‖fPt‖. When

log |Nk
� a| > 2d

(n− 3)2

n− 1

n− 2

(
log 2

2
νn+m+ 20(n− 2)1/2L

)
,

we see by Proposition 3.6 that ‖fPi‖2 > 20(n − 2)1/2L for any i. So, by

Lemma 3.4, we have

(
g2

n− 2

)t
· ‖fP0‖2 ≤

(
g2

n− 2

)t−1

· ‖fP1‖2 ≤ · · · ≤ ‖fPt‖2.

Applying the previous lemma to the extreme right hand side and again

Proposition 3.6 to the extreme left hand side, we find

(
g2

n− 2

)t
<

[(
1 +

n

n− λ
)
ν|1 + eS(a)|

log |Nk
� a|

d

+
(
1 +

n

n− λ
)
νn · ck + νnc+M

]

·
[
(n− 3)2

2d

n− 2

n− 1
log |Nk

� a| − log 2

2
νn−m

]−1

.
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Further if

log |Nk
� a| > max

{[(
1 +

n

n− λ
)
νn · ck + νnc+M

] [(
1 +

n

n− λ
)
ν

d

]−1

,

[
log 2

2
νn+m

] [
(n− 3)2

4d

n− 2

n− 1

]−1

 ,

then, substituting (n − 1)(n − 2)/2 for g and estimating the right hand

side of the above inequality, we obtain

(
(n− 2)(n− 1)2

4

)t
<

(
1 +

n

n− λ
)
ν
|1 + eS(a)|+ 1

d
· 4d

(n− 3)2

n− 1

n− 2

= 4(n− 1)2
(
1 +

n

n− λ
)

(|1 + eS(a)|+ 1) .

Proof of the theorem. In the last lemma, take λ = 2n/3 when n ≥ 5;

λ = 5/2, n = 4.
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4. Rational points of the curves with automorphisms

In this section, we give the description of a neighborhood of a hyper-

surface in a normed real vector space containing the canonical image of

rational points of a curve with the genus greater than one which has a

nontrivial automorphism.

Let k be a number field, C a nonsingular complete curve over k of genus

g > 1, J the Jacobian variety of C, and k̄ an algebraic closure of k. We

have a canonical morphism f of C into J over k (cf. (2.3)) and the scalar

product 〈·, ·〉 on R⊗� J(k̄) attached to a theta divisor.

Let ∆ be the diagonal divisor on C×C. Suppose we have an automor-

phism ψ of C over k different from the identity map, and set

D := (1C , ψ)∗∆ ∈ DivC and d := degD.

In a sense, D is the divisor of fixed points with multiplicities of the mor-

phism ψ. The orthogonal transformation of (R ⊗ J(k̄), 〈·, ·〉) induced by

ψ is denoted as Ψ.

Theorem 4.1. The image f(C(k̄)) under the canonical map f : C →

J in the normed real vector space (R ⊗� J(k̄), 〈·, ·〉) is contained in the

neighborhood of a quadric hypersurface defined as

∣∣∣∣∣
〈
v,

(
Ψ +

d− 2

2g

)
v +OC((2g − 2)D)⊗ Ω

⊗(−d)
C/k

〉∣∣∣∣∣ ≤ const.,
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v ∈ R ⊗� J(k̄), where ΩC/k is the sheaf of differentials of C over k and

OC((2g − 2)D)⊗ Ω
⊗(−d)
C/k is considered as an element of J(k) 
 Pic◦C.

Remark 4.2. The function of degree two on the left is what was called

a null height by Manin [12, p. 339] (cf. Remark 4.13).

Corollary 4.3. For P ∈ C(k̄), we have ‖f(ψ(P ))‖ = ‖f(P )‖. The

angle made by ψ(P ) and P under f in R⊗� J(k̄) is arccos((2−d)/(2g)+

O(1) · ‖f(P )‖−1).

Proof . The former part is already confirmed true (cf. (2.4)). Here is

another proof. There exists a finite extension field K of k such that P

can be considered as in C(K). The automorphism Ψ induced by ψ of the

finite dimensional real vector space R ⊗� J(K) is of finite order, hence

is a Euclidean motion. Therefore we obtain ‖f(ψ(P ))‖ = ‖Ψ(f(P ))‖ =

‖f(P )‖. The latter half is easy because by the theorem, we see

〈f(P ), f(ψ(P ))〉
‖f(P )‖‖f(ψ(P ))‖ =

〈f(P ),Ψ(f(P ))〉
‖f(P )‖‖Ψ(f(P ))‖ −→

2− d
2g

as ‖f(P )‖ −→ ∞.

Corollary 4.4. The number of fixed points of a nontrivial automor-

phism of a curve whose genus g is at least two is not larger than 2g + 2.

Remark 4.5. Ordinarily, this follows from the Riemann-Hurwitz for-

mula.
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Proof. Values on R of the cosine function are not less than −1. So

by the previous corollary, the degree d of the divisor of fixed points must

not be greater than 2g + 2.

To prove the theorem, we need some notation and several lemmas.

For a projective variety V over k̄ and an invertible sheaf L on V , we

denote by hV (L, ·) a height function on V attached to L. We have the

ambiguity of bounded functions in choosing a height function. When V

is abelian, we agree to choose the canonical height all the time and for

u ∈ V (k̄), the translation-by-u-map is denoted by tu : V → V .

Lemma 4.6 (Additive property). For a projective variety V over

k̄ and invertible sheaves L and M on V , we have

hV (L ⊗M, x) = hV (L, x) + hV (M, x) +O(1), x ∈ V (k̄).

Proof. See, for example, [20, Theorem of § 2.8].

Lemma 4.7 (Functoriality). For a morphism φ : V → W of pro-

jective varieties over k̄ and an invertible sheaf L on W , we have

hV (φ∗L, x) = hW (L, φx) +O(1), x ∈ V (k̄).

For a homomorphism χ : A → B of abelian varieties over k̄ and an in-

vertible sheaf M on B, we have

hA(χ∗M, x) = hB(M, χx), x ∈ A(k̄).
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For u ∈ B(k̄) and the translation-by-u-map tu : B(k̄) � x 	→ x+u ∈ B(k̄),

hB(t∗uM, x) = hB(M, x+ u)− hB(M, u).

Proof. For the first part, see, for example, [20, § 2.8]. For the second,

see [20, § 3.2] and for the third, [20, Lemma of § 3.4].

Lemma 4.8. For an invertible sheaf L on an abelian variety A and a

rational integer n,

n∗L 
 L⊗(n+1)n/2 ⊗ (−1)∗L⊗(n−1)n/2.

Proof. See, for example, [14, Corollary 6.6].

Fix a point P0 ∈ C(k̄). Define a divisor Θ on J̄ as (2.1), an invertible

sheaf N0 on J̄ × J̄ by (2.2), and a morphism f0 : C̄ → J̄ over k̄ as

C(k̄) � P 	→ OC̄(P − P0) ∈ Pic◦ C̄ 
 J(k̄).

LetM0 ∈ Pic(C̄ × J̄) be the universal divisorial correspondence between

(C,P0) and (J, 0) (cf. [15, § 1]).

Lemma 4.9. (i) For u ∈ J(k̄),

s∗OJ̄(t∗uΘ)⊗ p∗OJ̄(−t∗uΘ)⊗ q∗OJ̄(−t∗uΘ) 
 N0,

where s, p and q : J̄ × J̄ → J̄ are respectively the sum, the projec-

tions onto the first and the second factors.

(ii) For u and v ∈ J(k̄), we have t∗uOJ̄(t∗vΘ−Θ) 
 OJ̄(t∗vΘ−Θ).
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(iii) For u ∈ J(k̄), we have OJ̄(t∗uΘ−Θ) 
 (1J , u)
∗N0 
 (u, 1J)

∗N0.

(iv) (f0 × 1J)
∗N0 
M⊗(−1)

0 .

(v) (1C × f0)
∗M0 
 OC̄×C̄(∆− P0 × C − C × P0).

Proof. (i) An application of Theorem of the cube [14, Corollary 6.4].

(ii) Theorem of the square [14, Theorem 6.7]. (iii) Easily follows from the

definition. (iv)(v) See [15, Summary 6.11].

Lemma 4.10. (i) (−1)∗N0 
 N0.

(ii) For u ∈ J(k̄), we have (−1)∗OJ̄(t∗uΘ−Θ) 
 OJ̄(Θ− t∗uΘ).

Proof. (i) By the Riemann-Roch theorem, we know

(−1)∗Θ = t∗wΘ for some w ∈ J(k̄)

(see, for example, [20, § 5.6 (1)]). Therefore, from the previous lemma,

(−1)∗N0 
 (−1)∗ [s∗OJ̄(Θ)⊗ p∗OJ̄(−Θ)⊗ q∗OJ̄(−Θ)]


 s∗OJ̄((−1)∗Θ)⊗ p∗OJ̄(−(−1)∗Θ)⊗ q∗OJ̄(−(−1)∗Θ)


 s∗OJ̄(t∗wΘ)⊗ p∗OJ̄(−t∗wΘ)⊗ q∗OJ̄(−t∗wΘ)


 N0.

(ii) See [14, § 9].
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Lemma 4.11. We have for (P,Q) ∈ (C × C)(k̄)

〈fP, fQ〉 = hC̄(Ω
⊗(2g−2)
C/k , P ) + hC̄(Ω

⊗(2g−2)
C/k , Q)

− hC̄×C̄
(
OC×C((2g − 2)2∆), (P,Q)

)
+O(1),

in particular,

‖fP‖2 = hC̄(Ω
⊗2(2g−2)g
C/k , P ) +O(1), P ∈ C(k̄).

Proof . We are going to show

(f × f)∗N0 
 p∗Ω⊗(2g−2)
C/k ⊗ q∗Ω⊗(2g−2)

C/k ⊗OC×C(−(2g − 2)2∆).

Here p and q : C × C → C are respectively the projections onto the first

and the second factors. Then by the functoriality of heights, we obtain

the first relation. The second relation is an immediate consequence of the

first because as well-known

(1C , 1C)∗OC×C(−∆) 
 ΩC/k,

where (1C , 1C) : C → C × C is the diagonal map.

Since fP = fP0 − (2g − 2)f0P for P ∈ C(k̄), setting a := fP0 ∈ J(k̄),

we have f = ta ◦ (2− 2g) ◦ f0 hence

(f × f)∗N0 
 (f0 × f0)
∗(2g − 2)∗(ta × ta)∗N0.
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By definition and Lemmas 4.9 (i) and 4.9 (ii),

(ta × ta)∗N0 
 (ta × ta)∗ [s∗OJ̄(Θ)⊗ p∗OJ̄(−Θ)⊗ q∗OJ̄(−Θ)]


 s∗OJ̄(t∗2aΘ)⊗ p∗OJ̄(−t∗aΘ)⊗ q∗OJ̄(−t∗aΘ)


 [s∗OJ̄(t∗2aΘ)⊗ p∗OJ̄(−t∗2aΘ)⊗ q∗OJ̄(−t∗2aΘ)]

⊗ p∗OJ̄(t∗2aΘ− t∗aΘ)⊗ q∗OJ̄(t∗2aΘ− t∗aΘ)


 N0 ⊗ p∗t∗aOJ̄(t∗aΘ−Θ)⊗ q∗t∗aOJ̄(t∗aΘ−Θ)


 N0 ⊗ p∗OJ̄(t∗aΘ−Θ)⊗ q∗OJ̄(t∗aΘ−Θ),

where by abuse of notation, the morphisms p and q are the projections

of J̄ × J̄ . By Lemma 4.8 and Lemma 4.10,

(2− 2g)∗(ta × ta)∗N0


 (2− 2g)∗ [N0 ⊗ p∗OJ̄(t∗aΘ−Θ)⊗ q∗OJ̄(t∗aΘ−Θ)]


 (2− 2g)∗N0 ⊗ p∗(2− 2g)∗OJ̄(t∗aΘ−Θ)⊗ q∗(2− 2g)∗OJ̄(t∗aΘ−Θ)


 N⊗(2−2g)2

0 ⊗ p∗OJ̄(t∗aΘ−Θ)⊗(2−2g) ⊗ q∗OJ̄(t∗aΘ−Θ)⊗(2−2g)


 N⊗(2−2g)2

0 ⊗ p∗(1J , a)∗N⊗(2−2g)
0 ⊗ q∗(a, 1J)∗N⊗(2−2g)

0 .

27



We further pull back this invertible sheaf by f0 × f0.

(f0 × f0)
∗(2− 2g)∗(ta × ta)∗N0


 (f0 × f0)
∗ [N⊗(2−2g)2

0 ⊗ p∗(1J , a)∗N⊗(2−2g)
0 ⊗ q∗(a, 1J)∗N⊗(2−2g)

0

]


 (f0 × f0)
∗N⊗(2−2g)2

0

⊗ p∗(1C , a)∗(f0 × 1J)
∗N⊗(2−2g)

0 ⊗ q∗(a, 1C)∗(1J × f0)
∗N⊗(2−2g)

0


 (1C × f0)
∗(f0 × 1J)

∗N⊗(2−2g)2

0

⊗ p∗(1C , a)∗(f0 × 1J)
∗N⊗(2−2g)

0 ⊗ q∗(a, 1C)∗(1J × f0)
∗N⊗(2−2g)

0


 (1C × f0)
∗(f0 × 1J)

∗N⊗(2−2g)2

0

⊗ p∗(1C , a)∗(f0 × 1J)
∗N⊗(2−2g)

0 ⊗ q∗(1C , a)∗(f0 × 1J)
∗N⊗(2−2g)

0 .

The last transformation is permitted due to the symmetry of N0. By

Lemma 4.9 (iv),

(f0 × f0)
∗(2− 2g)∗(ta × ta)∗N0


 (1C × f0)
∗M⊗−(2−2g)2

0 ⊗ p∗(1C , a)∗M⊗(2g−2)
0 ⊗ q∗(1C , a)∗M⊗(2g−2)

0 .

We have Lemma 4.9 (v). And, since the universality of M0 tells us
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(1C , y)
∗M0 
 y for y ∈ J(k̄) 
 Pic◦(C̄),

(f0 × f0)
∗(2− 2g)∗(ta × ta)∗N0


 OC×C(P0 × C + C × P0 −∆)⊗(2−2g)2 ⊗ p∗a⊗(2g−2) ⊗ q∗a⊗(2g−2)


 p∗OC(P0)
⊗(2g−2)2 ⊗ q∗OC(P0)

⊗(2g−2)2 ⊗OC×C(−∆)⊗(2g−2)2

⊗ p∗
[
ΩC/k ⊗OC(−(2g − 2)P0)

]⊗(2g−2)

⊗ q∗
[
ΩC/k ⊗OC(−(2g − 2)P0)

]⊗(2g−2)


 OC×C(−∆)⊗(2−2g)2 ⊗ p∗Ω⊗(2g−2)
C/k ⊗ q∗Ω⊗(2g−2)

C/k .

Lemma 4.12. Let L ∈ J(k̄) 
 Pic◦(C̄). We have

〈fP,L〉 = hC̄(L⊗(2g−2), P ) +O(1), P ∈ C(k̄).

Proof . We have only to show

(f,L)∗N0 
 L⊗(2g−2).

Since f = ta ◦ (2− 2g) ◦ f0, where a = fP0, and (f,L) = (1J ,L) ◦ f , we

see

(f,L)∗N0 
 f∗
0 (2− 2g)∗t∗a(1J ,L)∗N0.

By Lemma 4.9 (iii), Lemma 4.9 (ii), Lemma 4.8, and Lemma 4.10 (ii), we
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gain

(2− 2g)∗t∗a(1J ,L)∗N0 
 (2− 2g)∗t∗aOJ̄(t∗LΘ−Θ)


 (2− 2g)∗OJ̄(t∗LΘ−Θ)


 OJ̄(t∗LΘ−Θ)⊗(2−2g)


 (1J ,L)∗N⊗(2−2g)
0 .

Pulling this back by f0, we have from Lemma 4.9 (iv) and the property

of the universal divisorial correspondenceM0,

f∗
0 (2− 2g)∗t∗a(1J ,L)∗N0 
 f∗

0 (1J ,L)∗N⊗(2−2g)
0


 (1C ,L)∗(f0 × 1J)
∗N⊗(2−2g)

0


 (1C ,L)∗M⊗(2g−2)
0


 L⊗(2g−2).

Proof of the theorem. By Lemma 4.11 and the functoriality of heights,

we see

〈fP,Ψ(fP )〉 = 〈fP, f(ψP )〉

= hC̄(Ω
⊗(2g−2)
C/k , P ) + hC̄(Ω

⊗(2g−2)
C/k , ψP )

− hC̄×C̄(OC×C((2g − 2)2∆), (P, ψP )) +O(1)

= hC̄(Ω
⊗(2g−2)
C/k , P ) + hC̄(ψ∗Ω⊗(2g−2)

C/k , P )

− hC̄((1C , ψ)∗OC×C((2g − 2)2∆), P ) +O(1)

30



as functions of the k̄-valued points P on C(k̄). Since ψ∗ΩC/k 
 ΩC/k,

〈fP,Ψ(fP )〉 = hC̄(Ω
⊗2(2g−2)
C/k ⊗OC(−(2g − 2)2D), P ) +O(1).

By the second equality of Lemma 4.11 and Lemma 4.12,

2g〈fP,Ψ(fP )〉 + (d− 2)‖fP‖2

= hC̄(Ω
⊗4(2g−2)g
C/k ⊗OC(−2(2g − 2)2gD), P )

+ hC̄(Ω
⊗2(2g−2)(d−2)g
C/k , P ) +O(1)

= hC̄(Ω
⊗2(2g−2)gd
C/k ⊗OC(−2(2g − 2)2gD), P ) +O(1)

= 2g · hC̄(
[
Ω⊗d
C/k ⊗OC(−(2g − 2)D)

]⊗(2g−2)
, P ) +O(1)

= 2g〈fP,Ω⊗d
C/k ⊗OC(−(2g − 2)D)〉+O(1).

Remark 4.13. Using the additive property and functoriality of height

functions, and setting Lψ := OC((2g−2)D)⊗Ω
⊗(−d)
C/k , we get for v ∈ J(k̄),

2g〈v,Ψv〉+ (d− 2)‖v‖2 + 2g〈v,Lψ〉

= hJ̄((1J ,Ψ)∗N⊗2g
0 ⊗ (1J , 1J)

∗N⊗(d−2)
0 ⊗ (1J ,Lψ)∗N⊗2g

0 , v).

This is a canonical height on J and after all, we have proved

f∗ [(1J ,Ψ)∗N⊗2g
0 ⊗ (1J , 1J)

∗N⊗(d−2)
0 ⊗ (1J ,Lψ)∗N⊗2g

0

]

 OC̄ .
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5. Twisted Fermat curve of degree four

It is probable that the action of an automorphism of a curve on the

Jacobian variety is of a simple form in terms of its isogeneous components.

This is the case for the so-called twisted Fermat curve of degree four. As

an application, we obtain another proof of a certain well-known finiteness

result (Theorem 0.9).

Let k be a number field and a, b, c elements of k different from zero.

We call the curve Q in the projective plane P2
k over k defined by the

homogeneous equation

Q : aX4 + bY 4 + cZ4 = 0(5.1)

a twisted Fermat curve of degree four. We define also an elliptic curve

EX over k given by a Weierstrass equation

EX : S2T = R3 + a2bcT 2R,

where R, S, and T are the homogeneous coordinates of P2
k. This is a

quotient curve of Q by a subgroup of order four of the automorphism

group of Q̄ = Q ×Spec k Spec k̄ over k̄, where k̄ is an algebraic closure of

k. The quotient map φX : Q→ EX is given over k by

Q(k̄) � (x : y : z) 	→ (r : s : t) = (−aby2z : a2bx2y : z3) ∈ EX(k̄).
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There exists a homomorphism ΨX over k of EX into the Jacobian variety

J of Q induced by φX such that

ΨX : EX(k̄) 
 Pic◦(ĒX) � L 	→ φ∗
XL ∈ Pic◦(Q̄) 
 J(k̄).

The image of ΨX is one-dimensional, for we have a natural homomorphism

ΦX : J → EX satisfying ΦX ◦ΨX = 4 (cf. [15, Proposition 6.1]).

We denote by µ the group of square roots of unity in k. Then µ×µ×µ

acts on Q as follows: For (ξ, η, ζ) ∈ µ× µ× µ, the action is given by

Q(k̄) � (x : y : z) 	→ (ξx : ηy : ζz) ∈ Q(k̄).

This action yields an action on EX compatible with the quotient map φX

of Q onto EX . Let γX , γY , and γZ be the respective automorphisms of Q

over k corresponding to the elements (−1, 1, 1), (1,−1, 1), and (1, 1,−1)

of µ× µ× µ. The next diagrams are commutative:

Q
φX−−−→ EX

γX

�
∥∥∥∥

Q −−−→ EX

Q −−−→ EX

γY

�
�−1

Q −−−→ EX

Q −−−→ EX

γZ

�
�−1

Q −−−→ EX

Denoting the induced automorphisms of J over k respectively by ΓX ,ΓY ,

and ΓZ , we obtain the following commutative diagrams:

J
ΨX←−−− EX

ΓX

�
∥∥∥∥

J ←−−− EX

J ←−−− EX

ΓY

�
�−1

J ←−−− EX

J ←−−− EX

ΓZ

�
�−1

J ←−−− EX
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We define in a cyclic manner EY , ΨY : EY → J , EZ , and ΨZ : EZ → J .

We see for i and j ∈ {X,Y, Z}

Γi ◦Ψj = (−1)δij−1Ψj,

where δij is Kronecker’s delta function.

Now consider the map Ψ := ΨX ◦p1+ΨY ◦p2+ΨZ ◦p3 of EX×EY ×EZ

into J , where pi is the projection onto the i-th factor. The subvariety

Ψ(EX ×EY × 0) of J includes a curve Ψ(EX × 0× 0) = ΨX(EX), and the

action of γX on Ψ(EX × 0× 0) is trivial but not so on Ψ(EX ×EY × 0) =

ΨX(EX)+ΨY (EY ). Therefore Ψ(EX×EY ×0) must be two-dimensional.

By the same sort of reasoning, Ψ(EX × EY × EZ) is three-dimensional.

Since the dimension of J is also three, Ψ is an isogeny. Accordingly, we

get an isomorphism of R-vector spaces

Ψ:
⊕

i=X,Y,Z

R⊗� Ei(k̄)
∼→ R⊗� J(k̄).

We identify R ⊗ Ei(k̄) with the corresponding subspace of R ⊗ J(k̄) by

this isomorphism.

Provide R ⊗ J(k̄) with the inner product 〈·, ·〉 and the norm ‖ · ‖ at-

tached to a theta divisor. The elements of R ⊗ Ei(k̄) are simultaneous

eigenvectors of µ × µ × µ and each eigenspace R⊗ Ei(k̄) corresponds to

a different character of µ × µ × µ. Since eigenvectors of an orthogonal
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transformation with different eigenvalues are orthogonal to each other, the

above decomposition of R⊗J(k̄) into R⊗Ei(k̄) is in addition orthogonal

with respect to 〈·, ·〉.

For v = vX + vY + vZ ∈ R⊗ J(k̄), where vi ∈ R⊗ Ei(k̄), we have

〈v,ΓXv〉 = 〈v,ΓXvX + ΓXvY + ΓXvZ〉

= 〈vX + vY + vZ , vX − vY − vZ〉

= ‖vX‖2 − ‖vY ‖2 − ‖vZ‖2.

Similarly, we gain

〈v,ΓY v〉 = −‖vX‖2 + ‖vY ‖2 − ‖vZ‖2

and

〈v,ΓZv〉 = −‖vX‖2 − ‖vY ‖2 + ‖vZ‖2.

Proposition 5.1. Let Q be a twisted Fermat curve of degree four,

J its Jacobian variety, and f : Q → J the canonical morphism given

as (2.3). We equip R⊗� J(k̄) with the norm ‖ · ‖ associated with a theta

divisor. Then there exist absolute constants c1 and c2 and an orthogonal

decomposition R ⊗ J(k̄) = VX ⊕ VY ⊕ VZ into subspaces such that the
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image f(Q(k̄)) is contained in the region of R⊗ J(k̄) defined by



|‖vX‖2 − ‖vY ‖2| ≤ c1

|‖vZ‖2 − ‖vX‖2| ≤ c2,

where vX ∈ VX , vY ∈ VY , and vZ ∈ VZ.

Proof. For P ∈ Q(k̄), let f(P ) = vX + vY + vZ , vi ∈ Vi := R⊗Ei(k̄).

By Proposition 5.3 below, we see

〈f(P ),ΓX(f(P ))〉 = 〈f(P ), f(γX(P ))〉 = −1

3
‖f(P )‖2 +O(1)

= −1

3
(‖vX‖2 + ‖vY ‖2 + ‖vZ‖2) +O(1)

and

〈f(P ),ΓY (f(P ))〉 = −1

3
(‖vX‖2 + ‖vY ‖2 + ‖vZ‖2) +O(1)

with O(1) terms bounded by absolute constants. Combining these with

the equalities before Proposition 5.1, we obtain

2‖vX‖2 − ‖vY ‖2 − ‖vZ‖2 = O(1)

and

−‖vX‖2 + 2‖vY ‖2 − ‖vZ‖2 = O(1).

Eliminations of appropriate terms give the result.
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Lemma 5.2. Let F be a plane curve of degree four over k defined as

F : −X4 − Y 4 + Z4 = 0(5.2)

and γ an automorphism of F over k which acts as multiplications by −1

or 1 of X, Y , and Z coordinates. If γ is different from the identity map,

then for P ∈ F (k̄),

〈f(P ), f(γ(P ))〉 = −1

3
‖f(P )‖‖f(γ(P ))‖+O(1).

Proof. Similar to the proof of Lemma 5.5 below (cf. [5, Proposi-

tion 6.4]).

Proposition 5.3. Let Q be a twisted Fermat curve of degree four given

by (5.1) and γ an automorphism of Q over k which acts as multiplications

by −1 or 1 of X, Y , and Z coordinates. If γ is not the identity map, then

for P ∈ Q(k̄),

〈f(P ), f(γ(P ))〉 = −1

3
‖f(P )‖‖f(γ(P ))‖+O(1)

with O(1) bounded by absolute constants. Here 〈·, ·〉 and ‖ · ‖ are respec-

tively the scalar product and the norm on R ⊗� J(k̄) attached to a theta

divisor.

Proof. Choose elements ξ, η, and ζ of k̄ such that a = −ξ4, b = −η4,

and c = ζ4. There exists an isomorphism φ of Q̄ onto F̄ , where F is the
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curve (5.2), given by

Q(k̄) � (x : y : z) 	→ (ξx : ηy : ζz) ∈ F (k̄).

The morphism φ is compatible with the respective automorphisms γ of

Q and F , that is, γ ◦ φ = φ ◦ γ. By the invariance of heights (2.4), for

P ∈ Q(k̄)

〈f(P ), f(γ(P ))〉 = 〈f(φ(P )), f(φ(γ(P )))〉

= 〈f(φ(P )), f(γ(φ(P )))〉

= −1

3
‖f(φ(P ))‖2 +O(1)

= −1

3
‖f(P )‖2 +O(1).

The last O(1) is the composition of φ with O(1) in the previous lemma

hence is absolutely bounded.

When the coefficients of X4 and Y 4 of the defining equation (5.1) are

the same, we receive some more information about the distribution of

rational points of the curve in the Jacobian variety.

Assume a = b = −1. In this case, there is another automorphism τ of

Q given by the exchange of X and Y coordinates. The automorphism τ

yields isomorphisms τX : EY → EX , τY : EX → EY (not as groups), and

an automorphism τZ of EZ (not as a group) compatible with the quotient
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maps φi : Q→ Ei. Explicitly, these morphisms are defined as

τX : EY (k̄) � (x : y : z) 	→ (−czx : −cyz : x2) ∈ EX(k̄),

τY : EX(k̄) � (x : y : z) 	→ (−czx : −cyz : x2) ∈ EY (k̄),

and

τZ : EZ(k̄) � (x : y : z) 	→ (c2zx : c2yz : x2) ∈ EZ(k̄).

They induce group isomorphisms T : J → J , TX : EY → EX , TY : EX →

EY , and TZ : EZ → EZ all compatible with Ψi : Ei → J . Since τX and τY

are inverse to each other, so are TX and TY . On the other hand, TZ = −1,

because τZ is the multiplication-by-(−1)-map plus a two-torsion point

(0 : 0 : 1).

Proposition 5.4. Let Q be a twisted Fermat curve of degree four

whose coefficients of X4 and Y 4 of the defining equation (5.1) are the

same, τ the automorphism of Q exchanging the X and Y coordinates,

and f the canonical map of Q into the Jacobian variety J of Q defined

as (2.3). For P ∈ Q(k̄), we have

〈f(P ), f(τ(P ))〉 = −1

3
‖f(P )‖‖f(τ(P ))‖+O(1),

where O(1) is bounded by absolute constants.
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Proof. Follows from the next lemma in the same way as Proposi-

tion 5.3 followed from Lemma 5.2

Lemma 5.5. Let F be the plane curve (5.2), τ the automorphism of F

exchanging the X and Y coordinates, and f the canonical map of F into

the Jacobian variety of F defined as (2.3). For P ∈ F (k̄), we have

〈f(P ), f(τ(P ))〉 = −1

3
‖f(P )‖‖f(τ(P ))‖+O(1).

Proof. Since F is a plane curve of degree four, the canonical sheaf

ΩF/k is isomorphic to the inverse image of O�2(1) (cf. [7, II 8.20.3]), where

P2 denotes the ambient projective plane. According to Theorem 4.1, we

have only to show for the diagonal ∆ on F × F the divisor (1F , τ)
∗∆ is

linearly equivalent to a hyperplane section.

We compute the inverse image under (1F , τ) of the ideal sheafOF×F (−∆)

of the diagonal subvariety of F × F . Let X1, Y1, Z1;X2, Y2, Z2 be the bi-

homogeneous coordinates of P2 × P2 and X,Y, Z the homogeneous coor-

dinates of P2. We naturally regard F × F as in P2
k × P2

k and F , in P2
k.

Fixed points of τ are not mapped to the closed subscheme {Z1Z2 = 0}

by the map (1F , τ) : F → F × F , hence it suffices to see the affine open
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subvariety {Z1Z2 �= 0}. Since

Γ ({Z1Z2 �= 0},OF×F (−∆)) 
 (X1/Z1 −X2/Z2, Y1/Z1 − Y2/Z2)

mod
(
−(X1/Z1)

4 − (Y1/Z1)
4 + 1,−(X2/Z2)

4 − (Y2/Z2)
4 + 1

)
,

where the right hand side is an ideal of Γ({Z1Z2 �= 0},OF×F ), we have

Γ ({Z �= 0}, (1F , τ)∗OF×F (−∆)) 
 (X/Z − Y/Z)

mod
(
−(X/Z)4 − (Y/Z)4 + 1

)
.

From this, we see (1F , τ)
∗OF×F (−∆) is naturally isomorphic to the ideal

sheaf of a hyperplane {X − Y = 0}, which is the desired result.

Proposition 5.6. Notation being the same as in Proposition 5.1, sup-

pose the coefficients of X4 and Y 4 of the defining equation (5.1) are both

minus one. Then, besides the neighborhoods of hypersurfaces in Proposi-

tion 5.1, the image f(Q(k̄)) is included in the region near another quadric

hypersurface in R⊗ J(k̄) given by

|〈vX , TXvY 〉| ≤ c3

with an absolute constant c3, where TX : VY → VX is a metric linear

isomorphism. Let E be an elliptic curve defined by a Weierstrass equation

y2 = x3 − cx.(5.3)
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Then we can take VX and VY as R ⊗� E(k̄), and TX is induced by an

automorphism of E over k.

Proof. For P ∈ Q(k̄), let f(P ) = vX + vY + vZ , vi ∈ R⊗Ei(k̄). Then

we see

〈f(P ), T (f(P ))〉 = 〈vX + vY + vZ , TY vX + TXvY + TZvZ〉

= 〈vX , TXvY 〉+ 〈vY , TY vX〉+ 〈vZ , TZvZ〉

= 〈vX , TXvY 〉+ 〈TXvY , vX〉 − ‖vZ‖2,

because TX = T−1
Y does not change norm and TZ = −1. From Proposi-

tion 5.4, we know

〈f(P ), T (f(P ))〉 = −1

3
(‖vX‖2 + ‖vY ‖2 + ‖vZ‖2) +O(1)

with an absolutely bounded function O(1) of P on Q(k̄). Therefore we

have

6〈vX , TXvY 〉+ ‖vX‖2 + ‖vY ‖2 − 2‖vZ‖2 = O(1).

Add appropriate times the inequalities in Proposition 5.1 to this.

Corollary 5.7 (Dem’yanenko [4, Example 1] [20, § 5.3]). If the rank

of E(k) is not larger than one, then the canonical heights of rational points

on Q are bounded by an absolute constant.
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Proof. Note first that the whole story was occurring over the base

field k. So in Proposition 5.1 and Proposition 5.6, we can replace k̄ with

k.

For P ∈ Q(k), let f(P ) = vX + vY + vZ , vi ∈ Vi. When dimVX =

dimVY = 1, we see vX = 0 or TXvY = rvX for some r ∈ Q. In the

latter situation, we have ‖vY ‖ = |r| · ‖vX‖, for TX preserves the norm.

If |r| < 1/2, then Proposition 5.1 says ‖vX‖ is absolutely bounded. If

|r| ≥ 1/2, then Proposition 5.6 still asserts ‖vX‖ is absolutely bounded.

Anyway, by Proposition 5.1, ‖vi‖’s are all absolutely bounded, hence

‖f(P )‖, too.

The twisted Fermat curve is a Thue curve. Using the lower bound for

the canonical heights in § 3 we obtain a souped-up version of the previous

corollary:

Corollary 5.8 (Silverman [23, Corollary 1 to Theorem 1]). Let k× :=

k \ {0}. Except a finite number of c mod (k×)
4
, if the rank of the group

of rational points of the elliptic curve (5.3) over k is at most one, then

{(x, y) ∈ k2 | x4 + y4 = c} = ∅.

Proof. Note that for any constant G, the number of c mod (k×)4
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satisfying

|Nk
� a| < G,

where a is the integral ideal of the ring ok of integers in k which is not

divided by a fourth power of an ideal in ok and such that cok = ab4 is an

ideal decomposition of the principal ideal cok into a and the fourth power

of a fractional ideal b in k, is finite because of the finiteness of the ideal

class group of k. Use the above corollary and Proposition 3.6.

Remark 5.9. Manin [11, Example 1] got the same kind of result as

Dem’yanenko’s. He has constructed a null height on the product of two

copies of an elliptic curve on which lies a special twisted Fermat curve.

Remark 5.10. The quantity 〈vX , TXvY 〉 for a point in f(Q(k)) does

not necessarily vanish. Consider the example a = b = −1 and c = 2, in

other words, Q : X4+Y 4 = 2Z4 and EX , EY : y2 = x3−2x. In this case, we

know the ranks of EX(Q) and EY (Q) are one. For P = (1 : 1 : 1) ∈ Q(Q),

let f(P ) = vX + vY + vZ as above. We can see

vX =
1

4
⊗ φX(P ) ∈ R⊗ EX(Q) and vY =

1

4
⊗ φY (P ) ∈ R⊗ EY (Q).
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Since P is a fixed point of τ ,

TXvY =
1

4
⊗ [τX(φY (P ))− τX(∞)]

=
1

4
⊗ φX(τ(P ))− 1

4
⊗ (0, 0)

=
1

4
⊗ φX(P )

= vX .

Consequently, 〈vX , TXvY 〉 = ‖vX‖2. On the other hand, φX(P ) = (−1,−1) ∈

EX(Q) is not a torsion point, therefore vX �= 0.
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82:249–331, 1965.

48



[19] S. H. Schanuel. Heights in number fields. Bull. Soc. Math. France, 107:433–449,

1979.

[20] J.-P. Serre. Lectures on the Mordell-Weil Theorem. Number E15 in Aspects of

Mathematics. Friedr. Vieweg & Sohn, Braunschweig, 2nd edition, 1990.

[21] J. H. Silverman. Representations of integers by binary forms and the rank of the

Mordell-Weil group. Invent. Math., 74:281–292, 1983.

[22] J. H. Silverman. Lower bounds for height functions. Duke Math. J., 51:395–403,

1984.

[23] J. H. Silverman. Rational points on certain families of curves of genus at least 2.

Proc. London Math. Soc., 55:465–481, 1987.

[24] P. Vojta. Siegel’s theorem in the compact case. Ann. of Math., 133:509–548, 1991.

[25] A. Weil. L’arithmétique sur les courbes algébriques. Acta Math., 52:1–35, 1928.
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