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Abstract

In this thesis, we prove a classification of isometric pluriharmonic

immersions of a Kähler manifold into a semi-Euclidean space, which es-

tablishes a generalization of Calabi-Lawson’s theory concerning minimal

surfaces in Euclidean spaces. Then we study these immersions for com-

plete Kähler manifolds with low codimensions, and prove, in particular,

a cylinder theorem and a Bernstein property. Moreover, we construct

new examples of isometric pluriharmonic immersions.
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1. Introduction

It has been a fundamental problem in the theory of minimal surfaces

to determine the moduli spaces of those surfaces isometric to a given

one. An answer to this problem was given in 1968 by E. Calabi [6] (See

also H. B. Lawson [22]), who proved that the moduli space of isometric

minimal immersions of a simply connected Riemann surface into a Eu-

clidean space can be explicitly constructed as a set of certain complex

matrices.

To be more precise, let M be a simply connected Riemann surface

with a local complex coordinate z, and f : M → R3 an isometric mini-

mal immersion, that is, an isometric immersion of vanishing mean curva-

ture of M into Euclidean 3-space R3. Since f gives rise to an isometric

harmonic immersion, f is represented as f =
√

2Re Φ, where Φ is a

holomorphic map from M into complex Euclidean 3-space C3 that sat-

isfies the isotropic condition : 〈∂Φ/∂z, ∂Φ/∂z〉 = 0. We remark that

Φ : M → C3 is an isometric immersion as well, and can be obtained by

the well-known Weierstrass representation formula (See H. B. Lawson

[22] or M. Spivak [26]). It is then proved by E. Calabi [5] that such iso-

metric holomorphic immersions have rigidity, which means that for any

two isometric holomorphic immersions Φ and Φ0, there exists a unitary

transformation U of C3 such that Φ = UΦ0. Hence, if we fix an isomet-

ric holomorphic immersion Φ0, then each isometric minimal immersion

f =
√

2 ReΦ above is described in terms of the unitary transformation

U . As a consequence, the conditions for two isometric minimal immer-

sions f1 =
√

2 ReU1Φ0 and f2 =
√

2 Re U2Φ0 to be congruent, that is,
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they differ only by an isometry of R3, are also determined in terms of Uj .

In summary, through this procedure we can obtain a parametrization of

the congruence classes of minimal surfaces in R3 which are isometric to

a given one, by a set of certain complex matrices.

In connection with the theory of relativity in physics, it has been an

important subject to study spacelike surfaces of vanishing mean curva-

ture in Minkowski 3-space R3
1. A surface in Minkowski 3-space R3

1 is

said to be spacelike if the induced metric on it is positive definite. In

this thesis, spacelike surfaces of vanishing mean curvature are referred

to as spacelike minimal surfaces in R3
1, although they are usually called

maximal surfaces in the literature. We note that each spacelike minimal

surface in R3
1 is regarded as an isometric minimal immersion of a Rie-

mann surface with positive definite Kähler metric into R3
1. Moreover, it

should be remarked that such a Riemann surface has non-negative curva-

ture, which contrasts with the fact that a Riemann surface isometrically

and minimally immersed in R3 has non-positive curvature.

As in the case of minimal surfaces in R3, an isometric minimal immer-

sion of a Riemann surface into R3
1 gives rise to a harmonic immersion.

Moreover, a Weierstrass-type representation formula has been recently

proved by O. Kobayashi [21] for such immersions. Based on these facts,

it seems very plausible that fundamental methods for studying minimal

surfaces in R3 can also work effectively for spacelike minimal surfaces in

R3
1.

In this regard, we also recall that complex analysis has been a most es-

sential ingredient in the research on minimal surfaces in Euclidean space
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R3, as well as in Minkowski space R3
1. Therefore, when generalizing the

theory of these surfaces to higher dimensions, it is natural to assume

that a source domain has a Kähler structure. In the present thesis, we

will in fact prove that the theory can be generalized to isometric pluri-

harmonic immersions of higher dimensional Kähler manifolds into real

semi-Euclidean spaces. Here, following M. Dajczer and D. Gromoll [10],

we say that an isometric immersion of a Kähler manifold is plurihar-

monic if the (1, 1)-component of the complexified second fundamental

form of the immersion vanishes identically (Definition 2.3.1). It should

be remarked that pluriharmonicity coincides with minimality of immer-

sions provided the source Kähler manifold is complex one-dimensional.

Moreover, it is immediate from the definition that any isometric pluri-

harmonic immersion is minimal. Conversely, we can prove that an iso-

metric minimal immersion of a complex m-dimensional Kähler manifold

into semi-Euclidean space RN+P
N is pluriharmonic whenever N = 0 or

P = 2m (Proposition 2.3.4).

It has been shown by M. Dajczer and D. Gromoll, and the author that

the geometry of isometric pluriharmonic immersions of Kähler manifolds

into Euclidean spaces has many properties in common with that of min-

imal surfaces.

For instance, M. Dajczer and D. Gromoll [10] proved that for an

isometric pluriharmonic immersion f : M → RP of a simply connected

Kähler manifold M into Euclidean space RP , there exists an isometric

holomorphic immersion Φ : M → CP such that f =
√

2 ReΦ. This result

is further generalized by the author [19] to the case of semi-Euclidean
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ambient spaces (Proposition 2.3.7).

On the other hand, the author [18, 19] generalizes Calabi’s classifica-

tion theorem mentioned above. Namely, he has constructed a

parametrization of the moduli space of full isometric pluriharmonic im-

mersions of a simply connected Kähler manifold into a semi-Euclidean

space, which is described in terms of certain complex matrices deter-

mined by a full isometric holomorphic immersion of the Kähler manifold

into a complex semi-Euclidean space. More precisely, we have

Theorem 3.1.5. Let M be a simply connected Kähler manifold and

Φ : M → Cn+p
n a full isometric holomorphic immersion of M into Cn+p

n ,

the complex semi-Euclidean space of dimension n+p with index n. Then

the set of congruence classes of full isometric pluriharmonic immersions

of M into RN+P
N , the real semi-Euclidean space of dimension N +P with

index N , has a bijective correspondence with the set of (n+p)× (n+p)-

complex matrices satisfying the following conditions (P1) – (P4):

t∂Φ
∂zα

P
∂Φ
∂zβ

= 0 (α, β = 1, . . . ,m),(P1)

tP = P,(P2)

∗x−(1np − tP1npP )x− ≤ 0(P3)

for x− = t(x1, . . . , xn, 0, . . . , 0
︸ ︷︷ ︸

p

),

∗x+(1np − tP1npP )x+ ≥ 0(P3)

for x+ = t(0, . . . , 0,
︸ ︷︷ ︸

n

xn+1, . . . , xn+p),

sign(1np − tP1npP ) = (N − n, P − p),(P4)

where (z1, . . . , zm) is a local complex coordinate of M , and (P4) means
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that the Hermitian matrix 1np − tP1npP has N −n negative eigenvalues

and P − p positive eigenvalues.

The global geometry of isometric pluriharmonic immersions has been

studied by K. Abe, M. Dajczer and L. Rodriguez, and others in the case

when real codimensions are one or two.

For instance, K. Abe [2] proved that an isometric pluriharmonic im-

mersion of a complete Kähler manifold into a Euclidean space with real

codimension one is a cylinder (Proposition 4.1.11). This asserts that the

study of isometric pluriharmonic immersions of a complete Kähler man-

ifold into a Euclidean space with real codimension one can be reduced

to that of minimal surfaces in R3.

On the other hand, when the ambient space is an indefinite Euclidean

space of real codimension one, S. -Y. Cheng and S. -T. Yau [8] proved

that an isometric minimal immersion of a d-dimensional complete Rie-

mannian manifold into Rd+1
1 is totally geodesic. It then follows from

these two results that, in the case of real codimension one, isomet-

ric pluriharmonic immersions of complete Kähler manifolds into semi-

Euclidean spaces are simple.

In their paper [14], M. Dajczer and L. Rodriguez classified isometric

pluriharmonic immersions with real codimension two of complete Kähler

manifolds into Euclidean spaces in terms of the index of relative nullity,

that is, the dimension of the kernel of the shape operator (Definition

4.1.1 and Proposition 4.1.14). However, it was left as an open prob-

lem to find nontrivial examples of these immersions, that is, whether

there exists a non-holomorphic pluriharmonic immersion of a complete
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Kähler manifold into a Euclidean space which is not a cylinder. The

first affirmative answer to this problem is given by the author [18] by

constructing explicitly such an immersion. As far as the author knows,

examples of such immersions had not been previously obtained even lo-

cally. Subsequently, M. Dajczer and D. Gromoll [12] have also obtained

many examples. In this thesis, we will also construct several examples

of pluriharmonic immersions into indefinite Euclidean spaces (See 3.2).

In the case that the ambient spaces are indefinite Euclidean spaces

with real codimensions greater than one, the following results are ob-

tained.

Generalizing the result due to S. -Y. Cheng and S. -T. Yau mentioned

above, T. Ishihara [20] proved that an isometric minimal immersion of

a d-dimensional complete Riemannian manifold into Rd+N
N is totally

geodesic (Proposition 4.2.1).

On the other hand, we prove that an isometric pluriharmonic immer-

sion of a Kähler manifold into an indefinite Euclidean space of index

one is totally geodesic if its tangent vectors are apart from the orthogo-

nal complement of some timelike vector, under the assumption that the

Kähler manifold is biholomorphic to Cm (Proposition 4.2.3).

We also prove the following cylinder theorem based on the result of

M. Dajczer and L. Rodriguez [14].

Theorem 4.1.9. Let M be a complete Kähler manifold of real dimen-

sion 2m and f : M → RN+P
N an isometric pluriharmonic immersion of

M into RN+P
N . If the index of relative nullity ν is not less than 2m− 2,

then f is (2m − 2)-cylindrical.
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This thesis is organized as follows: In Chapter 2, we first review

relevant basic properties of general isometric immersions, to fix our ter-

minology and notation. Then we study pluriharmonic immersions and

holomorphic immersions. We prove the existence of an isometric holo-

morphic immersion for a given pluriharmonic immersion, and the rigid-

ity of isometric holomorphic immersions. We also obtain a criterion to

count the substantial codimension of isometric holomorphic immersions.

In Chapter 3, we study isometric pluriharmonic immersions in a local

setting. In particular, we prove a classification theorem and illustrate

some examples of such immersions. Chapter 4 is devoted to the study

of these immersions in a global setting, assuming the completeness of

source Kähler manifolds. Particular studies are made for the cases when

these immersions reduce to being cylindrical or totally geodesic.
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2. Preliminaries

2.1. Semi-Euclidean spaces

Let RN+P
N denote a real vector space of dimension N + P endowed

with the standard metric

〈·, ·〉RN+P
N

:= − (dx1)2 − · · · − (dxN )2 + (dxN+1)2 + · · · + (dxN+P )2

of index N , and CN+P
N a complex vector space of dimension N + P

endowed with the standard metric

〈·, ·〉CN+P
N

:= − dz1dz1 − · · · − dzNdzN + dzN+1dzN+1 + · · · + dzN+P dzN+P

of index N , respectively. Let l, t and s be integers such that

0 ≤ l ≤ min(N,P ), 0 ≤ t ≤ N − l and 0 ≤ s ≤ P − l.

For each (l, t, s) we denote by H(l, t, s) an (l+t+s)-dimensional subspace

of RN+P
N consisting of the elements

(X1,... ,Xl,Xl+1,... ,Xl+t,0N−(l+t)︸ ︷︷ ︸
N

;X1,... ,Xl,Xl+t+1,... ,Xl+t+s,0P−(l+s)︸ ︷︷ ︸
P

),

where Xj ∈ R for 1 ≤ j ≤ l + t + s. Also, by HC(l, t, s) we denote an

(l + t + s)-dimensional subspace of CN+P
N consisting of the elements

(Z1,... ,Zl,Zl+1,... ,Zl+t,0N−(l+t)︸ ︷︷ ︸
N

;Z1,... ,Zl,Zl+t+1,... ,Zl+t+s,0P−(l+s)︸ ︷︷ ︸
P

)=:Z,
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where Zj ∈ C for 1 ≤ j ≤ l + t + s. For each element Z ∈ HC(l, t, s),

we set

Z0 := (Z1, . . . , Zl),

Z− := (Zl+1, . . . , Zl+t), Z+ := (Zl+t+1, . . . , Zl+t+s),

which are called the 0-component, the −-component and the

+-component of Z, respectively. We often write Z = (Z0, Z−, Z+) for

convenience.

Let M(N+P )×(N+P )(F) denote the set of (N +P )× (N +P )-matrices

with entries in F(= R or C). Let O(N,P ) and U(N,P ) be the groups

of isometries of RN+P
N and CN+P

N , respectively, that is,

O(N,P ) := {O ∈ M(N+P )×(N+P )(R); tO1NP O = 1NP },

U(N,P ) := {U ∈ M(N+P )×(N+P )(C); ∗U1NP U = 1NP },

where

1NP :=
[−1N

1P

]
∈ M(N+P )×(N+P )(R) and ∗U = tU.

Note that each linear subspace of RN+P
N can be written as O(H(l, t, s))

for some (l, t, s) and some O ∈ O(N,P ). As a result, when we discuss

O(N,P )-congruence classes of maps into RN+P
N , we only have to consider

H(l, t, s) as subspaces of RN+P
N . We remark that the induced metric

on H(0, t, s)(≡ Rt+s
t ) ⊂ RN+P

N is nondegenerate, while for l > 0 the

induced metric on H(l, t, s) ⊂ RN+P
N is degenerate.

We close this section by introducing some terminologies. A vector

v ∈ RN+P
N is called

spacelike if 〈v, v〉RN+P
N

> 0 or v = 0,

lightlike or null if 〈v, v〉RN+P
N

= 0 and v �= 0,

timelike if 〈v, v〉RN+P
N

< 0.
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For a subspace W of RN+P
N , we define

W⊥ := {v ∈ RN+P
N ; 〈v,w〉RN+P

N
= 0 for all w ∈ W}.

It is immediate that dimW + dimW⊥ = N + P , and (W⊥)⊥ = W .

Also, a subspace W of RN+P
N is nondegenerate, that is, 〈·, ·〉RN+P

N
|W is

nondegenerate, if and only if RN+P
N is the direct sum of W and W⊥.

13



2.2. Fundamental theory of isometric immersions

In this section, we fix our notations and review relevant basic prop-

erties of isometric immersions. Let M be a connected d-dimensional

Riemannian manifold with metric g, and f : M → RN+P
N an isometric

immersion. We remark that each vector f∗v is spacelike for v ∈ TxM ,

where f∗ denotes the differential of f .

Let ∇ : Γ(TM) → Γ(TM ⊗ T ∗M) denote the Levi-Civita connection

of M and D : Γ(f∗TRN+P
N ) → Γ(f∗TRN+P

N ⊗ T ∗M) the connection

induced by f from the Levi-Civita connection of RN+P
N .

Let α ∈ Γ(Nor f ⊗ T ∗M ⊗ T ∗M) be the second fundamental form of

f defined by

α(X,Y ) := DXf∗Y − f∗∇XY for X,Y ∈ Γ(TM),

where Nor f is the normal bundle of f . We denote by A ∈ Γ((Nor f)∗ ⊗
T ∗M ⊗ TM) the Weingarten operator of α, or the shape operator of f ,

which is defined by

g(AξX,Y ) = 〈α(X,Y ), ξ〉RN+P
N

for X,Y ∈ Γ(TM), ξ ∈ Γ(Nor f).

An isometric immersion f is called minimal if the mean curvature vector

H(x) :=
1
d

d∑
j=1

α(ej , ej)

vanishes identically, where {ej} is an orthonormal basis for TxM .

Let ∇⊥ : Γ(Nor f) → Γ(Nor f ⊗ T ∗M) be the normal connection of

f , which is defined by

∇⊥
Xξ := DXξ + f∗AξX for X ∈ Γ(TM), ξ ∈ Γ(Nor f).
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We define the curvature tensor of ∇ by

R∇(X,Y )Z := ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

and the curvature tensor R∇⊥
of ∇⊥ in a similar way.

The following three propositions are often called the fundamental the-

orems of submanifolds.

Proposition 2.2.1. Let f : M → RN+P
N be an isometric immersion of

a Riemannian manifold into a semi-Euclidean space. Then we have the

Gauss, Codazzi and Ricci equations:

g(R∇(X,Y )Z,W )

=〈α(X,W ), α(Y,Z)〉RN+P
N

− 〈α(X,Z), α(Y,W )〉RN+P
N ,

(∇⊥
XA)(Y, ξ) = (∇⊥

Y A)(X, ξ),

〈R∇⊥
(X,Y )ξ, η〉RN+P

N
= g([Aξ, Aη]X,Y ),

for X,Y,Z,W ∈ Γ(TM), ξ, η ∈ Γ(Nor f),

where by definition (∇⊥
XA)(Y, ξ) = ∇X(AξY ) − Aξ(∇XY ) − A∇⊥

XξY .

Concerning the converse to this proposition, we have the following

existence theorem.

Proposition 2.2.2. Let M be a simply connected d-dimensional Rie-

mannian manifold and π : E → M a vector bundle over M of rank

N + P − d with a metric 〈·, ·〉. Let ∇ : Γ(E) → Γ(E ⊗ T ∗M) be a

connection on E compatible with 〈·, ·〉. Let s be a symmetric section of
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E ⊗ T ∗M ⊗ T ∗M . Suppose that ∇ and s satisfy

g(R∇(X,Y )Z,W ) =〈s(X,W ), s(Y,Z)〉 − 〈s(X,Z), s(Y,W )〉,

(∇XB)(Y, ξ) =(∇Y B)(X, ξ),

〈R∇(X,Y )ξ, η〉 =g([Bξ, Bη]X,Y )

for X,Y,Z,W ∈ Γ(TM), ξ, η ∈ Γ(E),

where B ∈ Γ(E∗ ⊗ T ∗M ⊗ TM) is defined by g(BξX,Y ) = 〈s(X,Y ), ξ〉.
Then there exists an isometric immersion f : M → RN+P

N and a bundle

isomorphism φ : E → Nor f covering f such that

〈φ(ξ), φ(η)〉RN+P
N

= 〈ξ, η〉,

φ(s(X,Y )) = α(X,Y ),

φ∇Xξ = ∇⊥
Xφ(ξ),

where α and ∇⊥ are the second fundamental form and the normal con-

nection of f , respectively.

The uniqueness of isometric immersions is treated by the following

Proposition 2.2.3. Let f, f̃ : M → RN+P
N be isometric immersions

with second fundamental forms α, α̃ and normal connections ∇⊥, ∇̃⊥,

respectively. Suppose that there is a bundle isomorphism φ : Nor f →
Nor f̃ such that

〈φ(ξ), φ(η)〉RN+P
N

= 〈ξ, η〉RN+P
N ,

φ(α(X,Y )) = α̃(X,Y ),

φ∇⊥
Xξ = ∇̃⊥

Xφ(ξ),
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for X,Y ∈ Γ(TM), ξ, η ∈ Γ(Nor f).

Then there exists a Euclidean motion τ such that f̃ = τ◦f and τ∗|Nor f =

φ.

We now introduce two basic terminologies for the subsequent discus-

sion.

Definition 2.2.4. An isometric immersion f : M → RN+P
N is said to

be full in H(l, t, s) if the image f(M) of f is contained in H(l, t, s) and

if the coordinate functions f1, . . . , f l, f l+1, . . . , f l+t, f l+t+1, . . . , f l+t+s

of f are linearly independent over R.

Definition 2.2.5. An isometric immersion f : M → RN+P
N is said to be

m-cylindrical if there exist a (d − m)-dimensional Riemannian manifold

N and an isometric immersion f ′ : N → RN+P−m
N such that

M = N × Rm,
f = f ′ × idRm .

The following splitting theorem for isometric immersions of product

Riemannian manifolds into Euclidean spaces is due to J. D. Moore [23].

Proposition 2.2.6. Let f : M1×M2 → RP be an isometric immersion

of a product Riemannian manifold. Suppose that

α(X,Y ) = 0 for X ∈ Γ(TM1), Y ∈ Γ(TM2).

Then there exist vector subspaces Ej and isometric immersions fj :

Mj → Ej (j = 1, 2) such that

f = f1 × f2, E1 ⊕ E2 ⊂ RP .
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Proof. Take a point (m1,m2) ∈ M1×M2. We may assume, without loss

of generality, f(m1,m2) = 0 ∈ RP . We claim that the two subspaces

E1 := span{f∗X(x2) ; X(x2) ∈ T(m1,x2)(M1 × {x2}), x2 ∈ M2},

E2 := span{f∗Y (x1) ; Y (x1) ∈ T(x1,m2)({x1} × M2), x1 ∈ M1}

intersect orthogonally each other.

To see this, let σt be a curve on M2 such that

σ0 = m2, σ1 = x2, σt ⊂ M2 (0 ≤ t ≤ 1),

Y (m1) =
d

dt

∣∣∣∣
t=0

(m1 × σt).

Then, by our assumption, we have

D d
dt (m1×σt)

f∗X(σt)

=f∗∇ d
dt (m1×σt)

X(σt) + α

(
d

dt
(m1 × σt),X(σt)

)
=0 + 0 = 0,

which, together with 〈f∗X(m2), f∗Y (m1)〉RP = 0, implies that

〈f∗X(x2), f∗Y (m1)〉RP = 0 for x2 ∈ M2.

The same argument implies also that

〈f∗X(x2), f∗Y (x1)〉RP = 0 for x1 ∈ M1, x2 ∈ M2,

which means that E1 and E2 are orthogonal.

Now we construct isometric immersions fj : Mj → Ej (j = 1, 2). Let

E0 be a subspace complementary to E1 ⊕ E2 and let pj : RP → Ej

denote the orthogonal projections. We then define

f1(x1) := p1(f(x1,m2)),

18



and see that f1 is independent of the choice of m2, since

d

dt
(p1(f(x1, σt))) = p1(

d

dt
f(x1, σt)) = p1(f∗(0,

d

dt
σt)) = 0.

Similarly, f2(x2) := p2(f(m1, x2)) is independent of the choice of m1,

and f0 := p0 ◦ f is constant. Therefore, we have fj : Mj → Ej such that

f(x1, x2) = (constant, f1(x1), f2(x2)) ∈ E0 ⊕ E1 ⊕ E2. �

In a similar fashion, we also obtain the following cylinder theorem for

isometric immersions of the product of a Riemannian manifold and a

Euclidean space into semi-Euclidean spaces.

Proposition 2.2.7. Let f : N × Rm → RN+P
N be an isometric im-

mersion of the product of a Riemannian manifold and Rm into a semi-

Euclidean space. Suppose that

α(X,Y ) = 0 for X ∈ Γ(T (N × Rm)), Y ∈ Γ(TRm).

Then f is m-cylindrical.

Proof. As in Proposition 2.2.6, we put

E2 := span{f∗Y (x) ; Y (x) ∈ T(x,p)({x} × Rm), x ∈ N}.

We claim that E2 ≡ H(0, 0,m)(≡ Rm).

Let Y (x) ∈ T(x,p)({x}×Rm) (x ∈ N) and X = X1 +X2 ∈ T(x,p)(N ×
Rm) (X1 ∈ TxN , X2 ∈ TpRm). It then follows from the flatness of Rm

that

∇XY = ∇X1Y + ∇X2Y = 0 + 0 = 0,

which implies

DXf∗Y = f∗∇XY + α(X,Y ) = 0 + 0 = 0.
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Therefore, f∗Y (x) is independent of (x, p), and E2 is an m-dimensional

vector subspace.

Since E2 is a nondegenerate subspace, we can mimic the argument in

Proposition 2.2.6 to complete the proof. �

Now we deal with the problem of reducing the codimension of isomet-

ric immersions.

Definition 2.2.8. Let f : M → RN+P
N be an isometric immersion of

a Riemannian manifold into a semi-Euclidean space. The subspace of

f∗TRN+P
N (x) spanned by

f∗X1(x), DX2f∗X1(x), DXk
· · ·DX2f∗X1(x),

for X1, . . . ,Xk ∈ Γ(TM)

is called the k-th osculating space of f at x ∈ M , and is denoted by

Osckf(x).

We remark that, by definition, Osckf(x) is a subset of Osck+1f(x).

Definition 2.2.9. Let f : M → RN+P
N be an isometric immersion with

second fundamental form α. The subspace of Nor f(x) defined by

Nor1f(x) := span{α(X,Y ) ; X,Y ∈ TxM}

is called the first normal space of f at x ∈ M .

Note that the first normal space Nor1f(x) is the orthogonal comple-

ment of Osc1f(x) in Osc2f(x).

An isometric immersion f is called nicely curved if the dimension of

the osculating space Osckf(x) is constant for all x ∈ M and for each
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k. Under this assumption, we have a subbundle Osckf of f∗TRN+P
N

for each k. Furthermore, it can be verified that DXξ ∈ Osck+1f(x) for

ξ ∈ Γ(Osckf) and X ∈ TxM , and that if Osclf = Oscl+1f , then the

subbundle Osclf is parallel with respect to D and Osclf = Oscl+1f =

Oscl+2f = · · · ⊂ f∗TRN+P
N .

Proposition 2.2.10. Let f : M → RN+P
N be an isometric immersion

of a d-dimensional Riemannian manifold into a semi-Euclidean space,

and L a nondegenerate subbundle of Nor f of rank q. Suppose that

L is parallel with respect to ∇⊥ and Nor1f ⊂ L. Then the substantial

codimension of f is q, that is, there exists a (d+q)-dimensional subspace

H of RN+P
N such that f(M) ⊂ H.

In particular, if f is nicely curved and if Osclf is nondegenerate and

satisfies Osclf = Oscl+1f , then the substantial codimension of f coin-

cides with rank Osclf − d.

Proof. It suffices to prove the first assertion, since the second one follows

immediately from this. To prove the first assertion, we show that

f(M) ⊂ Tx0M ⊕ L(x0)

for some fixed point x0 ∈ M . Note that the subbundle L⊥ consisting

of the orthogonal complement L⊥(x) of L(x) in Nor f(x) is also parallel

with respect to ∇⊥. Let η ∈ L⊥(x0), and let γ be a curve on M through

x0. Since the parallel transport ηt of η along γ belongs to L⊥(γ(t)) and

L is nondegenerate, Aηt
= 0. Therefore,

Dγ̇ηt = − f∗Aηt
γ̇ + ∇⊥

γ̇ ηt

=0 + 0 = 0,
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which implies that ηt = η is a constant vector in RN+P
N . Since

d

dt
〈f(γ(t)) − f(x0), η〉RN+P

N
= 〈f∗γ̇(t), η〉RN+P

N
= 0,

we see that 〈f(γ(t)) − f(x0), η〉RN+P
N

= 0. Since γ and η are arbitrary,

it follows that f(M) is contained in the vector subspace (L⊥(x0))⊥. �
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2.3. Pluriharmonic immersions

Let M be a connected Kähler manifold of real dimension 2m with

Riemannian metric g and complex structure J ∈ Γ(TM ⊗ T ∗M) satis-

fying

J2
x = − idTxM ,

g(JX, JY ) = g(X,Y ),

∇X(JY ) = J∇XY for X,Y ∈ Γ(TM).

Let TxM c be the complexification of the tangent space of M at x. Then

we have a decomposition

TxM c = T (1,0)
x ⊕ T (0,1)

x ,

where T
(1,0)
x and T

(0,1)
x denote the eigenspaces of Jx corresponding to the

eigenvalues
√−1 and −√−1, respectively. This induces a decomposition

of a symmetric tensor αx ∈ Nor f(x)⊗T ∗
x M ⊗T ∗

x M into the (2, 0), (0, 2)

and (1, 1) components by restricting its complex bilinear extension to

T
(1,0)
x ⊗ T

(1,0)
x , T

(0,1)
x ⊗ T

(0,1)
x and T

(1,0)
x ⊗ T

(0,1)
x ⊕ T

(0,1)
x ⊗ T

(1,0)
x , and

these components are denoted by α(2,0), α(0,2) and α(1,1), respectively.

It should be remarked that semi-Kähler manifolds can be defined sim-

ilarly as in the positive definite case. The simplest example of semi-

Kähler manifolds is provided by complex semi-Euclidean space CN+P
N ,

namely, a semi-Riemannian manifold (R2N+2P
2N , 〈·, ·〉R2N+2P

2N
) with the

standard complex structure J0, defined by J0(∂/∂x2k−1) := ∂/∂x2k and

J0(∂/∂x2k) := −∂/∂x2k−1.
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Let f : M → CN+P
N be an isometric immersion of a Kähler manifold

into a complex semi-Euclidean space. f is called holomorphic if f∗ ◦J =

J0 ◦ f∗. If f is holomorphic, then the second fundamental form satisfies

α(X,JY ) = α(JX, Y ) = J0α(X,Y ).

We are now in a position to define isometric pluriharmonic immersions

as follows.

Definition 2.3.1. Let f : M → RN+P
N be an isometric immersion of a

Kähler manifold into a semi-Euclidean space. f is said to be plurihar-

monic if

α(X,JY ) = α(JX, Y ) for X,Y ∈ Γ(TM).

Remark 2.3.2. Let f : M → RN+P
N be an isometric immersion of a

Kähler manifold into a semi-Euclidean space. Then the following condi-

tions are equivalent :

f is pluriharmonic,(i)

α(1,1) = 0,(ii)

AξJ = −JAξ for ξ ∈ Γ(Nor f),(iii)

∂2f

∂zα∂zβ
= 0,(iv)

where (zα) := (z1, . . . , zm) is a local complex coordinate system on M .

A pluriharmonic immersion is often called a (1, 1)-geodesic immersion,

whose name comes from the condition (ii) as above. On the other hand,

the term pluriharmonic refers the condition (iv). Our definition above

is based on M. Dajczer and D. Gromoll [10], although they themselves

called such immersions circular.
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Example 2.3.3. An isometric holomorphic immersion f : M → CN+P
N

of a Kähler manifold into a complex semi-Euclidean space is plurihar-

monic, when regarded as an immersion into real semi-Euclidean space

R2N+2P
2N .

It should be remarked that any pluriharmonic immersion is minimal.

In fact, for an orthonormal basis {e1, Je1, . . . , em, Jem} for TxM , we

obtain

H(x) =
1

2m

m∑

j=1

{α(ej , ej) + α(Jej , Jej)}

=
1

2m

m∑

j=1

{α(ej , ej) + α(J2ej , ej)}

=
1

2m

m∑

j=1

{α(ej , ej) − α(ej , ej)}

=0.

Conversely, we can prove the following result concerning plurihar-

monicity of minimal immersions.

Proposition 2.3.4. Let f : M → RN+P
N be an isometric immersion

of a Kähler manifold into a semi-Euclidean space. Suppose that N =

0 or P = 2m, the real dimension of M . If f is minimal, then f is

pluriharmonic.

Proof. We choose an orthonormal basis {e1, . . . , em, Je1, . . . , Jem} for

TxM and define
√

2Ej := ej +
√−1Jej ∈ T (0,1), where J is the complex

structure of M . It follows from the Gauss equation of f and the Kähler
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condition of M that for k, r = 1, . . . ,m

0 =g(R(Ek, Er)Er, Ek)

=〈α(Ek, Ek), α(Er, Er)〉CN+P
N

− 〈α(Ek, Er), α(Er, Ek)〉CN+P
N

.

Taking sums with respect to k and r then yields

0 = m2〈H,H〉CN+P
N

− 〈α(1,1), α(1,1)〉CN+P
N

.

Since H and α(1,1) are not lightlike, this implies that H = 0 if and only

if α(1,1) = 0. �

In the case N = 0, Proposition 2.3.4 has been proved by M. Dajczer

and L. Rodriguez [13], S. Udagawa [27] and M. J. Ferreira and R. Tribuzy

[17]. In their paper, M. Dajczer and L. Rodriguez [13] claimed that the

result is quite surprising.

Moreover, M. Dajczer [9] and S. Udagawa [27] proved the following

result concerning holomorphicity of minimal immersions.

Proposition 2.3.5. Let M be a Kähler manifold of real dimension 2m.

Let f : M → R2m+2 be an isometric minimal immersion into a Euclidean

space of real codimension two. If either of the following (D) or (U) holds,

then f is holomorphic with respect to some orthogonal complex structure

of R2m+2.

(D) The index of relative nullity ν is less than 2m − 4 on M .

(U) (i) M is complete. (ii) M is parabolic, that is, M admits no

positive non-constant superharmonic functions. (iii) |R∇|2 ≥
scal2g on M . (iv) f is stable.
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It is well-known that a simply connected minimal surface in R3 has

the so-called associated family, which is represented as the real part

of a holomorphic immersion into C3. We show that a pluriharmonic

immersion also has this property.

Proposition 2.3.6. Let M be a simply connected Kähler manifold,

and f : M → RN+P
N an isometric pluriharmonic immersion. Then there

exists a 1-parameter family fθ : M → RN+P
N , θ ∈ [0, π) of isometric

pluriharmonic immersions such that f0 = f .

The family fθ is called the associated family of f , and in particular,

fπ/2 is called the conjugate immersion of f .

Proof. Define an endomorphism Jθx of TxM by

Jθx := cos θ idTxM +sin θJx.

Then Jθ satisfies

Jθ ◦ J−θ = idTxM ,

g(JθX,JθY ) = g(X,Y ),

∇X(JθY ) = Jθ∇XY,

which imply that

R∇(X,Y ) ◦ Jθ =Jθ ◦ R∇(X,Y ),

R∇(JθX,JθY ) =R∇(X,Y ).

Also, using the second fundamental form α of f , we define the symmetric

section αθ ∈ Γ(Nor f ⊗ T ∗M ⊗ T ∗M) by

αθ(X,Y ) := α(Jθ/2X,Jθ/2Y ) for X,Y ∈ Γ(TM).
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Let Aθ be the Weingarten operator of αθ, that is, the section of (Nor f)∗

⊗T ∗M ⊗ TM defined by

g(Aθ
ξX,Y ) = 〈αθ(X,Y ), ξ〉RN+P

N
for X,Y ∈ Γ(TM), ξ ∈ Γ(Nor f).

Then the shape operator A of f and Aθ satisfy

Aθ
ξ = AξJθ = J−θAξ.

In fact, by the definition of pluriharmonic immersions, we have

g(Aθ
ξX,Y ) =〈α(Jθ/2X,Jθ/2Y ), ξ〉RN+P

N

=〈α(JθX,Y ), ξ〉RN+P
N

= g(AξJθX,Y )

=〈α(X,JθY ), ξ〉RN+P
N

=g(AξX,JθY ) = g(J−θAξX,Y ).

Now we construct isometric immersions fθ by using Proposition 2.2.2.

In Proposition 2.2.2, we take Nor f as E, the normal connection ∇⊥ of

f as ∇, and αθ as s, respectively. Then we see that they satisfy the

Gauss, Codazzi and Ricci equations.

In fact, since the second fundamental form α of f satisfies the Gauss

equation,

〈αθ(X,W ), αθ(Y,Z)〉RN+P
N

− 〈αθ(X,Z), αθ(Y,W )〉RN+P
N

=〈α(JθX,W ), α(JθY,Z)〉RN+P
N

− 〈α(JθX,Z), α(JθY,W )〉RN+P
N

=g(R∇(JθX,JθY )Z,W )

=g(R∇(X,Y )Z,W ),

which means that αθ satisfies the Gauss equation.
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Since the shape operator A of f satisfies the Codazzi equation,

(∇⊥
XAθ)(Y, ξ) =(∇⊥

XJ−θA)(Y, ξ)

=J−θ(∇⊥
XA)(Y, ξ)

=J−θ(∇⊥
Y A)(X, ξ)

=(∇⊥
Y Aθ)(X, ξ),

which means that Aθ satisfies the Codazzi equation.

For the Ricci equation, we have

[Aθ
ξ , A

θ
η] =Aθ

ξA
θ
η − Aθ

ηAθ
ξ

=(Aθ
ξJθ)(J−θA

θ
η) − (Aθ

ηJθ)(J−θA
θ
ξ)

=[Aξ, Aη],

from which the Ricci equation for A implies that for Aθ.

Consequently, we obtain a family of isometric immersions fθ with

second fundamental form αθ and normal connection ∇⊥. Clearly f0 = f .

It remains to show that fθ is pluriharmonic. Since J and Jθ commute,

αθ(JX, Y ) =α(Jθ/2JX, Jθ/2Y )

=α(JJθ/2X,Jθ/2Y )

=α(Jθ/2X,JJθ/2Y )

=α(Jθ/2X,Jθ/2JY )

=αθ(X,JY ),

which completes the proof. �

As a corollary of this result, we have the following proposition, which

will play a key role in Chapter 3.
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Proposition 2.3.7. Let M be a simply connected Kähler manifold,

and f : M → RN+P
N an isometric pluriharmonic immersion. Then there

exists an isometric holomorphic immersion Φ : M → CN+P
N such that

f =
√

2Re Φ.

Proof. Let fπ/2 be the conjugate immersion of f , whose existence is

assured by Proposition 2.3.6. Then we can show without difficulty that

a map from M to CN+P
N defined by

Φ :=
1√
2
f −√−1

1√
2
fπ/2

is an isometric holomorphic immersion. �
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2.4. Holomorphic immersions

In this section we will prove a rigidity theorem concerning isomet-

ric holomorphic immersions of a Kähler manifold into complex semi-

Euclidean spaces. A criterion for their substantial codimensions is also

given.

K. Abe and M. A. Magid [4] and M. Umehara [28] generalize Calabi’s

rigidity theorem [5] in the following way.

Proposition 2.4.1. Let HC(l, t, s) and HC(l′, t′, s′) be linear subspaces

of CN+P
N as above. Let Φ = (Φ0,Φ−,Φ+) : M → HC(l, t, s) and Ψ =

(Ψ0,Ψ−,Ψ+) : M → HC(l′, t′, s′) be isometric holomorphic immersions,

respectively. If Φ is full in HC(l, t, s), then

(1) s ≤ s′ and t ≤ t′, and

(2) there exists a unitary transformation U ∈ U(t′, s′) such that

[
Ψ−
Ψ+

]
= U




Φ−
0t′−t

Φ+

0s′−s


 .

To prove this proposition in the indefinite case, we only have to apply

Calabi’s rigidity theorem, proved in the positive definite case, to the new

isometric holomorphic immersions (Ψ−; Φ+, 0s′−s) and (Φ−, 0t′−t; Ψ+) :

M → Ct′+s′
constructed from Φ and Ψ.

It should be remarked that we have no relation between Φ0 and Ψ0

in this case.

Definition 2.4.2. Let M be a Kähler manifold. A full isometric holo-

morphic immersion of M into HC(l, t, s) ⊂ CN+P
N is called the shape of

M if l = 0. The dimension t + s of the ambient space is denoted by

sp(M), and the index t by sp−(M), respectively.
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Note that, by Proposition 2.4.1, the shape of M is unique up to unitary

transformations and that sp× sp− : {Kähler manifolds} → (N∪{∞})×
(N ∪ {0}) is well-defined.

Let M be a Kähler manifold with sp(M) < ∞ and sp−(M) = 0. Note

that, in this case, M has non-positive Ricci curvature. We now give a

method of computing sp(M), which is essentially due to E. Calabi [5].

Let (U ; z1, . . . , zm) be a local complex coordinate of M , and Φ : M →
CP an isometric holomorphic immersion which is nicely curved on U .

On account of Proposition 2.2.10, we calculate the integer l such that

Oscl−1Φ � OsclΦ = Oscl+1Φ.

Preparing the index sets

Λi := {(α1, . . . , αi) ∈ Ni ; 1 ≤ α1 ≤ · · · ≤ αi ≤ m},

Λ :=
⋃
i≥1

Λi,

we describe the l-th osculating space of Φ as

OsclΦ = span{∂|a|Φ
∂za

; a ∈
⋃

1≤i≤l

Λi},

where we use multi-indices and |a| := i if a ∈ Λi. For two elements

a := (α1, . . . , αk) ∈ Λk ⊂ Λ, b := (β1, . . . , βl) ∈ Λl ⊂ Λ, we define a

function on U by

g{a, b} :=
∂k+l−2gα1β1

∂zα2 · · · ∂zαk∂zβ2 · · · ∂zβl

.

Using this notation, we write an m×m-Hermitian matrix G := (gαβ)

as

G =




g{(1), (1)} · · · g{(1), (m)}
...

...
g{(m), (1)} · · · g{(m), (m)}


 where (i) ∈ Λ1,
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and for each index a ∈ Λ, we define an (m + 1) × (m + 1)-Hermitian

matrix G[a] by

G[a] :=




g{(1), a}
G

...
g{(m), a}

g{a, (1)} · · · g{a, (m)} g{a, a}


 .

It then follows that detG[a] = 0 if and only if

∂Φ
∂z1

, . . . ,
∂Φ
∂zm

,
∂|a|Φ
∂za

are linearly dependent over C∞(U).

In fact, for a := (α1, . . . , αk), b := (β1, . . . , βl) ∈ Λ, we have

〈∂
|a|Φ
∂za

,
∂|b|Φ
∂zb

〉CP

=
∂k+l−2

∂zα2 · · · ∂zαk∂zβ2 · · · ∂zβl

〈 ∂Φ
∂zα1

,
∂Φ

∂zβ1
〉CP

=g{a, b},

which implies that

| ∂Φ
∂z1

∧ · · · ∧ ∂Φ
∂zm

∧ ∂|a|Φ
∂za

|2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈 ∂Φ
∂z1

,
∂Φ
∂z1

〉CP · · · 〈 ∂Φ
∂z1

,
∂Φ
∂zm

〉CP 〈 ∂Φ
∂z1

,
∂|a|Φ
∂za

〉CP

...
...

...

〈 ∂Φ
∂zm

,
∂Φ
∂z1

〉CP · · · 〈 ∂Φ
∂zm

,
∂Φ
∂zm

〉CP 〈 ∂Φ
∂zm

,
∂|a|Φ
∂za

〉CP

〈∂
|a|Φ
∂za

,
∂Φ
∂z1

〉CP · · · 〈∂
|a|Φ
∂za

,
∂Φ
∂zm

〉CP 〈∂
|a|Φ
∂za

,
∂|a|Φ
∂za

〉CP

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=det G[a].
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Similarly, detG[am+1, . . . , am+k, a] = 0 if and only if

∂Φ
∂z1

, . . . ,
∂Φ
∂zm

,
∂|am+1|Φ
∂zam+1

, . . . ,
∂|am+k|Φ
∂zam+k

,
∂|a|Φ
∂za

are linearly dependent over C∞(U), where G[am+1, . . . , am+k, a] is de-

fined as follows :

When an (m + k) × (m + k)-Hermitian matrix G[am+1, . . . , am+k] is

already defined for given indices am+1, . . . , am+k ∈ Λ, an (m + k + 1)×
(m + k + 1)-Hermitian matrix G[am+1, . . . , am+k, a] is defined for a ∈ Λ

by

G[am+1, . . . , am+k, a]

:=G[am+1, . . . , am+k][a]

=




g{(1), a}
G[am+1, . . . , am+k]

...
g{am+k, a}

g{a, (1)} · · · g{a, am+k} g{a, a}


 .

We remark that Λi has a natural order, and so does Λ. Recall that

each Λi is a finite set, and if detG[am+1, . . . , am+k, a] = 0 for each

a ∈ Λi, then it also holds for any a ∈ Λj (j ≥ i). Consequently, the

following proposition gives an algorithm to calculate sp(U).

Proposition 2.4.3. Choose indices inductively by

am+l := min{a ∈ Λ; det G[am+1, . . . , am+l−1, a] > 0} for l ≥ 1.

If det G[am+1, . . . , am+k, a] = 0 on U for any a > am+k, then sp(U) =

m + k.
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Proof. This follows immediately from Proposition 2.2.10 and that

Osc|am+k|Φ

= span{ ∂Φ
∂z1

, . . . ,
∂Φ
∂zm

,
∂|am+1|Φ
∂zam+1

, . . . ,
∂|am+k|Φ
∂zam+k

, }

=Osc|am+k|+1Φ. �
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3. Moduli space of isometric

pluriharmonic immersions (Local theory)

3.1. Classification theorem

Let M be a connected and simply connected Kähler manifold of com-

plex dimension m. We denote by Mf (M ;RN+P
N ) the moduli space of

full isometric pluriharmonic immersions, that is, the set of O(N,P )-

congruence classes of full isometric pluriharmonic immersions of M into

RN+P
N .

Our aim of this section is to parametrize Mf (M ;RN+P
N ) by the set

P(Φ;N,P ) defined in the manner below.

We assume, throughout this section, that Mf (M ;RN+P
N ) is not

empty. Then it follows from Propositions 2.3.7 and 2.4.1 that there

exists the shape Φ : M → Cn+p
n of M. For Φ and integers N and P , we

define P(Φ;N,P ) to be the set of (n + p) × (n + p)-complex matrices

satisfying the following conditions (P1) – (P4):

t∂Φ
∂zα

P
∂Φ
∂zβ

= 0 (α, β = 1, . . . ,m),(P1)

tP = P,(P2)

∗x−(1np − tP1npP )x− ≤ 0 for x− ∈ HC(0, n, 0),(P3)

∗x+(1np − tP1npP )x+ ≥ 0 for x+ ∈ HC(0, 0, p),(P3)

sign(1np − tP1npP ) = (N − n, P − p),(P4)

where (z1, . . . , zm) is a local complex coordinate on M , and (P4) means

that the Hermitian matrix 1np − tP1npP has N −n negative eigenvalues

and P − p positive eigenvalues as well.

36



First, we give another description of P(Φ;N,P ) for later use.

Lemma 3.1.1. An (n + p) × (n + p)-complex matrix P belongs to

P(Φ;N,P ) if and only if P satisfies (P1) and there exist a complex

matrix

U ∈ U(n) × U(p) :=
{[

A O
O B

]
∈ U(n, p) ; A ∈ U(n), B ∈ U(p)

}
,

and real numbers λ1, . . . , λn, µ1, . . . , µp satisfying

P = tUdiag(−λ1, . . . ,−λn;µ1, . . . , µp)U,(P2′)

− 1 ≤ −λ1 ≤ · · · ≤ −λn ≤ 0 ≤ µp ≤ · · · ≤ µ1 ≤ 1,(P3′)

− 1 = −λ1 = · · · = −λ2n−N < −λ2n−N+1,(P4′)

µ2p−P+1 < µ2p−P = · · · = µ1 = 1.(P4′)

Proof. In order to see that P ∈ P(Φ;N,P ) is diagonalized as in (P2′),

we inductively define subsets S2n−(2j−1) (j = 1, . . . , n) of HC(0, n, 0)

and vectors xj ∈ S2n−(2j−1) as follows.

(Step 1) We set

S2n−1 := {x = (x−; 0p) ∈ Cn+p
n ; ∗x1npx = −1},

−λ1 := inf
x∈S2n−1

Re(txPx).

Then there exists x1 ∈ S2n−1 such that −λ1 = tx1Px1 ≤ 0. In fact,

since S2n−1 is compact, we have a vector x1 ∈ S2n−1 such that −λ1 =

Re(tx1Px1) ≤ 0. Note that if x ∈ S2n−1 and θ := 1/2(π − arg txPx),

then the vector e
√−1θx belongs to S2n−1 and e2

√−1θ(txPx) ≤ Re(txPx).

Hence, Re(tx1Px1) = tx1Px1.
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(Step j) We set

S2n−(2j−1) := {x = (x−; 0p) ∈ S2n−(2j−3); ∗x1npxj−1 = ∗xPxj−1 = 0},

−λj := inf
x∈S2n−(2j−1)

Re(txPx).

Then the same argument as in Step 1 assures that there exists xj ∈
S2n−(2j−1) such that −λj = txjPxj ≤ 0.

Consequently, we obtain vectors x1, . . . , xn ∈ HC(0, n, 0) such that

∗xj1npxk = −δjk,

txjPxk = −λjδjk, −λ1 ≤ · · · ≤ −λn ≤ 0.

In a similar fashion we also obtain vectors xn+1, . . . , xn+p ∈ HC(0, 0, p)

such that

∗xn+j1npxn+k = δjk,

txn+jPxn+k = µjδjk, µ1 ≥ · · · ≥ µp ≥ 0.

It is immediate from these that P is diagonalized as in (P2′):

U−1 := (x1, . . . , xn;xn+1, . . . , xn+p) ∈ U(n) × U(p),

tU−1PU−1 = diag(−λ1, . . . ,−λn;µ1, . . . , µp),

− λ1 ≤ · · · ≤ −λn ≤ 0 ≤ µp ≤ · · · ≤ µ1.

Now we note that

1np − tP1npP = ∗Udiag(−(1−λ2
1), . . . ,−(1−λ2

n); 1−µ2
1, . . . , 1−µ2

p)U.

Then (P3) means that −(1−λ2
j) ≤ 0 and 1−µ2

j ≥ 0, which implies (P3′).

(P4) means that sign(1np − tP1npP ) = (n−(2n−N), p−(2p−P )), which

is equivalent to (P4′).
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Conversely, it is easy to see that matrices satisfying (P1) and (P2′) –

(P4′) belong to P(Φ;N,P ). �

In order to construct a bijection from Mf (M ;RN+P
N ) to P(Φ;N,P ),

we prepare the following lemmas.

Lemma 3.1.2. Let M be a simply connected Kähler manifold with

shape Φ : M → Cn+p
n . If f : M → RN+P

N is a full isometric plurihar-

monic immersion, then there exists an (N +P )× (n+p)-complex matrix

S such that

f =
√

2Re SΦ,(S0)
t∂Φ
∂zα

tS1NP S
∂Φ
∂zβ

= 0 (α, β = 1, . . . ,m),(S1)

∗S1NP S = 1np,(S2)

rank(S, S) = N + P,(S3)

where (S, S) denotes the (N + P )× 2(n + p)-matrix consisting of S and

its complex conjugate S.

Proof. Recall that by Proposition 2.3.7, there exists an isometric holo-

morphic immersion Ψ : M → CN+P
N such that f =

√
2 ReΨ. It also

follows from Proposition 2.4.1 that for Φ and Ψ there exists U = (uIJ) ∈
U(N,P ) (I, J = 1, . . . , N + P ) such that

[
Ψ−
Ψ+

]
= U




Φ−
0N−n

Φ+

0P−p


 .

Let S be the (N + P ) × (n + p)-matrix defined by

n︷︸︸︷ p︷︸︸︷
S :=

[
S1 S2

]
}N+P ,
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where
S1 :=

[
uIj

]
(j = 1, . . . , n),

S2 :=
[
uI(N+a)

]
(a = 1, . . . , p).

Then we have

f =
√

2Re Ψ =
√

2 ReSΦ =
1√
2
(S, S)

[
Φ
Φ

]
,(i)

∂f =
1√
2
∂Ψ =

1√
2
S∂Φ.(ii)

Since f and Φ are isometric,

0 = 2
t∂f

∂zα
1NP

∂f

∂zβ
, 2

∗∂f

∂zα
1NP

∂f

∂zβ
=

∗∂Φ
∂zα

1np
∂Φ
∂zβ

,

which together with (ii) implies (S1) and (S2). By (i), the fullness of f

in RN+P
N is equivalent to (S3). �

Conversely, by reversing the above process it is easy to see the follow-

ing :

Lemma 3.1.3.

(1) Let S be an (N + P ) × (n + p)-complex matrix satisfying (S1),

(S2) and (S3). If we define f as in (S0), then the congruence

class [f ] of f belongs to Mf (M ;RN+P
N ).

(2) Let f1 =
√

2 Re S1Φ and f2 =
√

2 Re S2Φ : M2n → RN+P
N be

isometric pluriharmonic immersions. Then [f1] = [f2] if and only

if tS11NP S1 = tS21NP S2.

We also have the following lemma.

Lemma 3.1.4. If an (N +P )× (n+ p)-matrix S satisfies (S1),(S2) and

(S3), then tS1NP S belongs to P(Φ;N,P ).

Proof. (Step 1) By (S1), tS1NP S satisfies (P1).
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(Step 2) By the same argument as in the proof of Lemma 3.1.1, we

obtain U ∈ U(n) × U(p) such that

tS1NP S = tUdiag(−λ1, . . . ,−λn;µ1, . . . , µp)U,

− λ1 ≤ · · · ≤ −λn ≤ 0 ≤ µp ≤ · · · ≤ µ1.

It follows from (S2) that −1 ≤ −λ1 ≤ 0 ≤ µ1 ≤ 1. In fact, let V ∈
U(N,P ) be a matrix such that

V S(S2n−1) ⊂ {y ∈ HC(0, N, 0) ⊂ CN+P
N ; ∗y1NP y = −1}.

Then we have

−λ1 = inf
x∈S2n−1

Re(txtS1NP Sx) = inf
y∈S(S2n−1)

Re(ty1NP y)

= inf
y∈V S(S2n−1)

Re(t(V −1y)1NP (V −1y))

≥ inf
y∈V S(S2n−1)

∗(V −1y)1NP (V −1y) = −1.

Also, a similar argument applied to µ1 implies µ1 ≤ 1. Consequently,

tS1NP S satisfies (P2′) and (P3′).

We proceed to prove that (S3) is equivalent to (P4′).

(Step 3A) Since −1 ≤ −λi ≤ 0 ≤ µj ≤ 1, we can choose complex

numbers ai, bi, cj and dj so that

(3.1.4 ∗)
λi = a2

i + b2
i , 1 = |ai|2 + |bi|2,

µj = c2
j + d2

j , 1 = |cj |2 + |dj |2.

In particular, if λi = 1 (resp. µj = 1), we take ai = 1, bi = 0 (resp.

cj = 1, dj = 0).

Note that ai, bi (resp. cj , dj) are linearly dependent over R if and

only if λi = 1 (resp. µj = 1).
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(Step 3B) For these complex numbers ai, bi, cj , dj and the matrix

S =

n+p︷ ︸︸ ︷[
S1

S2

] }N

}P
∈ M(N+P )×(n+p)(C),

we consider (2n + 2p) × (n + p)-matrices T̃ and S̃ defined by

T̃ :=

n+p︷ ︸︸ ︷[
T̃1

T̃2

] }2n

}2p
:=




a1

b1

. . .
an

bn

c1

d1

. . .
cp

dp




and

S̃ :=




S1

02n−N

S2

02p−P


 .

By definition, we have

t(T̃U)12n2p(T̃U) = tS̃12n2pS̃,

∗(T̃U)12n2p(T̃U) = ∗S̃12n2pS̃ = 1np,

which implies that there exists O ∈ O(2n, 2p) = U(2n, 2p)∩O(2n, 2p;C)

such that OS̃ = T̃U .

(Step 3C) (S3) holds if and only if rank(T̃1, T̃1) = N and rank(T̃2, T̃2) =

P .

In fact, rank(S, S) = N + P if and only if we can choose N timelike

vectors and P spacelike vectors from the image of (S, S). By Step 3B,
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this is equivalent to being able to choose these vectors from the image

of (T̃ , T̃ ), which means that rank(T̃1, T̃1) = N and rank(T̃2, T̃2) = P .

(Step 3D) rank(T̃1, T̃1) = N if and only if 1 = λ1 = · · · = λ2n−N >

λ2n−N+1, and rank(T̃2, T̃2) = P if and only if 1 = µ1 = · · · = µ2p−P >

µ2p−P+1.

In fact, by the definition of T̃1, rank(T̃1, T̃1) = N if and only if there

exist 2n − N pairs of R-linearly dependent vectors (ai, ai) and (bi, bi).

Step 3A then implies that this is equivalent to 1 = λ1 = · · · = λ2n−N >

λ2n−N+1. The proof for T̃2 is similar.

Step 3C combined with Step 3D now implies that (S3) and (P4′) are

equivalent, which completes the proof of the lemma. �

We are now in a position to define a natural map F from

Mf (M ;RN+P
N ) to P(Φ;N,P ).

Let [f ] be an element of Mf (M ;RN+P
N ). By Lemma 3.1.2, for each

full isometric pluriharmonic immersion f ∈ [f ], we can choose an (N +

P )× (n + p)-matrix S satisfying (S0) – (S3). By Lemma 3.1.4, tS1NP S

belongs to P(Φ;N,P ). We then define the map F by

F([f ]) := tS1NP S,

which is well-defined by Lemma 3.1.3 (2).

With these preparations, we obtain a parametrization of the moduli

space of full isometric pluriharmonic immersions [18, 19].

Theorem 3.1.5. Let M be a connected and simply connected Kähler

manifold with shape Φ : M → Cn+p
n . Then the map F : Mf (M ;RN+P

N )

→ P(Φ;N,P ) is bijective.
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Proof. It follows from Lemma 3.1.3 (2) that F is injective. To show

that F is surjective, we claim that for each P ∈ P(Φ;N,P ) there exists

an (N + P ) × (n + p)-matrix S satisfying (S1), (S2) and (S3). First,

by Lemma 3.1.1, there exist U ∈ U(n, p) and λi, µj ∈ R such that P =

tUdiag(−1, . . . ,−1︸ ︷︷ ︸
2n−N

,−λ2n−N+1, . . . ,−λn; 1, . . . , 1︸ ︷︷ ︸
2p−P

, µ2p−P+1, . . . , µp)U .

Choose complex numbers ai, bi, cj and dj such that (3.1.4 ∗) holds for

these λi and µj . Then we define an (N + P ) × (n + p)-matrix S by

S :=




−12n−N

a2n−N+1

b2n−N+1

. . .
an

bn

12p−P

c2p−P+1

d2p−P+1

. . .
cp

dp




U.

It can be verified without difficulty that S satisfies (S1), (S2) and (S3),

which together with Lemma 3.1.3 (1) implies that F is surjective. �

Before closing this section, we now consider the moduli space without

assuming the fullness of immersions. Let M(M ;RN+P
N ) denote the set

of O(N,P )-congruence classes of isometric pluriharmonic immersions of

a Kähler manifold M into RN+P
N . Then we have

M(M ;RN+P
N ) =

∐
0≤l≤min(N,P ),

0≤t≤N−l,
0≤s≤P−l

Mf (M ;H(l, t, s)).
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When N is zero, we have a natural bijection from M(M ;RP ) to the

set of complex matrices satisfying conditions (P1) – (P3), by gathering

F : Mf (M ;RP ′
) → P(Φ; 0, P ′) for P ′ ≤ P . In particular, the moduli

space is finite dimensional in the positive definite case.

When N is not zero, since

M(M ;RN+P
N ) �

∐
0≤t≤N,
0≤s≤P

Mf (M ;Rt+s
t ),

the moduli space M(M ;RN+P
N ) is not finite dimensional in general. In

fact, it is not true that Mf (M ;H(l, t, s)) is of finite dimension when

l ≥ 1.
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3.2. Examples

In this section we give some explicit examples of isometric plurihar-

monic immersions [18, 19].

First, we construct nontrivial isometric minimal immersions of Kähler

manifolds of real dimension 4 into Euclidean space R6. It should be

recalled that in this case minimal immersions are pluriharmonic (Propo-

sition 2.3.4).

We choose a metric on C2 which admits a full isometric minimal

immersion into R6 in the following way.

For this purpose we first choose a 6 × 6-matrix P as

P =




1
1

1
1

1
1


 ,

which satisfies (P2), (P3) and (P4).

We next choose a full holomorphic immersion Φ of C2 into C6 sat-

isfying (P1). If we put ∂Φ/∂z =: ζ = t(ζ1, . . . , ζ6), ∂Φ/∂w =: ω =

t(ω1, . . . , ω6), then ζi, ωj must satisfy the following equations :

∂ζi
∂w

=
∂ωi

∂z
,

ζ1ζ6 + ζ2ζ5 + ζ3ζ4 = 0,

ζ1ω6 + ζ2ω5 + ζ3ω4 + ζ4ω3 + ζ5ω2 + ζ6ω1 = 0,

ω1ω6 + ω2ω5 + ω3ω4 = 0.

It is easy to check that

ζ := t(z, zw,
z2

2
, 0,−1, w), ω := t(0,

z2

2
, 0,−1, 0, z)
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satisfy these equations. Hence,

Φ(z, w) := t(
z2

2
,
z2w

2
,
z3

6
,−w,−z, zw)

gives a full holomorphic immersion satisfying (P1). We now obtain the

Kähler metric

g =


 1

4
(|z|2 + 2)2 + (|z|2 + 1)|w|2 1

2
(|z|2 + 2)wz

1
2
(|z|2 + 2)wz

1
4
(|z|2 + 2)2




on C2 induced by Φ, for which Mf (C2;R6) is not empty.

Now, take a 6 × 6-matrix S such that tSS = P as in Theorem 3.1.5,

and determine a minimal immersion f by Lemma 3.1.3 (1). With P

chosen as above, we take S to be

S =
1√
2




1 1
1 1

1 1√−1 −√−1√−1 −√−1√−1 −√−1


 ,

from which f is determined to be

f(x+
√−1y, u+

√−1v) :=




1
2
(x2 − y2) + xu− yv

1
2
(x2 − y2)u− x(yv + 1)

1
6
(x2 − 3y2)x− u

−1
6
(3x2 − y2)y − v

−1
2
(x2 − y2)v − y(xu+ 1)

−xy + xv + yu




: C2 → R6.

To sum up, we have a Kähler manifold biholomorphic to C2 and an

isometric minimal immersion f : C2 → R6, which have the following

properties :

(1) The Kähler manifold (C2, g) is complete.
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(2) f is not holomorphic with respect to any orthogonal complex

structure on R6.

(3) f is not cylindrical.

(4) f is completely complex ruled (cf. Definition 4.1.12).

Property (2) can be proved as follows: Assume that f is holomorphic.

Then f is congruent to Φ in R12 by Calabi’s rigidity theorem (Proposi-

tion 2.4.1), and hence the image of Φ lies in a real 6-dimensional affine

subspace. This contradicts the fullness of Φ.

By a direct calculation, the second fundamental form α of f is given

by

α(
∂

∂x
,
∂

∂x
)

=
1

(|z|2 + 2)2




−(|z|2 − 2)(|z|2 + 2) − 4(xu+ yv)

2x(|z|2 + 2) + 4u

2x(|z|2 + 2) − 2{(x2 − y2)u+ 2xyv}

−2y(|z|2 + 2) − 2{(x2 − y2)v − 2xyu}

−2y(|z|2 + 2) − 4v

−4(xv − yu)




,

α(
∂

∂x
,
∂

∂y
)

=
1

(|z|2 + 2)2




4(xv − yu)

2y(|z|2 + 2) − 4v

−2y(|z|2 + 2) + 2{(x2 − y2)v − 2xyu}

−2x(|z|2 + 2) − 2{(x2 − y2)u+ 2xyv}

2x(|z|2 + 2) − 4u

(|z|2 − 2)(|z|2 + 2) − 4(xu+ yv)




,
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α(
∂

∂x
,
∂

∂u
) =

(|z|2 + 2)2

(|z|2 + 2)2 + 4|w|2α(
∂

∂x
,
∂

∂x
),

α(
∂

∂x
,
∂

∂v
) =

(|z|2 + 2)2

(|z|2 + 2)2 + 4|w|2α(
∂

∂x
,
∂

∂y
),

α(
∂

∂y
,
∂

∂u
) = α(

∂

∂x
,
∂

∂v
), α(

∂

∂y
,
∂

∂v
) = −α(

∂

∂x
,
∂

∂u
),

α(
∂

∂y
,
∂

∂y
) = −α(

∂

∂x
,
∂

∂x
),

α(
∂

∂u
,
∂

∂u
) = α(

∂

∂u
,
∂

∂v
) = α(

∂

∂v
,
∂

∂v
) = 0,

where z = x+
√−1y,w = u+

√−1v. Since the relative nullity space of

f is vanishing, f is not cylindrical. Moreover, f is completely complex

ruled, since the distribution spanned by {∂/∂u, ∂/∂v} is totally geodesic.

We can calculate the moduli space in this case. In fact, we have

P(Φ; 0, 6) =



e
√−1θ




1
1

1
1

1
1


 ; θ ∈ [0, 2π)



.

Now, we illustrate a method of constructing pluriharmonic immersions

into indefinite Euclidean spaces.

Let f =
√

2 ReΦ be an isometric minimal immersion of a simply

connected Kähler manifold M into RN+P (= RN+P
0 ), where Φ : M →

CN+P is an isometric holomorphic immersion such that

(∗)
t∂Φ
∂zα

∂Φ
∂zβ

= 0.

For Φ = t(Φ1, . . . ,ΦN ,ΦN+1, . . . ,ΦN+P ) we consider a new immersion

Φ̃ := t(
√−1Φ1, . . . ,

√−1ΦN ; ΦN+1, . . . ,ΦN+P ) : M̃ → CN+P
N ,
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where M̃ is a Kähler manifold defined by

({z ∈M : Φ̃∗〈·, ·̄〉CN+P
N

> 0}, Φ̃∗〈·, ·̄〉CN+P
N

).

Then the map f̃ defined by f̃ :=
√

2 Re Φ̃ : M̃ → RN+P
N gives rise to a

pluriharmonic immersion, since

t∂Φ̃
∂zα

1NP
∂Φ̃
∂zβ

= 0.

To sum up, in order to obtain (locally defined) pluriharmonic immer-

sions into RN+P
N , we only have to construct holomorphic immersions

into CN+P satisfying the condition (∗).

As an example, we shall construct pluriharmonic immersions of sub-

sets of C2 into R5
1, which are defined as cone immersions.

As remarked above, it suffices to define holomorphic immersions into

C1+4 satisfying the condition (∗). Let C and D be simply connected

domains of C. Suppose that ψ : C → C is a holomorphic function and

φ : D → C1+4 is a holomorphic immersion such that

(∗∗) tφφ = tφ
∂φ

∂z
=

t∂φ

∂z

∂φ

∂z
= 0,

where z is a coordinate of D. Then the holomorphic immersion

Φ(w, z) := ψ(w)φ(z) : C × D → C1+4 satisfies (∗), from which we

obtain a pluriharmonic immersion of a subset of C ×D into R5
1.

We can construct φ as follows. For any holomorphic function h on D

we set

g(z) := t(g1(z), g2(z), g3(z))

:=
∫ z

t(1 − h(ζ)2,
√−1(1 + h(ζ)2), 2h(ζ))dζ.
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Then

φ(z) := t(1 − tg(z)g(z),
√−1(1 + tg(z)g(z)), 2g1(z), 2g2(z), 2g3(z))

gives rise to a holomorphic immersion satisfying the condition (∗∗).
If we choose ψ(w) := w and h(z) := z, the corresponding plurihar-

monic immersion is

f̃(w, z) =
√

2 Re Φ̃(w, z)

=
√

2 Re(w




√−1(1 +
1
3
z4)

√−1(1 − 1
3
z4)

2(z − 1
3
z3)

√−12(z +
1
3
z3)

2z2




) : C2 ⊃ C̃ ×D → R5
1.

It should be pointed out that we may use a class of complex ruled

immersions obtained by M. Dajczer and D. Gromoll [12] as the above Φ,

which provides us with a larger class containing cone immersions.
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4. Isometric pluriharmonic immersions of

complete Kähler manifolds (Global theory)

4.1. Cylinder theorem

In this section, we classify isometric pluriharmonic immersions of com-

plete Kähler manifolds into semi-Euclidean spaces with low codimen-

sions. In particular, we will prove a cylinder theorem concerning them.

In the beginning, we consider Riemannian manifolds in general.

Definition 4.1.1. Let f : M → RN+P
N be an isometric immersion with

second fundamental form α. For each x ∈ M , the subspace of TxM

defined by

�(x) := {X ∈ TxM ; α(X,Y ) = 0, Y ∈ TxM}

is called the relative nullity space of f at x, and its dimension ν(x) is

called the index of relative nullity of f at x.

The following proposition is proved by K. Abe and M. Magid [3].

Proposition 4.1.2. Let f : M → RN+P
N be an isometric immersion of

a Riemannian manifold into a semi-Euclidean space with relative nullity

space �(x). Then the following hold.

(1) The distribution x �→ �(x) is smooth on any open subset U

where the index of relative nullity is constant.

(2) The relative nullity distribution � on U is integrable, and the

leaves are totally geodesic in M and RN+P
N .

(3) The set G := {x ∈ M ; ν(x) = ν0} is open, where ν0 :=

min{ν(x); x ∈ M}.
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In what follows, we consider the relative nullity foliation � on G. Let

�⊥ be the distribution on G given by the orthogonal complement �⊥(x)

of �(x) with respect to the Riemannian metric of M .

The following completeness result for the relative nullity foliations

is proved by K. Abe [1], K. Abe and M. Magid [3], and is basic and

well-known.

Proposition 4.1.3. For an isometric immersion of a complete Rie-

mannian manifold into a semi-Euclidean space, the relative nullity foli-

ation is complete.

In order to prove our cylinder theorem, we first define the splitting

tensor field for an isometric immersion, more precisely, for its relative

nullity distribution.

Definition 4.1.4. Let f : M → RN+P
N be an isometric immersion of

a Riemannian manifold into a semi-Euclidean space. Let � denote its

relative nullity distribution on G ⊂ M . For T ∈ Γ(�) and X ∈ �⊥(x),

we define

CT X := −Pr(∇XT ),

where Pr : TxG → �⊥(x) is the orthogonal projection. The tensor

field C ∈ Γ(�∗ ⊗ End�⊥) is called the splitting tensor or the conullity

operator of f .

To see C ∈ Γ(�∗⊗End�⊥), it suffices to check that CφT X = φCT X

for any function φ. In fact, it can be verified that

CφT X = − Pr(∇X(φT ))
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= − Pr{(Xφ)T + φ∇XT}

= − φ Pr(∇XT )

=φCT X.

Proposition 4.1.5. Let f : M → RN+P
N be an isometric immersion of

a d-dimensional Riemannian manifold into a semi-Euclidean space. Let

� be its relative nullity distribution on G, where the index of relative

nullity is constant ν0. Then the following hold.

(1) The distribution �⊥ is integrable if and only if

g(CT X,Y ) = g(X,CT Y ) for X,Y ∈ Γ(�⊥), T ∈ Γ(�).

(2) The splitting tensor C of f vanishes identically on G if and only if

each point of G has a neighborhood on which f is ν0-cylindrical.

Proof. (1) Since T ∈ Γ(�) and Y ∈ Γ(�⊥) are orthogonal each other,

we have

g(CT X,Y ) = −g(∇XT, Y ) = g(T,∇XY ),

which implies

g(CT X,Y ) − g(X,CT Y ) =g(T,∇XY ) − g(T,∇Y X)

=g(T, [X,Y ]).

Therefore, [X,Y ] ∈ Γ(�⊥) for X,Y ∈ Γ(�⊥) if and only if g(CT X,Y ) =

g(X,CT Y ).

(2) By Proposition 4.1.2 (2), C ≡ 0 if and only if ∇XT and ∇ST

belong to Γ(�) for S, T ∈ Γ(�) and X ∈ Γ(�⊥). It follows from this

that � is parallel, and therefore so is �⊥. The rest of the proof follows

from Propositions 2.2.7 and 4.1.3. �
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We now prepare some basic identities concerning splitting tensors and

second fundamental forms.

Lemma 4.1.6. Let f : M → RN+P
N be an isometric immersion of a

Riemannian manifold into a semi-Euclidean space with splitting tensor

C. If S, T ∈ Γ(�), X,Y ∈ Γ(�⊥) and ξ ∈ Γ(Nor f), then the following

identities hold.

(∇SCT )X = CT CSX + C∇ST X.(i)

(∇XCT )Y − (∇Y CT )X = CPr(∇XT )Y − CPr(∇Y T )X.(ii)

∇T (AξX) − Aξ∇T X = AξCT X + A∇⊥
T ξX.(iii)

α(CT X,Y ) = α(X,CT Y ),(iv)

where (∇ZCT )X := Pr(∇Z(CT X)) − CT Pr(∇ZX) for Z ∈ Γ(TM).

Proof. Since the relative nullity distribution � is totally geodesic,

∇ST ∈ Γ(�) and ∇SX ∈ Γ(�⊥). Hence, using the Gauss equation, we

compute

(∇SCT )X

= − Pr(∇S Pr(∇XT )) − CT∇SX

= − Pr(∇S∇XT ) − CT∇SX

= − Pr(R∇(S,X)T + ∇X∇ST + ∇[S,X]T ) − CT∇SX

= − Pr(R∇(S,X)T ) + C∇ST X − Pr(∇(∇SX−∇XS)T ) − CT∇SX

= − Pr(R∇(S,X)T ) + C∇ST X + CT∇SX − CT Pr(∇XS) − CT∇SX

= − Pr(R∇(S,X)T ) + C∇ST X + CT CSX

= 0 + C∇ST X + CT CSX,

55



which verifies (i).

Let Q : TxU → �(x) be the orthogonal projection. Then we have

(∇XCT )Y

=Pr(∇X(CT Y )) − CT Pr(∇XY )

= − Pr(∇X Pr(∇Y T )) − CT Pr(∇XY )

= − {Pr(∇X∇Y T ) − Pr(∇XQ(∇Y T ))} + Pr(∇Pr(∇XY )T )

= − Pr(∇X∇Y T ) − CQ(∇Y T )X + Pr(∇Pr(∇XY )T ),

which, together with the Gauss equation, implies that

(∇XCT )Y − (∇Y CT )X

= − Pr(∇X∇Y T −∇Y ∇XT ) − (CQ(∇Y T )X − CQ(∇XT )Y )

+ Pr(∇(Pr(∇XY )−Pr(∇Y X))T )

= − Pr(R∇(X,Y )T + ∇[X,Y ]T ) − (CQ(∇Y T )X − CQ(∇XT )Y )

+ Pr(∇Pr([X,Y ])T )

= − Pr(R∇(X,Y )T ) − Pr(∇Q([X,Y ])T ) − (CQ(∇Y T )X − CQ(∇XT )Y )

= 0 + 0 + (CQ(∇XT )Y − CQ(∇Y T )X),

verifying (ii).

To prove (iii) we compute, using the Codazzi equation, to get

∇T (AξX) − Aξ∇T X

=∇X(AξT ) − Aξ∇XT − A∇⊥
XξT + A∇⊥

T ξX

=0 − Aξ∇XT − 0 + A∇⊥
T ξX

=AξCT X + A∇⊥
T ξX.
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We proceed to prove (iv). It follows from (iii) that

Pr(AξCT ) = Pr(∇T Aξ) − Pr(A∇⊥
T ξ).

Hence Pr(AξCT ) is symmetric, that is,

g(AξCT X,Y ) =g(AξCT Y,X).

Therefore, we obtain

α(CT X,Y ) =α(X,CT Y ). �

When the relative nullity foliation is complete, we obtain the following

property for splitting tensors.

Lemma 4.1.7. Let f : M → RN+P
N be an isometric immersion of a

d-dimensional Riemannian manifold with splitting tensor C. Suppose

that the relative nullity foliation � is complete. Then the only possible

real eigenvalue of CT0 : �⊥(x0) → �⊥(x0) (T0 ∈ �(x0)) is zero.

Proof. Let L be the leaf of � through x0, and γ the geodesic in L

such that γ(0) = x0 and γ̇(0) = T0. We take a parallel frame field

{e1(t), . . . , ed−ν(t)} of �⊥ along γ. Then, by Lemma 4.1.6 (i) and the

completeness of L, C satisfies the following ordinary differential equation

for t ∈ R : 


C′
γ̇(t) =C2

γ̇(t),

Cγ̇(0) =CT0 .

Now suppose that CT0 has nonzero real eigenvalues λ1, . . . , λk, and

set τ := (max |λi|)−1(> 0). Then we may define the operator Ct by

Ct := CT0(id�⊥(x0) −tCT0)
−1 for −τ < t < τ ,
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since |tλi| < 1 and the operator id�⊥(x0) −tCT0 is invertible for −τ <

t < τ . It is then verified that Ct satisfies the same differential equation

for −τ < t < τ : 


C′
t =C2

t ,

C0 =CT0 ,

and has an eigenvalue (τ − t)−1. In fact, it is easy to see

C′
t =CT0{−(id�⊥(x0) −tCT0)

−1(id�⊥(x0) −tCT0)
′(id�⊥(x0) −tCT0)

−1}

=C2
t ,

and

|Ct − 1
τ − t

id�⊥(x0) |

=|CT0(id�⊥(x0) −tCT0)
−1 − 1

τ − t
id�⊥(x0) |

=|CT0 −
1

τ − t
(id�⊥(x0) −tCT0)|| id�⊥(x0) −tCT0 |−1

=
τ

τ − t
|CT0 −

1
τ

id�⊥(x0) || id�⊥(x0) −tCT0 |−1

=0.

Then, by virtue of the uniqueness theorem of solutions for ordinary

differential equations, we have Cγ̇(t) = Ct and hence Ct can be defined

for all t ∈ R. However, this is impossible, since the eigenvalue (τ − t)−1

of Ct blows up as t → τ . �

We now prove that the splitting tensor of an isometric pluriharmonic

immersion is complex linear.

Lemma 4.1.8. Let f : M → RN+P
N be an isometric pluriharmonic

immersion of a Kähler manifold with complex structure J . Then the
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splitting tensor C of f satisfies

CJT X =JCT X,(i)

CT JX =JCT X for X ∈ Γ(�⊥), T ∈ Γ(�).(ii)

Proof. Since J is parallel and � is J-invariant by definition, we have

CJT X = − Pr(∇XJT ) = −Pr(J∇XT ) = −J Pr(∇XT )(i)

=JCT X.

It then follows from Lemma 4.1.6 (iv) and (i) that for Y ∈ Γ(�⊥),

α(CT JX, Y ) =α(JX,CT Y )

=α(X,JCT Y )

=α(X,CJT Y )

=α(CJT X,Y )

=α(JCT X,Y ),

which implies CT JX − JCT X ∈ Γ(�), and hence (ii) follows. �

We are now going to prove the following cylinder theorem for isometric

pluriharmonic immersions, under appropriate assumptions on the index

of relative nullity and the completeness of Kähler manifolds. In the

positive definite case, this theorem has been obtained by M. Dajczer

and L. Rodriguez [14].

Theorem 4.1.9. Let M be a complete Kähler manifold of real dimen-

sion 2m, and f : M → RN+P
N an isometric pluriharmonic immersion. If

59



the index of relative nullity ν is not less than 2m−2, then f is (2m−2)-

cylindrical.

Proof. Let G be an open set on which the index of relative nullity ν of

f is equal to 2m − 2. We fix x ∈ G and T ∈ �(x) arbitrarily.

Claim. The splitting tensor CT is nilpotent.

To see the claim, we assume that a +
√−1b ∈ C is an eigenvalue of

CT , that is,

CT Y = (a +
√−1b)Y = aY + bJY.

If we put S := aT − bJT ∈ �(x), then by Lemma 4.1.8 (i) we get

CSY =aCT Y − bJCT Y

=a(aY + bJY ) − bJ(aY + bJY )

=(a2 + b2)Y,

and hence CS has a real eigenvalue a2 + b2. Then it follows from Lemma

4.1.7 that a2 + b2 = 0, which implies that the eigenvalue of CT is zero.

Since dim�⊥(x) = 2, we have C2
T = 0. Consequently, CT = 0. To

see this, using a basis such that

J |�⊥(x) =
[

0 1
−1 0

]
,

we write CT as
[

a b
c d

]
. Then it is immediate from Lemma 4.1.8 (ii)

that

[
0 1
−1 0

] [
a b
c d

]
=

[
a b
c d

] [
0 1
−1 0

]
and

[
a b
c d

]2

= 0,
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which implies a = b = c = d = 0.

To sum up, we conclude that C = 0 on G. Hence, by Proposition 4.1.5

(2) and the analyticity of f , the isometric pluriharmonic immersion f is

(2m − 2)-cylindrical. �

For isometric minimal immersions of complete Kähler manifolds of

codimension one, we can prove a stronger cylinder theorem. To prove

this, we first show the following proposition, which has been proved by

K. Abe [2] in the positive definite case.

Proposition 4.1.10. Let M be a Kähler manifold of real dimension

2m. If f : M → R2m+1
N is an isometric immersion of real codimension

one, then the index of relative nullity ν of f is not less than 2m − 2.

Proof. We take a normal vector field ξ of f , and denote the shape oper-

ator Aξ by A for simplicity. Let λ1, . . . , λ2m be the principal curvatures

of f , that is, the eigenvalues of A, and let {e1, . . . , e2m} be the corre-

sponding principal frame, that is, the frame consisting of eigenvectors of

A. Then, by the Gauss equation, we get

g(R∇(ei, ej)Jei, ek)

=〈α(ek, ei), α(Jei, ej)〉R2m+1
N

− 〈α(ek, ej), α(Jei, ei)〉R2m+1
N

=g(Aei, ek)g(Aej , Jei) − g(Aej , ek)g(Aei, Jei)

=λiδikλjg(ej , Jei),

which implies

R∇(ei, ej)Jei = λiλjg(ej , Jei)ei.
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In a similar fashion, for i �= j, we also get

g(R∇(ei, ej)ei, Jek)

=g(Aei, Jek)g(Aej , ei) − g(Aej , Jek)g(Aei, ei)

= − λiλjg(ej , Jek),

which implies

JR∇(ei, ej)ei = −λiλjJej .

Since R∇(X,Y )J = JR∇(X,Y ), we then obtain

λiλj(g(ej , Jei)ei + Jej) = 0 for i �= j.

If λ1 is not zero, then for j �= 1, we have either λj = 0 or g(ej , Je1)e1 +

Jej = 0. The latter can be true for at most one j, say j = 2, and then

λj = 0 for j ≥ 3. Therefore, we conclude that rankA ≤ 2. �

Combining Propositions 2.3.4, 4.1.9 and 4.1.10, we obtain

Proposition 4.1.11. Let M be a complete Kähler manifold of real

dimension 2m. If f : M → R2m+1
N is an isometric minimal immersion of

real codimension one, then f is (2m − 2)-cylindrical.

Before proceeding to the case of codimension two, the following defi-

nition is in order.

Definition 4.1.12. Let f : M → RN+P
N be an isometric immersion

of a Kähler manifold M of real dimension 2m into RN+P
N . f is called

completely complex ruled if M has a real codimension two foliation such
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that each leaf is a Kähler submanifold of M and its image under f is an

affine subspace of real dimension 2m − 2.

The following proposition has been proved by M. Dajczer and L. Ro-

driguez [14] in the positive definite case.

Proposition 4.1.13. Let M be a complete Kähler manifold of real

dimension 2m ≥ 4, and f : M → RN+P
N an isometric pluriharmonic

immersion. Suppose that the index of relative nullity ν is not less than

2m−4. Then f is either completely complex ruled or (2m−4)-cylindrical.

Sketch of proof. It follows from Theorem 4.1.9 and its proof that if ν ≥
2m − 2 everywhere, then f is (2m − 2)-cylindrical, and that if M has a

non-empty open subset on which ν = 2m − 4 and the splitting tensor

C = 0, then f is (2m − 4)-cylindrical.

Let U be a connected component of the open set on which ν = 2m−4

and where there exists a vector T ∈ � such that CT �= 0. Given any point

x ∈ U and any vector T ∈ �(x) such that CT �= 0, it can be verified that

dim ker CT = 2, by Lemma 4.1.8 (2) together with the claim in the proof

of Theorem 4.1.9. It also holds that α(X,Y ) = 0 for X,Y ∈ ker CT by

Lemma 4.1.6 (iv). For any other vector S ∈ �(x) such that CS �= 0, we

can prove ker CT = ker CS . Since the (2m− 2)-dimensional distribution

� ⊕ ker CT is integrable and totally geodesic, it then follows that f is

completely complex ruled. �

We remark that, combining Proposition 2.3.5 with Proposition 4.1.13,

M. Dajczer and L. Rodriguez [14] prove the following theorem, which

classifies isometric minimal immersions of complete Kähler manifolds

into Euclidean spaces of real codimension two.
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Proposition 4.1.14. Let M be a complete Kähler manifold of real

dimension 2m ≥ 4, and f : M → R2m+2 an isometric minimal immersion

of real codimension two with the index of relative nullity ν.

(1) If there exists a point x ∈ M such that ν(x) < 2m− 4, then f is

holomorphic with respect to some orthogonal complex structure

of R2m+2.

(2) If ν ≥ 2m − 4 everywhere, then f is either completely complex

ruled or (2m − 4)-cylindrical.
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4.2. Bernstein property

It has been proved by E. Calabi [7] that the only complete spacelike

minimal surface in R3
1 is a plane (See also O. Kobayashi [21]). This

proves that the classical Bernstein theorem for minimal surfaces in R3

is also true when the ambient space is replaced by Minkowski 3-space

R3
1. In this section, we are concerned with some generalizations of this

Bernstein property.

In his paper [20], T. Ishihara proves the following proposition by a

standard technique which has been used in S. -Y. Cheng and S. -T. Yau

[8], and S. Nishikawa [24], for instance.

Proposition 4.2.1. Let M be a d-dimensional Riemannian manifold,

and f : M → Rd+N
N an isometric minimal immersion. If M is complete,

then f is totally geodesic.

This result can not be extended further when the index of the ambient

space is less than the codimension N . In fact, F. J. M. Estudillo and

A. Romero [16] give the following example.

Example 4.2.2. We put

φ(z) :=
1
2

t(ez − 2e−z, ez + 2e−z,−3
√−1,−1)

for z = x+
√−1y ∈ C.

Then, we have

f(x, y) := Re
∫
φdz
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=
1
2

t((ex + e−x) cos y, (ex − 2e−y) cos y, 3y,−x),

which gives rise to a nontrivial minimal immersion of a complete Kähler

manifold biholomorphic to C into R4
1.

In fact, it is verified that 〈φ(z), φ(z)〉C5
1

= 0 and 〈φ(z), φ(z)〉C5
1

=

10/4 + 2 cos 2y.

Roughly speaking, the following proposition means that an isometric

pluriharmonic immersion is totally geodesic if its tangent vectors are

apart from the orthogonal complement of some timelike vector.

Proposition 4.2.3. Let M be a Kähler manifold biholomorphic to Cm

with a global complex coordinate system (z1, . . . , zm) on M . Let f :

M → R2m+p
N be an isometric pluriharmonic immersion, where N = 0

or 1. Suppose that there exist a constant unit vector e ∈ R2m+p
N and a

positive constant ε such that

e is timelike when N = 1,

|〈e, ∂f
∂zj

〉C2m+p
1

|2 > 0,

|〈e, ∂f
∂zj

〉C2m+p
1

|2 ≥ ε|〈 ∂f
∂zj

,
∂f

∂zj
〉C2m+p

1
| for j = 1, . . . ,m.

Then f is totally geodesic.

Proof. We may consider, without loss of generality, that the constant

vector e is t(1, 0, . . . , 0). Then, from f = t(f1, . . . , f2m+p), we can

define functions ψk
j on M by

ψk
j (z) :=

∂fk

∂zj
(z)

∂f1

∂zj
(z)

for j = 1, . . . ,m and k = 1, . . . , 2m+ p,
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because M has global coordinates and |∂f
1

∂zj
| = |〈e, ∂f

∂zj
〉C2m+p

1
| > 0.

Since f is pluriharmonic, ψk
j are holomorphic. Moreover, it is observed

that ψk
j are bounded by the assumption. In fact, we see that when

N = 0,
∣∣∣∣∣
∂fk

∂zj

∂f1

∂zj

∣∣∣∣∣
2

≤
〈 ∂f
∂zj

,
∂f

∂zj
〉C2m+p

|∂f
1

∂zj
|2

≤ 1
ε
,

and when N = 1,

∣∣∣∣∣
∂fk

∂zj

∂f1

∂zj

∣∣∣∣∣
2

≤
〈 ∂f
∂zj

,
∂f

∂zj
〉C2m+p

1
+ |∂f

1

∂zj
|2

|∂f
1

∂zj
|2

≤ 1 +
1
ε
.

Therefore, ψk
j are constant functions, and hence there exist constants

ckj ∈ C such that

∂fk

∂zj
(z) = ckj

∂f1

∂zj
(z) for j = 1, . . . ,m and k = 1, . . . , 2m+ p.

Hence we have

f(z) =2 Re
∫ z

0

m∑
j=1

∂f

∂zj
dzj = 2 Re

∫ z

0

m∑
j=1




1
c2j
...

c2m+p
j



∂f1

∂zj
dzj

=2 Re
m∑

j=1




1
c2j
...

c2m+p
j


Fj(z),

where Fj is a holomorphic function. This implies that f is totally geo-

desic. �
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