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Hodge decomposition of a network

 Hodge-Kodaira decomposition of a
network (such as neural networks or
state transition diagrams) into three
components detects global loops.

- * Especially, the number of loops (1-¥), a

graph invariant, can be informative.

X := #(node) - #(edge) + #(surface)

Jiang et al. (2011)

gradient flow globally cyclic flow locally cyclic flow



Possible applications

* Ranking (by potentials)

— Layering neural networks

— Animal hierarchy

— Google rank alternative, ranking movies (Jiang et al '11)
* Loop detection (by cyclic flows)

— Detection of recurrent connections

— Inconsistency of ranking



Matrix representation of a network
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div, grad, curl for a graph

1
(div X)(D) = Y X, L, (v
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.. (grad s); =1
(grad $)(i, /) =5, = 5 S
j i
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Examples of operators
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Essence of decomposition
of any flows into 3 classes of flows

all possible potentials | 87d | 3ll possible flows curl ' Sl possible curls

(functions on vertices) (functions on edges) (functions on “faces” )

Flows have 2 x 2 possibilities: (gradient or not) x (curl-free or not)
But, as “gradient is always curl-free”, one possibility disappears.

curlegrad =0

Then, flows have only 3 classes:

* Gradient flow

 Non-gradient and curl-free flow (=: harmonic)
* Non-gradient and curl flow



Cf: continuous case (3d Euclidean)
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Integral = inner product of flow & path

Integrand

(Cohomology)

Path
(Homology)

Gradient flow

Locally cyclic flow

Not a boundary
Not a loop

Boundary of a surface
Loop

(K. Polthier, MAIPCV 2011)

Globally cyclic flow

Non-zero
Integral

Not a boundary
~+ | Loop

"Gradient is curl free” and ”a boundary is a loop” guarantee decompositions into three components.
Cf. A slight change of a path by adding a local loop does not make difference in integral for a harmonic flow.
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Biological learning rule generates loops

1. Hebbian learning rule 2. STDP learning rule
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No loop (triangle or larger)

Many loops (and paths)




Aoki-Aoyagi Model: coupling strengths
of a network change over time

w2 cQ Tw: Two-cluster state
3 Tw/ C o Ch ' Co: Coherent state
0 B Ch: Chaotic state

Hebbian-like STDP-like Func. Anti Hebbian-like
Func. T Func.

(Aoki & Aoyagi, PRL 2009)
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The goal is to subdivide the chaotic region in the bifurcation diagram.

1. “Graphinvariants”, independent of labeling, are necessary as we start
with random initial conditions.

2. STDP tends to make loops (Buonomano05,09,Magnasco09PRL).
—> #loops in Hodge decomposition can be useful?



Details of parameters

N = 100 (#neuron, similar results for N=20-200)

Regular random graph

p=0.05-0.25 (p=0.1 optimal)
(Kahle and Meckes, 2010)

Neurons as phase oscillators
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Threshold = 0.05 or 0.2 < |coupling| for “existence” of edges
a=0.1 or 0.3 (0.1 settled down quicker)




Aoki-Aoyagi Model: coupling strengths
of a network change over time

(Aoki & Aoyagi, PRL 2009)
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(#node,#edge)=(0,0)
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p=-0.45 p=-0.35 B=-0.25 B=-0.15 B=-0.05 3=0.05 B=0.15
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Summary

* We applied the Hodge-Kodaira decomposition
to the evolving neural networks.

A model with a STDP-rule, which tends to
form paths coincident with causal firing
orders, had the most loops.

 The dimension of each flow not only reflected
the known bifurcation diagram but also
detected the inhomogeneity inside the chaotic
region.



