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•  Hodge-­‐Kodaira	
  decomposi0on	
  of	
  a	
  
network	
  (such	
  as	
  neural	
  networks	
  or	
  
state	
  transi0on	
  diagrams)	
  into	
  three	
  
components	
  detects	
  global	
  loops.	
  

•  Especially,	
  the	
  number	
  of	
  loops	
  (1-­‐χ),	
  a	
  
graph	
  invariant,	
  can	
  be	
  informa0ve.	
  

　  	
  χ	
  	
  :=　#(node)	
  -­‐	
  #(edge)	
  +	
  #(surface)	
  

Jiang	
  et	
  al.	
  (2011)	




Possible	
  applica0ons	


•  Ranking	
  (by	
  poten0als)	
  
– Layering	
  neural	
  networks	
  
– Animal	
  hierarchy	
  
– Google	
  rank	
  alterna0ve,	
  ranking	
  movies	
  (Jiang	
  et	
  al	
  ’11)	
  

•  Loop	
  detec0on	
  (by	
  cyclic	
  flows)	
  
– Detec0on	
  of	
  recurrent	
  connec0ons	
  
–  Inconsistency	
  of	
  ranking	
  



Matrix	
  representa0on	
  of	
  a	
  network	
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div,	
  grad,	
  curl	
  for	
  a	
  graph	


(div X)(i) = Xij
j
∑

(grad s)(i, j) = sj − si

(curl X)(i, j,k) = Xij + Xjk + Xki
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 (div	
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(grad	
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curl	
  =	
  3	




Examples	
  of	
  operators	
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Essence	
  of	
  decomposi0on	
  
	
  of	
  any	
  flows	
  into	
  3	
  classes	
  of	
  flows	


all	
  possible	
  flows	
  
(func0ons	
  on	
  edges)	


Flows	
  have	
  2	
  x	
  2	
  possibili0es:	
  	
  	
  (gradient	
  or	
  not)	
  	
  x	
  	
  (curl-­‐free	
  or	
  not)	
  
But,	
  as	
  “gradient	
  is	
  always	
  curl-­‐free”,	
  one	
  possibility	
  disappears.	
  
	
  
	
  
Then,	
  flows	
  have	
  only	
  3	
  classes:	
  
•  Gradient	
  flow	
  
•  Non-­‐gradient	
  and	
  curl-­‐free	
  flow	
  (=:	
  harmonic)	
  
•  Non-­‐gradient	
  and	
  curl	
  flow	
  

curl	
  ◦	
  grad	
  =	
  0	
  

all	
  possible	
  curls	
  
(func0ons	
  on	
  “faces”	
  )	


all	
  possible	
  poten0als	
  
(func0ons	
  on	
  ver0ces)	


grad	
 curl	




Cf:	
  con0nuous	
  case	
  (3d	
  Euclidean)	


=	


df = ∂f
∂x
dx + ∂f

∂y
dy+ ∂f

∂z
dz

A = Axdx + Aydy+ Azdz

dA = ∂Ax

∂y
dy∧dx +... = (∂Az

∂y
−
∂Ay

∂z
)dy∧dz+ (∂Ax

∂z
−
∂Az
∂x
)dz∧dx + (

∂Ay

∂x
−
∂Ax

∂y
)dx∧dy



Integral	
  =	
  inner	
  product	
  of	
  flow	
  &	
  path	


Not	
  a	
  boundary	
  
Not	
  a	
  loop	
  

Not	
  a	
  boundary	
  
Loop	
  

Boundary	
  of	
  a	
  surface	
  
Loop	
  ＋	
 ＋	


Integrand	
  
(Cohomology)	


Path	
  
(Homology)	
 ＝	


Simplicial Approximation Section 2.C 181

for each simplex σ of K since for any choice of x ∈ σ we have d
(
x, f(x)

)
> ε ,

while g(σ) lies within distance ε/2 of f(x) and σ lies within distance ε/2 of x , as

a consequence of the fact that σ is contained in a simplex of L , K being a subdivision

of L .

The Lefschetz numbers τ(f ) and τ(g) are equal since f and g are homotopic.

Since g is simplicial, it takes the n skeleton Kn of K to the n skeleton Ln of L , for

each n . Since K is a subdivision of L , Ln is contained in Kn , and hence g(Kn) ⊂ Kn

for all n . Thus g induces a chain map of the cellular chain complex {Hn(Kn,Kn−1)}
to itself. This can be used to compute τ(g) according to the formula

τ(g) =
∑

n
(−1)n tr

(
g∗ :Hn(K

n,Kn−1)→Hn(K
n,Kn−1)

)

This is the analog of Theorem 2.44 for trace instead of rank, and is proved in precisely

the same way, based on the elementary algebraic fact that trace is additive for endo-

morphisms of short exact sequences: Given a com-

mutative diagram as at the right with exact rows, 0 A
α β γ

−−−→ −−−→ −−−→−−→ B−−−→ C−−−→ 0−−→
0 A−−→ B−−−→ C−−−→ 0−−→then trβ = trα + trγ . This algebraic fact can be

proved by reducing to the easy case that A , B , and

C are free by first factoring out the torsion in B , hence also the torsion in A , then

eliminating any remaining torsion in C by replacing A by a larger subgroup A′ ⊂ B ,

with A having finite index in A′ . The details of this argument are left to the reader.

Finally, note that g∗ :Hn(K
n,Kn−1)→Hn(K

n,Kn−1) has trace 0 since the matrix

for g∗ has zeros down the diagonal, in view of the fact that g(σ)∩ σ = ∅ for each

n simplex σ . So τ(f ) = τ(g) = 0. )⊓

Example 2C.4. Let us verify the theorem in an example. Let X be the closed ori-

entable surface of genus 3 as shown in the figure below, with f :X→X the 180

degree rotation about a vertical axis

passing through the central hole of

X . Since f has no fixed points, we

1

1

α

β

2

2

α

2α

β

3

3

α

β

′

should have τ(f ) = 0. The induced

map f∗ :H0(X)→H0(X) is the iden-

tity, as always for a path-connected space, so this contributes 1 to τ(f ) . For H1(X)
we saw in Example 2A.2 that the six loops αi and βi represent a basis. The map

f∗ interchanges the homology classes of α1 and α3 , and likewise for β1 and β3 ,

while β2 is sent to itself and α2 is sent to α′2 which is homologous to α2 as we

saw in Example 2A.2. So f∗ :H1(X)→H1(X) contributes −2 to τ(f ) . It remains

to check that f∗ :H2(X)→H2(X) is the iden-

tity, which we do by the commutative diagram

at the right, where x is a point of X in the cen-

−−−−−→ −−−−−−−−−−−→

−−−−−→

XH2( )

X xXH2( )}{, ! X yXH2( )}{, !
f∗

f∗

≈

−−−−−→ XH2( )
≈

tral torus and y = f(x) . We can see that the

”Gradient	
  is	
  curl	
  free”	
  and	
  ”a	
  boundary	
  is	
  a	
  loop”	
  guarantee	
  decomposi0ons	
  into	
  three	
  components.	
  
Cf.	
  A	
  slight	
  change	
  of	
  a	
  path	
  by	
  adding	
  a	
  local	
  loop	
  does	
  not	
  make	
  difference	
  in	
  integral	
  for	
  a	
  harmonic	
  flow.	
  

Non-­‐zero	
  
Integral	
  

Gradient	
  flow	
 Locally	
  cyclic	
  flow	
 Globally	
  cyclic	
  flow	


(K.	
  Polthier,	
  MAIPCV	
  2011)	
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Biological	
  learning	
  rule	
  generates	
  loops	


Hebbian	
  rule	


STDP-­‐rule	


No	
  loop	
  (triangle	
  or	
  larger)	


Many	
  loops	
  (and	
  paths)	


1.	
  Hebbian	
  learning	
  rule	
 2.	
  STDP	
  learning	
  rule	




Aoki-­‐Aoyagi	
  Model:	
  coupling	
  strengths	
  
of	
  a	
  network	
  change	
  over	
  0me	


The	
  goal	
  is	
  to	
  subdivide	
  the	
  chao0c	
  region	
  in	
  the	
  bifurca0on	
  diagram.	
  
1.  “Graph	
  invariants”,	
  independent	
  of	
  labeling,	
  are	
  necessary	
  as	
  we	
  start	
  

with	
  random	
  ini0al	
  condi0ons.	
  
2.  STDP	
  tends	
  to	
  make	
  loops	
  (Buonomano05,09,Magnasco09PRL).	
  
→　#loops	
  in	
  Hodge	
  decomposi0on	
  can	
  be	
  useful?	
  

where the natural frequencies are assumed to be identical,
and we choose, !i ¼ 1, without loss of generality. This
system is characterized by the two parameters ! and " [7].
In the above simple model, the functions !ð#Þ and "ð#Þ
are approximated by only the first Fourier mode. However,
we have theoretically and numerically confirmed that even
if small higher-order modes are included in these func-
tions, the results given below qualitatively unchanged, and
that they are structurally stable.

First, we consider the case of a two-oscillator system. In
this case, the dynamics can be written in terms of three
variables, ##ð$ #1 %#2Þ, k12 and k21, as

d##

dt
¼ %k12 sinð##þ !Þ þ k21 sinð%##þ !Þ;

dk12
dt

¼ %$ sinð##þ "Þ; dk21
dt

¼ %$ sinð%##þ "Þ:

(4)

The condition $ ' 1 implies that the time scale for ## is
much shorter than that for kij, and hence ## quickly
relaxes to the equilibrium value, ##(. (The value ##( is
given by the condition tanð##(Þ ¼ % k12%k21

k12þk21
tan!, ob-

tained from d##
dt ¼ 0.) We can thus eliminate ## in

Eq. (4). In addition to the fixed point satisfying dk12
dt ¼

dk21
dt ¼ 0, there is another type of steady state, in which
the weights are given by the limiting values, i.e., kij ¼ )1.
Owing to the symmetry of the system, there are two types
of such steady states: symmetric, with ðk(12; k(21Þ ¼
ð)1;)1Þ, and asymmetric, with ()1, *1). The condition
for the stability of these states is sgnð% sinð##( þ "ÞÞ ¼
sgnðk(12Þ and sgnð% sinð%##( þ "ÞÞ ¼ sgnðk(21Þ. From
the above analysis, we obtain the phase diagram appearing
in Fig. 1(a). We find that the two-oscillator system exhibits
three types of asymptotic states: symmetric, asymmetric,
and chaotic. Furthermore, we also obtained the phase
diagram for the case of a large number of phase oscillators
appearing in Fig. 2(a). Roughly speaking, we found that the
system exhibits three types of asymptotic states corre-
sponding to those in the two-oscillator system. Below, we
examine the dynamical properties of each state in detail,
focusing mainly on the dependence on ", because the
system not strongly depend on !.

We first investigate the region " 2 ð%%; 0Þ, in which
the symmetric state is stable for the two-oscillator system.
In this case, the weights of the two directed links have the
same limiting value, i.e., ðk12; k21Þ ¼ ð)1;)1Þ, as shown
in Fig. 1. Around the center of this region, we have
"ð##Þ + cosð##Þ and therefore the coupling weight is
increased (decreased) when the phase difference of the two
oscillators is small (large). In other words, the evolution of
the weights obeys a like-and-like (different-and-different)
rule. Note that this situation is qualitatively similar to that
of Hebbian learning [8]. Consequently, the system exhibits
either in-phase synchronization with positive couplings or

antiphase synchronization with negative couplings, de-
pending on the initial conditions.
For a many-oscillator system in the same parameter

region, a two-cluster state appears, as shown in Fig. 2(b).
The left graph displays the time development of the order
parameters (j 1N

P
je

im#j j, with m ¼ 1, 2), and the normal-

ized rate of change of the coupling weights averaged over
all kij. The fact that the order parameter for m ¼ 2 con-
verges to 1 implies that a two-cluster state with antiphase
synchronization is realized, and the fact that the rate of
change of the total weight converges to zero indicates that
the weights become frozen. As a result, a stable two-cluster
steady state emerges, and the convergence time depends
little on the system size. The middle graph displays the
phase distribution after the transient period, in which the
oscillators are divided into two clusters. The ratio of the
populations of the two clusters generally depends on the
initial conditions. From the graph, it is seen that the two
clusters with almost equal sizes appear when the initial
phases are chosen uniformly from the range ½0; 2%Þ. From
the right graph for the weight matrix kij, we can see that the
couplings within a cluster (## ¼ 0) are in the state kij ¼
kji ¼ 1, whereas those between different clusters (## ¼
%) are in the state kij ¼ kji ¼ %1. This is essentially the
same as the result for the two-oscillator system.
In the region " 2 ð% %

2 ;
%
2Þ, asymmetric coupling ap-

pears in the two-oscillator system, whereas a bistable
region, in which the symmetric coupling is also stable,
exists in the region " 2 ð% %

2 ; 0Þ. Around the center of
this region, we have "ð##Þ + % sinð##Þ, and thus here,
the sign of "ð##Þ is opposite for ## ¼ )##(. This
causes changes of the two coupling weights in opposite
directions. This situation is essentially the same as that in
the case of the rule for spike-timing dependent plasticity

(a)

(b) Symmetric (c) Bistable (d) Asymmetric (e) Chaos

Hebbian-like
  Func.

STDP-like Func. Anti Hebbian-like
Func.−π 0 π−π 0 π−π 0 π

β0

π/2

−π 0 π
α Sym.

Sym./
Asym. Asym. Chaos

b c d e

FIG. 1 (color online). (a) Two-parameter phase diagram of a
two-oscillator system showing the dependence on ! and ". The
asymptotic states can be classified into three types: symmetric,
asymmetric and chaotic. In the bistable region, both the sym-
metric and asymmetric states are stable. The bottom graphs
elucidate that the nature of "ð##Þ changes with the parameter
". (b)–(e) Phase portraits of the system in the (k12, k21) plane
obtained using an adiabatic approximation for each state. The
blue and green lines represent the nullclines for k12 and k21,
respectively. The black circles indicate stable fixed points.
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(STDP), reported recently [1]. Because of this property of
!ð"!Þ, the weights have opposite signs with the same
strength, and this results in a "

2-phase-locking state.
In the case of many oscillators, in contrast to that of two

oscillators, it is impossible for any pair of oscillators to
synchronize with the phase difference "!# ¼ % "

2 . As
shown in Fig. 2(c), our numerical simulations reveal that
the phases of the oscillators are almost uniformly dis-
tributed, not organized into clusters. However, the fact
that the rate of change of the weights eventually vanishes
implies that the system settles into a stable steady state.
With respect to the phase patterns, the autocorrelation
function Corrð#Þ ¼ hj 1N

P
je

i!jðtÞe&i!jðt&#Þji does not de-

cay, remaining constant in time. This indicates that the
relative phase relations among the oscillators are main-
tained in a steady state. From these pieces of evidence,
we can conclude that the system is in an ordered state,
which is referred to as a coherent state with a fixed phase
relation. In addition, we found through numerical compu-
tations that the relative phases and weights satisfy the
relation, kij ¼ sgnð&sinð!i &!j þ $ÞÞ. Examining the
linear stability of the coherent state with respect to per-
turbations of the phases, the eigenvalues in the simulta-
neous limits N ! 1 and % ! 0 can be derived as

Re&k ¼ & 2
" sinð' & $Þ= & 2

" sinð' & $Þ & 2
"ðk2&1Þ (

ð cosk$ sinð' & $Þ þ k sink$ cosð' & $ÞÞ, when k is
even or odd. In Fig. 2(a), we present the stable region of
the coherent state determined by this analysis.
For the case of many oscillators, let us examine the

region in which both the two-cluster state and the coherent
state are unstable. As shown in Fig. 2(d), the system then
exhibits a chaotic state with frustration, in which the rate of
change of the weights does not converge to 0 and the
autocorrelation function for the phase pattern quickly de-
cays to zero. These results imply that both the structure of
the weighted network and the phase pattern continue to
change with time through their co-evolving dynamics. In
fact, in a snapshot of kij, no coherence is observed [right
graph in Fig. 2(d)]. This behavior can be understood in-
tuitively as resulting from the appearance of a kind of
frustration between the co-evolution of the phases and
the coupling weights. In the parameter region, the function
!ð"!Þ is qualitatively similar to& cosð"!Þ. This tends to
decrease the coupling weights among synchronized oscil-
lators and to increase those among the oscillators of differ-
ent phases. As a result, both the phase pattern and the
network structure are reciprocally destabilized, as illus-
trated in Fig. 3(a). This evolution rule of the weights has
the opposite effect of the like-and-like rule (Hebbian-like)
in the case of a two-cluster state. We thus refer to this rule
as anti-Hebbian-like rule.

(a) (b)
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Mutual Information Entropy
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its

) Two-cluster state
Coherent state

Chaotic state

FIG. 3 (color online). (a) A schematic illustration of co-
evolution of both phase oscillators and network connections.
1. The phase pattern causes the structure of the weighted network
to change. 2. The change undergone by the weights causes a new
phase pattern to appear. 3. The change of the phase pattern
results in further modulation of the weights of the network.
4. This process repeats. (b) A trajectory for the chaotic state of
the two-oscillator system, with ' ¼ 0:1", $ ¼ 0:55", and % ¼
0:005. (c) Lyapunov exponents as functions of %. The inset
displays a log-log plot, with a fitting curve satisfying & / %1=2.
(d) Mutual information between the initial and final phase
patterns and the entropy of the final phase pattern for the three
asymptotic states. The parameter values here are the same as in
(b), (c), and (d) of Fig. 2. The horizontal dashed line represents
the maximum attainable entropy for the phase pattern.
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FIG. 2 (color online). (a) Phase diagram of an N oscillator
system (N ¼ 200). The asymptotic states appearing in the re-
gions depicted are a two-cluster state, a coherent state with a
fixed phase relation, and a chaotic state with frustration. (b)–
(d) Three typical simulation results. (left) Time evolution of the
order parameters and the normalized rate of change averaged
over all weights. (middle) Distribution of the phase !i at t ¼
1000. The inset displays the autocorrelation function of the
phase pattern. (right) The weight matrix kij in the final state (t ¼
1000). The indices i and j of oscillators are arranged in order of
increasing phase. The parameter value is % ¼ 0:005, and the
initial conditions for kij were chosen randomly from a uniform
distribution on ½&1; 1*.
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  &	
  Aoyagi,	
  PRL	
  2009)	




Details	
  of	
  parameters	

•  N	
  =	
  100	
  (#neuron,	
  similar	
  results	
  for	
  N=20-­‐200)	
  
•  Regular	
  random	
  graph	
  
•  p=0.05-­‐0.25	
  (p=0.1	
  op0mal)	
  

•  Neurons	
  as	
  phase	
  oscillators	
  

	
  

•  Threshold	
  =	
  0.05	
  or	
  0.2	
  <	
  |coupling|	
  for	
  “existence”	
  of	
  edges	
  
•  α=0.1	
  or	
  0.3	
  (0.1	
  semled	
  down	
  quicker)	
  

2 MATTHEW KAHLE AND ELIZABETH MECKES

Figure 1. The Betti numbers of X(n, p) plotted vertically against
edge probability p; in this example n = 100. Computation and
graphic courtesy of Afra Zomorodian.

are homotopy equivalent to Edelsbrunner and Mücke’s alpha shapes, widely ap-
plied in computational geometry and topology [6]. The analysis needed to obtain
limit theorems for the Betti numbers of random Čech complexes is more subtle
that what is needed for the Erdös-Rényi model; to prove the normal and Poisson
approximation theorems we must first establish limit theorems for certain hyper-
graph counts, extending some of Mathew Penrose’s results for subgraph counts for
geometric random graphs [15].

The final type of complex considered is the random Vietoris-Rips complex, de-
noted V R(n, r). This is similar to the random Čech complex; the construction is
to take the clique complex of a random geometric graph. (A useful reference for
geometric random graphs is [15].) The topology is very different than for the clique
complex of the Erdős-Rényi random graph; for the contrast between X(n, p) and
V R(n, r) see Figures 1 and 2. The analysis needed to obtain limit theorems for the
Betti numbers of V R(n, r) is nevertheless essentially identical to that needed for the
random Čech complex. A minor example of this fact is that in both cases, since β0

counts the number of connected components for the Čech and Rips complexes, β0 is
actually the same in each of these cases and is equal to the number of components
of the random geometric graph. This has already been treated in detail by Penrose
[15], and so when convenient we will restrict attention to βk for k ≥ 1.

The techniques throughout the paper are a combination of inequalities derived
from combinatorial and topological considerations with Stein’s method. (For an
introduction to topological combinatorics see [4]; for a survey of Stein’s method in
proving Poisson approximation theorems see [5], and for an introduction to Stein’s
method for normal approximation, see [17].)

1.1. Notation and conventions. Throughout this article, we use Bachmann-
Landau big-O, little-O, and related notations. In particular, for non-negative func-
tions g and h, we write the following.

Most	
  global	
  cyclic	
  
flows	
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  p=0.1	


(Kahle	
  and	
  Meckes,	
  2010)	
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where the natural frequencies are assumed to be identical,
and we choose, !i ¼ 1, without loss of generality. This
system is characterized by the two parameters ! and " [7].
In the above simple model, the functions !ð#Þ and "ð#Þ
are approximated by only the first Fourier mode. However,
we have theoretically and numerically confirmed that even
if small higher-order modes are included in these func-
tions, the results given below qualitatively unchanged, and
that they are structurally stable.

First, we consider the case of a two-oscillator system. In
this case, the dynamics can be written in terms of three
variables, ##ð$ #1 %#2Þ, k12 and k21, as

d##

dt
¼ %k12 sinð##þ !Þ þ k21 sinð%##þ !Þ;

dk12
dt

¼ %$ sinð##þ "Þ; dk21
dt

¼ %$ sinð%##þ "Þ:

(4)

The condition $ ' 1 implies that the time scale for ## is
much shorter than that for kij, and hence ## quickly
relaxes to the equilibrium value, ##(. (The value ##( is
given by the condition tanð##(Þ ¼ % k12%k21

k12þk21
tan!, ob-

tained from d##
dt ¼ 0.) We can thus eliminate ## in

Eq. (4). In addition to the fixed point satisfying dk12
dt ¼

dk21
dt ¼ 0, there is another type of steady state, in which
the weights are given by the limiting values, i.e., kij ¼ )1.
Owing to the symmetry of the system, there are two types
of such steady states: symmetric, with ðk(12; k(21Þ ¼
ð)1;)1Þ, and asymmetric, with ()1, *1). The condition
for the stability of these states is sgnð% sinð##( þ "ÞÞ ¼
sgnðk(12Þ and sgnð% sinð%##( þ "ÞÞ ¼ sgnðk(21Þ. From
the above analysis, we obtain the phase diagram appearing
in Fig. 1(a). We find that the two-oscillator system exhibits
three types of asymptotic states: symmetric, asymmetric,
and chaotic. Furthermore, we also obtained the phase
diagram for the case of a large number of phase oscillators
appearing in Fig. 2(a). Roughly speaking, we found that the
system exhibits three types of asymptotic states corre-
sponding to those in the two-oscillator system. Below, we
examine the dynamical properties of each state in detail,
focusing mainly on the dependence on ", because the
system not strongly depend on !.

We first investigate the region " 2 ð%%; 0Þ, in which
the symmetric state is stable for the two-oscillator system.
In this case, the weights of the two directed links have the
same limiting value, i.e., ðk12; k21Þ ¼ ð)1;)1Þ, as shown
in Fig. 1. Around the center of this region, we have
"ð##Þ + cosð##Þ and therefore the coupling weight is
increased (decreased) when the phase difference of the two
oscillators is small (large). In other words, the evolution of
the weights obeys a like-and-like (different-and-different)
rule. Note that this situation is qualitatively similar to that
of Hebbian learning [8]. Consequently, the system exhibits
either in-phase synchronization with positive couplings or

antiphase synchronization with negative couplings, de-
pending on the initial conditions.
For a many-oscillator system in the same parameter

region, a two-cluster state appears, as shown in Fig. 2(b).
The left graph displays the time development of the order
parameters (j 1N

P
je

im#j j, with m ¼ 1, 2), and the normal-

ized rate of change of the coupling weights averaged over
all kij. The fact that the order parameter for m ¼ 2 con-
verges to 1 implies that a two-cluster state with antiphase
synchronization is realized, and the fact that the rate of
change of the total weight converges to zero indicates that
the weights become frozen. As a result, a stable two-cluster
steady state emerges, and the convergence time depends
little on the system size. The middle graph displays the
phase distribution after the transient period, in which the
oscillators are divided into two clusters. The ratio of the
populations of the two clusters generally depends on the
initial conditions. From the graph, it is seen that the two
clusters with almost equal sizes appear when the initial
phases are chosen uniformly from the range ½0; 2%Þ. From
the right graph for the weight matrix kij, we can see that the
couplings within a cluster (## ¼ 0) are in the state kij ¼
kji ¼ 1, whereas those between different clusters (## ¼
%) are in the state kij ¼ kji ¼ %1. This is essentially the
same as the result for the two-oscillator system.
In the region " 2 ð% %

2 ;
%
2Þ, asymmetric coupling ap-

pears in the two-oscillator system, whereas a bistable
region, in which the symmetric coupling is also stable,
exists in the region " 2 ð% %

2 ; 0Þ. Around the center of
this region, we have "ð##Þ + % sinð##Þ, and thus here,
the sign of "ð##Þ is opposite for ## ¼ )##(. This
causes changes of the two coupling weights in opposite
directions. This situation is essentially the same as that in
the case of the rule for spike-timing dependent plasticity

(a)

(b) Symmetric (c) Bistable (d) Asymmetric (e) Chaos

Hebbian-like
  Func.

STDP-like Func. Anti Hebbian-like
Func.−π 0 π−π 0 π−π 0 π

β0

π/2

−π 0 π
α Sym.

Sym./
Asym. Asym. Chaos

b c d e

FIG. 1 (color online). (a) Two-parameter phase diagram of a
two-oscillator system showing the dependence on ! and ". The
asymptotic states can be classified into three types: symmetric,
asymmetric and chaotic. In the bistable region, both the sym-
metric and asymmetric states are stable. The bottom graphs
elucidate that the nature of "ð##Þ changes with the parameter
". (b)–(e) Phase portraits of the system in the (k12, k21) plane
obtained using an adiabatic approximation for each state. The
blue and green lines represent the nullclines for k12 and k21,
respectively. The black circles indicate stable fixed points.
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(STDP), reported recently [1]. Because of this property of
!ð"!Þ, the weights have opposite signs with the same
strength, and this results in a "

2-phase-locking state.
In the case of many oscillators, in contrast to that of two

oscillators, it is impossible for any pair of oscillators to
synchronize with the phase difference "!# ¼ % "

2 . As
shown in Fig. 2(c), our numerical simulations reveal that
the phases of the oscillators are almost uniformly dis-
tributed, not organized into clusters. However, the fact
that the rate of change of the weights eventually vanishes
implies that the system settles into a stable steady state.
With respect to the phase patterns, the autocorrelation
function Corrð#Þ ¼ hj 1N

P
je

i!jðtÞe&i!jðt&#Þji does not de-

cay, remaining constant in time. This indicates that the
relative phase relations among the oscillators are main-
tained in a steady state. From these pieces of evidence,
we can conclude that the system is in an ordered state,
which is referred to as a coherent state with a fixed phase
relation. In addition, we found through numerical compu-
tations that the relative phases and weights satisfy the
relation, kij ¼ sgnð&sinð!i &!j þ $ÞÞ. Examining the
linear stability of the coherent state with respect to per-
turbations of the phases, the eigenvalues in the simulta-
neous limits N ! 1 and % ! 0 can be derived as

Re&k ¼ & 2
" sinð' & $Þ= & 2

" sinð' & $Þ & 2
"ðk2&1Þ (

ð cosk$ sinð' & $Þ þ k sink$ cosð' & $ÞÞ, when k is
even or odd. In Fig. 2(a), we present the stable region of
the coherent state determined by this analysis.
For the case of many oscillators, let us examine the

region in which both the two-cluster state and the coherent
state are unstable. As shown in Fig. 2(d), the system then
exhibits a chaotic state with frustration, in which the rate of
change of the weights does not converge to 0 and the
autocorrelation function for the phase pattern quickly de-
cays to zero. These results imply that both the structure of
the weighted network and the phase pattern continue to
change with time through their co-evolving dynamics. In
fact, in a snapshot of kij, no coherence is observed [right
graph in Fig. 2(d)]. This behavior can be understood in-
tuitively as resulting from the appearance of a kind of
frustration between the co-evolution of the phases and
the coupling weights. In the parameter region, the function
!ð"!Þ is qualitatively similar to& cosð"!Þ. This tends to
decrease the coupling weights among synchronized oscil-
lators and to increase those among the oscillators of differ-
ent phases. As a result, both the phase pattern and the
network structure are reciprocally destabilized, as illus-
trated in Fig. 3(a). This evolution rule of the weights has
the opposite effect of the like-and-like rule (Hebbian-like)
in the case of a two-cluster state. We thus refer to this rule
as anti-Hebbian-like rule.
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FIG. 3 (color online). (a) A schematic illustration of co-
evolution of both phase oscillators and network connections.
1. The phase pattern causes the structure of the weighted network
to change. 2. The change undergone by the weights causes a new
phase pattern to appear. 3. The change of the phase pattern
results in further modulation of the weights of the network.
4. This process repeats. (b) A trajectory for the chaotic state of
the two-oscillator system, with ' ¼ 0:1", $ ¼ 0:55", and % ¼
0:005. (c) Lyapunov exponents as functions of %. The inset
displays a log-log plot, with a fitting curve satisfying & / %1=2.
(d) Mutual information between the initial and final phase
patterns and the entropy of the final phase pattern for the three
asymptotic states. The parameter values here are the same as in
(b), (c), and (d) of Fig. 2. The horizontal dashed line represents
the maximum attainable entropy for the phase pattern.
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FIG. 2 (color online). (a) Phase diagram of an N oscillator
system (N ¼ 200). The asymptotic states appearing in the re-
gions depicted are a two-cluster state, a coherent state with a
fixed phase relation, and a chaotic state with frustration. (b)–
(d) Three typical simulation results. (left) Time evolution of the
order parameters and the normalized rate of change averaged
over all weights. (middle) Distribution of the phase !i at t ¼
1000. The inset displays the autocorrelation function of the
phase pattern. (right) The weight matrix kij in the final state (t ¼
1000). The indices i and j of oscillators are arranged in order of
increasing phase. The parameter value is % ¼ 0:005, and the
initial conditions for kij were chosen randomly from a uniform
distribution on ½&1; 1*.
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Summary	


•  We	
  applied	
  the	
  Hodge-­‐Kodaira	
  decomposi0on	
  
to	
  the	
  evolving	
  neural	
  networks.	
  

•  A	
  model	
  with	
  a	
  STDP-­‐rule,	
  which	
  tends	
  to	
  
form	
  paths	
  coincident	
  with	
  causal	
  firing	
  
orders,	
  had	
  the	
  most	
  loops.	
  

•  The	
  dimension	
  of	
  each	
  flow	
  not	
  only	
  reflected	
  
the	
  known	
  bifurca0on	
  diagram	
  but	
  also	
  
detected	
  the	
  inhomogeneity	
  inside	
  the	
  chao0c	
  
region.	
  


