全行列環の森田同値

黒木 玄

2008年5月8日(木)

1 全行列環の森田同値

R は (可換とは限らない) 任意の環であるとし, m, n は正の整数であるとする. R の元を成分に持つ n 次正方行列全体のなす環 (全行列環) を $M_n(R)$ と表わす. R の元を成分に持つ $m \times n$ 行列全体の集合を $M_{m,n}(R)$ と表わす. $M_{m,n}(R)$ は自然に $(M_m(R), M_n(R))$ 加群とみなされる.

定理 1.1 左 R 加群の圏と左 $M_n(R)$ 加群の圏は互いに同値である.

証明. (R,R) 加群の自然な同型 $M_{1,n}(R)\otimes_{M_n(R)}M_{n,1}(R)\cong R$ と $(M_n(R),M_n(R))$ 加群の自然な同型 $M_{n,1}(R)\otimes_R M_{1,n}(R)\cong M_n(R)$ が存在する. よって左 R 加群 M を $M_{n,1}(R)\otimes_R M$ に対応させる函手と左 $M_n(R)$ 加群 N を $M_{1,n}(R)\otimes_{M_n(R)}N$ に対応させる函手は左 R 加群の圏と左 $M_n(R)$ 加群の圏のあいだの圏同値を与える.

注意 1.2 上の証明の議論は次のように一般化される. $(M_m(R),M_m(R))$ 加群の自然な同型 $M_{m,n}(R)\otimes_{M_n(R)}M_{n,m}(R)\cong M_m(R)$ と $(M_n(R),M_n(R))$ 加群の自然な同型 $M_{n,m}(R)\otimes_{M_m(R)}M_{m,n}(R)\cong M_n(R)$ が存在する. よって左 $M_m(R)$ 加群 M を $M_{n,m}(R)\otimes_{M_m(R)}M$ に対応させる函手と左 $M_n(R)$ 加群 N を $M_{m,n}(R)\otimes_{M_n(R)}N$ に対応させる函手は左 $M_n(R)$ 加群の圏と左 $M_n(R)$ 加群の圏のあいだの圏同値を与える. \square

2 全行列環の左イデアルの分類

 $M_n(R)$ は左 $M_n(R)$ 加群として $M_{n,1}(R)^n$ と自然に同一視される. その同一視によって $M_n(R)$ の左イデアルは $M_{n,1}(R)^n$ の左 $M_n(R)$ 部分加群と対応している.

森田同値によって、左 $M_n(R)$ 加群 $M_{n,1}(R)^n$ は左 R 加群 R^n に対応しており、さらに $M_{n,1}(R)^n$ の左 $M_n(R)$ 部分加群は $M_{1,n}(R)\cong R^n$ の左 R 部分加群と一対一に対応している.

よって $M_n(R)$ の左イデアル I と $M_{1,n}(R)\cong R^n$ の左 R 部分加群 M が $M\mapsto I=M_{n,1}(R)\otimes_R M$ によって一対一に対応している.