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Introduction

Let f : U → R3 be a smooth map from the domain U ⊂ R2. We
call f a front if there exists a unit vector field ν along f such that
L := (f, ν) : U → T1R

3 is a Legendrian immersion, where T1R
3 is the unit

tangent bundle of R3 equipped with the canonical contact structure. For a
front f , the function λ : U → R defined as λ(u, v) := det(fu, fv, ν)(u, v),
where fu = ∂f/∂u, fv = ∂f/∂v is called the signed area density . A point
p ∈ U is called a singular point of f if f is not an immersion at p. Let
S(f ) be the set of singular points of f . A singular point p ∈ S(f ) is called
non-degenerate if dλ(p) 6= 0 holds. If p is non-degenerate, then there exists
a vector field η satisfying df (η) = 0 on S(f ) called the null vector field . A
cuspidal edge is a map germA-equivalent to (u, v) 7→ (u, v2, v3) at 0, where
two smooth map germs f and g : (R2,0) → (R3,0) are A-equivalent if
there exist a diffeomorphism S : (R2,0) → (R2,0) on the source and a
diffeomorphism T : (R3,0) → (R3,0) on the target such that T ◦f = g ◦S
holds.

Figure 1: Cuspidal edge (left) and Swallowtail (right)

Theorem 1 ([KRSUY]). Let the origin be a singular point of a front
f : U → R3.
(1) f has a cuspidal edge at the origin if and only if dλ(η) 6= 0 at 0. In
particular, at a cuspidal edge, the null direction and the singular direc-
tion are transversal.
(2) f has a swallowtail at the origin if and only if the conditions
dλ(0) 6= 0, ηλ(0) = 0 and ηηλ(0) 6= 0 are satisfied.

Cuspidal edges

Let f = (f1, f2, f3) : U → R3 be a cuspidal edge and ν = (ν1, ν2, ν3) a unit
normal vector field of f . Then, by using only coordinate transformations on
the source and isometries on the target, we obtain the following normal form
for cuspidal edges (for details, see [MS]).

Proposition 1 ([MS]).Let f : (U ; u, v) → R3 be a cuspidal edge. Using
only coordinate transformations on the source and isometries on the
target, f can be written as
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+h(u, v), (b20 ≥ 0, b03 6= 0) (1)

where

h(u, v) = (0, u4h1(u), u
4h2(u) + u2v2h3(u) + uv3h4(u) + v4h5(u, v)),

with hi(u) (1 ≤ i ≤ 4), h5(u, v) smooth functions.

We call this parametrization the normal form of cuspidal edges.
For later computations, we take a special coordinate system called adapted
coordinate system.

Definition 1.A coordinate system (U ; u, v) is called adapted if it satisfies
1) the u-axis is the singular curve,
2) ∂v gives a null vector field on the u-axis, and
3) there are no singular points other than the u-axis.

Using an adapted coordinate system, we can define the unit normal vector
field along f as ν := fu× f̃v/|fu× f̃v|, where f̃v = fv/v and × means the
vector product.

Remark 1. Let (u, v) be an adapted coordinate system on U . Since λv 6= 0,
the pair {fu, f̃v, ν} is linearly independent and fvv = f̃v holds on {v = 0}.

We define the coefficients of first and second fundamental forms forcuspidal
edges as follows.

Ẽ = 〈fu, fu〉, F̃ = 〈fu, f̃v〉, G̃ = 〈f̃v, f̃v〉,

L̃ = −〈fu, νu〉, M̃ = −〈f̃v, νu〉, Ñ = −〈f̃v, νv〉,
(2)

where 〈, 〉 denotes the inner product in R3. Using (2), we have the following
lemma.

Lemma 1.The differentials νu and νv can be written as

νu =
F̃ M̃ − G̃L̃

ẼG̃− F̃ 2
fu +

F̃ L̃− ẼM̃

ẼG̃− F̃ 2
f̃v, (3)

νv =
F̃ Ñ − vG̃M̃

ẼG̃− F̃ 2
fu +

vF̃ M̃ − ẼÑ

ẼG̃− F̃ 2
f̃v. (4)

This lemma corresponds to the Weingarten formula for regular surfaces.
Next we define the principal curvature for cuspidal edge. Let f : U → R3 be
a cuspidal edge, and let (U ; u, v) be an adapted coordinate system. Under
these conditions, we define two functions

κ̃1 :=
Ã + B̃

2v(ẼG̃− F̃ 2)
, (5)

κ̃2 :=
Ã− B̃

2v(ẼG̃− F̃ 2)
(6)

on U ,where

Ã = ẼÑ − 2vF̃ M̃ + vG̃L̃,

B̃ =

√

(ẼÑ − 2vF̃ M̃ + vG̃L̃)2 − 4v(ẼG̃− F̃ 2)(L̃Ñ − vM̃2).

In this case, we have the following.

Proposition 2.Under the above conditions, if Ñ is positive (resp. neg-
ative), then κ̃2 as in (6) converges i.e., it can be extended as a function
near a cuspidal edge (resp. diverges) and κ̃1 as in (5) diverges (resp.
converges) on S(f ).

By the construction, if Ñ is positive (resp. negative), κ̃2 (resp. κ̃1) can be
regarded as the principal curvature of the cuspidal edge. Let us assume that
Ñ is positive, that is, we consider κ̃2 in the following. And we have the prin-
cipal direction ṽ with respect to κ̃2 as follows: ṽ = (Ñ− κ̃2vG̃,−M̃+ κ̃2F̃ ).
Using the principal curvature κ̃2 and the principal direction ṽ, we define the
notion of ridge points for cuspidal edges.

Definition 2. The point f (p) is called a ridge point for f relative to
ṽ if ṽκ̃2(p) = 0, where ṽκ̃2 is the directional derivative of κ̃2 in ṽ.
Moreover, f (p) is called a k-th order ridge point for f relative to ṽ if

ṽ
(m)κ̃2(p) = 0 (1 ≤ m ≤ k) and ṽ

(k+1)κ̃2(p) 6= 0, where ṽ
(m)κ̃2 is the

directional derivative of κ̃2 with respect to ṽ applied m times .

Using this notation, we have the following lemma:

Lemma 2. Let f : U → R3 be the normal form (1) of a cuspidal edge,
κ̃2 the principal curvature and ṽ the principal direction corresponding
to κ̃2. Then the origin is a first order ridge point if and only if the
following conditions hold:
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2
03h3(0)− 8b312b03h4(0) + 16b412h5(0, 0)) 6= 0.

(8)

Parallel surfaces of cuspidal edges

We consider parallel surfaces of cuspidal edges. Let f : U → R3 be cuspidal
edges and ν be a unit normal vector of f . Then parallel surface ft : U → R3

of f is given by
ft = f + tν,

where t ∈ R is a constant. Here we can take ν as the unit normal of ft.
The signed area density for ft is

λt(u, v) = det((ft)u, (ft)v, ν)(u, v). (9)

Since S(ft) = {λt = 0}, to consider the singularity at p ∈ U , it is sufficient
to take t which satisfies λt(p) = 0. If f is a normal form (1) of a cuspidal
edge, then λt(0) = −b03t(1 − b20t)/2. Hence we have t = 0, 1/b20. We
assume b20 = κ̃2(0) 6= 0. The case of t = 0 is the initial surface, so we set
t = t0 = 1/κ̃2(0)(= 1/b20) and consider the condition that ft0 at the origin
is a swallowtail.
To apply Theorem 1, we consider the null vector field. We set the vector
field ηt0 := ℓ1(u, v)∂u + ℓ2(u, v)∂v, where ℓi(u, v) (i = 1, 2) are smooth
functions. By direct computation, ηt0 can be written as

ηt0 = −

(
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vF̃ M̃ − ẼÑ

ẼG̃− F̃ 2

)

∂u + t0
F̃ L̃− ẼM̃

ẼG̃− F̃ 2
∂v. (10)

By (10) and Theorem 1, we obtain the following:

Lemma 3. Let f : U → R3 be a cuspidal edge as given in (1) and ft0
the parallel surface of f . Then ft0 is a swallowtail at the origin if and
only if the coefficients of the normal form satisfy

b30 − a20b12 6= 0 or 4b212 + a20b
2
03 6= 0, (11)
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(13)

Combining Lemmas 2 and 3, we have the relationship between the geomet-
ric properties of cuspidal edges and the singularities which appear in parallel
surfaces.

Theorem 2. Let f : U → R3 be a cuspidal edge. Then the parallel
surface ft0 of f , where t0 = 1/κ̃2(0), has a swallowtail at the origin if
and only if the origin is a non-degenerate singular point of ft0 and a
first order ridge point of the initial surface f .

Example 1. Let f : U → R3 be a cuspidal edge given as f (u, v) =
(u, u2/2 + u3/3 + v2/2, u2 + v3/3). The coefficients of f satisfy the condi-
tions of Lemmas 2 and 3. The unit normal vector of f is

ν =
1

δ
(−2u + uv + u2v,−v, 1),

where δ =
√

1 + v2 + (−2u + uv + u2v)2. Since b20 = 2, we take the par-
allel surface ft0 as ft0 = f + ν/2. We can see a swallowtail singularity.

Figure 2: Initial cuspidal edge (left) and parallel surface (right).

Example 2. Let f : U → R3 be a cuspidal edge defined by f (u, v) :=
(u, u2/2 + u3/3 + v2/2, u2/2 + 4u3/3− uv2 + v3/3). In this case, b20 = 1
and the coefficients of f also satisfy the conditions in Lemmas 2 and 3. The
unit normal vector of f is

ν =
1

δ
(−u(1 + 2u(3 + u)) + u(1 + u)v + v2, 2u− v, 1),

where δ =
√

1 + (−2u + v)2 + (−u(1 + 2u(3 + u)) + u(1 + u)v + v2)2.
The parallel surface ft0 of f is given as ft0 = f + ν.

Figure 3: The left-hand side is f and the right-hand side is ft0.
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