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Abstract

In this paper, we show the existence of certain algebraic surfaces of general type with
irregularity one, and investigate the canonical mapping of these surfaces. Such a surface
has a pencil of non-hyperelliptic curves of genus 3 over an elliptic curve, and is obtained
as the minimal resolution of an irreducible relative quartic hypersurface, with at most
rational double points as singularities, of the projective plane bundle over an elliptic
curve. We use some results on locally free sheaves over elliptic curves by Atiyah and
Oda to prove the existence.
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1 Introduction

Let S be a minimal nonsingular complete algebraic surface defined over the complex
number field C . S is called a canonical surface if the rational mapping Φ|KS | defined by
the complete linear system |KS | of a canonical divisor KS of S is birational.

In this paper, we show the existence of certain algebraic surfaces of general type with
irregularity one, and investigate the canonical mapping of these surfaces. In particular,
we check for all values of pg(S) ≥ 2 the existence of minimal algebraic surfaces of general
type satisfying K2

S = 3pg(S) and q(S) = 1, including the cases pg(S) ≤ 3. Note that the
case pg(S) = 1 was already studied by Catanese and Ciliberto [6].

In general the following inequality holds for the self-intersection number K2
S of KS

and the geometric genus pg(S) of S (cf. [5, Théorème 5.5], [10, Lemma 1.1]):
(I) (Castelnuovo-Horikawa’s inequality) If S is a canonical surface, then

K2
S ≥ 3pg(S) − 7.

(II) Castelnuovo classified canonical surfaces which satisfy the equality K2
S =

3pg(S) − 7 above. The irregularity of such a surface S satisfies q(S) = 0. With a
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few exceptions such an S is the minimal resolution of an irreducible relative quartic
hypersurface of a P2-bundle over P1 which has at most rational double points as singu-
larities.

In general, the invariants K2
S , pg(S), q(S) of an irreducible nonsingular relative

quartic hypersurface in a P2-bundle over a nonsingular curve C of genus b satisfy

K2
S = 3pg(S) + 7(b− 1), q(S) = b.

We may ask whether a canonical surface S satisfying these equalities is obtained as the
minimal resolution of an irreducible relative quartic hypersurface, with at most rational
double points, of a P2-bundle over a nonsingular curve C of genus b. Konno [13, Lemma
3.1, Theorem 3.2] proved that it is the case if b = 1. Namely, if S is a canonical surface
satisfying K2

S = 3pg(S) and q(S) = 1, then S is the minimal resolution of a relative
quartic hypersurface in a P2-bundle over an elliptic curve.

More precisely, S has a pencil f : S → C = Alb(S) whose general fiber is a non-
hyperelliptic curve of genus 3. Hence, the direct image f∗ωS/C of the relative dualizing
sheaf ωS/C := ωS ⊗ f∗ω−1

C is a locally free sheaf of rank 3 over C. If we let π : W :=
P(f∗ωS/C) → C to be the P2-bundle associated to f∗ωS/C , T ∈ Pic(W ) a tautological
divisor with π∗OW (T ) ∼= f∗ωS/C , and D ∈ Pic(C) a divisor with OC(D) ∼= det f∗ωS/C ,
then there exists an irreducible member S′ ∈ |4T − π∗D| which has at most rational
double points as singularities, and S is the minimal resolution of S′ (cf. [13]).

Not all the irreducible relative quartic hypersurfaces in the P2-bundles over elliptic
curves which have at most rational double points as singularities are canonical. For
example, since 0 < K2

S = 3pg(S) holds, we have the possibilities pg(S) = 1, 2, 3.
Obviously, S is not canonical in these cases.

In this paper, we study whether a complete linear system of OW (4T )⊗π∗ detE∨ has
members which are irreducible and have at most rational double points as singularities
for every locally free sheaf E of rank three over an elliptic curve C, the P2-bundle
π : W := P(E) → C associated to E and the tautological divisor T with π∗OW (T ) ∼= E.
In particular, we check for all values of pg(S) ≥ 2 the existence of minimal algebraic
surfaces of general type satisfying K2

S = 3pg(S) and q(S) = 1. (Note that the case
pg(S) = 1 was already studied by Catanese and Ciliberto [6].) We then investigate their
canonical mappings including the cases pg(S) ≤ 3. To study the canonical mapping of S,
we have to study the rational mapping Φ|T | of the ambient space W since the canonical
sheaf ωS is isomorphic to the pull back of OW (T ) to S by the adjunction formula.

We obtain the following results on the existence of minimal algebraic surfaces with
K2

S = 3pg(S) and q(S) = 1, using the results about vector bundles over elliptic curves
by Atiyah [4] and Oda [17].

(1) The case where f∗ωS/C is isomorphic to the direct sum of three invertible sheaves
over C (§4.1): pg(S) ≥ 3 is necessary, and conversely, for every integer N ≥ 3, there
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exist minimal algebraic surfaces of general type with pg(S) = N , K2
S = 3pg(S) and

q(S) = 1. (See Theorem 4.1).

(2) The case where f∗ωS/C is isomorphic to the direct sum of an invertible sheaf and an
indecomposable locally free sheaf of rank 2 over C (§4.2): pg(S) ≥ 2 is necessary,
and conversely, for every integer N ≥ 2, there exist minimal algebraic surfaces of
general type with pg(S) = N , K2

S = 3pg(S) and q(S) = 1. (See Theorem 4.10 and
Theorem 4.11).

(3) The case where f∗ωS/C is indecomposable (§4.3): pg(S) ≥ 2 is necessary, and
conversely, for every integerN ≥ 2, there exist minimal algebraic surfaces of general
type with pg(S) = N , K2

S = 3pg(S) and q(S) = 1. (See Theorem 4.23).

As for the canonical mappings of the above surfaces, we obtain the following results:

(1) In the case where f∗ωS/C is the direct sum of three invertible sheaves, if pg(S) ≥ 6
holds, then the canonical mapping is always birational onto its image with the
exception of only one case f∗ωS/C

∼= L⊕3
0 where L0 is an invertible sheaf of degree

2 over C.

If pg(S) = 5 and if f∗ωS/C is not a special locally free sheaf, then the canonical
mapping is birational onto its image, too.

If pg(S) = 5 and f∗ωS/C is a special locally free sheaf, or if pg(S) = 4, then
the canonical mapping is birational onto its image in most cases. Although there
possibly exists a surface whose canonical mapping is not birational onto its image,
we have not obtained any example of such surfaces.

In all the above cases in (1) we obtain some examples of canonical surfaces whose
canonical mappings are not holomorphic, and their canonical images are non-
normal.

When pg(S) = 3, the canonical mapping is a generically finite mapping onto the
projective plane whose degree varies according to the isomorphism class of f∗ωS/C .
In most cases, the degree of the canonical mappings are 6, 8 or 9. When the degree
of the canonical mapping is 9, then it is holomorphic.

(2) In the case where f∗ωS/C is the direct sum of an invertible sheaf and an indecom-
posable locally free sheaf of rank 2, if pg(S) ≥ 5 holds, then the canonical mapping
is always birational onto its image.

If pg(S) = 4, then the canonical mapping is birational onto its image in most cases.
Although there possibly exists a surface whose canonical mapping is not birational
onto its image, we have not obtained any example of such surfaces.
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In all the above cases in (2) we obtain some examples of canonical surfaces whose
canonical mappings are not holomorphic, and their canonical images are non-
normal.

If pg(S) = 3, the canonical mapping is a generically finite mapping onto the pro-
jective plane whose degree varies according to the isomorphism class of f∗ωS/C . In
most cases, the degree of the canonical mapping is 4, 8 or 9. When the degree of
the canonical mapping is 9, then it is holomorphic.

If pg(S) = 2, the canonical system is a linear pencil and the genus of a general
member of this pencil is 7.

(3) In the case where f∗ωS/C is indecomposable, if pg(S) ≥ 5 holds, then the canonical
mapping is always holomorphic and birational onto its image.

If pg(S) = 4, then the canonical mapping is birational onto its image in almost
cases. Although there possibly exists a surface whose canonical mapping is not
birational onto its image, we have not obtained any example of such surfaces.

If pg(S) = 3, the canonical mapping is a generically finite mapping of degree 8 onto
the projective plane in almost cases, but is not holomorphic.

If pg(S) = 2, the canonical system is a linear pencil and the genus of a general
member of this pencil is 7.

The case where the canonical mapping is birational but not holomorphic does not
appear in the cases treated by Ashikaga [2] and Konno [14].

It is not so easy to study the canonical mapping of a surface S when the rational
mapping Φ|T | of the ambient space is not birational onto its image. Thus Propositions
4.8, 4.9, 4.16, 4.20, 4.22 and Corollary 4.37 require long proofs.

Acknowledgement The author would like to thank Professor Tadao Oda for
constant encouragement and advice. Thanks are also due to Professors Tadashi Ashikaga
and Kazuhiro Konno who suggested the problem to the author and provided valuable
information over the years.

2 Notation

Let S be a nonsingular complete algebraic surface over the complex number field.
ωS : the canonical bundle of S.
KS : the canonical divisor of S.
pg(S) := dimCH0(S, ωS) = dimCH2(S, OS) : the geometric genus of S.
q(S) := dimCH1(S, OS) : the irregularity of S.
χ(S) := 1 − q(S) + pg(S) : the arithmetic genus of S.
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For D ∈ Div(S), Φ|D| : S · · · → P(H0(S, OS(D))) denotes the rational mapping
determined by a complete linear system |D|.

3 Preliminaries

Let us mention some results which we need later.

Theorem 3.1 (cf. Konno [13, Corollary 6.4]) If S is a canonical surface with q(S) = 1
and K2

S ≤ (10/3)χ(OS), then a general fiber of the Albanese mapping f : S → C :=
Alb(S) is a nonsingular curve of genus 3.

Theorem 3.2 (cf. Konno [13, Lemma 3.1, and Theorem 3.2]) Let f : S → C be a
surjective morphism from a nonsingular surface S to a nonsingular curve C of genus b
such that a general fiber is a non-hyperelliptic curve of genus 3. Assume further that f
is relatively minimal. Then

(∗) K2
S ≥ 3χ(S) + 10(b− 1).

Furthermore, let π: W := P(f∗ωS/C) → C be the P2-bundle over C defined by the locally
free sheaf f∗ωS/C of rank 3, T a tautological divisor such that π∗OW (T ) ∼= f∗ωS/C , and
ψ : S · · · →W the rational mapping over C induced by the natural sheaf homomorphism
f∗f∗ωS/C → ωS/C . If the equality holds in (∗), then ψ is a morphism and the image
S′ = ψ(S) of ψ has only rational double points as singularities. If we regard S′ as a
divisor on W , then

OW (S′) ∼= OW (4T ) ⊗ π∗ det(f∗ωS/C)∨

holds, where (f∗ωS/C)∨ is the OC-module dual to f∗ωS/C .

Remark The inequality stated in the first half of Theorem 3.2 was proved by
Horikawa [11], [12, Proposition 2.1] and Reid [18] in a different way. Konno [14, Theorem
2.1] himself also gave another proof.

Proposition 3.3 Let C be a nonsingular curve of genus b, and E a locally free sheaf
of rank 3 over C. Let π : W := P(E) → C be the P2-bundle over C associated to E,
T a tautological divisor with π∗OW (T ) ∼= E, and D ∈ Div(C) a divisor on C such that
OC(D) ∼= detE. If the complete linear system |4T − π∗D| has an irreducible member S′

with at most rational double points as singularities, then the following equalities hold for
a minimal resolution S of S′.

K2
S = 3 degE + 16(b− 1),

pg(S) = degE + 3(b− 1) + dimH0(C, E∨),
q(S) = b+ dimH0(C, E∨).

Furthermore, if we let ν : S → S′ to be the minimal resolution, and if we denote f :=
π◦ν : S → C, then we have f∗ωS/C

∼= E.
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Proof We have ω2
S′ = ω2

S , pg(S′) = pg(S) and q(S′) = q(S) by the hypothesis that
S′ has only rational double points as singularities. From the Euler exact sequence

0 → Ω1
W/C → OW (−T ) ⊗OW

π∗E → OW → 0,

for instance, we have ωW/C
∼= OW (−3T )⊗OW

π∗ detE, hence ωW
∼= OW (−3T )⊗π∗(ωC⊗

detE). Thus by the adjunction formula, we get ωS′ ∼= OS′ ⊗OW
OW (T + π∗KC). Hence

using T 3 − (degE)T 2F = 0, we get

ω2
S′ = (T + π∗KC)2(4T − π∗D) = 4T 3 − T 2π∗D + 8T 2π∗KC = 3 degE + 16(b− 1).

Next consider the cohomology long exact sequence induced by the exact sequence

0 → ωW → OW (T + π∗KC) → ωS′ → 0.

Since Riπ∗ωW = 0 for i = 0, 1, we have H i(W, ωW ) = 0 for i = 0, 1 by the Leray
spectral sequence. Hence we get

pg(S′) := dimH0(S′, ωS′) = dimH0(W, OW (T + π∗KC)) = dimH0(C, E ⊗ ωC)
= degE + 3(b− 1) + dimH1(C,E ⊗ ωC) (by the Riemann-Roch theorem)
= degE + 3(b− 1) + dimH0(C, E∨) (by the Serre duality).

Since dimH2(W, ωW ) = dimH1(W, OW ) by the Serre duality, and since
dimH1(W, OW ) = dimH1(C, OC) = b by π∗OW

∼= OC , R
1π∗OW = 0 and the Leray

spectral sequence, we have dimH2(W, ωW ) = b. Therefore from H2(W, OW (T +
π∗KC)) ∼= H2(C, E ⊗ ωC) = 0, we get

q(S′) := dimH1(S′, OS′) = dimH1(S′, ωS′) (by the Serre duality)
= dimH2(W, ωW ) + dimH1(W, OW (T + π∗KC)) = b+ dimH0(C, E∨).

Since S′ has at most rational double points as singularities, ν∗ωS′/C
∼= ωS/C and ν∗OS

∼=
OS′ hold. Since ωS′ ∼= (OW (T ) ⊗OW

π∗ωC) ⊗OW
OS′ as we saw above, we have ωS′/C

∼=
OW (T ) ⊗OW

OS′ . Hence

f∗ωS/C
∼= π∗ν∗ωS/C

∼= π∗ν∗ν∗ωS′/C

∼= π∗
(
ωS′/C ⊗OS′ ν∗OS

) ∼= π∗ωS′/C
∼= π∗ (OW (T ) ⊗OW

OS′) .

As the long exact sequence associated to the short exact sequence 0 → OW (−3T ) ⊗OW

π∗ detE → OW (T ) → OW (T ) ⊗OW
OS′ → 0, we get

0 → π∗ (OW (−3T ) ⊗OW
π∗ detE) → π∗O(T )

→ π∗ (OW (T ) ⊗OW
OS′) → R1π∗ (OW (−3T ) ⊗OW

π∗ detE) .

Since Rjπ∗ (OW (−3T ) ⊗OW
π∗ detE) ∼= (

Rjπ∗OW (−3T )
) ⊗OC

detE = 0 for j = 0, 1,
we obtain
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E = π∗OW (T ) ∼= π∗ (OW (T ) ⊗OW
OS′) .

q.e.d.

Remark By the last assertion of Proposition 3.3, we see that two different P2-
bundles do not contain the same surface.

Theorem 3.4 (cf. Atiyah [4, Theorem 5, Theorem 7 and Corollary, Theorem 9], Oda
[17, Theorem 1.2]) Let C be an elliptic curve and EC(r, d) (r, d ∈ Z) the set of isomor-
phism classes of indecomposable locally free sheaves of rank r and degree d over C.

(1) If (r, d) = 1, and if we fix any isogeny ϕ : C̃ → C of degree r, we have a bijective
mapping

{ L0 ∈ Pic(C̃) | degL0 = d } 
 L0 �→ ϕ∗L0 ∈ EC(r, d).

If we denote G = kerϕ, then we get

ϕ∗ϕ∗L0
∼=
⊕
σ∈G

T ∗
σL0,

where Tσ : C̃ → C̃ is the translation by σ ∈ G on C̃.

(2) For any r ∈ N, there exists a unique Fr ∈ EC(r, 0) such that H0(C, Fr) �=
0. Fr is a successive extension of OC , and Fr

∼= Sr−1(F2) holds. Furthermore,
dimH0(C, Fr) = dimH1(C, Fr) = 1. For m ∈ Z

{ L0 ∈ Pic(C) | degL0 = m } 
 L0 �→ Fr ⊗OC
L0 ∈ EC(r, rm)

is a bijective mapping.

Remark Although not necessary in this paper, we have the following in general: If
(r, d) = h, then EC(r/h, d/h) 
 F ′ �→ F ′ ⊗ Fh ∈ EC(r, d) is a bijective mapping.

We use the following lemma in §4.2 and §4.3:

Lemma 3.5 Let C be an elliptic curve, µ : Y = P(F2) → C a ruled surface associated
to F2, and C ′ ⊂ Y the unique section of µ with µ∗OY (C ′) ∼= F2. For any point p ∈ C

and for any positive integer i, we have

Bs |iC ′ + Γp| = {y0},

where Γp := µ−1(p) and y0 := C ′ ∩ Γp. Furthermore, general members of |iC ′ + Γp|
are nonsingular at y0, and all the members which are nonsingular at y0 have the same
tangent at y0. If i and j are positive integers with i �= j, then a nonsingular member of
|iC ′ + Γp| and a nonsingular member of |jC ′ + Γp| have different tangents at y0.
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Proof Since iC ′ + Γp ∈ |iC ′ + Γp|, the base point of |iC ′ + Γp| exists only on
C ′ ∪ Γp. Since

H1(Y, OY (iC ′)) ∼= H1(C, SiF2) ∼= H1(C, Fi+1) ∼= C,

and

H1(Y, OY (iC ′ + Γp)) ∼= H1(C, Fi+1 ⊗OC(p)) = 0,

the image of the restriction mapping

H0(Y, OY (iC ′ + Γp)) → H0(Γp, OΓp(iC ′))

is i-dimensional. Since H0(Γp, OΓp(iC ′))
(∼= H0(P1, OP1(i))

)
is (i + 1)-dimensional,

there exsits at most one base point on Γp. On the other hand, since

dimH0(Y, OY (iC ′ + Γp)) = i+ 1 �= i = dimH0(Y, OY ((i− 1)C ′ + Γp)),

C ′ is not a fixed component of |iC ′ + Γp|. Furthermore, since (iC ′ + Γp)C ′ = 1 and
NC′/Y

∼= OC′ , only y0 = C ′ ∩ Γp is the base point of |iC ′ + Γp| lying on C ′. Hence, we
obtain Bs |iC ′ + Γp| = {y0}.

If all the members of |iC ′ + Γp| are singular at y0, the intersection multiplicity of a
member of |iC ′ + Γp| and C ′ at y0 is at least two. This contradicts (iC ′ + Γp)C ′ = 1,
and hence, general members of |iC ′ + Γp| are nonsingular at y0.

Let M ∈ |iC ′ + Γp| be a nonsingular member. If we consider the cohomology long
exact sequence induced from the exact sequence of sheaves

0 → OY → OY (M) → OM (M) → 0,

we obtain

dimH0(M, OM (M)) = i+ 1,

and

dim Im
{
H0(Y, OY (M)) → H0(M, OM (M))

}
= i.

If we regard y0 as a point on M , then y0 can be written as C ′|M . Since ωM
∼= ωY ⊗

OY (M) ⊗OM
∼= OM ((i− 2)C ′ + Γp) by the adjunction formula, we have

OM (M) ∼= ωM ⊗OM (2y0).

The subsystem of the complete linear system of M |M corresponding to the image of
the restriction mapping H0(Y, OY (M)) → H0(M, OM (M)) may be regarded as the
complete linear system of M |M − y0, and its dimension is i − 1 by what we mentioned
above. On the other hand, since

degωM = (iC ′ + Γp)((i− 2)C ′ + Γp) = 2i− 2,
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the genus g(M) of M is equal to i. Since M |M − 2y0 ∼ KM , the complete linear system
of M |M − 2y0 is also (i − 1)-dimensional. Hence, y0 is the base point of the complete
linear system of M |M − y0, and the intersection multiplicity of any nonsingular member
M ′ ∈ |iC ′ + Γp| with M at y0 is at least two, i.e., M and M ′ have the same tangent.

The last assertion can be proved in the same way as above. q.e.d.

4 Existence and birationality

By Theorem 3.1 and Theorem 3.2, to classify canonical surfaces with K2
S = 3pg(S), and

q(S) = 1, we need to have a necessary and sufficient condition for the complete linear
system |4T − π∗D| on the P2-bundle W = P(E) associated to a locally free sheaf E of
rank 3 over an elliptic curve C to have irreducible members with at most rational double
points as singularities, where T is a tautological divisor on W such that π∗OW (T ) ∼= E,
and D ∈ Div(C) is a divisor such that OC(D) ∼= detE. We should then choose those
members whose nonsingular models have the canonical mappings which are birational
onto their images. Locally free sheaves of rank 3 over an elliptic curve C is expressed
uniquely up to order as direct sums of indecomposable locally free sheaves (cf. [4]), hence
we should consider the following five cases:

(1) E is a direct sum of three invertible sheaves.

(2) E is a direct sum of an invertible sheaf and an indecomposable locally free sheaf
of rank 2.

(i) The degree of the indecomposable locally free sheaf of rank 2 is odd.

(ii) The degree of the indecomposable locally free sheaf of rank 2 is even.

(3) E is indecomposable.

(i) degE is not divisible by 3.

(ii) degE is divisible by 3.

We consider each of these cases.

Definition Let π : W → C be the P2-bundle over the elliptic curve C associated
to a locally free sheaf E of rank 3, T the tautological divisor with π∗OW (T ) ∼= E, and
D ∈ Div(C) a divisor with OC(D) ∼= detE. We say that E satisfies the condition
(A) if the complete linear system |4T − π∗D| has a member S′ satisfying the following
conditions:

(i) S′ is irreducible and has at most rational double points as singularities.
(ii) The minimal resolution S of S′ is of general type.
(iii) S satisfies K2

S = 3pg(S) and q(S) = 1.

9



Remark If H0(C, E∨) = 0, then we have K2
S �= 3pg(S) and q(S) �= 1 by Proposi-

tion 3.3. Hence we only have to consider the locally free sheaves E with H0(C, E∨) = 0.
Furthermore, if E satisfies the condition (A), then S is of general type, and hence,
χ(OS) = degE > 0.

On the other hand, if f ′ : S′ → C ′ is a surjective morphism from a nonsingular
surface S′ to a nonsingular curve C ′, then f ′∗ωS′/C′ is nef, hence, any quotient locally
free sheaf of f ′∗ωS′/C′ has non-negative degree by Fujita’s result [7, (1.2) Proposition].
Hence, we only have to consider nef locally free sheaves.

4.1 The case where E is a direct sum of three invertible sheaves.

Let L0, L1, L2 be invertible sheaves over an elliptic curve C such that E ∼= L0⊕L1⊕L2,
and denote di := degLi (i = 0, 1, 2). Furthermore, let π : W → C be the P2-bundle
associated to E, and T the tautological divisor with π∗OW (T ) ∼= E. In §4.1, we prove the
existence of a surface S of general type with K2

S = 3pg(S), q(S) = 1 and pg(S) = N for
any integer N ≥ 3 by obtaining necessary and sufficient conditions for the complete linear
system of OW (4T ) ⊗ π∗ detE∨ to have members with at most rational double points as
singularities (Theorem 4.1). We then study the canonical mapping of the surfaces thus
obtained. The results about the canonical mappings are stated in Corollaries 4.3 and
4.4, and Propositions 4.6, 4.8 and 4.9.

4.1.1 Existences

We may assume d0 ≤ d1 ≤ d2. We only have to consider the case d0 ≥ 0, d1 ≥ 0 and
d2 > 0 by the remark immedietely before §4.1. By further renumbering of L0, L1, L2 if
necessary, we get the following:

Theorem 4.1 Let π : W = P(E) → C be the P2-bundle over an elliptic curve C

associated to E ∼= L0 ⊕ L1 ⊕ L2, T a tautological divisor such that π∗OW (T ) ∼= E, and
D ∈ Div(C) a divisor on C with OC(D) ∼= detE. Denote di := degLi(i = 0, 1, 2), and
suppose 0 ≤ d0 ≤ d1 ≤ d2 and d2 > 0. Then the complete linear system |4T − π∗D| on
W satisfies the condition (A) if and only if the following (1), (2) and (3) hold.

(1) One of the following (i), (ii) and (iii) holds:

(i) d0 + d2 < 3d1,

(ii) L0 ⊗ L2
∼= L⊗3

1 ,

(iii) 2d0 = 2d1 = d2 and one of L⊗2
1 , L0 ⊗ L1, L

⊗2
0 , L⊗3

0 ⊗ L−1
1 is isomorphic to

L2.

(2) One of the following (i), (ii) and (iii) holds:

(i) d1 < 2d0,
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(ii) L1
∼= L⊗2

0 ,

(iii) 2d0 = d1 = d2 and L2
∼= L⊗2

0 .

(3) If d0 = d1 = d2 = 1 holds, then one of L0, L1, L2 is not isomorphic to the others.

This proposition can be proved by a method analogous to Ashikaga–Konno [3, Proof
of Claim III, pp.523–524], as follows:

Proof H0(W, OW (T )⊗π∗L−1
i ) ∼= H0(C, L0⊗L−1

i )⊕H0(C, L1⊗L−1
i )⊕H0(C, L2⊗

L−1
i ) has a component of the form H0(C, OC) for each i = 0, 1, 2. Hence we can choose

Xi ∈ H0(W, OW (T )⊗ π∗L−1
i ) (i = 0, 1, 2) which give homogenous coordinates on each

fiber of π. Since

H0(W, OW (4T ) ⊗ π∗ detE∨) = H0(C, S4E ⊗ detE∨)

holds, this cohomology group can be written as

⊕
i, j≥0
i+j≤4

H0(C, L⊗(3−i−j)
0 ⊗ L

⊗(i−1)
1 ⊗ L

⊗(j−1)
2 )X4−i−j

0 X i
1X

j
2 .

Hence any Ψ ∈ H0(W, OW (4T ) ⊗ π∗ detE∨) can be written as

Ψ =
∑

i, j≥0
i+j≤4

ψijX
4−i−j
0 X i

1X
j
2 ,

where ψij ∈ H0(C, L⊗(3−i−j)
0 ⊗ L

⊗(i−1)
1 ⊗ L

⊗(j−1)
2 ).

Suppose that (1) does not hold. When j = 0,

deg(L⊗(3−i)
0 ⊗ L

⊗(i−1)
1 ⊗ L−1

2 ) = (3 − i)d0 + (i− 1)d1 − d2 ≤ −d0 + 3d1 − d2 ≤ 0

holds, hence if d0 + d2 > 3d1, the coefficients of X4
0 , X

3
0X1, X

2
0X

2
1 , X0X

3
1 , X

4
1 are

0, and hence Ψ is reducible (it is divisible by X2). If d0 + d2 = 3d1, and none of
L⊗3

0 ⊗L−1
1 , L⊗2

0 , L0 ⊗L1, L
⊗2
1 , L−1

0 ⊗L⊗3
1 are isomorphic to L2, then Ψ is divisible by

X2 again.
Next we suppose that (2) does not hold. Then since we have

deg(L⊗3
0 ⊗ L−1

1 ⊗ L−1
2 ) = 3d0 − d1 − d2 = (2d0 − d1) + (d0 − d2) ≤ 2d0 − d1 ≤ 0,

deg(L⊗2
0 ⊗ L−1

2 ) = 2d0 − d2 = (2d0 − d1) + (d1 − d2) ≤ 2d0 − d1 ≤ 0,
deg(L⊗2

0 ⊗ L−1
1 ) = 2d0 − d1 ≤ 0,

if 2d0 < d1, then the coefficients of X4
0 , X

3
0X1, X

3
0X2 of Ψ are 0. Let Z0 ⊂ W be the

curve defined by X1 = X2 = 0. (In the rest of the proof, Z0 denotes this curve.) The
degrees with respect to X1 and X2 of each term of Ψ are greater than 1 on Z0, hence
the divisor on W defined by Ψ = 0 contains Z0 as a singular curve. The case where
2d0 = d1 and L⊗2

0 �∼= L1 is the same as above, if d1 < d2. (If d1 = d2 and L⊗2
0

∼= L2 hold,
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interchange L1 and L2 and regard this case as the case L⊗2
0

∼= L1.) When d1 = d2 and
L⊗2

0 �∼= Li, (i = 1, 2) hold, if we assume 3d0 − d1 − d2 = 2d0 − d2, then we have d0 = d1.
However, since 2d0 = d1 = d2, we have d0 = d1 = d2, a contradiction to the assumption.
Hence 3d0 − d1 − d2 < 2d0 − d2, and Z0 is a singular curve in the divisor defined by
Ψ = 0 on W .

We suppose (3) does not hold, i.e., d0 = d1 = d2 = 1 and L0
∼= L1

∼= L2 hold. In
this case, for all i, j satisfying i, j ≥ 0 and i+ j ≤ 4, L⊗(3−i−j)

0 ⊗ L
⊗(i−1)
1 ⊗ L

⊗(j−1)
2 are

isomorphic to one another, and of degree 1. Hence there exists a point p ∈ C such that
ψij = 0 holds for all i, j. Consequently, F := π−1(p) is a fixed component of |4T −π∗D|.

From now on, we assume that (1), (2) and (3) hold.
(I) Let us look at the case where 3d0 > d1 + d2 or L⊗3

0
∼= L1 ⊗ L2.

(If, moreover, d0 = d1 and L⊗3
0

∼= L1⊗L2 hold, then we have deg(L⊗3
0 ⊗L−1

1 ⊗L−1
2 ) =

deg(L−1
0 ⊗ L⊗3

1 ⊗ L−1
2 ). In this case, if L⊗3

1 �∼= L0 ⊗ L2 holds, we interchange L0 and L1

and regard this case as the case L⊗3
0 �∼= L1 ⊗L2. So we may assume L⊗3

1
∼= L0 ⊗L2 holds

when d0 = d1 and L⊗3
0

∼= L1 ⊗ L2 hold.)
Since we have deg(L⊗3

0 ⊗L−1
1 ⊗L−1

2 ) ≤ deg(L⊗(3−i−j)
0 ⊗L⊗(i−1)

1 ⊗L⊗(j−1)
2 ), |4T−π∗D|

has no base point if and only if 3d0 − d1 − d2 �= 1. Indeed, under the assumption
of (I), we have H0(C, L⊗3

0 ⊗ L−1
1 ⊗ L−1

2 ) �= 0, H0(C, L−1
0 ⊗ L⊗3

1 ⊗ L−1
2 ) �= 0 and

H0(C, L−1
0 ⊗ L−1

1 ⊗ L⊗3
2 ) �= 0, and hence we can choose nonzero global sections of

H0(W, OW (4T ) ⊗ π∗ detE∨) of the form Ψ0 := ψ00X
4
0 , Ψ1 := ψ40X

4
1 , Ψ2 := ψ04X

4
2 .

If 3d0 − d1 − d2 �= 1 holds, then we have deg(L−1
0 ⊗ L−1

1 ⊗ L⊗3
2 ) ≥ 2 and L⊗3

0 ⊗ L−1
1 ⊗

L−1
2 , L−1

0 ⊗L⊗3
1 ⊗L−1

2 either have degrees greater than 1 or are isomorphic to OC . Hence
|4T − π∗D| has no base point. If 3d0 − d1 − d2 = 1 holds, there exists a unique point
p0 ∈ C such that ψ00(p0) = 0 holds for any ψ00 ∈ H0(C, L⊗3

0 ⊗L−1
1 ⊗L−1

2 ). If we denote
F0 := π−1(p0), then q0 := F0 ∩ Z0 is an isolated fixed point of |4T − π∗D|. (In the rest
of the proof, p0 and q0 denote these points.)

Hence if 3d0 − d1 − d2 �= 1 holds, the general member of |4T − π∗D| is irreducible
and nonsingular by Bertini’s theorem.

We claim that even if 3d0 − d1 − d2 = 1 holds, the general member of |4T − π∗D| is
also irreducible and nonsingular. Indeed if −d0 + 3d1 − d2 ≥ 2 and −d0 − d1 + 3d2 ≥ 2
hold, there exist no base point except q0. If we let t to be a local coordinate around p0

on C, and if we denote xi := Xi/X0 (i = 1, 2), then (t, x1, x2) is a local coordinate
around q0 on W . General Ψ ∈ H0(W, OW (4T ) ⊗ π∗ detE∨) can be written as

Ψ = t+ ψ10x1 + ψ01x2 + · · ·

around q0, so the divisor (Ψ) on W is nonsingular at q0. If −d0 + 3d1 − d2 = 1 and
−d0 − d1 + 3d2 ≥ 2 hold, there exists a unique point p1 ∈ C with ψ40(p1) = 0 for all
ψ40 ∈ H0(C, L−1

0 ⊗L⊗3
1 ⊗L−1

2 ). If we assume L⊗3
0 ⊗L−1

1 ⊗L−1
2 �∼= L−1

0 ⊗L⊗3
1 ⊗L−1

2 , then
p0 �= p1 holds. In this case, if we let Z1 to be the curve defined byX0 = X1 = 0 on W , and
if we denote F1 := π−1(q1) and q1 := Z1 ∩F1, then we have q0 �= q1 and Bs |4T −π∗D| =

12



{q0, q1}. We can show that the general member of |4T − π∗D| is nonsingular at q0 and
q1 in the same way as above. (In the rest of the proof, p1, q1, F1, Z1 denote the above
points and curves.) If we assume L⊗3

0 ⊗L−1
1 ⊗L−1

2
∼= L−1

0 ⊗L⊗3
1 ⊗L−1

2 and L0 �∼= L1, then
although p0 and p1 coincide, q0 and q1 are two distnct points contained in the same fiber
of π, and we have Bs |4T−π∗D| = {q0, q1} again. We can show that a general member of
|4T −π∗D| is nonsingular at q0 and q1 in the same way as above. If we assume L0

∼= L1,
then p0 = p1 holds. In this case, if we let Z ′ to be the intersection of F0 = π−1(p0)
and the relative hyperplane defined by the equation X2 = 0, then Bs |4T − π∗D| = Z ′

holds. In this case, we have H0(W, OW (T ) ⊗ π∗L−1
0 ) ∼= H0(C, OC) ⊕ H0(C, OC) ⊕

H0(C, L2 ⊗ L−1
0 ). Let X0 ∈ H0(W, OW (T ) ⊗ π∗L−1

0 ) be the element of the subspace
corresponding to the first H0(C, OC), and X1 ∈ H0(W, OW (T ) ⊗ π∗L−1

0 ) the element
of the subspace corresponding to the second H0(C, OC). Any element of the subspace
of H0(W, OW (T ) ⊗ π∗L−1

0 ) corresponding to H0(C, OC) ⊕H0(C, OC) can be written
as aX0 + bX1 for some a, b ∈ C, and the divisor (aX0 + bX1) of W is clearly irreducible.
Hence if we denote X ′

0 := aX0+bX1, then X ′
0, X1 and X2 give homogeneous coordinates

of all the fibers of π. There exist constants a and b in C with q′ = Z ′ ∩ (X ′
0) for any

point q′ ∈ Z ′. For this X ′
0, if we denote x′0 := X ′

0/X1 and x2 := X2/X1, and if we let t
to be a local coordinate around p0 = p1, then (t, x′0, x2) gives a local coordinate around
q′ on W . A general Ψ ∈ H0(W, OW (4T ) ⊗ π∗ detE∨) can be written as

Ψ = t+ ψ31x2 + · · ·

locally, hence the divisor (Ψ) is nonsingular at q′. Thus, a general member of |4T −π∗D|
is nonsingular at Z ′. Next we assume −d0 + 3d1 − d2 = −d0 − d1 + 3d2 = 1, i.e.,
d0 = d1 = d2 = 1. Suppose further that L0

∼= L1. In this case, we have L⊗3
0 ⊗L−1

1 ⊗L−1
2

∼=
L⊗2

0 ⊗L−1
2

∼= L0⊗L1⊗L−1
2

∼= L⊗2
1 ⊗L−1

2
∼= L−1

0 ⊗L⊗3
1 ⊗L−1

2 , so there exists a point p ∈ C

such that the coefficients ψ00, ψ10, ψ20, ψ30, ψ40 of X4
0 , X

3
0X1, X

2
0X

2
1 , X0X

3
1 , X

4
1

vanish on F := π−1(p). Hence if we let Z ′ to be the curve which is the intersection of
F and the relative hyperplane defined by the equation X2 = 0, then Z ′ is contained
in Bs |4T − π∗D|. Therefore we have then Bs |4T − π∗D| = {q0} ∪ Z ′. We can prove
that a general member of |4T − π∗D| is also nonsingular along {q0} ∪ Z ′ in this case in
the same way as above. In the same way, we obtain the same result when L1

∼= L2 or
L2

∼= L0. Suppose Li �∼= Lj if i �= j (i, j = 0, 1, 2). There exists a point p2 ∈ C such
that ψ04(p2) = 0 holds for any global section ψ04 ∈ H0(C, L−1

0 ⊗L−1
1 ⊗L⊗3

2 ). Let Z2 be
the curve defined by X0 = X1 = 0, and denote F2 := π−1(p2), q2 := Z2 ∩ F2. Then we
have q2 �= q0, q1 and Bs |4T − π∗D| = {q0, q1, q2}. We can show that a general member
of |4T − π∗D| is nonsingular at q0, q1, q2 in the same way as above.

(II) Let us look at the case where 3d0 < d1 +d2 or (3d0 = d1 +d2 and L⊗3
0 �∼= L1⊗L2).

Since we have H0(C, L⊗3
0 ⊗ L−1

1 ⊗ L−1
2 ) = 0, the coefficient ψ00 of X4

0 in Ψ is 0.
Hence Z0 is contained in Bs |4T − π∗D|. The other base points are as follows:

(i) There exist no base point except Z0. ⇐⇒ −d0 + 3d1 − d2 ≥ 2 or L⊗3
1

∼= L0 ⊗L2.
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(ii) If −d0+3d1−d2 = 1 and −d0−d1+3d2 ≥ 2, then q1 is a base point of |4T−π∗D|.
(iii) If −d0 + 3d1 − d2 = −d0 − d1 + 3d2 = 1, then q1 and q2 are base points of

|4T − π∗D|.
(iv) If −d0 +3d1−d2 = 0 and L⊗3

1 �∼= L0⊗L2, then we have Bs |4T −π∗D| = Z0∪Z1.
(i), (ii) and (iii) are trivial. So we prove (iv). First, we have d0 = d1. Indeed, if we

assume d0 < d1, then we have

3d0 − d1 − d2 < 2d0 − d2 < d0 + d1 − d2 < 2d1 − d2 < −d0 + 3d1 − d2 = 0,

hence the coefficients of X4
0 , X3

0X1, X2
0X

2
1 , X0X

3
1 , X4

1 vanish, and any Ψ ∈
H0(W, OW (4T ) ⊗ π∗ detE∨) is reducible. Therefore we have d0 = d1 and hence
2d0 = 2d1 = d2 holds. Since we have L⊗3

0 �∼= L1 ⊗ L2 and L⊗3
1 �∼= L0 ⊗ L2 by as-

sumption, the coefficients of X4
0 and X4

1 are 0. On the other hand, since the coefficient
of one of X3

0X1, X
2
0X

2
1 , X0X

3
1 is not 0 by the assumption of the proposition (the third

assumption of (3)), one of ψ10X
3
0X1, ψ20X

2
0X

2
1 and ψ30X0X

3
1 gives an effective divisor in

W . (It is a union of two relative hyperplanes defined by the equations X0 = 0, X1 = 0.)
Since we have deg(L−1

0 ⊗L−1
1 ⊗L⊗3

2 ) = −d0 − d1 + 3d2 = 4d0 ≥ 4 > 2, we obtain the
claim considering the intersection of the divisors defined by the global sections ψ40X

4
2

and one of ψ10X
3
0X1, ψ20X

2
0X

2
1 , ψ30X0X

3
1 .

We can show that a general member of |4T − π∗D| is nonsingular at q1 in the case
(ii), and at q1 and q2 in the case (iii) in the same way as above. Hence in the cases (i),
(ii) and (iii), it is sufficient to look at the multiplicity of a general member of |4T −π∗D|
at Z0.

Let us look at the case where 2d0 > d2 or L⊗2
0

∼= L2. (When L0
∼= L2, if we assume

d1 = d2 and L⊗2
0 �∼= L1, further, interchange L1 and L2 and regard this case as the case

L⊗2
0 �∼= L2. Hence, we may assume L⊗2

0
∼= L1 when L⊗2

0
∼= L2 and d1 = d2.) Since we

have H0(C, L⊗2
0 ⊗L−1

2 ) �= 0 and H0(C, L⊗2
0 ⊗L−1

1 ) �= 0, a general member of |4T −π∗D|
is nonsingular at Z0 except in the case

2d0 − d1 = 2d0 − d2 = 1, and L1
∼= L2.

In this case, since we have L⊗2
0 ⊗ L−1

1
∼= L⊗2

0 ⊗ L−1
2 , there exists a point p ∈ C such

that ψ(p) = 0 holds for any ψ ∈ H0(C, L⊗2
0 ⊗ L−1

1 ) ∼= H0(C, L⊗2
0 ⊗ L−1

2 ). Denote
F := π−1(p), q := Z0 ∩ F and xi := Xi/X0 (i = 1, 2), and let t be a local coordinate
around p on C. A general Ψ ∈ H0(W, OW (4T ) ⊗ π∗ detE∨) can be written as

Ψ = tx1 + ctx2 + ψ20x
2
1 + ψ11x1x2 + ψ02x

2
2 + · · ·

= x1(t+ ψ20x1 + ψ11x2 + · · ·) + ctx2 + ψ02x
2
2 + ψ03x

3
2 + ψ04x

4
2,

where c ∈ C is a constant. Hence the divisor defined by Ψ = 0 on W has a rational
double point of type A1 at q.

Let us look at the case where 2d0 < d2 or (2d0 = d2 and L⊗2
0 �∼= L2). In this case, the

coefficients of X4
0 , X

3
0X1 are 0. If d1 = 2d0 and L⊗2

0
∼= L1 hold, then the coefficient of
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X3
0X2 is constant, hence a general member is nonsingular at Z0. If d1 < 2d0 holds, and

if we let p ∈ C be a point such that ψ01(p) = 0 for 0 �= ψ01 ∈ H0(C, L⊗2
0 ⊗ L−1

1 ), Ψ can
be written as

Ψ = tx2 + ψ20x
2
1 + ψ11x1x2 + ψ02x

2
2 + · · ·

= x2(t+ ψ11x1 + ψ02x2 + · · ·) + ψ20x
2
1 + ψ30x

3
1 + ψ40x

4
1,

around q, where q, t, x1, x2 are as above. The equation Ψ = 0 gives a rational double
point of type A1 at q except in the case

L0 ⊗ L1 ⊗ L−1
2

∼= L⊗2
0 ⊗ L−1

1 , and d0 + d1 − d2 = 2d0 − d1 = 1.

In this case, ψ20 = c′t holds around q for some constant c′ ∈ C, and the equation Ψ = 0
gives a rational double point of type A2 at q.

In the case (iv), we can show that a general member of |4T −π∗D| is irreducible and
has at most rational double points of type A1 on Z0 and Z1 in the same way as above.
q.e.d.

4.1.2 The canonical mappings

We study the canonical mapping of surfaces classified in Theorem 4.1. The triples
(d0, d1, d2) satisfying pg(S) = d0 + d1 + d2 = 4, 5, 6 and the conditions in Theorem 4.1
are

(d0, d1, d2) = (1, 1, 2), (pg(S) = 4),
(d0, d1, d2) = (1, 2, 2), (pg(S) = 5),
(d0, d1, d2) = (1, 2, 3), (2, 2, 2), (pg(S) = 6).

Lemma 4.2 Let L0, L1, L2 be invertible sheaves over an elliptic curve C, and denote
di := degLi, (i = 0, 1, 2). Assume that L0, L1, L2 satisfy the conditions of Theorem
4.1. If π : W := P(E) → C is the P2-bundle over C associated to E := L0 ⊕ L1 ⊕ L2,
and T is a tautological divisor such that π∗OW (T ) ∼= E, then Φ|T | is birational onto its
image when one of the following holds.

(i) d0 + d1 + d2 ≥ 7.
(ii) (d0, d1, d2) = (1, 2, 3).
(iii) (d0, d1, d2) = (2, 2, 2) and one of L0, L1, L2 is not isomorphic to the others.
(iv) (d0, d1, d2) = (1, 2, 2) and L1 �∼= L2.

Proof First we show that for any general fiber F of π, the restriction of Φ|T | to F
gives an isomorphism of F onto its image. It suffices to show that the restriction mapping
H0(W, OW (T )) → H0(F, OF (T )) is sujective. We only have to show H1(W, OW (T −
F )) = 0 in view of the exact sequence

0 → OW (T − F ) → OW (T ) → OF (T ) → 0.
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If we denote q := π(F ) ∈ C, we have

H1(W, OW (T − F )) = H1(C, E ⊗OC(−q))
∼= H1(C, L0 ⊗OC(−q)) ⊕H1(C, L1 ⊗OC(−q)) ⊕H1(C, L2 ⊗OC(−q)).

Since we assume 0 < d0 ≤ d1 ≤ d2, this cohomology group vanishes.
In the rest of the proof, we show that there exists a Zariski open subset of W such

that any two points in it contained in different fibers are separated by |T |.
Since

H0(W, OW (T )) ∼= H0(C, L0) ⊕H0(C, L1) ⊕H0(C, L2),

if we choose Xi ∈ H0(W, OW (T )⊗ π∗L−1
i ) (i = 0, 1, 2) as in the proof of Theorem 4.1,

any Ψ ∈ H0(W, OW (T )) can be written as

Ψ = ψ0X0 + ψ1X1 + ψ2X2, ψi ∈ H0(C, Li) (i = 0, 1, 2).

If d2 ≥ 3, then W \ (X2) satisfies the above condition, where (X2) is the divisor
defined by X2. (Look at all the elements of the form ψ2X2.)

If d2 = 2, then we have (d0, d1, d2) = (1, 2, 2), (2, 2, 2).
If (d0, d1, d2) = (2, 2, 2), then at least one of L0, L1, L2 is not isomorphic to the

others. We may assume L1 �∼= L2 by renumbering L0, L1, L2 if necessary. We see that
W \ {(X1) ∪ (X2)} satisfies the above condition, where (Xi) is the divisor defined by
Xi (i = 1, 2). (Look at all the elements of the form ψ1X1, ψ2X2.)

We obtain the same result when (d0, d1, d2) = (1, 2, 2), since we assume L1 �∼= L2

in this case. q.e.d.

Corollary 4.3 The canonical mapping of any surface S whose existence is guaranteed
by Theorem 4.1 and the condition (A) is a birational morphism onto its image if one of
the following holds.

(1) d0 + d1 + d2 ≥ 7 and d0 ≥ 2,

(2) (d0, d1, d2) = (2, 2, 2), and one of L0, L1, L2 is not isomorphic to the others.

Proof Since OS′ ⊗OW
ωW ⊗OW

OW (S′) ∼= ωS′ by the adjunction formula, and since
ωW

∼= OW (−3T ) ⊗ π∗ detE and OW (S′) ∼= OW (4T ) ⊗ π∗ detE∨, we have

ωS′ ∼= OS′ ⊗OW
OW (T ).

Furthermore, we have

dimH i(W, ωW ) = dimH3−i(W, OW ) = dimH3−i(C, OC) = 0,

for i = 0, 1 by the Serre duality and the Leray spectral sequence. Hence in view of the
cohomology long exact sequence associated to the short exact sequence
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0 → ωW → OW (T ) → ωS′ → 0,

we have

H0(W, OW (T )) ∼= H0(S′, ωS′).

Since S′ has at most rational double points as singularities, we have Φ|KS | = ψ ◦ Φ|T |,
where ψ : · · · →W is a morphism by Theorem 3.2. Since ψ is birational onto its image,
if Φ|T | is birational onto its image, then Φ|KS | is also birational onto its image. Hence
the statement about the birationality follows from Lemma 4.2.

We prove that Φ|KS | is holomorphic. Since d0 ≥ 2, we see that Bs |T | = ∅ by
considering all the elements in H0(W, OW (T )) of the form ψ0X0, ψ1X1, ψ2X2. Hence
|KS | also has no base point. q.e.d.

Corollary 4.4 The complete linear system of the canonical bundle of any surface S

whose existence is guaranteed by Theorem 4.1 and condition (A) has only one isolated
base point, and its canonical mapping is birational onto its image, if one of the following
holds:

(1) (d0, d1, d2) = (1, 2, 5),

(2) (d0, d1, d2) = (1, 2, 4),

(3) (d0, d1, d2) = (1, 2, 3),

(4) (d0, d1, d2) = (1, 2, 2) and L1 �∼= L2.

Furthermore, its canonical image is non-normal.

Proof We use our notation in Theorem 4.1 and Corollary 4.3.
Under the assumption of the corollary, the curve Z0 ⊂ W defined by X1 = X2 = 0

is contained in the set of base points of |4T − π∗D| by the proof of Proposition 4.1.
Furthermore, we can show that the point q0 ∈W defined by ψ0 = X1 = X2 = 0 satisfies
Bs |T | = {q0} in the same way as in Corollary 4.3. Since q0 ∈ Z0, the complete linear
system of the canonical bundle of a general member of |4T − π∗D| has only one base
point q0. The birationality of the canonical mapping can be proved in the same way as
in the proof of Corollary 4.3.

The restriction of |T | to the fiber F0 containing q0 can be regarded as a subsystem
of the complete linear system of OP2(1) consisting of all lines going through q0. Each
line of this system intersects the fiber F of a general member S of |4T − π∗D| at four
points, one of which is q0. Hence we have deg

(
Φ|KS ||F

)
= 3, and the canonical image

of S is non-normal by Zariski’s main theorem. q.e.d.

Lemma 4.5 If (d0, d1, d2) = (2, 2, 2) and L0
∼= L1

∼= L2, then deg Φ|T | = 2 holds.
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Proof If we denote ν := Φ|L0| : C → P1, we have L0
∼= ν∗OP1(1), and hence

E ∼= ν∗(OP1(1)⊕3). Therefore, if we denote π0 : W0 := P(OP1(1)⊕3) → P1, we have the
following commutative diagram:

W
ν̃−→ W0

π ↓ ↓ π0

C
−→
ν P1

If we let T0 to be a tautological divisor with π0∗OW0(T0) ∼= OP1(1)⊕3, then we have
ν̃∗T0 ∼ T , and

dimH0(W, OW (T )) = dimH0(C, L0)⊕3 = 6
dimH0(W0, OW0(T0)) = dimH0(P1, OP1(1))⊕3 = 6,

and hence, we get Φ|T | = Φ|T0| ◦ ν̃. Since Φ|T0| gives an embedding of W0 into P5, we
have deg Φ|T | = 2. q.e.d.

Proposition 4.6 Let the notation and the assumption be as in Lemma 4.5. Then the
canonical mapping of a general member of |4T − π∗D| gives a double covering over a
surface of degree 9 in P5.

Proof Since OC(D) ∼= detE ∼= ν∗(det(OP1(1)⊕3)), we obtain

OW (4T ) ⊗ π∗ detE∨ ∼= ν̃∗(OW0(4T0) ⊗ π∗0OP1(−3)).

Since

dimH0(W, OW (4T ) ⊗ π∗ detE∨) = dimH0(C, S4E ⊗ detE∨)

= dimH0(C, L⊕15
0 ) = 15 dimH0(C, L0) = 30

and
dimH0(W0, OW0(4T0) ⊗ π∗0OP1(−3)) = 15 dimH0(P1, OP1(1)) = 30,

a general member of |4T − π∗D| is a pull-back of some member of |4T0 − π∗0D0|, where
D0 ∈ Div(P1) is a divisor of degree 3. Hence, the canonical mappings of irreducible and
nonsingular members of |4T − π∗D| are of degree 2. Since |T | has no base point, we
obtain the claim on the degree of the image of S by Φ|KS |. q.e.d.

Remark The surfaces in Propositon 4.6 can be constructed in another way as
follows:

Let B1, B2 ⊂ P2 be nonsingular quartic curves intersecting each other at sixteen
points A1, · · · , A16 transversally. If B3 and B4 are nonsingular members of the pencil
generated by B1 and B2, then B1, B2, B3 and B4 intersect one another at A1, · · · , A16.

Let ξ : X → P2 be the blowing-up at A1, · · · , A16, B̃i (i = 1, · · · , 16) the proper
transform of Bi, and denote Ei := ξ−1(Ai). We have ξ∗Bi = B̃i +

∑16
i=1 Ei.
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B := B1 + B2 + B3 + B4 ∼ 16H holds, where H ⊂ P2 is a hyperplane. Since
ξ∗B = B̃1+B̃2+B̃3+B̃4+4

∑16
i=1 Ei, we have B̃1+B̃2+B̃3+B̃4 ∼ 16ξ∗H−4

∑16
i=1. Hence

the double covering S → X branched along B̃1 + B̃2 + B̃3 + B̃4 can be constructed. This
S coincides with the surface of Proposition 4.6. Cleariy S is nonsingular by construction.

In the case (d0, d1, d2) = (1, 2, 2) and L1
∼= L2, we may assume L1

∼= L⊗2
0 by

Theorem 4.1.

Lemma 4.7 Let L0, L1, L2 be invertible sheaves over an elliptic curve C, π : W :=
P(E) → C the P2-bundle associated to the locally free sheaf E := L0 ⊕ L1 ⊕ L2, and T
the tautological divisor with π∗OW (T ) ∼= E, and denote di := degLi (i = 0, 1, 2). If
L0, L1, L2 satisfy one of the following (i) and (ii), then deg Φ|T | = 2 holds:

(i) (d0, d1, d2) = (1, 2, 2) and L⊗2
0

∼= L1
∼= L2.

(ii) (d0, d1, d2) = (1, 1, 2).

Proof We use the elementary transformation of W by Maruyama [15, Chapter 1].
First, we consider the case (i). Since we have

H0(W, OW (T )) ∼= H0(C, L0) ⊕H0(C, L1) ⊕H0(C, L2),

if we choose X0 ∈ H0(W, OW (T ) ⊗ π∗L−1
0 ) and X1, X2 ∈ H0(W, OW (T ) ⊗ π∗L−1

1 )
so that they give homogeneous coordinates for each fiber of π, then any X ∈
H0(W, OW (T )) can be written as

X = ψ0X0 + ψ1X1 + ψ2X2 ψ0 ∈ H0(C, L0), ψ1, ψ2 ∈ H0(C, L1).

Since dimH0(C, L0) = 1, if we let q ∈W to be the point defined by ψ0 = X1 = X2 = 0,
we have Bs |T | = {q}. Let p ∈ C be the point satisfying L0

∼= OC(p), and denote
E′ := OC ⊕ L1 ⊕ L1 and F ′ := (L1 ⊕ L1) ⊗ Op. We have the following commutative
diagram:

0 0
↑ ↑

0 −→ F ′ −→ E ⊗Op −→ Op(p) −→ 0
↑ ↑ ‖

0 −→ E′ −→ E −→ Op(p) −→ 0
↑ ↑

E ⊗OC(−p) = E ⊗OC(−p)
↑ ↑
0 0

Since the homomorphism E → Op(p) is surjective, we have a subvariety P(Op(p)) ↪→
W = P(E), which coincides with q. Since the homomorphism E′ → F ′ is also surjective,
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if we let π′ : W ′ := P(E′) → C to be the P2-bundle associated to E′, then we have
a subvariety P(F ′) ↪→ W ′ contained in a fiber over p with respect to π′. We have the
following commutative diagram by Maruyama’s result:

W̄

φ′ ↙ ↘ φ

W ′ W

π′ ↘ ↙ π

C

where φ : W̄ → W is the blowing-up at q, and φ′ : W̄ → W ′ is the blowing-up along
P(F ′). If we let T ′ to be the tautological divisor of W ′ with π∗OW ′(T ′) ∼= E′, and T̄ the
proper transform of T by φ, then the image of T̄ in W ′ by φ′ is linearly equivarent to
T ′. We have the following commutative diagram:

W̄
φ′−→ W ′ Φ−→ W0

φ ↓ ↓ π′ ↓ π0

W −→ C −→ P1

π Φ|L1|

where π0 : W0 → P1 is the P2-bundle associated to a locally free sheaf E0 := OP1 ⊕
OP1(1) ⊕ OP1(1). If T0 is the tautological divisor of W0 satisfying π0∗OW0(T0) ∼= E0,
then we have Φ∗T0 ∼ T ′, and

dimH0(W ′, OW ′(T ′)) = dimH0(C, E′) = 5
dimH0(W0, OW0(T0)) = dimH0(P1, E0) = 5,

and hence Φ|T ′| = Φ|T0| ◦Φ holds. We show that Φ|T0| is a birational morphism onto the
image. If F0 is any fiber of π0, we can prove that Φ|T0||F0 is an isomorphism of F0 onto
the image in the same way as in Lemma 4.2. Since dimH0(W0, OW0(T0 − F0)) = 2,
there exists a section C0 of π0 such that Bs |T0 − F0| = C0. Let p, q ∈ W0 \ C0 be any
two points contained in different fibers. If T ′

0 ∈ |T0 − F0| is a member which does not
contain q, and if Fp is the fiber of π0 containing p, then T ′

0 +F0 ∈ |T0| contains p but not
q, i.e., p and q are separated by |T0|. Hence Φ|T0| is a birational morphism. Therefore
we have deg Φ|T ′| = deg Φ = 2, and deg Φ|T | = 2 holds.

Next, we consider the case (ii).
Assume L0 �∼= L1. As in the case (i), any X ∈ H0(W, OW (T )) can be written as

X = ψ0X0 + ψ1X1 + ψ2X2 ψi ∈ H0(C, Li) (i = 0, 1, 2).

Since dimH0(C, L0) = dimH0(C, L1) = 1 and L0 �∼= L1, if we let q0, q1 ∈ W to be
the points defined by ψ0 = X1 = X2 = 0 and ψ1 = X2 = X0 = 0, respectively, we
have Bs |T | = {q0, q1}. If we let π′ : W ′ := P(E′) → C to be the P2-bundle associated
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to the locally free sheaf E′ := OC ⊕ OC ⊕ L2 over C, T ′ the tautological divisor with
π′∗OW ′(T ) ∼= E′, φ : W̄ → W the blowing-up at q0 and q1, and π0 : W0 := P(E0) → P1

the P2-bundle associated to a locally free sheaf OP1 ⊕ OP1 ⊕ OP1(1) over P1, then
we obtain a commutative diagram similar to that in the case (i). Therefore, there
exists a blowing down φ′ : W̄ → W ′ contracting the proper transform of the fibers of
π containing q0 and q1 to lines. The image of the proper transform of T by φ in W ′

is linearly equivalent to T ′. If Φ is as in (i), and T0 is the tautological divisor of W0

satisfying π0∗OW0(T0) ∼= E0, then we have Φ∗T0 ∼ T ′ and

dimH0(W0, OW0(T0)) = dimH0(P1, E0) = 4
dimH0(W ′, OW ′(T ′)) = dimH0(C, E′) = 4,

and hence Φ|T ′| = Φ|T0| ◦Φ holds. We can prove that Φ|T0| is a birational morphism onto
the image in the same way as in the case E0 := OP1 ⊕ OP1(1) ⊕ OP1(1), so we have
deg Φ|T ′| = deg Φ = 2. Consequently, Φ|T | = 2 holds.

Assume L0
∼= L1. Since π(q0) = π(q1) in this case, if we let p0 be this point, we have

L0
∼= L1

∼= OC(p0). If Z ⊂ W is the curve defined by ψ0 = X2 = 0, then Bs |T | = Z

holds. We obtain the same commutative diagram as above, and in this case, φ : W̄ →W

is the blowing-up along Z. We can show that deg Φ|T | = 2 by the same argument as in
the case L0 �∼= L1 of (ii). q.e.d.

When (d0, d1, d2) = (1, 2, 2) and L1
∼= L2 hold, if we denote Ȳ := φ−1(q), then we

have φ∗T ∼ T̄ + Ȳ . Let S̄ be the proper transform of S by φ. Since S is nonsingular at q,
we have φ∗S = S̄+Ȳ . On the other hand, since φ∗S ∼ φ∗(4T−π∗D) ∼ 4T̄+4Ȳ −φ∗π∗D,
we obtain S̄ ∼ 4T̄ + 3Ȳ − φ∗π∗D. The image of Ȳ in W ′ is a fiber Y of π′. Then the
image S′ of S̄ in W ′ is linearly equivalent to 4T ′+3Y −π′∗D, which is linearly equivalent
to 4T ′ − 2π′∗p, since L⊗2

0
∼= L1 and π′(Y ) = p.

When (d0, d1, d2) = (1, 1, 2) and L0 �∼= L1 hold, if we denote Ȳi := φ−1(qi) (i =
0, 1), then we have φ∗T ∼ T̄ + Y0 + Y1. Hence we obtain S̄ ∼ 4T ′ − 2π∗p0 or S̄ ∼
4T ′ − 2π∗p1 by an argument similar to that above. (In this case, one of L⊗2

0 and L⊗2
1 is

isomorphic to L2 by Theorem 4.1. If L⊗2
0

∼= L2, then S̄ ∼ 4T ′ − 2π′∗p0 holds, while if
L⊗2

1
∼= L2, then S̄ ∼ 4T ′ − 2π∗p1 holds.) We obtain the same result when (d0, d1, d2) =

(1, 1, 2) and L0
∼= L1.

Proposition 4.8 Let the notation and the assumption be as in Lemma 4.7. Then the
minimal resolution of a general member of the complete linear system |4T − π∗D| is
canonical.

Proof We use the notation of Lemma 4.7.
First, we consider the case E ∼= L0 ⊕ L1 ⊕ L1, (L0 ∈ EC(1, 1), L1

∼= L⊗2
0 ). Let

S ∈ |4T−π∗D| be a general member. We may assume S to be nonsingular. Furthermore,
let S̄ be a proper transform of S by φ, and denote S′ := φ′(S̄), S0 := Φ(S′) ⊂ W0.
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Furthermore, denote h′ := Φ|S′ : S′ → S0. Then we have deg h′ = deg Φ|KS |. There is
nothing to prove if h′ is birational onto its image. Thus suppose h′ is not birational.
Hence h′ is an unramified two-to-one covering outside the intersection with S′ of the
ramification locus F0 + F1 + F2 + F3 of Φ, where Fi := π′−1(pi) (i = 0, 1, 2, 3) with
p0, p1, p2, p3 ∈ C the ramification points of Φ|L1| : C → P1. Hence the morphism

h′|S′\
⋃3

i=0
F ′

i

: S′ \
3⋃

i=0

F ′
i → S̃0 := h′(S′ \

3⋃
i=0

F ′
i ) (⊂ S0)

is an unramified two-to-one covering. On the elementary transform S of S′, we thus have
an unramified morphism

h : S \ ∪3
i=0Fi → S̃0

where Fi := π−1(pi) ⊂ (i = 0, 1, 2, 3). Let C0 ⊂W be a curve which is the base locus of
OW (T )⊗π∗L−1

1 . S is a canonical surface if h is one-to-one at a point q ∈ S \(C0∪3
i=0Fi).

Fix one such point q and let q′ ∈ W be the other point which is mapped to Φ|T |(q) by
the two-to-one map Φ|T |. We show that q′ does not belong to a general S.

Since

H0(W, OW (T ) ⊗ π∗L−1
0 ) ∼= H0(C, OC) ⊕H0(C, L0) ⊕H0(C, L0),

we obtain a global section X0 ∈ H0(W, OW (T ) ⊗ π∗L−1
0 ) such that X0 vanishes at q

and q′ and that the divisor (X0) is irreducible. Similarly, since

H0(W, OW (T ) ⊗ π∗L−1
1 ) ∼= H0(C, OC) ⊕H0(C, OC),

we obtain a global section X1 ∈ H0(W, OW (T )⊗π∗L−1
1 ) such that X1 vanishies at q and

q′ and that the divisor (X1) is irreducible. Any X2 ∈ H0(W, OW (T )⊗π∗L−1
1 )\{0, X1}

does not vanish at q and q′, and the divisor (X2) is irreducible. X0, X1, X2 give
homogeneous coordinates of each fiber of π. Since

H0(W, OW (4T ) ⊗ π∗ detE∨) ∼= H0(C, S4E ⊗ detE∨) ∼=
⊕

i, j≥0
i+j≤4

H0(C, L⊗(i+j−1)
0 ),

if Ψ ∈ H0(W, OW (4T )⊗π∗ detE∨) is a global section defining S, then Ψ can be written
as

Ψ =
∑

i, j≥0
i+j≤4

ψijX
4−i−j
0 X i

1X
j
2 , ψij ∈ H0(C, L⊗(i+j−1)

0 ).

We have Ψ(q′) = ψ04(q′)X2(q′)4 by our choice of X0, X1, X2. Hence q′ is not contained
in S if and only if ψ04(q′) �= 0 holds. Since S is general, we are done.

Next, we consider the case E ∼= L0 ⊕ L1 ⊕ L2, (L0, L1 ∈ EC(1, 1), L2 ∈ EC(1, 2)).
In this case, at least one of L⊗3

0 ⊗L−1
1 , L⊗2

0 , L0 ⊗L1, L
⊗2
1 and L−1

0 ⊗L⊗3
1 is isomorphic

to L2.
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Let S ∈ |4T − π∗D| be a general member. We may assume S to be nonsingular.
Furthermore, let S′ ⊂W ′, S0 ⊂W0 and h′ := Φ|S′ : S′ → S0 be as above.

If L⊗3
0 ⊗ L−1

1 , L−1
0 ⊗ L⊗3

1 �∼= L2, then Bs |4T − π∗D| consists of two points {q0, q1},
and these are contained in Bs |4T − π∗D|. Denote Ei := φ−1(qi) (i = 0, 1), and let T̄ , S̄
be the proper transform of T, S by φ, respectively. Then since

S̄ ∼ 4T̄ + 3E0 + 3E1 − φ∗π∗D,

we obtain

OW ′(S′) ∼= OW ′(4T ′) ⊗ π′∗(L⊗3
0 ⊗ L⊗3

1 ⊗ L−1
0 ⊗ L−1

1 ⊗ L−1
2 )

∼= OW ′(4T ′) ⊗ π′∗(L⊗2
0 ⊗ L⊗2

1 ⊗ L−1
2 ).

We have deg(L⊗2
0 ⊗L⊗2

1 ⊗L−1
2 ) = 2. If L⊗2

0 ⊗L⊗2
1 ⊗L−1

2 �∼= L2 holds, this invertible sheaf
cannot be the pull-back by Φ of any invertible sheaf on W0, and hence S is canonical.
We consider the case L⊗2

0 ⊗L⊗2
1 ⊗L−1

2
∼= L2. Let p0, p1, p2, p3 ∈ C be the ramification

points of Φ|L2| : C → P1, and denote F ′
i := π′−1(pi) (i = 0, 1, 2, 3). There is nothing

to prove if h′ is birational onto its image. Thus suppose h′ is not birational. Hence h′

is an unramified two-to-one covering outside the intersection with S′ of the ramification
locus F ′

0 + F ′
1 + F ′

2 + F ′
3 of Φ. Hence, the morphism

h′
S′\
⋃3

i=0
F ′

i

: S′ \
3⋃

i=0

F ′
i → S̃0 := h′(S′ \

3⋃
i=0

F ′
i ) (⊂ S0)

is an unramified two-to-one covering. On the elementary transform S of S′, we thus have
an unramified morphism

h : S \
3⋃

i=0

Fi → S̃0,

where Fi := π−1(pi) (i = 0, 1, 2, 3). Let X2 ∈ H0(W, OW (T ) ⊗ π∗L−1
2 ) ∼= C be a

non-zero element, and fix any point q ∈ S \
(
(X2) ∪

(⋃3
i=0 Fi

))
. Let q′ ∈ W be the

other point which is mapped to Φ|T |(q) by the two-to-one map Φ|T |. Since we have
dimH0(W, OW (T ) ⊗ π∗L−1

i ) = 2 for i = 0, 1, there exist Xi ∈ H0(W, OW (T ) ⊗
π∗L−1

i ) (i = 0, 1) such that the divisors (Xi) are irreducible and that Xi vanish at
q and q′. Then X0, X1 and X2 give homogeneous coordinates of each fiber of π. If
Ψ ∈ H0(W, OW (4T ) ⊗ π∗ detE∨) is a global section defining S, then Ψ can be written
as

Ψ =
∑

i, j≥0
i+j≤4

ψijX
4−i−j
0 X i

1X
j
2 , ψij ∈ H0(C, L⊗(3−i−j)

0 ⊗ L
⊗(i−1)
1 ⊗ L

⊗(j−1)
2 ).

We have Ψ(q′) = ψ04(q′)X2(q′)4 by our choice of X0, X1, X2. Hence q′ is not contained
in S if and only if ψ04(q′) �= 0. Since S is general, we are done.

In the case L⊗3
0 ⊗L−1

1
∼= L2 and L−1

0 ⊗L⊗3
1 �∼= L2, Bs |T | consists of two points q0, q1.

One of them is contained in Bs |4T − π∗D|, while the other is not. We may assume
q1 ∈ Bs |4T − π∗D|. In the same notation as above, since
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S̄ ∼ 4T̄ + 4E0 + 3E1 − φ∗π∗D,

we have

OW ′(S′) ∼= OW ′(4T ′) ⊗ π′∗(L⊗3
0 ⊗ L⊗2

1 ⊗ L−1
2 ).

Since deg(L⊗3
0 ⊗L⊗2

1 ⊗L−1
2 ) = 3, this cannot be the pull-back by Φ of any invertible sheaf

on W0. We can obtain the same result in the case L⊗3
0 ⊗L−1

1 �∼= L2 and L−1
0 ⊗L⊗3

1
∼= L2.

Finally, we consider the case L⊗3
0 ⊗ L−1

1
∼= L−1

0 ⊗ L⊗3
1

∼= L2. If L0 �∼= L1 holds, then
Bs |T | consists of two points. Since Bs |4T − π∗D| = ∅, and since S is generic, S does
not contain these two points. Hence, in the same notation as above, we have

OW ′(S′) ∼= OW ′(4T ′) ⊗ π′∗(L⊗3
0 ⊗ L⊗3

1 ⊗ L−1
2 ).

deg(L⊗3
0 ⊗ L⊗3

1 ⊗ L−1
2 ) = 4 holds, and if L⊗3

0 ⊗ L⊗3
1 ⊗ L−1

2 �∼= L2 holds, then the above
invertible sheaf on W ′ cannot be the pull-back by Φ of any invertible sheaf on W0,
and hence S is a canonical surface. When L⊗3

0 ⊗ L⊗3
1 ⊗ L−1

2
∼= L2, we can prove S to

be canonical in the same way as in the case L⊗3
0 ⊗ L−1

1 �∼= L2, L
−1
0 ⊗ L⊗3

1 �∼= L2 and
L⊗2

0 ⊗L⊗2
1 ⊗L−1

2
∼= L2. When L0

∼= L1, we can prove S to be canonical in the same way
as above. q.e.d.

Remark In the situation of Proposition 4.8, we have a posibility that there exist
special members, with at most rational double points as singularities, of |4T − π∗D|
whose canonical mapping is of degree 2.

Proposition 4.9 Let L0, L1 and L2 be invertible sheaves over an elliptic curve C, and
denote di := degLi (i = 0, 1, 2). Assume that d0 = d1 = d2 = 1 holds and one of
L0, L1 and L2 is not isomorphic to any of the others. Let π : W := P(E) → C be the
P2-bundle associated to the locally free sheaf E := L0 ⊕L1 ⊕L2, T a tautological divisor
with π∗OW (T ) ∼= E, D ∈ Div(C) a divisor with OC(D) ∼= detE, and S ∈ |4T − π∗D| a
general irreducible nonsingular member. We have the following about Φ|KS |:

(1) If L⊗2
0 �∼= L1⊗L2, L

⊗2
1 �∼= L2⊗L0 and L⊗2

2 �∼= L0⊗L1, then Φ|KS | gives a covering
of degree 9 onto P2.

(2) If only one of L⊗2
0

∼= L1 ⊗ L2, L
⊗2
1

∼= L2 ⊗ L0 and L⊗2
2

∼= L0 ⊗ L1 holds, then
|KS | has one isolated base point, and Φ|KS | gives a covering of degree 8 over P2.

(3) If all of L⊗2
0

∼= L1 ⊗ L2, L
⊗2
1

∼= L2 ⊗ L0 and L⊗2
2

∼= L0 ⊗ L1 hold, then |KS | has
three isolated fixed points, and Φ|KS | gives a covering of degree 6 over P2.

Proof We investigate the sets of base points of |T | and |4T − π∗D|.
First we assume that L0, L1, L2 are pairwise non-isomorphic. Since any X ∈

H0(W, O(T )) can be written as

X = ψ0X0 + ψ1X1 + ψ2X2, ψi ∈ H0(C, Li)
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as in the proof of Lemma 4.2, we have Bs |T | = {q0, q1, q2}, where q0, q1 and q2 are
the points defined by ψ0 = X1 = X2 = 0, ψ1 = X2 = X0 = 0 and ψ2 = X0 = X1 = 0,
respectively. Since any Ψ ∈ H0(W, O(4T ) ⊗ π∗ detE∨) can be written as

Ψ =
∑

i, j≥0
i+j≤4

ψijX
4−i−j
0 X i

1X
j
2 , ψij ∈ H0(C, L⊗(3−i−j)

0 ⊗ L
⊗(i−1)
1 ⊗ L

⊗(j−1)
2 )

as in the proof of Theorem 4.1, we have Bs |4T − π∗D| = {q′0, q′1, q′2}, where q′0, q′1
and q′2 are the points defined by ψ00 = X1 = X2 = 0, ψ40 = X2 = X0 = 0 and
ψ04 = X0 = X1 = 0, respectively.

Therefore in the case (1), we have Bs |T | ∩ Bs |4T − π∗D| = ∅, and hence Φ|KS | is a
surjective morphism onto P2. Since K2

S = 9 and the degree of P2 is equal to 1, we are
done in the case (1).

Next, we consider the case (2). We only have to consider the case L⊗2
0

∼= L1 ⊗L2 by
renumbering of L0, L1 and L2 if necessary. In this case, all the members of |4T − π∗D|
go through q0. Since S ∈ |4T − π∗D| is general, it does not contain q1 and q2.

If we denote E′ := OC⊕OC⊕OC , then we obtain the following commutative diagram:

0 0
↑ ↑

0 −→ F ′ −→ E|p0+p1+p2 −→ F ′′ −→ 0
↑ ↑ ‖

0 −→ E′ −→ E −→ F ′′ −→ 0
↑ ↑

E ⊗OC(−p0 − p1 − p2) = E ⊗OC(−p0 − p1 − p2)
↑ ↑
0 0

where F ′ := Op1+p2 ⊕Op2+p0 ⊕Op0+p1 and F ′′ := Op0(p0) ⊕Op1(p1) ⊕Op2(p2).
Hence we have the following elementary transformation of Maruyama:

W̄

φ′ ↙ ↘ φ

W ′ W

π′ ↘ ↙ π

C

where π′ : W ′ := P(E′) → C is the P2-bundle associated to E′, φ is the blowing-up at
P(Op0(p0)⊕Op1(p1)⊕Op2(p2)) = P(Op0(p0))∪P(Op1(p1))∪P(Op2(p2)) = { q0, q1, q2 }
and φ′ is the blowing-up along P(Op1+p2 ⊕Op2+p0 ⊕Op0+p1) = P(Op1+p2)∪P(Op2+p0)∪
P(Op0+p1). Denote Ei := φ−1(qi) and F ′

i := φ′(Ei) (i = 0, 1, 2). If S̄ ⊂ W̄ is the proper
transform of S by φ, then φ∗S = S̄+ E0 holds. Let T̄ be the proper transform of T by φ
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and T ′ ⊂ W ′ the tautological divisor with π′∗OW ′(T ′) ∼= E′. We have T ′ ∼ φ(T̄ ). Since
φ∗T = T̄ + E0 + E1 + E2, we have

S′ := φ′(S̄) ∼ 4T ′ + 4(F ′
0 + F ′

1 + F ′
2) − π′∗D − F0 ∼ 4T ′ + 2F ′

0 + 3F ′
1 + 3F ′

2.

On the other hand, W ′ ∼= C × P2 holds, and Φ|T ′| coincides with the second projection
W ′ → P2. Since Φ|T | factors as a rational mapping into a composite Φ|T | : W · · · →
W ′ → P2, we have

deg Φ|KS | = deg
(
Φ|T ′||S′

)
= (T ′)2(4T ′ + 2F ′

0 + 3F ′
1 + 3F ′

2) = 8.

We obtain the result in the case (3) in the same way as above.
The proof is essentially the same when L0 �∼= L1

∼= L2, L1 �∼= L2
∼= L0, or L2 �∼= L0

∼=
L1. q.e.d.

4.2 E is the direct sum of an invertible sheaf and an indecomposable

locally free sheaf of rank 2

We denote E = E0 ⊕L, where E0 is an indecomposable locally free sheaf of rank 2 with
degE0 =: e, and L is an invertible sheaf over an elliptic curve C with degL =: d.

We prove the existence of a surface S with K2
S = 3pg(S), q(S) = 1 and pg(S) = N

for any integer N ≥ 2 in §4.2.1 (Theorem 4.10) when e is even, and in §4.2.2 (Theorem
4.11) when e is odd. (When e is even, however, the case pg(S) = 2 does not occur.)
In §4.2.3, we study the canonical mapping of the surfaces obtained in §4.2.1 and §4.2.2.
The results about the canonical mappings are stated in Corollary 4.15, and Propositions
4.16, 4.20, 4.22 and 4.41.

We only have to consider the case e ≥ 0, d ≥ 0 and (e, d) �= (0, 0) by the remark
immedietely before §4.1.

Let π : W := P2(E) → C be the P2-bundle associated to E, and T ∈ Div(W ) a
tautological divisor with π∗OW (T ) ∼= E. We have a section C1 := P(E/E0) ⊂ W of π.
If ρ : X → W is the blowing-up along C1, then X is a P1-bundle σ : X → Y := P(E0).
Let µ : Y → C be the ruling, and denote Y1 := ρ∗T and Y∞ := ρ−1(C1). If C0 ∈ Div(Y )
is a tautological divisor with µ∗OY (C0) ∼= E0, then we have Y1 ∼ Y∞ + σ∗C0, and
σ∗OX(Y1) ∼= OY (C0) ⊕ µ∗L. Let Y0 ∈ Div(X) be a divisor with OX(Y0) ∼= OX(Y1) ⊗
σ∗µ∗L−1, and let Z0 ∈ H0(X, OX(Y0)), Z∞ ∈ H0(X, OX(Y∞)) be global sections with
(Z0) = Y0 and (Z∞) = Y∞. Then Z0 and Z∞ give homogeneous coordinates of each
fiber of the P1-bundle σ.

We study the complete linear system of the invertible sheaf OX(4Y1)⊗σ∗µ∗ detE∨ ∼=
ρ∗(OW (4T ) ⊗ π∗ detE∨) over X. Since we have

H0(X, OX(4Y1) ⊗ σ∗µ∗ detE∨)
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∼= H0(Y, S4(OY (C0) ⊕ µ∗L) ⊗ µ∗ detE∨)

∼=
4⊕

j=0

H0(Y, OY (jC0) ⊗ µ∗(L⊗(4−j) ⊗ detE∨))

∼=
4⊕

j=0

H0(C, Sj(E0) ⊗ L⊗(4−j) ⊗ detE∨),

any Ψ ∈ H0(X, OX(4Y1) ⊗ σ∗µ∗ detE∨) can be written as

Ψ =
4∑

j=0

ψjZ
4−j
0 Zj

∞, ψj ∈ H0(Y, OY (jC0) ⊗ µ∗(L⊗(4−j) ⊗ detE∨)), (j = 0, · · · , 4).

4.2.1 Existence in the case where e is even

Denote e = 2e0. There exist invertible sheaves L0 ∈ EC(1, e0), and L1 ∈ EC(1, d− e0),
with E0

∼= L0 ⊗ F2 and L ∼= L0 ⊗ L1, hence we have E ∼= L0 ⊗ (F2 ⊕ L1).

Theorem 4.10 Let the conditions and notation be as above. Then the complete linear
system |4T − π∗D| over W satisfies the condition (A) if and only if one of the following
(1), (2) and (3) holds:

(1) e = d > 0 and L0
∼= L1,

(2) d < e < 4d,

(3) e = 4d > 0 and L0 ⊗ L⊗2
1

∼= OC .

By the remark after Proposition 3.3, the case e < 0 and the case d < 0 may be
excluded. Furthermore, the case E0

∼= F2 and the case L ∼= OC may also be excluded.
If e = d = 0 and E0 �∼= F2, L �∼= OC hold, then H0(W, OW (T )) ∼= H0(C, E) = 0.

Since ωS′ ∼= OW (T )⊗OW
OS′ for S′ ∈ |4T−π∗D| by the adjunction formula, the minimal

resolution of S′ cannot be of general type, and this case may be excluded, too.
Therefore, we have e > 0 and d > 0.

Since we have Sj(F2) ∼= Fj+1 (cf. Theorem 3.4), we have

Sj(E0) ⊗ L⊗(4−j) ⊗ detE∨

∼= Sj(F2) ⊗ L⊗j
0 ⊗ L

⊗(4−j)
0 ⊗ L

⊗(4−j)
1 ⊗ (L−1

0 )⊗3 ⊗ L−1
1

∼= Fj+1 ⊗ L0 ⊗ L
⊗(3−j)
1 , (j = 0, · · · , 4).

Furthermore, since detF2
∼= OC holds, we have detE ∼= L⊗3

0 ⊗ L1. Hence

H0(Y, OY (jC0) ⊗ µ∗(L⊗(4−j) ⊗ detE∨)) ∼= H0(C, Fj+1 ⊗ L0 ⊗ L
⊗(3−j)
1 ).

From now on, we deal with different cases.
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(i) The case where (e = d and L0 �∼= L1), or (e < d). Since we have

H0(Y, OY (4C0) ⊗ µ∗ detE∨) ∼= H0(C, F5 ⊗ L0 ⊗ L−1
1 ) = 0,

the coefficient ψ4 of Z4∞ in Ψ is always 0, hence the divisor (Ψ) has Y0 as a component.
Therefore, the image of (Ψ) in W by ρ is not irreducible.

(ii) The case where (e = d > 0 and L0
∼= L1), (d < e < 3d), or (e = 3d and

L0 ⊗ L⊗3
1

∼= OC). For general Ψ ∈ H0(X, OX(4Y1) ⊗ σ∗µ∗ detE∨), we may assume
ψj �= 0, (j = 0, · · · , 4), hence if the complete linear systems of the invertible sheaves
OY (4C0)⊗µ∗ detE∨ on Y and L⊗4 ⊗ detE∨ on C do not have base points, then |4Y1 −
σ∗µ∗D| does not have base points either.

Let us look at L⊗4 ⊗ detE∨. Since we have deg(L⊗4 ⊗ detE∨) = 3d− e ≥ 0, it does
not have base points when 3d− e �= 1.

If 3d−e = 1 holds, then there exists a unique point q ∈ C with L⊗4⊗detE∨ ∼= OC(q).
If we denote Γ := Y∞∩(µ◦σ)−1(q), then Γ is contained in the base locus of |4Y1−σ∗µ∗D|
on X. We claim that Γ is a (−1)-curve on S′′ := (Ψ). Indeed, it is clear that Γ is a
nonsingular rational curve. Hence it is sufficient to show that the self-intersection number
of Γ in S′′ is equal to −1. Let D′ ∈ Div(C) be a divisor on C with L ∼= OC(D′). Then
we have

(Y∞|S′′)2 = Y 2∞(4Y1 − σ∗µ∗D) = Y 2∞(4Y0 + σ∗µ∗(4D′ −D))
= Y 2∞σ∗µ∗(4D′ −D)
= Y∞(Y0 + σ∗(µ∗D′ − C0))σ∗µ∗(4D′ −D)
= Y∞σ∗((µ∗D′ − C0)(µ∗(4D′ −D))
= C0µ

∗(D − 4D′) = e− 3d = −1.

Therefore, the image of Γ in W is a nonsingular point of S′ = ρ(S′′).
Let us look at OY (4C0) ⊗ µ∗ detE∨. Since we have

H0(Y, OY (C0) ⊗ µ∗L−1
0 ) ∼= H0(C, E0 ⊗ L−1

0 ) ∼= H0(C, F2) ∼= C,

there exists a section C ′ of µ with OY (C ′) ∼= OY (C0) ⊗ µ∗L−1
0 on Y . Hence we have

H0(Y, OY (4C0) ⊗ µ∗ detE∨) ∼= H0(Y, OY (4C ′) ⊗ L0 ⊗ L−1
1 ).

First we consider the case where e− d ≥ 2. Since deg(L0 ⊗L−1
1 ) = e− d holds, there

does not exist a base point in Y \ C ′. We consider the cohomology long exact sequence
induced by the exact sequence of sheaves

0 → OY (3C ′) ⊗ µ∗(L0 ⊗ L−1
1 )) → OY (4C ′) ⊗ µ∗(L0 ⊗ L−1

1 )

→ OC′ ⊗OY (4C ′) ⊗ µ∗(L0 ⊗ L−1
1 ) → 0.

Since we have

H1(Y, OY (3C ′) ⊗ µ∗(L0 ⊗ L−1
1 )) ∼= H1(C, S3(F2) ⊗ L0 ⊗ L−1

1 )
∼= H1(C, F4 ⊗ L0 ⊗ L−1

1 ) ∼= 0,
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the restriction mapping

H0(Y, OY (4C ′) ⊗ µ∗(L0 ⊗ L−1
1 )) → H0(C ′, OC′ ⊗OY (4C ′) ⊗ µ∗(L0 ⊗ L−1

1 ))

is surjective. On the other hand, since we have (C ′)2 = 0, the degree of the restriction
of OY (4C ′) ⊗ µ∗(L0 ⊗ L−1

1 ) to C ′ is e − d ≥ 2, hence there does not exist a base point
on C ′ either.

When e− d = 1 holds, there exists a unique point p ∈ C with L0 ⊗ L−1
1

∼= OC(p). If
we denote Γ0 := µ−1(p) ⊂ Y , then OY (4C0)⊗detE∨ ∼= OY (4C ′ + Γ0). Hence, a general
member of |4C0 − µ∗D| is nonsingular by Lemma 3.5. Thus a general member of the
complete linear system |4Y1 − σ∗µ∗D| on X is also irreducible and nonsingular.

If e − d = 0 holds, since we have L0
∼= L1 by assumption, OY (4C0) ⊗ µ∗ detE∨ ∼=

OY (4C ′) holds. Hence H0(Y, OY (4C0)⊗µ∗ detE∨) ∼= H0(Y, OY (4C ′)) ∼= H0(C, F5) ∼=
C. Thus C ′′ := σ−1(C ′) ∩ Y0 is the base locus of |4Y1 − σ∗µ∗D|. We look at the
coefficient ψ3 ∈ H0(Y, OY (3C0) ⊗ µ∗(L ⊗ detE∨)) of Z0Z

3∞ in Ψ. Since we have
OY (3C0)⊗µ∗(L⊗detE∨) ∼= OY (3C ′)⊗µ∗L0, the divisor (ψ3) on Y defined by general ψ3

intersects C ′ at degL0 = e0 points transversally. Let p be one of these intersection points,
t, u local equations for C ′ and (ψ3) around p respectively, and denote z0 := Z0/Z∞.
Then (t, u, z0) gives a local coordinate system of X around p0 := σ−1(p) ∩ Y0. Ψ can
be written as

Ψ = ψ0z
4
0 + ψ1z

3
0 + ψ2z

2
0 + ψ3z0 + ψ4 = z0(ψ0z

3
0 + ψ1z

2
0 + ψ2z0 + u) + t4

around p0. This is an equation defining a rational double point of type A3.
We have to consider the case E ∼= L⊗ (F2⊕OC) with L ∈ EC(1, 1). (In this case, we

have e = 2 and d = 1, hence 3d−e = 1 and e−d = 1 above hold at the same time.) In this
case, the coefficient ψi of Z4−i

0 Zi∞ in Ψ ∈ H0(X, OC(4Y1)⊗σ∗µ∗ detE∨) is the element of
H0(Y, OY (iC0)⊗µ∗(L⊗(4−i)⊗detE∨)) ∼= H0(Y, OY (C ′)⊗µ∗L). We have Bs |iC ′+Γ0| =
{y0} by Lemma 3.5, and hence Bs |4Y1−σ∗µ∗D| = σ−1(y0)∪{(µ◦σ)−1(p)∩Y∞}. We have
already seen that a general member of |4Y1−σ∗µ∗D| is nonsingular along (µ◦σ)−1(p)∩Y∞.
We only have to prove that it is nonsingular along σ−1(y0). Since all the nonsingular
members of |4C ′ + Γ0| have the same tangent at y0 by Lemma 3.5, we can choose a local
coordinate (t, u) around y0 such that t = 0 is the local equation of Γ0 and that u = 0
gives the tangent of nonsingular members of |4C ′ + Γ0| at y0. If we denote z := Z0/Z∞,
then Ψ can be written as

Ψ = a0tz
4 + (a1t+ b1u+ ι1(t, u))z3 + (a2t+ b2u+ ι2(t, u))z2

+(a3t+ b3u+ ι3(t, u))z + (b4u+ ι4(t, u))

near σ−1(y0) \ Y∞, where ai, bj ∈ C, (i = 0, 1, 2, 3, j = 1, 2, 3, 4), and ιj(t, u), (j =
1, 2, 3, 4) is the sum of all the monomials with respect to t and u with degree at least
two. Since Ψ is general, we may assume a0 �= 0 and b4 �= 0. Since the tangent of a
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nonsingular member of |iC ′ + Γ0| and the tangent of a nonsingular member of |jC ′ + Γ0|
are distinct when i �= j by Lemma 3.5, we have a1a2a3b1b2b3 �= 0. We have

∂Ψ
∂t

= z

{
a0z

3 +
(
a1 +

∂ι1
∂t

)
z2 +

(
a2 +

∂ι2
∂t

)
z +

(
a3 +

∂ι3
∂t

)
+
∂ι4
∂t

}
,

∂Ψ
∂u

=
(
b1 +

∂ι1
∂u

)
z3 +

(
b2 +

∂ι2
∂u

)
z2 +

(
b3 +

∂ι3
∂u

)
z + b4 +

∂ι4
∂u

,

and if we fix a1, a2 and a3, then b1, b2 and b3 are uniquely determined. On the other
hand, a0 and b4 can be chosen independently of them, and hence the two equations
∂Ψ/∂t = 0 and ∂Ψ/∂u = 0 do not have the same solutions, since Ψ is general. Therefore,
the divisor (Ψ) is nonsingular along σ−1(y0).

Finally, we investigate the image of Y∞ ∩S′′ in W where S′′ := (Ψ). If we substitute
Z∞ = 0 into Ψ = 0, then we get ψ0Z

4
0 = 0. Since we have Z0 �= 0 on Y∞, ψ0 = 0 must

hold. From ψ0 ∈ H0(Y, µ∗(L⊗4⊗detE∨)), and deg(L⊗4⊗detE∨) = 3d− e, we see that
S′′ intersects Y∞ ∼= Y

ρ−→ C at 3d− e fibers. We can obtain Y 2∞S′′ = e−3d by the same
caluculation as above. Therefore these are all (−1)-curves. Hence the image of Y∞ ∩ S′′

in W is a finite set of nonsingular points of S′ := ρ(S′′).

(iii) The case where (3d = e > 0 and L0 ⊗L⊗3
1 �∼= OC), (3d < e < 4d), or (e = 4d > 0

and L0⊗L⊗2
1

∼= OC). Since we have H0(Y, µ∗(L⊗4⊗detE∨)) = H0(C, L0⊗L1⊗3) = 0,
the coefficient ψ0 of Z4

0 in Ψ is always 0. Hence S′′ := (Ψ) has Z∞ as a component, i.e., the
image of S′′ in W by ρ contains C1. In this case, we have to consider the complete linear
system of OX(4Y1) ⊗ σ∗µ∗ detE∨ ⊗ OX(−Y∞) ∼= OX(3Y1) ⊗ σ∗(OY (C0) ⊗ µ∗ detE∨).
Any Ψ̃ := Ψ/Z∞ ∈ H0(X, OX(3Y1) ⊗ σ∗(OY (C0) ⊗ µ∗ detE∨)) can be written as

Ψ̃ =
3∑

j=0

ψj+1Z
3−j
0 Zj

∞,

ψj+1 ∈ H0(Y, OY ((j + 1)C0) ⊗ µ∗(L⊗(3−j) ⊗ detE∨)), (j = 0, · · · , 3).

Since we have deg(L0⊗L⊗2
1 ) = 2d−e0 = (1/2)(4d−e) ≥ 0, and deg(L0⊗L−1

1 ) = e−d ≥ 0,
we see that ψ0 �= 0 and ψ3 �= 0 hold for general Ψ̃ by assumption. Therefore it is sufficient
to investigate the base points of the complete linear systems of OY (C0)⊗µ∗(L⊗3⊗detE∨)
and OY (4C0)⊗µ∗(detE∨) on Y to investigate the base points of OX(3Y1)⊗σ∗(OY (C0)⊗
µ∗(detE∨)).

Let us look at OY (C0)⊗µ∗(L⊗3⊗detE∨). Since we have OY (C0)⊗µ∗(L⊗3⊗detE∨) ∼=
OY (C ′)⊗µ∗(L0⊗L⊗2

1 ) and deg(L0⊗L⊗2
1 ) = (1/2)(4d−e), we obtain the following results

about the base points. If 4d− e ≥ 4 holds, then base points do not exist. If 4d− e = 2
holds, then there exists a unique isolated base point on C ′. If 4d− e = 0 holds, then we
have |C ′| = {C ′}. In each case, we can easily see that a general Ψ̃ is nonsingular over
the base points of the complete linear system of OY (C0) ⊗ µ∗(L⊗3 ⊗ detE∨) by looking
at the above equation for Ψ̃.
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Let us look at OY (4C0) ⊗ µ∗(detE∨). Since OY (4C0) ⊗ µ∗(detE∨) ∼= OY (4C ′) ⊗
µ∗(L0 ⊗ L−1

1 ) and deg(L0 ⊗ L−1
1 ) = e − d ≥ 2 hold, the complete linear system of

OY (4C0) ⊗ µ∗(detE∨) is base point free.

By what we have seen so far, a general member of the complete linear system of
OX(3Y1) ⊗ σ∗(OY (C0) ⊗ µ∗ detE∨) is irreducible and nonsingular.

Let S′′ be a general member of the complete linear system of OX(3Y1)⊗σ∗(OY (C0)⊗
µ∗(detE∨)). We may assume that S′′ is irreducible and nonsingular. We study
the multiplicity of each point of the image of S′′ ∩ Y∞ on S′ := ρ(S′′) by ρ. If
Ψ̃ ∈ H0(X, OX(3Y1) ⊗ σ∗(OY (C0) ⊗ µ∗(detE∨)) is a global section defining S′′, and if
we substitute Z∞ = 0 into Ψ̃ = 0, then we obtain ψ1Z

3
0 = 0. Since Z0 �= 0 holds on

Y∞, we have ψ1 = 0. Since ψ1 is an element of H0(Y, OY (C0) ⊗ µ∗(L⊗3 ⊗ detE∨)),
we investigate the complete linear system of OY (C0) ⊗ µ∗(L⊗3 ⊗ detE∨). A general
member is irreducible and nonsingular when 4d− e ≥ 4 or 4d− e = 0 as we saw above.
If 4d − e = 2 holds, since OY (C0) ⊗ µ∗(L⊗3 ⊗ detE∨) ∼= OY (C ′) ∼= µ∗(L0 ⊗ L⊗2

1 ) and
deg(L0 ⊗L⊗2

1 ) = 1 hold, we have OY (C0)⊗ µ∗(L⊗3 ⊗ detE∨) ∼= OY (C ′ + Γ), where Γ is
the fiber of µ such that OC(p) ∼= L0 ⊗ L⊗2

1 for p := µ(Γ). If we denote Γ′ := µ−1(p′) for
any p′ ∈ C, then we have

H0(Y, OY (C ′ + Γ − Γ′)) ∼= H0(C, F2
∼= OC(p− p′)) = 0,

so no member has any fiber as a component except Γ. On the other hand, we have

dimH0(Y, OY (C ′ + Γ)) = dimH0(C, F2 ⊗OC(p)) = 2,

so a general member of the complete linear system of OY (C0) ⊗ µ∗(L⊗3 ⊗ detE∨) is
irreducible and nonsingular by what we saw above. Hence S′′ ∩ Y∞ is an irreducible
section of Y∞ ∼= Y

µ−→ C, and does not contain any fiber, so each point of its image by
ρ is nonsingular on S′.

(iv) The case where (e = 4d and L0 ⊗ L⊗2
1 �∼= OC) or (4d < e). Since we have

H0(Y, µ∗(L⊗4 ⊗ detE∨)) ∼= H0(C, L0 ⊗ L⊗3
1 ) = 0 and H0(Y, OY (C0) ⊗ µ∗(L⊗3 ⊗

detE∨)) ∼= H0(C, F2 ⊗ L0 ⊗ L⊗2
1 ) = 0, the coefficients ψ0 of Z4

0 and ψ1 of Z3
0Z1 are

always 0. Hence (Ψ) has 2Y∞ as a component. This means that the image of (Ψ) in W

contains C1 as a singular curve. Therefore the complete linear system |4T − π∗D| on W
does not have irreducible members with at most rational double points as singularities.

4.2.2 Existence in the case where e is odd

Denote e =: 2e0 + 1. If we fix any F2, 1 ∈ EC(2, 1), there exist L0 ∈ EC(1, e0) and
L1 ∈ EC(1, d− e0) with E0

∼= L0 ⊗ F2, 1 and L ∼= L0 ⊗ L1. Hence E ∼= L0 ⊗ (F2, 1 ⊕ L1)
holds. Let Lk (k = 1, 2, 3) be the nontrivial line bundles on the elliptic curve C

satisfying L⊗2
k

∼= OC .
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Theorem 4.11 Let the conditions and notation be as above. Then the complete linear
system |4T − π∗D| on W satisfies the condition (A) if and only if one of the following
(1) and (2) holds:

(1) e = d > 0 and detF2, 1⊗L0⊗L−1
1 is isomorphic to one of OC and Lk (k = 1, 2, 3).

(2) d < e < 4d.

We use the following result by Ashikaga [1] to prove this theorem. Since [1] is
unpublished, we give the proof for the readers’ convenience.

Lemma 4.12 If Lk (k = 1, 2, 3) are the three nontrivial line bundles satisfying L⊗2
k

∼=
OC , and if F2, 1 is an indecomposable locally free sheaf of rank 2 and degree 1 on an
elliptic curve C, then the following hold for any nonnegative integer m:

(1) S4m(F2, 1) ∼= (O⊕(m+1)
C ⊕ (

3⊕
k=1

Lk)⊕m) ⊗ (detF2, 1)⊗2m

(2) S4m+2(F2, 1) ∼= (O⊕m
C ⊕ (

3⊕
k=1

Lk)⊕(m+1)) ⊗ (detF2, 1)⊗(2m+1).

Proof First, we show the statement for S2F2, 1. We have

F2, 1 ⊗ F2, 1
∼= S2F2, 1 ⊕ detF2, 1

F2, 1 ⊗ F2, 1
∼= (OC ⊕ L1 ⊕L2 ⊕ L3) ⊗M

for some M ∈ EC(1, 1) by the Clebsch-Gordan formula [4, p.438], and Atiyah’s result
[4, Theorem 14]. Hence detF2, 1 is isomorphic to one of M and M ⊗ Lk (k = 1, 2, 3)
by the Krull-Schmidt theorem. If detF2, 1

∼= M holds, then there is nothing to prove. If
detF2, 1

∼= L1 ⊗M holds, then since we have L−1
1

∼= L1, we obtain detF2, 1
∼= L1 ⊗M .

Hence we have

S2F2, 1
∼= (OC ⊕ L2 ⊕ L3) ⊗ L1 ⊗ detF2, 1

∼= (L1 ⊕ L3 ⊕ L2) ⊗ detF2, 1

∼= (L1 ⊕L2 ⊕ L3) ⊗ detF2, 1.

If we assume detF2, 1
∼= Lk ⊗M (k = 2, 3), then we obtain the same result.

To complete the proof, it is sufficient to show the following (i), (ii) and (iii):
(i) S4F2, 1

∼= (O⊕2
C ⊕ L1 ⊕ L2 ⊕ L3) ⊗ (detF2, 1)⊗2.

(ii) (1) of the lemma is true under the assumption that the lemma is true for all the
even integers less than or equal to 4m− 2.

(iii) (2) of the lemma is true under the assumption that the lemma is true for all the
even integers less than or equal to 4m.

We show only (ii) here. (i) and (iii) can be shown in the same way.
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We have

S4mF2, 1 ⊗ S2F2, 1
∼= S4m+2F2, 1 ⊕ (detF2, 1) ⊗ S4m+1F2, 1 ⊗ F2, 1

∼= S4m+2F2, 1 ⊕ (detF2, 1) ⊗
(
(S4mF2, 1 ⊕ (detF2, 1) ⊗ S4m−2F2, 1

)
∼= S4m+2F2, 1 ⊕

(
(detF2, 1) ⊗ S4mF2, 1

)
⊕
(
(detF2, 1)⊗2 ⊗ S4m−2F2, 1

)
for m > 0 by the Clebsch-Gordan formula. On the other hand, we have

S4mF2, 1 ⊗ S2F2, 1

∼=
(
O⊕(m+1)

C ⊕ (L1 ⊕ L2 ⊕ L3)⊕m
)
⊗ (detF2, 1)⊗2m

⊗(L1 ⊕ L2 ⊕L3) ⊗ (detF2, 1)
∼=
(
O⊕3m

C ⊕ (L1 ⊕ L2 ⊕ L3)⊕(3m+1)
)
⊗ (detF2, 1)⊗(2m+1)

by the induction assumption, and furthermore, we have

((detF2, 1) ⊗ S4mF2, 1) ⊕ ((detF2, 1)⊗2 ⊗ S4m−2F2, 1)
∼=
(
O⊕(m+1)

C ⊕ (L1 ⊕ L2 ⊕ L3)⊕m
)
⊗ (detF2, 1)⊗(2m+1)

⊕
(
O⊕(m−1)

C ⊕ (L1 ⊕L2 ⊕ L3)⊕m
)
⊗ (detF2, 1)⊗(2m+1)

∼=
(
O⊕2m

C ⊕ (L1 ⊕ L2 ⊕ L3)⊕2m
)
⊗ (detF2, 1)⊗(2m+1).

Hence we have

S4m+2F2, 1
∼=
(
O⊕m

C ⊕ (L1 ⊕L2 ⊕ L3)⊕(m+1)
)
⊗ (detF2, 1)⊗(2m+1)

by the Krull-Schmidt theorem. q.e.d.

Let us now prove Theorem 4.11.
By the remark after Proposition 3.3, the case e < 0, the case d < 0 and the case

L ∼= OC may be excluded.
(i) The case where (e < d), or (e = d and detF2, 1 ⊗ L0 ⊗ L−1

1 is isomorphic to none
of OC and Lk (k = 1, 2, 3)). We obtain the following isomorphism from Lemma 4.12.

H0(Y, OY (4C0) ⊗ µ∗ detE∨)
∼= H0(C, S4(E0) ⊗ detE∨)
∼= H0(C, S4(F2, 1) ⊗ L⊗4

0 ⊗ (L−1
0 )⊗3 ⊗ L−1

1 ⊗ detF∨
2, 1)

∼= H0(C, S4(F2, 1) ⊗ detF∨
2, 1 ⊗ L0 ⊗ L−1

1 )

∼= H0(C, (detF2,1) ⊗ L0 ⊗ L−1
1 )⊕2 ⊕

(
3⊕

k=1

H0(C, (detF2,1) ⊗ L0 ⊗ L−1
1 ⊗ Lk)

)

∼= 0.

Therefore, the coefficient ψ4 for Z4∞ of Ψ is always 0, and (Ψ) has Y0 as a component.
This means that the image of (Ψ) in W by ρ is not irreducible.
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(ii) The case where (e = d > 0 and detF2, 1 ⊗ L0 ⊗ L−1
1 is isomorphic to one of OC

and Lk (k = 1, 2, 3)), (d < e < 3d), or (e = 3d > 0 and L0 ⊗ L⊗3
1

∼= detF2, 1).
For general Ψ ∈ H0(X, OX(4Y1) ⊗ σ∗µ∗ detE∨), we have ψj �= 0 (j = 0, · · · , 4)

as in the case of e even. Hence base points of the complete linear system of OX(4Y1) ⊗
σ∗µ∗ detE∨ exist only over the base points of the complete linear systems of OY (4C0)⊗
detE∨ and µ∗(L⊗4 ⊗ detE∨) on Y . We investigate the existence of these base points.

Let us look at L⊗4 ⊗ detE∨. Since we have deg(L⊗4 ⊗ detE∨) = deg(L0 ⊗ L⊗3
1 ⊗

detF2, 1) = 3d− e ≥ 0, and L0 ⊗ L⊗3
1 ⊗ detF2, 1

∼= OC when 3d− e = 0 holds, there do
not exist base points if 3d− e �= 1. If 3d − e = 1 holds, then there exists a point q ∈ C

with L⊗4 ⊗ detE∨ ∼= OC(q). If we denote Γ := Y∞ ∩ σ−1µ−1(q), we have Γ ∼= P1, and
this is contained in the base locus of |4Y1 −σ∗µ∗D|. We can show that Γ is a (−1)-curve
of S′′ := (Ψ) and ρ(Γ) is a nonsingular point of S′ := ρ(S′′) as before.

Let us now look at OY (4C0) ⊗ µ∗ detE∨. We fix any point q ∈ C and denote
Γ := µ−1(q). If the restriction mapping

H0(Y, OY (4C0) ⊗ µ∗ detE∨) → H0(Γ, OΓ(4C0)) ∼= H0(P1, OP1(4))

is surjective, then there do not exist base points on Γ, and since q is an arbitrary point
of C, the base locus Bs |4C0 − µ∗D| is empty.

Since we have

H1(Y, OY (4C0) ⊗ µ∗(OC(−q) ⊗ detE∨)
∼= H1(C, detF2,1 ⊗ L0 ⊗ L−1

1 ⊗OC(−q))⊕2

⊕
(

3⊕
k=1

H1(C, detF2,1 ⊗ L0 ⊗ L−1
1 ⊗OC(−q) ⊗ Lk)

)
,

this cohomology group is 0 if deg(detF2, 1 ⊗ L0 ⊗ L−1
1 ⊗OC(−q)) = e− d − 1 ≥ 1, i.e.,

e− d ≥ 2, and hence the above restriction mapping is surjective.
We consider the case where e − d = 0, 1. For that purpose, we need to study the

structure of Y more precisely. Let us look at the complete linear system of OY (4C0) ⊗
µ∗(detE∨

0 )⊗2. Since

H0(Y, OY (4C0) ⊗ µ∗(detE∨
0 )⊗2) ∼= H0(C, S4E0 ⊗ (detE∨

0 )⊗2)

∼= H0(C, OC)⊕2 ⊕
(

3⊕
k=1

H0(C, Lk)

)
,

we have dimH0(Y, OY (4C0) ⊗ µ∗(detE∨
0 )⊗2) = 2. If we let D0 ∈ Div(C) be a divisor

with OC(D0) ∼= detE0, then

(4C0 − 2µ∗D0)2 = 16C2
0 − 16C0µ

∗D0 = 16e− 16e = 0

holds. Hence this complete linear system is a linear pencil which has no base point. Let
ζ : Y → P1 be the corresponding fibration. The invertible sheaves Mk := OY (2C0) ⊗
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µ∗(Lk ⊗ detF∨
2, 1) (k = 1, 2, 3) satisfy M⊗2

k
∼= OY (4C0) ⊗ µ∗(detE∨

0 )⊗2, and

H0(Y, Mk) ∼= H0(C, S2E0 ⊗Lk ⊗ detF∨
2, 1) ∼= H0(C, Lk ⊗ (L1 ⊕ L2 ⊕L3)) ∼= C

by Lemma 4.12, hence ζ has three multiple fibers 2Fk (k = 1, 2, 3) with Fk satisfying
Mk

∼= OY (Fk).
Next, we study the complete linear system of OY (4C0) ⊗ µ∗((detE∨

0 )⊗2 ⊗ Lk). We
obtain

H0(Y, OY (4C0) ⊗ µ∗((detE∨
0 )⊗2 ⊗Lk)) ∼= C

by the same caluculation as above. Therefore, the complete linear system of OY (4C0)⊗
µ∗((detE∨

0 )⊗2 ⊗ Lk) consists of a unique effective divisor. Since

OY (4C0) ⊗ µ∗((detE∨
0 )⊗2 ⊗ L1) ∼= M2 ⊗M3

OY (4C0) ⊗ µ∗((detE∨
0 )⊗2 ⊗ L2) ∼= M3 ⊗M1

OY (4C0) ⊗ µ∗((detE∨
0 )⊗2 ⊗ L3) ∼= M1 ⊗M2,

the complete linear systems consist of F2 + F3, F3 + F1, F1 + F2, respectively.

If e− d = 1, then since deg(detE0)⊗2 = 2e = 2d+ 2 and deg(detE) = e+ d = 2d+ 1
hold, there exists a unique point p ∈ C with (detE0)⊗2 ∼= (detE) ⊗ OC(p). Hence we
have

OY (4C0) ⊗ µ∗ detE∨ ∼= (OY (4C0) ⊗ µ∗(detE0)⊗2) ⊗ µ∗OC(p).

Since the complete linear system of OY (4C0) ⊗ µ∗(detE∨
0 )⊗2 is a pencil without base

points, any base point of |4C0 − µ∗D| exists only on Γ := µ−1(p). Let pk ∈ C be a point
with (detE0)⊗2 ⊗ Lk

∼= (detE) ⊗ OC(pk), and denote Γk := µ−1(pk) for k = 1, 2, 3.
Then we have Γ1+F2+F3, Γ2+F3+F1, Γ3+F1+F2 ∈ |4C0−µ∗D|. Since p, p1, p2, p3

are pairwise different, and since F1, F2 and F3 intersect Γ at different points, we obtain
Bs |4C0 − µ∗D| = ∅.

If e−d = 0, then detF2, 1⊗L0⊗L−1
1 is isomorphic to one of OC and Lk (k = 1, 2, 3)

by assumption.
If detF2, 1 ⊗ L0 ⊗ L−1

1
∼= OC holds, then since we have

detE ∼= L⊗3
0 ⊗ L−1

1 ⊗ detF2, 1
∼= L⊗4

0 ⊗ (detF2, 1)⊗2 ∼= detE0,

the complete linear system of OY (4C0) ⊗ µ∗ detE∨ is a pencil without base points as
above.

If detF2, 1 ⊗ L0 ⊗ L−1
1

∼= L1 holds, then since

detE ∼= L⊗3
0 ⊗ L1 ⊗ detF2, 1

∼= L⊗4
0 ⊗ (detF2, 1)⊗2 ⊗ L1

∼= (detE0)⊗2 ⊗L1,

we have
OY (4C0) ⊗ µ∗ detE∨ ∼= OY (4C0) ⊗ µ∗((detE0)⊗2 ⊗L1).
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Hence we obtain |4C0 − µ∗D| = {F2 + F3}. Therefore, σ−1(F2 ∪ F3) ∩ Y0 is contained
in Bs |4Y1 − σ∗µ∗D|. Since Z∞ �= 0 on Y0, if we denote z0 := Z0/Z∞, then a general
Ψ ∈ H0(X, OX(4Y1) ⊗ σ∗µ∗ detE∨) can be written as

Ψ = ψ0z
4
0 + ψ1z

3
0 + ψ2z

2
0 + ψ3z0 + ψ4, ψi ∈ H0(Y, OY (iC0) ⊗ µ∗(L⊗(4−i) ⊗ detE∨),

and ψ4 has zero of order 1 along F2 ∪ F3. Hence the divisor (Ψ) on X defined by a
general Ψ is nonsingular along σ−1(F2 ∪ F3) ∩ Y0.

We can obtain the same result in the case detF2, 1 ⊗L0 ⊗L−1
1

∼= L2, L3 by the same
calculation.

As in the case of (ii) with e even, we can show that if we denote S′′ := (Ψ), then
S′′ ∩ Y∞ is a disjoint union of 3d − e pieces of (−1)-curves and their images by ρ are
nonsingular points of S′ := ρ(S′′) ⊂W .

(iii) The case where (e = 3d > 0 and L0 ⊗ L⊗3
1 �∼= detF2, 1), or (3d < e < 4d). Note

that since e is assumed to be odd, we have e �= 4d.

Since we have H0(Y, µ∗(L⊗4 ⊗ detE∨)) ∼= H0(C, detF2, 1 ⊗ L0 ⊗ L⊗3
1 ) = 0, we

have to study the complete linear system of OX(3Y1) ⊗ σ∗(OY (C0) ⊗ µ∗ detE∨) for the
same reason as in the case (iii) with e even. Hence we have to consider the base point
of the complete linear systems of OY (C0) ⊗ µ∗(L⊗3 ⊗ detE∨) and OY (4C0)⊗ µ∗ detE∨

similarly as before.

Let us look at OY (C0) ⊗ µ∗(L⊗3 ⊗ detE∨). We fix any point q ∈ C, and denote
Γ := µ−1(q) ⊂ Y . Since we have

H1(Y, OY (C0) ⊗ µ∗(L⊗3 ⊗ (detE∨) ⊗OC(−q)))
∼= H1(C, F2, 1 ⊗ (detF∨

2, 1) ⊗ L0 ⊗ L⊗2
1 ⊗OC(−q))

and

deg(F2, 1 ⊗det(F∨
2, 1)⊗L0 ⊗L⊗2

1 ⊗OC(−q)) = 1 + 2(−1 + e0 + 2d−2e0 −1) = 4d− e−2,

and since e is odd, the restriction mapping

H0(Y, OY (C0) ⊗ µ∗(L⊗3 ⊗ detE∨)) → H0(Γ, OΓ(C0)) ∼= H0(P1, OP1(1))

is surjective when 4d − e ≥ 3 holds. Hence the complete linear system of OY (C0) ⊗
µ∗(L⊗3 ⊗ detE∨) has no base point.

In the case 4d− e = 1, since we have

dimH0(Y, OY (C0) ⊗ µ∗(L⊗3 ⊗ detE∨) = dimH0(C, E0 ⊗ L⊗3 ⊗ detE∨)

= dimH0(C, F2, 1 ⊗ L0 ⊗ L⊗2
1 ⊗ detF∨

2, 1) = 1 + 2(e0 + 2d− 2e0 − 1)

= 1 + 4d− 2e0 − 2 = 1,
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the complete linear system of OY (C0)⊗µ∗(L⊗3⊗detE∨) consists of a unique irreducible
nonsingular section C ′ of µ. Therefore, the set of base points of the complete linear
system of OX(3Y1) ⊗ σ∗(OY (C0) ⊗ µ∗ detE∨) contains σ−1(C ′) ∩ Y∞. Since Z0 �= 0 on
Y∞, if we denote z∞ := Z∞/Z0, Ψ̃ can be written as

Ψ̃ = ψ1 + ψ2z∞ + ψ3z
2
∞ + ψ4z

3
∞

on Y∞, and ψ1 ∈ H0(Y, OY (C0) ⊗ µ∗(L⊗3 ⊗ detE∨)) has zeros of order 1 along C ′, so
the divisor (Ψ̃) defined by a general Ψ̃ is nonsingular along σ−1(C ′) ∩ Y∞.

Let us now look at OY (4C0) ⊗ µ∗ detE∨. We fix any point q ∈ C, and denote
Γ := µ−1(q). We have

H1(Y, OY (4C0) ⊗ µ∗(detE∨ ⊗OC(−q)))
∼= H1(C, (detF2, 1) ⊗ L0 ⊗ L−1

1 ⊗OC(−q))⊕2

⊕
(

3⊕
k=1

H1(C, (detF2, 1) ⊗ L0 ⊗ L−1
1 ⊗OC(−q) ⊗ Lk)

)
.

Under our assumption, we have

deg(detF2, 1⊗L0⊗L−1
1 ⊗OC(−q)) = deg(detF2, 1⊗L0⊗L−1

1 OC(−q)⊗Lk) = e−d−1 > 0.

Thus H1(Y, OY (4C0)⊗µ∗(detE∨ ⊗OC(−q)) = 0 holds. Hence the restriction mapping

H0(Y, OY (4C0) ⊗ µ∗ detE∨) → H0(Γ, OΓ(4Co)) ∼= H0(P1, OP1(4))

is always surjective. Consequently, the complete linear system of OY (4C0) ⊗ µ∗ detE∨

has no base point.

(iv) The case where 4d < e. The images of all the members of |4Y1 − σ∗µ∗D| in W

have non-isolated singularity for the same reason as in the case (iv) with e even.

Remark (1) We can prove Theorem 4.11 above by using an isogeny ϕ : C̃ → C

with degϕ = 2 of elliptic curves as in §4.3.4 below where we use an isogeny of degree 3.
(2) The existence of the linear pencil ζ : Y → P1 and the multiple fibers 2Fk (k =

1, 2, 3) above was proved by Suwa [19, §4]. What we mentioned in the proof of Theorem
4.11 is a re-interpretation of Suwa’s result by means of Lemma 4.12 due to Ashikaga.

4.2.3 The canonical mapping

In this section, we study the canonical mappings of those surfaces whose existences were
shown in §§4.10–4.11. Let E0 be a locally free sheaf of rank 2 and degree e over an
elliptic curve C, and L an invertible sheaf of degree d over C. Furthermore, E0 and L

are assumed to satisfy the conditions of Theorem 4.10 when e is even, and Theorem 4.11
when e is odd.
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Lemma 4.13 If µ : Y := P(E0) → C is the ruled surface associated to E0 ∈ EC(2, 4),
and C0 is a section of µ with µ∗OY (C0) ∼= E0, then Φ|C0| is birational onto its image.

Proof Let δ ∈ Div(C) be a divisor satisfying L0
∼= OC(δ). Since

H0(Y, OY (C0) ⊗ µ∗OC(−δ)) ∼= H0(C, E0 ⊗ L−1
0 ) ∼= H0(C, F2) ∼= C,

there exists a section C ′ of µ with |C0 − µ∗δ| = {C ′}.
Let q1, q2 ∈ Y \ C ′ be any pair of points contained in different fibers of µ, and Γ1

the fiber of µ containing q1.
Since dimH0(Y, OY (C0 − Γ1)) = 2 and (C0 − Γ1)2 = 2 > 0, |C0 − Γ1| has base

points. If Γ is any fiber of µ, then H1(Y, OY (C0−Γ1−Γ)) ∼= H1(C, E0⊗OC(−p1−p)),
where p1 := µ(q1) and p := µ(Γ). Hence if p satisfies OC(p1 + p) �∼= L0, then the above
cohomology group is 0, and the restriction mapping

H0(Y, OY (C0 − Γ1)) → H0(Γ, OΓ(C0 − Γ1))

is surjective. Let p1 ∈ C be the point with L0
∼= OC(p1 +p′1), and denote Γ′

1 := µ−1(p′1).
The base points of |C0 − Γ1| are on Γ1. Since (C0 − Γ1)Γ′

1 = 1, the number of the base
points is one. On the other hand, since (C0 − Γ′

1)C ′ = 1, the base point of |C0 − Γ′
1| is

the intersection point of C ′ and Γ′
1. Since q2 �∈ C ′, there exists a member C ′

0 of |C0 −Γ1|
which does not contain q2. Then C ′

0 + Γ1 contains q1 but not q2. Hence |C0| separates
q1 and q2, and Φ|C0| is birational onto its image. q.e.d.

Lemma 4.14 Let T be a tautological divisor of the P2-bundle π : W := P(E) → C

associated to a locally free sheaf E = E0 ⊕ L (E0 ∈ EC(2, e), L ∈ EC(1, d)) satisfying
π∗OW (T ) ∼= E. Assume that E0 and L satisfy the conditions of Theorem 4.10 (e even)
or 4.11 (e odd). Then Φ|T | is a birational mapping onto its image if e+ d ≥ 5 holds.

Proof We can show that the restriction of Φ|T | to a general fiber F of π gives an
isomorphism of F onto its image as in the proof of Lemma 4.2.

Let ρ : X → W, σ : X → Y, µ : Y → C, C0, C1, Y1, Y0, Y∞, Z0 and Z∞ be
as in the previous section. Since Φ|Y1| = Φ|T | ◦ ρ, if Φ|Y1| is birational onto its image,
Φ|T | is also birational onto its image. Therefore, it suffices to show that there exists a
Zariski open subset of X such that any pair of points in it contained in different fibers
are separated by |Y1|.

Since we have H0(X, OX(Y1)) ∼= H0(Y, OY (C0)) ⊕ H0(C, L), any Ψ ∈
H0(X, OX(Y1)) can be written as

Ψ = ψ0Z0 + ψ∞Z∞, ψ ∈ H0(C, L), ψ∞ ∈ H0(Y, OY (C0)).

Hence if d ≥ 3, then X \ Y0 satisfies the above condition. (Look at all the elements of
the form ψ0Z0.) If e ≥ 6, since there exist a section C ′ of µ and a divisor δ ∈ Div(C)
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with deg δ ≥ 3 such that C0 ∼ C ′ + µ∗δ holds, X \ {Y0 ∪ µ−1(C0)} satisfies the above
condition. (Look at all the elements of the form ψ∞Z∞.) If (e, d) = (5, 2), then
X \ {Y0 ∪ Y∞ ∪ µ−1(C0)} satisfies the above condition. (Look at all the elements of the
form ψ0Z0 and ψ∞Z∞.)

In the cases (e, d) = (4, 2), (4, 1), X \ {Y∞ ∪µ−1(C ′)} satisfies the above condition
by Lemma 4.14. (Look at all the elements of the form ψ∞Z∞.)

If (e, d) = (3, 2), then we have Bs |Y1| = ∅, and hence Φ|Y1| is a morphism. Since
Y 3

1 = 5 and the degree of the image of X cannot be 1, Φ|Y1| is a birational morphism.
q.e.d.

Corollary 4.15 The canonical mapping of any surface S whose existence is guaranteed
by Theorem 4.10, Theorem 4.11 and condition (A) is birational onto its image if pg(S) ≥
5 holds. If (e, d) �= (4, 1), then the canonical mapping is a morphism. If (e, d) = (4, 1),
then |KS | has a unique isolated base point, and its canonical image is non-normal.

Proof The birationality can be proved in the same way as in the proof of Corollary
4.3. If e ≥ 3 and d ≥ 2, then Bs |Y1| = ∅ by the proof of Lemma 4.14, and Φ|KS | is
birational onto its image in the case (e, d) �= (4, 1). In the case (e, d) = (4, 1), the base
locus of |4T − π∗D| contains the section C1 := P(E/E0) of π by the proof of Theorem
4.11. On the other hand, the base locus of |T | consists of a unique point contained in C1.
Hence the complete linear system of the canonical bundle of a general member S has
only one isolated base point. The non-normality of the canonical image can be shown in
the same way as in the proof of Corollary 4.4. q.e.d.

Proposition 4.16 Let π : W := P(E) → C be the P2-bundle associated to the locally
free sheaf E := E0 ⊕ L, (E0 ∈ EC(2, 2), L ∈ EC(1, 1)), T the tautological divisor
with π∗OW (T ) ∼= E, and L0 ∈ EC(1, 1), L1 ∈ EC(1, 0) the invertible sheaves satisfying
E0

∼= L0 ⊗ F2 and L ∼= L0 ⊗ L1. If S ∈ |4T − π∗D| is irreducible and nonsingular, then
we have the following:

(1) deg Φ|KS | = 9, if L⊗2
1 �∼= OC .

(2) deg Φ|KS | = 8, if L⊗2
1

∼= OC and L1 �∼= OC .

(3) deg Φ|KS | = 4, if L1
∼= OC .

Proof First, we consider the cases (1) and (2). Since degL = d = 1, there exists a
point p ∈ C with L ∼= OC(p). Furthermore, there exists a point q ∈ Y with Bs |C0| = {q}
by the proof of Lemma 4.13. Hence we see that the base locus of |Y1| is the union of the
curve (µ ◦ σ)−1(p) ∩ Y∞ and the point σ−1(q) ∩ Y0 in the same way as in the proof of
Lemma 4.14.
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Recall that any Ψ ∈ H0(X, OX(4Y1) ⊗ σ∗µ∗ detE∨) can be written as

Ψ = ψ0Z
4
0 + ψ1Z

3
0Z∞ + ψ2Z

2
0Z

2
∞ + ψ3Z0Z

3
∞ + ψ4Z

4
∞,

ψi ∈ H0(Y, OY (iC0) ⊗ µ∗(L⊗(4−i) ⊗ detE∨)).

There exists a section C ′ of µ with OY (C ′) ∼= OY (C0) ⊗ µ∗L−1
0 by §4.2.1. Since

OY (4C0) ⊗ µ∗ detE∨ ∼= OY (4C ′) ⊗ µ∗(L0 ⊗ L−1
1 ) and deg(L0 ⊗ L−1

1 ) = 1, there exists a
point p0 ∈ C with L0 ⊗ L−1

1
∼= OC(p0), and the intersection point q′ of µ−1(p0) with C ′

satisfies Bs |4C0 − µ∗D| = {q′}. Hence we have σ−1(q′) ∩ Y0 ⊂ Bs |4Y1 − σ∗µ∗D|.
Since L⊗4 ⊗ detE∨ ∼= L0 ⊗ L⊗3

1 , degL0 = 1 and degL1 = 0, we have deg(L⊗4 ⊗
detE∨) = 1, and there exists a point p′ ∈ C with L⊗4 ⊗ detE∨ ∼= OC(p′). Hence we
have (µ ◦ σ)−1(p′) ∩ Y∞ ⊂ Bs |4Y1 − σ∗µ∗D|.

q coincide with q′ if and only if L0
∼= L0 ⊗ L−1

1 , hence L1
∼= OC . p coincide with p′

if and only if L ∼= L⊗4 ⊗ detE∨. Since L ∼= L0 ⊗ L1 and L⊗4 ⊗ detE∨ ∼= L0 ⊗ L⊗3
1 , this

is equivalent to L⊗2
1

∼= OC .
Hence, if L⊗2

1 �∼= OC holds, then we have q �= q′ and p �= p′, and the complete linear
system of the canonical divisor of a general member of |4Y1 − σ∗µ∗D| has no base point.
Therefore, in this case, we obtain deg Φ|KS | = 9.

If L⊗2
1

∼= OC and L1 �∼= OC hold, then we have q �= q′ and p = p′. Hence the complete
linear system of the canonical divisor of a general member of |4T −π∗D| has one isolated
base point. We have the following elementary transformation (cf. [15]):

W̄

φ↙ ↘ φ′

W W ′

π ↘ ↙ π′

C

where π′ : W ′ → C is the P2-bundle associated to a locally free sheaf E′ := E0 ⊕OC of
rank 3 over C, φ is the blowing-up at the isolated base point of |4T −π∗D|, and φ′ is the
blowing-up along the line P(E0 ⊗OC

Op) ⊂ W ′. Let T ′ be the tautological divisor with
π′∗OW ′(T ′) ∼= E′. The complete linear system |T | on W is mapped to the complete linear
system |T ′| by this elementary transformation. Furthermore, if S̄ is the proper transform
of a general member S by φ, and if we denote S′ := φ′(S̄), then we have S′ ∼ 4T ′ by
the assumption L⊗2

1
∼= OC . Since |T ′| has no base point on π′−1(p), the complete linear

system of OW ′(T ′) ⊗OW ′ OS′ on S′ has no base point. Since deg Φ|KS | = deg Φ|KS̄ |, and
since Φ|KS̄ | factors as

Φ|KS̄ | : S̄ → S′ → Φ|T ′|(S′) ↪→ Pn, (n := pg(S) − 1),

we have deg Φ|KS | = T ′2S′ = 4T ′3 = 4 degE′ = 8.
Finally, we consider the case (3), i.e., the case E ∼= L⊗ (F2 ⊕OC). If p, p′, q and q′

are as above, we have p = p′, q = q′ and µ(q) = p. We can prove
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Bs |Y1| = Bs |4Y1 − σ∗µ∗D| = σ−1(q) ∪ {(µ ◦ σ)−1 ∩ Y∞}

in the same way as above, and hence, Bs |T | = Bs |4T − π∗D| is a line contained in a
fiber π−1(p) ⊂W .

We have the same elementary transformation as in the case (2). (We use the same
notation as above.) In this case, Bs |T ′| consists of one point contained in π′−1(p), and the
image S′ of the proper transform of a general member S ∈ |4T−π∗D| in W ′ goes through
this point. If T ′

0 is the image of P(E/L) = P(L⊗F2) ↪→W in W ′, then we have T ′
0 ∼ T ′.

Let us regard C0, C
′ and µ−1(p) as divisors on P(E/L) or T ′

0 in view of Y ∼= P(E/L) ∼=
T ′

0. In this notation, we have OW ′(T ′
0) ⊗OW

OT ′
0

∼= OT ′
0
(C0)

(∼= OT ′
0
(C ′ + µ−1(p))

)
.

Since the restriction of S to P(E/L) is linearly equivalent to 4C ′ + µ−1(p) and since
S′ ∼ 4T ′, the restriction of S′ to T ′

0 is the sum of a divisor G which is linearly equivalent
to 4C ′ + µ−1(p) and 3µ−1(p). G goes through q = µ−1(p) ∩ C ′, and since S is generic,
G is nonsingular at q. C0 also goes through q and nonsingular at q, and C0 and G have
different tangents.

Let ν : W̃ →W ′ be the blowing-up at q, T̃ and S̃ be the proper transforms of T ′ and
S′ respectively, and denote Ẽ := ν−1(q). Since ν∗T ′ ∼ T̃ + Ẽ , we can prove ν∗S′ ∼ S̃+4Ẽ
by the above result. Although |T̃ | has one isolated base point, S̃ does not go through
the point. Hence we have

deg Φ|KS | = deg
(
Φ|T̃ ||S̃

)
= T̃ 2S̃ = (ν∗T ′ − Ẽ)2(ν∗S′ − 4Ẽ)

=
(
(ν∗T ′)2 − 2(ν∗T ′)Ẽ + Ẽ

)
(ν∗S′ − 4Ẽ) = T ′2S′ − 4Ẽ3 = 4T ′3 − 4 = 4.

q.e.d.

We treat the case (e, d) = (1, 1) in Propsition 4.41 in the next section.

In the case (e, d) = (3, 1), we have the following:

Lemma 4.17 Let π : W := P(E) → C be the P2-bundle associated to the locally free
sheaf E := E0 ⊕ L, (E0 ∈ EC(2, 3), L ∈ EC(1, 1)), and T the tautological divisor with
π∗OW (T ) ∼= E. Then Φ|T | is a triple covering of W over P3.

We prove the following lemma to show Lemma 4.17:

Lemma 4.18 If µ : Y := P(E0) → C is the ruled surface associated to the locally free
sheaf E0 ∈ EC(2, 3), and if C0 is a section of µ with µ∗OY (C0) ∼= E0, then we have
Bs |C0| = ∅.

Proof Let Γ be any fiber of µ, and denote p := µ(Γ) ∈ C. Since we have

H1(Y, OY (C0 − Γ)) ∼= H1(C, E0 ⊗OC(−p)) = 0,
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the restriction mapping

H0(Y, OY (C0)) → H0(Γ, OΓ(C0)) ∼= H0(P1, OP1(1))

is surjective, and |C0| has no base point. q.e.d.

Proof of Lemma 4.17 First we consider the pull-back of |T | to X. Since

H0(X, OX(Y1)) ∼= H0(Y, OY (C0)) ⊕H0(C, L),

any Z ∈ H0(X, OX(Y1)) can be written as

Z = ψ0Z0 + ψ∞Z∞, ψ0 ∈ H0(C, L), ψ∞ ∈ H0(Y, OY (C0)).

Since Bs |C0| = ∅ by Lemma 4.18, and since degL = 1, the base locus of |Y1| is the curve
Y∞ ∩ (µ ◦ σ)−1(p), where p ∈ C is the point with L ∼= OC(p). This curve is contracted
to a point q by ρ : X →W , and we have Bs |T | = {q}.

Let π′ : W ′ := P(E′) → C be the P2-bundle associated to the locally free sheaf
E′ := E0 ⊕ OC , and T ′ the tautological divisor with π′∗OW ′(T ′) ∼= E′. We obtain an
elementary transformation

W̄

φ′ ↙ ↘ φ

W ′ W

as before where φ is the blowing-up at q. The image by φ′ of the proper transform of T
by φ is linearly equivalent to T ′.

If F ′ is any fiber of π′, we have

H1(W ′, OW ′(T ′ − F ′)) ∼= H1(C, E′ ⊗OC(−p))
∼= H1(C, E0 ⊗OC(−p)) ⊕H1(C, OC(−p))

and

H1(W ′, OW ′(T ′)) ∼= H1(C, E′) ∼= H1(C, E0) ⊕H1(C, OC).

These cohomology groups are one-dimensional and hence the canonical homomorphism
H1(W ′, OW ′(T ′−F ′)) → H1(W ′, OW ′(T ′)) is an isomorphism. Therefore the restriction
mapping

H0(W ′, OW ′(T ′)) → H0(F ′, OF ′(T ′))

is surjective, and we obtain Bs |T ′| = ∅. Hence deg Φ|T | = deg Φ|T ′| = (T ′)3 = 3 holds.
q.e.d.

In this case, we may assume E ∼= L⊗ (F2, 1 ⊕OC) by denoting E2, 1 := E0 ⊗ L−1.
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Lemma 4.19 Let µ : Y → C be the ruled surface associated to a locally free sheaf
E0 ∈ EC(2, 3) of rank 2 over C, and C0 a section of µ with µ∗OY (C0) ∼= E0. Then
Φ|4C0−µ∗D| is a birational morphism onto its image for any divisor D ∈ Div(C) of degree
4.

Proof It is known that Y is isomorphic to the symmetric product of C of degree
2 (cf. [6]). Let η : C × C → Y be the quotient morphism. A point q of Y may be
written as q = (p, p′) for two points p, p′ ∈ C (possibly p = p′). The ruling µ : Y → C

is expressed as µ(q) = p+ p′ where + is the group addition of the elliptic curve C once
an appropriate point of C is chosen as 0. C × {p} and {p} ×C are mapped to the same
curve Cp on Y by η for any point p ∈ C. Since (C × {p} + {p} × C)2 = 2 and deg η = 2,
this curve Cp is a section of µ with self-intersection number 1. There exists a fiber Γ of
µ with C0 ∼ Cp + Γ.

Hence the complete linear system |4C0 − µ∗D| contains a member of the form∑4
i=1Cpi , (pi ∈ C, i = 1, 2, 3, 4). Since η−1

(∪4
i=1Cpi

)
=
⋃4

i=1{(C × {pi})∪({pi} × C)},
for any point q ∈ Y , there exist points pi (i = 1, 2, 3, 4) such that ∪4

i=1Cpi does not
contain q. Hence we have Bs |4C0 − µ∗D| = ∅.

Let q, q∗ ∈ Y be distinct points which are not contained in the image under η of
the diagonal of C × C, and denote q = (p, p′). Then Cp and Cp′ are two distinct
sections of µ with self-intersection numbers 1. Since CpCp′ = 1, at least one of Cp and
Cp′ does not go through q∗. We may assume that Cp does not go through q∗. We can
show that the complete linear system |4C0 − π∗D − Cp| contains a member of the form∑3

i=1Cpi , (pi ∈ C, i = 1, 2, 3), and there exist points pi ∈ C (i = 1, 2, 3) such
that

∑3
i=1Cpi does not go through q′. Hence the complete linear system |4C0 − µ∗D|

separates q and q′. q.e.d.

Proposition 4.20 Let π : W → C be the P2-bundle associated to the locally free sheaf
E ∼= L ⊗ (F2, 1 ⊕ OC), (L ∈ EC(1, 1), F2, 1 ∈ EC(2, 1)), T the tautological divisor with
π∗OW (T ) ∼= E, and D ∈ Div(C) a divisor with OC(D) ∼= detE. Then a general member
S ∈ |4T − π∗D| is a canonical surface.

Proof By the proof of Theorem 4.11, we know that Bs |4T −π∗D| = ∅ holds when
L ∼= detF2, 1, and that C1 := P(E/E0) ⊂ W is the base locus of |4T − π∗D| when
L �∼= detF2, 1.

First, we consider the case L ∼= detF2, 1.
Since deg Φ|T | = 3 by Lemma 4.17, we have deg Φ|KS | = 1, 2 or 3. There is nothing

to prove if deg Φ|KS | = 1.
Assume deg Φ|KS | = 2. Since Bs |T | consists of one point q ∈ W , a general member

S ∈ |4T − π∗D| does not contain q. Let φ : W̄ → W be the blowing-up at q and
T̄ ⊂ W̄ the proper transform of T by φ, and denote E := φ−1(q). In this case, the proper
transform S̄ of S is linearly equivalent to 4T̄ + 4E − φ∗π∗D. If φ′ : W̄ → W ′ is the
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elementary transformation appearing in the proof of Lemma 4.17, then S′ := φ′(S̄) is
linearly equivalent to 4T ′ +π′∗(4p−D) ∼ 4T ′, where p ∈ C is the point with OC(p) ∼= L.
(In the rest of the proof, p denots this point.) Since S does not contain q, we may
identify as S = S̄, and Φ|KS | is factored as

Φ|KS | : S → S′ → Φ|T ′|(S′)
(
⊂ P3

)
.

Since (4T ′)(T ′)2 = 12 and deg Φ|KS | = 2, if H ⊂ P3 is a hyperplane, we have Φ|T ′|(S′) ∼
6H. Since Φ∗

|T ′|H ∼ T ′, we have Φ∗
|T ′|

(
Φ|T ′|(S′)

)
∼ 6T ′, and there exists a relative

hyperquadric surface Q ∈ |2T ′| with

Φ∗
|T ′|

(
Φ|T ′|(S′)

)
= S′ +Q.

Since deg Φ|T ′| = 3 and deg Φ|KS | = 2, we see that Q is birationaly equivalent to Φ|KS |(S).
On the other hand, Q is birationaly equivalent to a ruled surface over C. Thus S′ is
birationaly equivalent to a double covering of a ruled surface over C. Hence S′ has an
irrational pencil whose general fiber is a rational curve, an elliptic curve or a hyperelliptic
curve, which is absurd.

Assume deg Φ|KS | = 3. Denote C1 := P(E/E0), and let q0 ∈ S′ \ C1 be a point
such that Φ−1

|T ′|
(
Φ|T ′|(q0)

)
consists of three distinct points q0, q1, q2. Since we can

prove that the restriction of Φ|T ′| to any fiber of π is an isomorphism onto its image by
the same proof as in Lemma 4.2, q1, q2, q3 are contained in distinct fibers of π′. Let
C1 ⊂ W, ρ : X → W, σ : X → Y, µ : Y → C, T ′, C0, Y1, Y0, Y∞, Z0 and Z∞ be as in
Theorem 4.11. Since Z0 ∈ H0(X, OX(Y1) ⊗ σ∗µ∗L−1) and

H0(X, OX(Y1) ⊗ σ∗µ∗L−1) ∼= H0(Y, (OY (C0) ⊕ µ∗L) ⊗ µ∗L−1)
∼= H0(Y, OY (C0 − µ∗L) ⊕OY ) ∼= H0(C, (E0 ⊗ L−1) ⊕OY ),

this cohomology group is of dimension two. Since q0 �∈ C1, we may choose Z0 in such
a way that Z0(q0) = 0 and that the divisor (Z0) is irreducible. The global section
Ψ ∈ H0(X, OX(4Y1) ⊗ σ∗µ∗ detE∨) defining the proper transform S̃ of S by ρ can be
written as

Ψ =
4∑

i=0

ψiZ
4−i
0 Zi

∞,

ψi ∈ H0(Y, OY (iC0) ⊗ µ∗L⊗(4−i) ⊗ detE∨), (i = 0, 1, · · · , 4).

Since the complete linear system |T | does not separate q0, q1 and q2, and since Y1(=
ρ∗T ) ∼ (Z0) + φ−1(π−1(p)), we have Z0(q1) = Z0(q2) = 0. Hence we have Ψ(qi) =
ψ4(qi)Z∞(qi)4, and qi (i = 1, 2) is contained in S′ if and only if ψ4(qi) = 0. On the
other hand, since ψ4 ∈ H0(Y, OY (4C0)⊗ µ∗ detE∨), we have ψ4(qi) �= 0 for a general S
by Lemma 4.19, and we obtain a contradiction.

Next, we consider the case L �∼= detF2, 1.
Since Bs |T | consists of the intersection point of C1 with π−1(p), if we denote φ :

W̄ →W, E , T̄ and S̄ as above, we have
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S̄ ∼ 4T̄ + 3E − φ∗π∗D,

and

S′ ∼ 4T ′ − π∗(p′),

where S′ = φ′(S̄) ⊂ W ′, and p′ ∈ C is the point with OC(p′) ∼= detF2, 1. Hence, the
invertible sheaf OW ′(4T ′)⊗ π′∗OC(−p′) on W ′ cannot be the pull-back of any invertible
sheaf over P3, and we have deg Φ|KS | �= 3.

We can prove that Φ|KS | does not give rise to a double covering onto its image as in
the case L ∼= detF2, 1. Therefore, S is canonical in this case, too. q.e.d.

In the case (e, d) = (2, 2), we have the following:

Lemma 4.21 Let E ∼= E0 ⊕ L be a locally free sheaf of rank 3 over an elliptic curve C
with E0 ∈ EC(2, 2) and L ∈ EC(1, 2). Furthermore, let π : W → C be the P2-bundle
associated to E, and T the tautological divisor with π∗OW (T ) ∼= E. Then the rational
mapping Φ|T | defined by the complete linear system |T | has degree two.

In the notation of Lemma 4.21, there exists an invertible sheaf L ∈ EC(1, 1) with
E0

∼= L ⊗ F2. Let p0 ∈ C be the point with L ∼= OC(p0), µ : Y → C the ruled surface
assciated to E0 and C0 the section of µ with µ∗OY (C0) ∼= E0. Since

H0(Y, OY (C0) ⊗ µ∗L−1) ∼= H0(C, E0 ⊗ L−1) ∼= H0(C, F2) ∼= C,

there exists a unique section C ′ with C ′ ∼ C0 − Γ0, where Γ0 := µ−1(p0).
Proof Let ρ : X → W, σ : X → Y, µ : Y → C, Y1, Y0, Y∞, Z0 and Z∞ be as

above. Since H0(X, OX(Y1)) ∼= H0(C, L) ⊕H0(Y, OY (C0)), any Z ∈ H0(X, OX(Y1))
can be written as

Z = ψ̃0Z0 + ψ̃∞Z∞, ψ̃0 ∈ H0(C, L), ψ̃∞ ∈ H0(Y, OY (C0)).

Let y0 ∈ Y be as in Lemma 3.5. We have Bs |Y1| = {q0} by Lemma 3.5 and by degL = 2,
where q0 := σ−1(y0)∩ Y0. If we identify q0 with ρ(q0) and so that q0 ∈W , then we have
Bs |T | = {q0}. Again by Lemma 3.5, two different general members of |C0| intersect at
y0 with multiplicity 2. Hence if we let ζ1 : W1 →W be the blowing-up at q0, and T ′ the
proper transform of T , then the complete linear system |T ′| has one base point q′0. If we
let ζ2 : W2 → W1 be the blowing-up at q′0, and T ′′ the proper transform of T ′, then we
have Bs |T ′′| = ∅, dim |T ′′| = dim |T | = 3 and (T ′′)3 = T 3 − 2 = 2, and Φ|T ′′| : Y ′′

1 → P3

is the double covering. q.e.d.

Proposition 4.22 Let π : W → C be the P2-bundle associated to the locally free sheaf
E ∼= E0 ⊕L with E0

∼= L0 ⊗ F2 and L ∼= L⊗2
0 for some L0 ∈ EC(1, 1), T the tautological

divisor with π∗OW (T ) ∼= E, and D ∈ Div(C) the divisor with OC(D) ∼= detE. Then a
general member S ∈ |4T − π∗D| is a canonical surface.
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Proof We use the notation in the proof of Lemma 4.21. Furthermore, we regard
Y0 to be a relative hyperplane of W by identifying ρ(Y0) with Y0.

The canonical mapping of the minimal resolution of singularities of a general member
S′ ∈ |4T − π∗D| has degree one or two by Lemma 4.21.

Since Bs |4T − π∗D| = C ′ and since S′ has a rational double point of type A3 at
q0 ∈ C ′ by the proof of Theorem 4.10, we have

S′
1 ∼ 4T ′ + 2E1 − ζ∗1π

∗D,

where E1 := ζ−1
1 (q0) and S′

1 is the proper transform of S′ by ζ1. S1 has a rational double
point of type A1. On the other hand, since the support of the intersection of S′ with Y0

is C ′, this rational double point does not coincide with q′0. Hence the proper transform
S′

2 of S′
1 by ζ2 satisfies

S′
2 ∼ 4T ′′ + 6E2 + 2E ′

1 − ζ∗2ζ
∗
1π

∗D,

where E2 is the exceptional divisor of ζ2, and E ′
1 is the proper transform of E1 by ζ2.

Since 6E2 + 2E ′
1 �∼ ζ∗2ζ∗1π∗D, S′

2 cannot be the pull-back of any effective divisor of P3 by
Φ|T ′′|. Therefore, S is a canonical surface. q.e.d.

4.3 E is indecomposable

Let E be an indecomposable locally free sheaf of rank 3 over an elliptic curve C. Denote
d := degE. We prove the following theorem in §§4.3.1–4.3.4. We consider the case d �≡ 0
(mod 3) and d �= 1, 2 in §4.3.1, the case d ≡ 0 (mod 3) and d �= 3 in §4.3.2, the case
d = 3 in §4.3.3, and the case d = 2 in §4.3.4. We omit the case d = 1 because it was
investigated by Catanese and Ciliberto [6]. In §4.3.5, we study the canonical mapping
of the surfaces obtained in §§4.3.1–4.3.4. The results about the canonical mappings are
stated in Corollaries 4.37 and 4.39, and Propositions 4.40 and 4.41.

We only have to consider the case d > 0 by the remark immedietely before §4.1.

Theorem 4.23 Let π : W := P(E) → C be the P2-bundle associated to E, T a tauto-
logical divisor with π∗OW (T ) ∼= E and D ∈ Div(C) a divisor with OC(D) ∼= detE. The
complete linear system |4T −π∗D| on W satisfies the condition (A) if and only if d ≥ 1.

Remark In this case, the complete linear system |4T −π∗D| turns out not to have
base points except the case d = 3, and hence its general member is irreducible and
nonsingular by Bertini’s theorem.

The restriction of OW (4T ) ⊗ π∗ detE∨ to a fiber F of π is isomorphic to OP2(4).
The complete linear system of OP2(4) is base point free. Therefore to prove that the
complete linear system of OW (4T ) ⊗ π∗ detE∨ is base point free, it suffices to show the
following:
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Lemma 4.24 In the notation of Theorem 4.23, if we assume d ≥ 4, then the restriction
mapping

H0(W, OW (4T ) ⊗ π∗ detE∨) → H0(F, OF (4T )) ∼= H0(P2, OP2(4))

is surjective for any fiber F of π.

4.3.1 The proof when degE �= 1, 2 is not divisible by 3

Denote d := degE. By Theorem 3.4, if we choose and fix an arbitrary isogeny ϕ : C̃ → C

of degree 3, there exists an invertible sheaf L0 of degree d over C̃ such that ϕ∗L0
∼= E.

Furthermore, if we denote G := kerϕ = {0, σ, 2σ} (σ ∈ G, σ �= 0, 3σ = 0) and
L1 := T ∗

σL0, L2 := T ∗
2σL0 where Tiσ (i = 1, 2) is the translation by iσ ∈ G, then we

have ϕ∗E ∼= L0 ⊕ L1 ⊕ L2. Denote Ẽ := ϕ∗E.
Let π : W := P(E) → C and π̃ : W̃ := P(Ẽ) → C̃ be the P2-bundles associated to

E and Ẽ, respectively. Let T and T̃ be tautological divisors on W and W̃ , respectively,
such that π∗OW (T ) ∼= E and π̃∗OW̃ (T̃ ) ∼= Ẽ. Consider the following diagram:

W̃
Φ−→ W

π̃ ↓ ↓ π
C̃

−→
ϕ C

If we denote by Φ the morphism from W̃ to W in the above diagram, and choose a divisor
D̃ ∈ Div(C̃) such that OC̃(D̃) ∼= det Ẽ, then T̃ ∼ Φ∗T and hence Φ∗OW (4T − π∗D) ∼=
OW̃ (4T̃ − π̃∗D̃).

We prove Theorem 4.23 in the case d ≥ 4, i.e., Lemma 4.24. If F is any fiber of π, and
if we denote L = OW (4T − F ) ⊗ π∗ detE∨, then it suffices to show that H1(W, L) = 0
holds.

The kernel kerϕ∗ of the isogeny ϕ∗ : Pic0(C) → Pic0(C̃) corresponding to ϕ : C̃ → C

is of the form {OC , M, M⊗2} with M �∼= OC , M⊗3 ∼= OC .

Lemma 4.25 In the above notation, we have

ϕ∗OC̃
∼= OC ⊕M⊕M⊗2.

Proof The exact sequence 0 → OC → φ∗OC̃ of sheaves splits by the homomorphism
(1/3) tr : φ∗OC̃ → OC , where tr is the trace mapping. Hence there exists a locally free
sheaf E of rank 2 over C with φ∗OC̃

∼= OC ⊕ E . On the other hand, since M⊗ φ∗OC̃
∼=

φ∗(OC̃ ⊗ φ∗M) ∼= φ∗OC̃ holds by the projection formula, we have M ⊕ (M ⊗ E) ∼=
OC ⊕ E . Similarly, since M⊗2 ⊗ φ∗OC̃

∼= φ∗(OC̃ ⊗ φ∗M⊗2) ∼= φ∗OC̃ holds, we have
M⊗2 ⊕ (M⊗2 ⊗ E) ∼= OC ⊕ E . Hence we have E ∼= M ⊕ M⊗2 by Krull-Schmidt’s
theorem (cf. [4]). q.e.d.
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Remark In the proof of Lemma 4.25, we do not use the condition d ≥ 4. Namely,
this lemma also holds in the case d ≤ 2 and d �≡ 0 (mod 3).

By Lemma 4.25, we get

H1(W̃ , Φ∗L) ∼= H1(W, L) ⊕H1(W, L ⊗M) ⊕H1(W, L⊗M⊗2).

Since the action of G on W̃ is fixed point free, we have H1(W, L) = H1(W̃ , Φ∗L)G (cf.,
e.g., [9, p. 202, Corollaire]). On the other hand, if F̃0, F̃1, F̃2 are the fibers of π̃ which
are in the inverse image of F by Φ, then Φ∗L ∼= OW̃ (4T̃ − F̃0 − F̃1 − F̃2) ⊗ π̃∗ det Ẽ∨

holds. Hence if we denote qi := π̃(F̃i) (i = 0, 1, 2), then we get

H1(W̃ , Φ∗L) ∼= H1(C̃, S4Ẽ ⊗ π̃∗(det Ẽ∨ ⊗OC̃(−q0 − q1 − q2)))
∼=

⊕
α, β, γ≥0
α+β+γ=4

H1(C̃, L⊗(α−1)
0 ⊗ L

⊗(β−1)
1 ⊗ L

⊗(γ−1)
2 ⊗OC̃(−q0 − q1 − q2)).

Since d ≥ 4 by our assumption, this cohomology group is equal to 0, and Theorem 4.23
in the case d ≥ 4 is proved. q.e.d.

4.3.2 The proof when degE �= 3 is divisible by 3

If we denote d0 = d/3, there exists an invertible sheaf L of degree d0 such that E ∼= L⊗F3.
First we prove Theorem 4.23 in the case d ≥ 6, i.e., Lemma 4.24. If we let p := π(F ),

then we have H1(W, OW (4T − F ) ⊗ π∗ detE∨) ∼= H1(C, S4E ⊗ detE∨ ⊗ OC(−p)) ∼=
H1(C, S4F3 ⊗ L ⊗ OC(−p)). On the other hand, since F3

∼= S2(F2) by Atiyah [4,
Theorem 9], we have an isomorphism,

S4(F3) ∼= S4(S2(F2)) ∼= F9 ⊕ F5 ⊕OC

by [8, p. 156]. Therefore we have an isomorphism

H1(W, OW (4T − F ) ⊗ π∗ detE∨)
∼= H1(C, F9 ⊗ L⊗OC(−p)) ⊕H1(C, F5 ⊗ L⊗OC(−p)) ⊕H1(C, L⊗OC(−p)).

Since deg(Fi ⊗ L ⊗ OC(−p)) = i(d0 − 1) > 0 for i = 1, 5, 9 (with F1 = OC), these
summands are all 0 if d0 ≥ 2. Hence we have

H1(W, OW (4T − F ) ⊗ π∗ detE∨) = 0.

if d0 ≥ 2. q.e.d.

4.3.3 The proof when degE = 3 holds

Let E be a locally free sheaf of rank 3 and degree 3 over an elliptic curve C. There exists
an invertible sheaf L ∈ EC(1, 1) with E ∼= L ⊗ F3. Let p0 ∈ C be a point satisfying
L ∼= OC(p0).
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Let π : W → C be the P2-bundle associated to E and T the tautological divisor with
π∗OW (T ) ∼= E.

Lemma 4.26 Bs |T | consists of one point.

Proof Let F be a fiber of π over a point p ∈ C \ {p0}. Since

H1(W, OW (T − F )) ∼= H1(C, E ⊗OC(−p)) ∼= H1(C, F3 ⊗OC(p0 − p)) = 0,

the following restriction mapping is surjective:

H0(W, OW (T )) −→ H0(F, OF (T ))
(∼= H0(P2, OP2(1))

)
.

Hence there is no base point on F .
Denote F0 := π−1(p0). Since

H1(W, OW (T − F0)) ∼= H1(C, E ⊗OC(−p0)) ∼= H1(C, F3) ∼= C

and

H1(W, OW (T )) ∼= H1(C, E) = 0,

the image of the following restriction mapping is two-dimensional:

H0(W, OW (T )) −→ H0(F0, OF0(T ))
(∼= H0(P2, OP2(1))

)
.

q.e.d.

Let F0 be as in the proof of Lemma 4.26. Since we have detE ∼= OW (3p0), we have
to consider the complete linear system |4T − 3F0|.

Since

H0(W, OW (T ) ⊗ π∗L−1) ∼= H0(C, E ⊗ L−1) ∼= H0(C, F3) ∼= C,

there exists a unique relative hyperplane T0 with T0 ∼ T − F0.

Lemma 4.27 T0 is isomorphic to the ruled surface P(F2). Furthermore, if C0 ⊂ T0 is
a section of µ := π|T0

: T0 → C with µ∗OT0(C0) ∼= F2, then we have NT0/W
∼= OT0(C0),

where NT0/W is a normal bundle of T0 in W .

Proof Since T 3
0 = 0, NT0/W is isomorphic to OT0 or an invertible sheaf induced

from a nonzero divisor on T0 with self-intersection number zero.
If NT0/W

∼= OW holds, since we have Pic(W ) ∼= Z · T0 ⊕ π∗ Pic(C), the restriction of
any divisor Z on W to T0 consists of fibers of µ. Hence we must have Z2T0 = 0. On the
other hand, we have T 2T0 = T 2(T −F0) = T 3−T 2F0 = 3−1 = 2 �= 0, which contradicts
Z2T0 = 0.

Since we have T 2
0F = 1 for any fiber F of π, if C ′ ⊂ T0 is some section of µ, then

there exists a divisor δ on C with NT0/W
∼= OT0(C ′ + µ∗δ). On the other hand, we have
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dimH0(T0, NT0/W ) = dimH1(T0, NT0/W ) = 0, 1,

by the cohomology long exact sequence induced from the exact sequence of sheaves
0 → OW → OW (T0) → NT0/W → 0. The pairs of a ruled suface and a divisor on it
satisfying the above conditions are as follows:

(1) T0 = P(OC ⊕L) with L ∈ Pic0(C)\{OC}, and C0 +µ∗δ with µ∗OT0(C0) ∼= OC ⊕L
and deg δ = 0,

(2) T0 = P(F2) and C0 + µ∗δ with µ∗OT0(C0) ∼= F2 and deg δ = 0,

where C0 is a section of µ.
Assume (1) holds. Let δ0 ∈ Div(C) be a divisor with L ∼= OC(δ0).
Since NT0/W

∼= OT0(T0) ∼= OT0(C0+µ∗δ), if we let p′0 ∈ C be a point with p′0 ∼ p0+δ,
then we have OT0(T ) ∼= OT0(C0 + µ∗p′0). Since

dimH0(T0, OT0(C0 + µ∗p′0)) = dimH0(C, (OC ⊕ L) ⊗OC(p0)) = 2,

and since (C0+µ∗p′0)2 = 2, the complete linear system |C0+µ∗p′0| has one or two isolated
base points. If we let p′′0 ∈ C be a point with p′′0 ∼ p′0 + δ0, then we have

H0(T0, OT0(C0 + µ∗(p′0 − p′′0))) ∼= H0(C, (OC ⊕ L) ⊗OC(p′0 − p′′0))
∼= H0(C, OC(p′0 − p′′0)) ⊕H0(C, L⊗OC(p′0 − p′′0)),

and this cohomology group is one-dimensional since L �∼= OC . Hence there exists a section
C ′

0 ⊂ T0 of µ with

C ′
0 ∼ C0 + µ∗(p′0 − p′′0).

Since δ0 �= 0, we have p′0 �= p′′0 and C0 �= C ′
0. Hence, C0 + µ∗p′0 and C ′

0 + µ∗p′′0 are
mutually distinct members of |C0 + µ∗p′0|. Since C0C

′
0 = 0, the intersection points of

these two divisor are two distinct points C0 ∩ µ∗p′′0 and C0 ∩ µ∗p′0, which are the base
points of |C0 + µ∗p′0|, a contradiction to Lemma 4.26. Therefore we have T0

∼= P(F2).
We only have to show that δ = 0 in the notation of (2). Asumme δ �= 0. There exists

a point p1 ∈ C with

T|T0
∼ (T0 + F0)|T0

∼ C0 + µ∗(δ + p0) ∼ C0 + µ∗p1.

We can prove that the complete linar system of T|T0
on T0 has one base point on µ−1(p1)

and no other base points in the same way as in the proof of Lemma 3.5, a contradiction
to the fact that the base point of |T | is in the fiber of π over p0 since we have p0 �= p1.
Hence we have δ = 0 and NT0/W

∼= OT0(C0). q.e.d.

In the notation of the proof of Lemma 4.27, since T|T0
∼ C0 + Γ0, we have Bs |T | =

{q0}, where q0 := C0 ∩ Γ0 by Lemma 3.5.

Lemma 4.28 Bs |4T − 3F0| = {q0} holds.
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To prove this lemma, we need the following lemma:

Lemma 4.29 The restriction mapping

H0(W, OW (4T0 + F0)) −→ H0(T0, OT0(4C0 + Γ0))

is surjective.

Proof We only have to prove H1(W, OW (3T0 + F0)) = 0 in the view of the
cohomology long exact sequence induced from the exact sequence of sheaves

0 → OW (3T0 + F0) → OW (4T0 + F0) → OT0(4C0 + Γ0) → 0.

Since S3F3
∼= S3(S2F2) ∼= F3 ⊕ F7 (cf. [4, Theorem 9], [8, p.156]), we have

H1(W, OW (3T0 + F0)) ∼= H1(C, (S3F3) ⊗ L)
∼= H1(C, F3 ⊗ L) ⊕H1(C, F7 ⊗ L) = 0.

q.e.d.

Proof of Lemma 4.28 We can show that there is no base point of |4T − 3F0| on
any fiber except F0 in the same way as in the proof of Lemma 4.26. Furthermore, the
base points of |4T − 3F0| exist only on the line T0 ∩F0

∼= P1, since 3T0 +T ∈ |4T − 3F0|.
Since 4T − 3F0 ∼ 4T0 + F0, we have OW (4T − 3F0) ⊗OW

OT0
∼= OT0(4C0 + Γ0). On

the other hand, since the restriction mapping

H0(W, OW (4T − 3F0)) −→ H0(T0, OT0(4C0 + Γ0))

is surjective by Lemma 4.29, q0 is the only base point of |4T −3F0| by Lemma 3.5. q.e.d.

The restriction of a general member S of |4T − 3F0| to T0 is nonsingular by Lemmas
3.5 and 4.29. Hence S is nonsingular. q.e.d.

4.3.4 The proof when degE = 2 holds

We fix an isogeny ϕ : C̃ → C of degree 3 as in §4.3.1. We let Li (i = 0, 1, 2), Ẽ, π̃ :
W̃ → C̃, T̃ , Φ : W̃ →W, D ∈ Div(C) and D̃ ∈ Div(C̃) be as in §4.3.1.

Denote U := { Φ∗S ∈ |4T̃ − π̃∗D̃| | S ∈ |4T − π∗D| }.
G := kerϕ = {0, σ, 2σ} acts on H0(W̃ , OW̃ (4T̃ )⊗ π̃∗ det Ẽ∨) by {id, T ∗

σ , T
∗
2σ}. Let

H0(W̃ , OW̃ (4T̃ )⊗ π̃∗ det Ẽ∨)G be the subspace which consists of all the members which
are invariant under this action.

Lemma 4.30 Let (Ψ) be the divisor defined by Ψ ∈ H0(W̃ , OW̃ (4T̃ )⊗π̃∗ det Ẽ∨). Then
we have

U = { (Ψ) | Ψ ∈ H0(W̃ , OW̃ (4T̃ ) ⊗ π̃∗ det Ẽ∨)G }.
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Proof Since we have Φ∗OW̃
∼= π∗ϕ∗OC̃ by the base change theorem (cf., e.g.,

Mumford [16]), if we denote L := OW (4T ) ⊗ π∗ detE∨, then we obtain isomorphisms

H0(W̃ , OW̃ (4T̃ ) ⊗ π̃∗ det Ẽ∨) = H0(W̃ , Φ∗L) ∼= H0(W, L ⊗ Φ∗OW̃ )
∼= H0(W, L⊗ π∗ϕ∗OC̃) ∼= H0(W, L ⊗ π∗(OC ⊕M⊕M⊗2))
∼= H0(W, L) ⊕H0(W, L ⊗ π∗M) ⊕H0(W, L ⊗ π∗M⊗2).

All the elements of the subspaces corresponding to H0(W, L), H0(W, L ⊗ π∗M) and
H0(W, L⊗ π∗M⊗2) are G-semi-invariant, and hence these subspaces correspond to the
eigenspaces of the isomorphism T ∗

σ on H0(W̃ , Φ∗L). The eigenspace H0(W̃ , Φ∗L)G for
the eigenvalue 1 corresponds to H0(W, L), and is the image of the injection H0(W, L) ↪→
H0(W̃ , Φ∗L). q.e.d.

We investigate the base locus BsU of U . To do so, we describe the action of G on
H0(W̃ , OW̃ (4T̃ ) ⊗ π̃∗ det Ẽ∨).

We choose and fix 0 �= Xi ∈ H0(W̃ ,OW̃ (T̃ ) ⊗ π̃∗L−1
i ) = H0(C̃, Ẽ ⊗ L−1

i ) ∼=
H0(C̃, L0 ⊗ L−1

i ) ⊕ H0(C̃, L1 ⊗ L−1
i ) ⊕ H0(C̃, L2 ⊗ L−1

i ) ∼= C (i = 0, 1, 2) such
that X1 = T ∗

σX0 and X2 = T ∗
2σX0 hold. Then any Ψ ∈ H0(W̃ , OW̃ (4T̃ ) ⊗ π̃∗ det Ẽ∨)

can be written as

Ψ =
∑

α, β, γ≥0
α+β+γ=4

ψαβγX
α
0 X

β
1X

γ
2 , ψαβγ ∈ H0(C̃, L⊗(α−1)

0 ⊗ L
⊗(β−1)
1 ⊗ L

⊗(γ−1)
2 ).

Since we have
T ∗

σ Ψ =
∑

α, β, γ≥0
α+β+γ=4

(T ∗
σψαβγ)Xα

1 X
β
2X

γ
0 ,

we get Ψ ∈ H0(W̃ , (4T̃ ) ⊗ π̃∗ det Ẽ∨)G if and only if T ∗
σψαβγ = ψγαβ (α, β, γ ≥

0, α+ β + γ = 4).
Let Λ : C̃ → Pic0(C̃) be defined by Λ(y) := T ∗

yL0 ⊗ L−1
0 for y ∈ C where Ty is the

translation by y on C̃. Then it is a group homomorphism by the theorem of square [16].
Since we have L1 = �L0 ⊗ Λ(σ), L2 = L0 ⊗ Λ(2σ) and Λ(3σ) = Λ(0) = OC̃ , we have
isomorphisms

L⊗3
0 ⊗ L−1

1 ⊗ L−1
2

∼= L0
∼= L⊗2

1 ⊗ L−1
2

∼= L−1
1 ⊗ L⊗2

2
∼= L−1

0 ⊗ L1 ⊗ L2

L−1
0 ⊗ L⊗3

1 ⊗ L−1
2

∼= L1
∼= L−1

0 ⊗ L⊗2
2

∼= L⊗2
0 ⊗ L−1

2
∼= L0 ⊗ L−1

1 ⊗ L2

L−1
0 ⊗ L−1

1 ⊗ L⊗3
2

∼= L2
∼= L⊗2

0 ⊗ L−1
1

∼= L−1
0 ⊗ L⊗2

1
∼= L0 ⊗ L1 ⊗ L−1

2 .

Hence we have
ψ400, ψ211, ψ130, ψ103, ψ022 ∈ H0(C̃, L0)
ψ040, ψ121, ψ013, ψ310, ψ202 ∈ H0(C̃, L1)
ψ004, ψ112, ψ301, ψ031, ψ220 ∈ H0(C̃, L2).

Since we assume d = 2, we have dimH0(C̃, Li) = 2 (i = 0, 1, 2) by the Riemann-Roch
theorem, the Serre duality and OC̃(KC̃) ∼= OC̃ .
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Let {s1, s2} ⊂ H0(C̃, L0) be a basis as a C-vector space, and denote tj := T ∗
σsj ∈

H0(C̃, L1), uj := T ∗
2σsj ∈ H0(C̃, L2) (j = 1, 2). Then we can choose a basis of

H0(W̃ , OW̃ (4T̃ ) ⊗ π̃∗ det Ẽ)G consisting of the following ten elements

Ψ1j := sjX
4
0 + tjX

4
1 + ujX

4
2 ,

Ψ2j := sjX
2
0X1X2 + tjX0X

2
1X2 + ujX0X1X

2
2 ,

Ψ3j := sjX0X
3
1 + tjX1X

3
2 + ujX

3
0X2,

Ψ4j := sjX0X
3
2 + tjX

3
0X1 + ujX

3
1X2,

Ψ5j := sjX
2
1X

2
2 + tjX

1
0X

2
2 + ujX

2
0X

2
1

for j = 1, 2.

Lemma 4.31 We can choose the basis {s1, s2} of H0(C̃, L0) so that sj(p)tj(p)uj(p) �=
0 holds for any p ∈ C̃ and for at least one of j = 1, 2. Furthermore, we have
sj(p)sj(p′)sj(p′′) �= 0, where p′ := Tσ(p) and p′′ := T2σ(p).

Proof To avoid confusion in this proof, we denote by (q) the divisor on C̃ determined
by q ∈ C̃. Let (q′1) + (q′2) be the divisor defined by a global section s ∈ H0(C̃, L0), and
p1 ∈ C̃ a point satisfying 2p1 = q′1 + q′2 with respect to the group addition. Then we
have L0

∼= OC̃(2(p1)) by Abel’s theorem. Since we assume degL0 = 2, there exists a
point p2 ∈ C̃ \ {p1} with L0

∼= OC̃(2(p1)) ∼= OC̃(2(p2)). If we denote p′i := T−σ(pi)
and p′′i := T−2σ(pi) (i = 1, 2), we have {p1, p

′
1, p

′′
1} ∩ {p2, p

′
2, p

′′
2} = ∅. Indeed, since

p′1 = p1 − σ holds (where − is the group subtraction on C̃), if p′1 = p2 holds, then we
obtain 2p2 = 2p1 − 2σ by doubling both sides of the equality. On the other hand, since
2p1 = 2p2 holds by Abel’s theorem, we obtain 2σ = 0 and this contradicts the definition
of σ. We can obtain the same results in the other cases.

Let s1, s2 ∈ H0(C̃, L0) be the global sections defining the divisors 2(p1), 2(p2)
respectively, and denote tj := T ∗

σsj , and uj := T ∗
2σsj (j = 1, 2). Then since we have

supp(sj) = {pj}, supp(tj) = {p′j} and supp(uj) = {p′′j } (j = 1, 2), if we choose {s1, s2}
as a basis of H0(C̃, L0), then one of s1 and s2 satisfies the condition of the lemma for
any point except p1, p2. Moreover, s2 satisfies the condition of the lemma for p1 while
s1 satisfies the condition of the lemma for p2. q.e.d.

We choose a basis {s1, s2} ⊂ H0(C̃, L0) satisfying the condition of Lemme 4.31,
fix an arbitrary point p ∈ C̃, and denote p′ := Tσ(p) and T2σ(p). We assume that
j ∈ {1, 2} satisfies sj(p)sj(p′)sj(p′′) �= 0. Let us restrict Ψij (i = 1, · · · , 5, j = 1, 2)
to a fiber of π̃ over p, and investigate whether they have common solutions on the
fiber. Note that Ψ2j can be decomposed into the product of four linear forms as Ψ2j =
X0X1X2(sjX0 + tjX1 + ujX2).We consider the condition so that each of these linear
forms and other Ψij have common solutions.

Lemma 4.32 If we fix j ∈ {1, 2} satisfying sj(p)sj(p′)sj(p′′) �= 0, then Xi = 0, Ψ1j = 0
and Ψ3j = 0 do not have common solutions for any i = 0, 1, 2.
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Proof If we substitute X0 = 0 into Ψ1j = 0, we have tjX4
1 + ujX

4
2 = 0. Therefore,

if we let t1/4 and u1/4 be one of the fourth roots of tj(p) and uj(p), respectively, and ζ8

a primitive eighth root of 1, then (p, (0 : u1/4 : ζk
8 t

1/4) (k = 1, 3, 5, 7) is a common
solution of X0 = 0 and Ψ1j = 0. On the other hand, if we substitute X0 = 0 into Ψ3j = 0,
we obtain tjX1X

3
2 = 0, and since tj(p) �= 0 holds, (p, (0 : 1 : 0)) and (p, (0 : 0 : 1))

are the common solutions of X0 = 0 and Ψ3j = 0. Since we have tu �= 0, we see that
X0 = 0, Ψ1j = 0 and Ψ3j = 0 have no common solution. We can obtain the same results
for X1 = 0 and X2 = 0. q.e.d.

In view of Lemma 4.32, we consider only the solutions satisfying X0X1X2 �= 0 in the
rest of our argument. Denote Ψ0j := sjX0tjX1ujX2.

Lemma 4.33 If we fix j ∈ {1, 2} with sj(p)sj(p′)sj(p′′) �= 0, then (p, (1 : a : b)) is a
common solution of Ψij = 0 (i = 0, 1, 3, 4, 5) if and only if a, b are cube roots of 1,
and sj(p) + atj(p) + buj(p) = 0.

Proof Since we have Ψ1j + Ψ3j + Ψ4j = Ψ0j(X3
0 +X3

1 +X3
2 ), we may exclude Ψ1j

from our consideration. Since we have

X5
0Ψ0j −X2

0 (Ψ3j + Ψ4j) +X1X2Ψ5j = sj(X3
0 −X3

1 )(X3
0 −X3

1 ),

if there exist common solutions, one of X3
1 = X3

0 and X3
2 = X3

0 must hold. If X3
1 = X3

0

holds, however, since we have X3
0Ψ0j − Ψ4j = sjX0(X3

0 − X3
2 ) and since we assume

sj(p) �= 0 and X0 �= 0, we obtain X3
2 = X3

0 . Similarly, if we assume X3
2 = X3

0 , we have
X3

0Ψ0j − Ψ3j = sjX0(X3
0 −X3

1 ) and we obtain X3
1 = X3

0 . Hence if there exist common
solutions, they must satisfy X3

0 = X3
1 = X3

2 . If we denote by ω a primitive cube root of
1, then the common solutions satisfying this condition are

(p, (1 : 1 : 1)) (p, (1 : 1 : ω)) (p, (1 : 1 : ω2))
(p, (1 : ω : 1)) (p, (1 : ω : ω)) (p, (1 : ω : ω2))
(p, (1 : ω2 : 1)) (p, (1 : ω2 : ω)) (p, (1 : ω2 : ω2)).

If (p, (1 : 1 : 1)) is a common solution, we obtain sj(p)+tj(p)+uj(p) = 0 by substituting
(p, (1 : 1 : 1)) into Ψij = 0 (i = 0, 1, 3, 4, 5). We can obtain the same result in the
other cases. q.e.d.

Proposition 4.34 U has no base point. Hence a general member of U is irreducible and
nonsingular by Bertini’s theorem.

Proof Assume that (p, (1 : a : b)) is a base point of U . If g : C̃ → P1 is
the holomorphic mapping defined by the complete linear system of L0, then we have
g∗OP1(1) ∼= L0. Denote p′ := Tσ(p) and p′′ := T2σ(p).

First assume that g(p) = g(p′) holds. Since (p, (1 : a : b)) is a base point, s(p) +
at(p) + bu(p) = 0 holds for any s ∈ H0(C̃, L0) by Lemma 4.33, where t := T ∗

σs and
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u := T ∗
2σs. Since we have L0

∼= OC̃(−p−p′), if we let s′ ∈ H0(C̃, L0) be a global section
defining the divisor p + p′, then s′(p) = 0, s′(p′) = 0 and s′(p′′) �= 0 hold, and hence
s′(p) + as′(p′) + bs′(p′′) �= 0. This contradicts the assumption. We can obtain the same
results when g(p′) = g(p′′) or g(p′′) = g(p) holds.

Next, we assume that g(p), g(p′) and g(p′′) are pairwise different. We may assume
that the homogeneous coordinates of these points are (1 : 0), (1 : 1), (0 : 1), respectively.
In terms of the homogeneous coordinate (z0 : z1) with z0, z1 ∈ H0(P1, OP1(1)), a global
section ξ ∈ H0(P1, OP1(1)) can be written as ξ = Az0 +Bz1 for some A, B ∈ C. Since
we have ξ(1 : 0) = A, ξ(1 : 1) = A + B and ξ(0 : 1) = B, if we choose A, B ∈ C with
(a+ 1)A+ (b+ 1)B �= 0 and if we let s ∈ H0(C̃, L0) be the image of ξ under the natural
isomorphism H0(P1, OP1(1)) ∼→ H0(C̃, L0), then s satisfies s(p) + as(p′) + bx(p′′) �= 0.
This contradicts the assumption. q.e.d.

Let S̃ ∈ U be a general member. We may assume that S̃ is irreducible and non-
singular. S := Φ(S̃) is contained in the complete linear system |4T − π∗D| on W , and
Φ|S̃ : S̃ → S is the quotient with respect to the restriction of the action of G on W̃ . On
the other hand, this action is compatible with the action of G on C̃, and hence has no
fixed point. Therefore S is irreducible and nonsingular as well. q.e.d.

Remark Instead of our argument in §4.3.1, we can use the above argument also in
the case d ≥ 4 and d �≡ 0 (mod 3).

4.3.5 The canonical mapping

In this section, we study the canonical mappings of those surfaces whose existences were
shown in §§4.3.1–4.3.4.

Let E be an indecomposable locally free sheaf of rank 3, and degree d over an elliptic
curve C, i.e., E ∈ E(3, d). If d = 1, we have pg(S) = 1 and the canonical mapping Φ|KS |
is trivial. Moreover, we showed the non-existence in the case d < 0 in §§4.3.1–4.3.2.
Hence we may assume d ≥ 2.

Since we have Φ|T ||S′ ◦ ψ = Φ|KS |, we investigate Φ|T |.

Lemma 4.35 Let π : W := P(E) → C be the P2-bundle associated to E ∈ EC(3, d),
and T a tautological divisor with π∗OW (T ) ∼= E. If we assume d ≥ 4, then we have
Bs |T | = ∅.

Proof Let F be any fiber of π, and denote q := π(F ). Since we have
dimH1(W, OW (T − F )) = dimH1(C, E ⊗OC(−q)) = 0, the restriction mapping

H0(W, OW (T )) → H0(F, OF (T )) ∼= H0(P2, OP2(1))

is surjective. Since the complete linear system of OP2(1) has no base point, |T | has no
base point on F . Since F is any fiber, we are done. q.e.d.
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Corollary 4.36 Let π : W → C be the P2-bundle associated to a locally free sheaf
E ∈ EC(3, 4), and T a tautological divisor of W satisfying π∗OW (T ) ∼= E. Then we
have deg Φ|T | = 4.

Proof |T | has no base point by Lemma 4.35. Since T 3 = 4 > 0, the image of W
under Φ|T | is 3-dimensional, and hence Φ|T | gives a covering of W onto P3 of degree 4.
q.e.d.

Corollary 4.37 In the notation of Corollary 4.36, any irreducible and nonsingular
members of |4T − π∗D| are canonical surfaces.

Proof Let S ∈ |4T − π∗D| be a general nonsingular member. Since Bs |T | = ∅ by
Lemma 4.35, Φ|KS | is a morphism. Since deg Φ|T | = 4 by Corollary 4.36, the degree of
Φ|KS | is 1, 2, 3 or 4.

Since K2
S = T 2S = 12 holds, if deg Φ|KS | = 4, then S′′ := Φ|KS |(S) ⊂ P3 is a cubic

surface. Hence, if we let H ⊂ P3 be a hyperplane, then we have S′′ ∼ 3H. Since
Φ∗
|T |H ∼ T holds, we have Φ∗

|T |S
′′ ∼ T , which is absurd since S ∼ 4T − π∗D.

If deg Φ|KS | = 3, then S′′ is a quartic surface. Hence S′′ ∼ 4H holds, and we have
Φ∗
|T |S

′′ ∼ 4T . Therefore, there exist fibers F1, F2, F3, F4 of π satisfying Φ∗
|T |S

′′ =
S + F1 + F2 + F3 + F4. Since we have deg Φ|T | = 4 and since we assume deg Φ|KS | =
deg Φ|KS ||S = 3, we see that Φ|T | is a birational morphism of F1 ∪ F2 ∪ F3 ∪ F4 onto its
image. This means that the image is not irreducible, and we obtain a contradiction.

Finally, we show that the case deg Φ|KS | = 2 does not occur. Let p, p′ ∈ C be two
distinct general points. Furthermore, denote Fp := π−1(p) and Fp′ := π−1(p′), and let
Tp and Tp′ be the relative hyperplanes of W satisfying T ∼ Tp + Fp ∼ Tp′ + Fp′ . Since
p, p′ ∈ C and S ∈ |4T − π∗D| are generic, S ∩ Tp ∩ Fp′ , S ∩ Tp′ ∩ Fp and S ∩ Tp ∩ Tp′

all consist of four distinct points set-theoretically. Since any fiber of π is mapped onto
its image in P3 by Φ|T |, if deg Φ|KS | = 2, then some point of S ∩ Tp ∩ Fp′ and some
point of S ∩ Tp′ ∩ Fp are mapped to the same point by Φ|T |. Hence if we fix any point
q ∈ S ∩ Tp ∩ Fp′ and any point q′ ∈ S ∩ Tp′ ∩ Fp, we only have to find a member of |T |
containing q but not q′.

It is well-known that W is isomorphic to the symmetric product of C of degree
3. (cf., e.g., [6, pp.310–311] Let ζ : C × C × C → W be the quotient morphism.
Since the self-intersection number of the divisor C × C × {p} + C × {p} × C + {p} ×
C × C of C × C × C is 6 for any point p ∈ C, and since deg ζ = 6, the image of
(C × C × {p})∪ (C × {p} × C)∪ ({p} × C × C) in W is a relative hyperplane with self-
intersection number 1. Therefore, for a general point of W , there exist three distinct
relative hyperplanes with self-intersection number one containing the point.

Since p, p′ ∈ C and S ∈ |4T − π∗D| are general, there exist two distinct reltive
hyperplanes T ′

p and T ′′
p diffrent from Tp and containing q. If F ′

p and F ′′
p are fibers of π
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satisfying T ∼ T ′
p + F ′

p ∼ T ′′
p + F ′′

p , respectively, then one of T ′
p + F ′

p and T ′′
p + F ′′

p does
not contain q′.

Hence Φ|KS | is a birational morphism onto its image. q.e.d.

Corollary 4.38 Let π : W → C be the P2-bundle associated to E ∈ EC(3, d), and T a
tautological divisor with π∗OW (T ) ∼= E. If we assume d ≥ 5, then Φ|T | is birational onto
its image.

Proof First, we consider the case d ≥ 7. It suffices to show the existence of a
member of |T | which contains p and does not contain q for any pair of distinct points
p, q ∈ W . If p and q are contained in the same fiber of π, we easily see that such a
member exists by the proof of Lemma 4.35. Suppose p and q are contained in different
fibers. |T − F | has no base point in the fiber F containing p by Lemma 4.35. If we let
T0 ∈ |T − F | be a member which does not contain q, then T0 + F ∈ |T | contains p and
does not contain q. Hence Φ|T | is injective.

When d = 6, we can show that Φ|T | is birational onto the image using the same
argument as above for points p, q ∈W contained in general fibers by Lemma 4.28

If d = 5, then since 5 = T 3 = deg Φ|T | deg Φ|T |(W ) and deg Φ|T |(W ) ≥ 2, we see that
Φ|T | is birational onto the image. q.e.d.

Corollary 4.39 Let π : W := P(E) → C be the P2-bundle associated to E ∈ EC(3, d),
T a tautological divisor with π∗OW (T ) ∼= E and D ∈ Div(C) a divisor with detE ∼=
OC(D). If d ≥ 5 holds, then the canonical mapping of the minimal resolution of a
member of |4T − π∗D|, which is irreducible and has at most rational double points as
singularities, is birational onto the image.

Next, we investigate the canonical mapping in the case pg(S) = d = 3. We use the
notation of §4.3.3.

Recall that Bs |C0 + Γ0| = Bs |4C0 + Γ0| = {q0}, where q0 := C0 ∩ Γ0, and that all
the nonsingular members of |C0 + Γ0| have the same tangent.

Proposition 4.40 Let π : W → C be a P2-bundle associated to a locally free sheaf
E ∈ EC(3, 3) over an elliptic curve C, T the tautological divisor with π∗OW (T ) ∼= E, L
the invertible sheaf with E ∼= L⊗ F3 and p0 ∈ C the point with L ∼= OC(p0), and denote
F0 := π−1(p0). Then the canonical mapping of a nonsingular member S ∈ |4T − 3F0|
has degree 8.

Proof Since Bs |T | = Bs |4T − 3F0| = {q0}, the canonical system |KS | of a general
nonsingular member S ∈ |4T −3F0| has one base point. If ν : W̄ →W is the blowing-up
at q0, the complete linear system of the proper transform T̄ of T by ν has one base
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point by Lemma 3.5. On the other hand, the proper transform S̄ of S by ν does not go
through the base point of |T̄ | by Lemma 3.5. Hence, if we denote E := ν−1(q0), we have

deg Φ|KS | = deg Φ|KS̄ | = T̄ 2(4T̄ + 3E − 3F0)

= 4T̄ 3 + 3T̄ 2E − 3T̄ 2F0 = 8 + 3 − 3 = 8.

q.e.d.
Finally, we study the canonical mapping in the case pg(S) = 2.
In §4.2.2, we proved the existence of a surface S with K2

S = 3pg(S), q(S) = 1 and
pg(S) = 2, but did not study the canonical mapping Φ|KS | in the case E ∼= E0⊕L, (E0 ∈
EC(2, 1), L ∈ EC(1, 1)). On the other hand, we showed the existence of a surface S
with the same invariants in the case E ∈ EC(3, 2). We obtain the following result in
these two cases:

Proposition 4.41 Let E be one of the following:

(1) E := E0 ⊕ L with E0 ∈ EC(2, 1), L ∈ EC(1, 1).

(2) E ∈ EC(3, 2).

Let π : W := P(E) → C be the P2-bundle associated to E, T a tautological divisor
with π∗OW (T ) ∼= E and D ∈ Div(C) a divisor with detE ∼= OC(D). The canonical
mapping of the minimal resolution of a member of |4T − π∗D|, which is irreducible and
has at most rational double points as singularities, gives a linear pencil whose general
members are irreducible nonsingular curves of genus 7.

Proof Let S ∈ |4T − π∗D| be a general member. We may assume that S is
irreducible and has at most rational double points as singularities. Since H0(S, ωS) ∼=
H0(W, OW (T )) and dimH0(W, OW (T )) = 2, the canonical mapping of S clearly gives
a linear pencil. Therefore it suffices to show that the intersection T ∩ S is a nonsingular
curve of genus 7 for a general member T of |T |.

Since ωW
∼= OW (−3T ) ⊗ detE, we have ωT

∼= (OW (−2T ) ⊗ detE)|T . Since we may
assume that T is irreducible and nonsingular, we have

ωZ
∼= (OW (S) ⊗OW (−2T ) ⊗ detE)|Z ∼= (OW (2T ))|Z ,

where Z := T ∩ S. Hence we have

g(Z) =
1
2
T (2T )(4T − π∗D) + 1 = 4T 3 − T 2π∗D + 1 = 7.

q.e.d.
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