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§1. Introduction

Isomonodromic Systems
= Isomonodromic Deformations + Discrete Symmetries

Jimbo-Miwa-Ueno, Physica 2D, 1981.
Jimbo-Miwa, Physica 2D, 4D, 1981.

e [somonodromic deformations
= monodromy preserving deformations (differential equations) of
rational connections on P{ (or on compact Riemann surfaces).

o Deformation parameters = time variables
= positions of singularities and irregular types of irregular singularities

e Discrete symmetries
= discrete group actions compatible with isomonodromic deformations.
= Backlund transformations of deformation differential equations
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Quantizations of isomonodromic deformations

e the Schlesinger equations — the Knizhnik-Zamolodchikov equations
(Reshetikhin (LMP26, 1992), Harnad (hep-th/9406078))
The KZ equations have hypergeometric integral solutions.

e the generalized Schlesinger equations (rank-1 irreg. sing. at oo)

—— the generalized Knizhnik-Zamolodchikov equations
(Babujian-Kitaev (for sly, JMP39, 1998),
Felder-Markov-Tarasov-Varchenko (for any g, math.QA/0001184))

The gen. KZ equations have confluent hypergeometric integral solutions.

Conjecture. Any quantum isomonodromic system has (confluent or
non-confluent) hypergeometric integral solutions.

Problem. Quantize the discrete symmetries (the Schlesinger transfor-
mations, the birational Weyl group actions, ...).
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Quantizations of discrete symmetries

e the g-difference version of the birational Weyl group action
(Kajiwara-Noumi-Yamada (nlin.SI/0012063))
—— the quantum g¢-difference version of the birat. Weyl group action
(Koji Hasegawa (math.QA/0703036))

e the higher Painlevé equation of type Al(1> with /W(Al(l)) symmetry
(rank-2 irr. sing. at co) (Noumi-Yamada (math.QA/9808003))
—— the quantum higher Painlevé equation type Al(l) with W(Al(l)) sym.
(Hajime Nagoya (math.QA/0402281))

e the birational Weyl group action arising from a nilpotent Poisson algebra
(Noumi-Yamada (math.QA/0012028))
| complex powers of Chevalley generators in the Kac-Moody algebra
the Weyl group action on the quotient skew field of U(n) ® U(h)
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e the dressing chains (Shabat-Yamilov (LMJ2, 1991),
(Veselov-Shabat (FAA27, 1993), V. E. Adler (Phys.D73, 1994))
— the quantum dressing chains (Lipan-Rasinariu (hep-th/0006074))

Il 1
xkak — €+ 2 8k
o R(z — w)Ly(2)' Li(w)* = Lp(w)?Li(2)'R(z — w).

o Assume n =29+ 1, ZTpi, = Tk, E€kin = €k + k (quasi-periodicity).

o R(z) :=z+ P, Li(z):= , O = 0/0xy.

o The fundamental algebra of the quantum dressing chain is not the
algebra generated by x, J; but the algebra generated by fi := Or +Tg11.
The Hamiltonian of the dressing chain can be expressed with fy.

Duality. the quantum quasi-periodic dressing chain with period n
= the quantum higher Painlevé equation of type A( )

o Thus the W(Aég)) symmetry of the dressing chain is also quantized.



Gen KUROKI  (Tohoku Univ.)

Quantum Groups and Quantizations of Isomonodromic Systems

Quantizations of Isomonodromic Systems

Classical

Quantum

Poisson algebra S(g) = Clg*]

Non-commutative algebra U(g)

(generalized) Schlesinger eq.

(generalized) KZ eq.

A higher Painlevé eq.
with W(Al(l)) symmetry

quantum ﬁlj(l) higher Painlevé eq.
with W(Al(l)) symmetry

dressing chain
with quasi-period 2g + 1
(= AS)) higher Painlevé eq.)
and its /Wv(Aég))—symmetry

quantum dressing chain
with quasi-period 2¢g + 1
(= quantum flvélg) higher Painlevé eq.)
and its W(qu))—symmetry

birational Weyl group action
arising from nilpotent Poisson

algebra of NY

the “U,(g) — U(g)" limit of
the Weyl group action on

Q(U,(n) ® U,(h)) constructed in §2

(As far as the speaker knows, the red-colored results are new.)
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Quantum ¢g-difference Versions of Discrete Symmetries

g-difference Classical g-difference Quantum
Poisson algebra C|G™] Non-commutative algebra U,(g)
(G = Poisson Lie group) (quantum universal enveloping alg.)
g-difference version of the Weyl group action on the quotient
NY birat. Weyl group action skew field Q(U,(n_) ® U,(h))
arising from nilp. Poisson alg. constructed in §2
g-difference version of quantum g-difference version of
birational Weyl Group action birational Weyl Group action
of KNY (nlin.SI/0012063) | of Hasegawa (reconstructed in §2)
(AT ) < W(AD) | quantum W (A1) < W (A)
action of KNY action of §3

(As far as the speaker knows, the red-colored results are new.)
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§2. Complex powers of Chevalley generators
In quantum groups

Problem 1. Find a quantum ¢-difference version of the Noumi-Yamada
birational Weyl group action arising from a nilpotent Poisson algebra
(math.QA/0012028).

Answer. Using complex powers of Chevalley generators in quantum
groups, we can naturally construct the quantum g¢-difference version of
the NY birational action arising from a nilpotent Poisson algebra.

Problem 2. Find a quantum group interpretation of the quantum g-
difference version of the birational Weyl group action constructed by Koji
Hasegawa (math.QA/0703036).

Answer. Using complex powers of Chevalley generators in quantum
groups, we can reconstruct the Hasegawa quantum birat. action.
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Complex powers of Chevalley generators

o A = [aij]i,jg, symmetrizable GCM. diaij = djaji. q; -— qdi.
e U,(n_) = (fi|?e€l):= maximal nilpotent subalgebra of U,(g(A)).
e U,(h) = (ax = ¢ | A € h) := Cartan subalgebra of U,(g(A4)).

V
e o/ := simple coroot, «; := simple root, a;:=a,, =q¢* =gq,".

o 4 :=QU;(n_)®U,(h)) = the quotient skew field of U,(n_)QU,(bh).

e a) = ¢ regarded as a central element of K4 is called a parameter.

Complex powers of f;:  (lohara-Malikov (hep-th/9305138))
e The action of Ad(fMz = flzf > on K4 is well-defined.

© fi)\fjfi—A = ;' f; + (Mg, (fifj — a fif)fi?
— [1 - )\]Qifj + [)‘]qz'fifjfi_l if Ajj = —1,
where [z]g:= (¢" — ¢ ") /(¢ —q7").
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Verma relations < Coxeter relations

Verma relations of Chevalley generators f; in U,(n_):
fafa+bfb fbfa+bfa (a,b € Zzx) if a;ja;; = 1.
(formulae for non-simply-laced cases are omitted)

(Lusztig, Introduction to Quantum Groups, Prop.39.3.7 or Lemma 42.1.2.)
e Verma relations can be extended to the complex powers f7.

o 7 AT = A—(a),\)a; for A €h (Weyl group action on parameters).

e VVerma relations of f;'s <= Coxeter relations of R; := fa i S.
oR2:f.O‘z'vfif% f fo‘~2_1

o RiRyR; = f“ il L = ] vfo‘ roy v, 5 o

—f fa ey f ’ijz'?:j:f;é mf i = R;R;R; if a;;a;, = 1.

(formulae for non-simply-laced cases are omltted)
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Theorem. Ad(R;) = Ad(f," Z) (i € I) generate the action of the Weyl
group on [C4 as algebra automorphisms. This is the quantum ¢-difference
version of the Noumi-Yamada birational Weyl group action arising from
a nilpotent Poisson algebra (math.QA/0012028).

Example. If a;; = —1, then

fiij o (Qz _|_ qz )f%fjfz _|_ fjfzfz — O

Ad(Ry) f; = f;" fyf =q; fg g (fif —a; ' fif) i
= |1 _ai]Qifj [a;/]qififjf'_la

Ad(R))a; = 7a:7; ' = a; ', Ad(Ry)a; = 70,7 ' = a;a,.

In particular, as the ¢ — 1 limit, we have

Ad(R) fj = f+ o lfi, filfi T = A=) fi + o fifif;

10
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Truncated ¢-Serre relations and Weyl group actions

Assumptions:
o kik; = k;k;, kifik;' =q, "7 f;. (the action of the Cartan subalgebra)
o fifi= q;t(_%)fjfi (2 # 7). (truncated g-Serre relations)

o fi:i=fi®1, fio:=k'®fi. (fi1+ fiz= “coproduct of f;")

Skew field g generated by F}, a;:

e /[Cy := the skew field generated by Fj := ai_lfﬁlfq;z, a; = q™.

e Then F,F;= qu(_a”)FjFi (1 # 7), a; € center of Ky.
~—1 Ty

® iia,T a;, “a;. (the action of the Weyl group on parameters).

7 R}

Theorem. Put R; := (fi1 + fi2) 7.
Then Ad(R;)'s generate the action of the Weyl group on Kg.

11
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g-binomial theorem and explicit formulae of actions

e Applying the g-binomial theorem to f;1f;2 = qi_ininl, we obtain

1 00
a,; Fz i.00 pa)
(Fu+ fio)o = G Db gl pere (0, 0 1= T (1 + g20).
(@i F3)i,00 ot
Explicit Formulae. If ¢ =£ j, then
Ad(R;)F; = F;,
[ —ag—l 2
1+ q; Yo, F; +2(—aj;
Bl Sy ah=am
Ad(R’L)Fj = ¢ _aijflzo ( . i T
a; + q;" F; : —2(—a4j)
L i fifi=a,
\ uHo L+ g aiFy : :

e These formulae coincide with those of the quantum g¢-difference Weyl
group action constructed by Koji Hasegawa (math.QA/0703036).

12
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N §3. Quantization of
the W (A4 ) x W(A)) action of KNY
Problem 3. For any integers m,n = 2, construct
(a) a non-commutative skew field IC,, ,, and
(b) an action of W(Ag)_l) X /V[V/(Af,blzl) on KCp, » as alg. automorphisms
which is a quantization of the Kajiwara-Noumi-Yamada action
of W(AM ) x W(AV ) on Clan/t i <m,1 <k <n).

Answer. |f m,n are mutually prime,
then we can construct a quantization of the KNY action.

Tools.
(a) Gauge invariant subalgebras of quotients of affine quantum groups,
(b) Complex powers of corrected Chevalley generators.

13
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The KNY discrete dynamical systems

Kajiwara-Noumi-Yamada, n1in.SI/0106029,
Discrete dynamical systems with W(Afi)_l

Kajiwara-Noumi-Yamada, nlin.SI/0112045.
Noumi-Yamada, math-ph/0203030.

X A,Szl) symmetry.

(1) Action of W(Ag)_l) X /I/I\?(Agll) as algebra automorphisms on the
rational function field C(z;x|1 £ i< m,1 S k < n).

(2) Lax representations —> q-difference isomonodromic systems.

(3) Poisson brackets are, however, not given.

First Problem. Usually quantization replaces Poisson brackets
by commutators. How to find an appropriate quantization of
C(xik|l =1 < m,1 < k < n) without Poisson brackets?

14
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Minimal representations of Borel subalgebra of Uq(gAlm)

e 3,,.n := the associative algebra over C(q, ', s") generated by

a=', b5t (i, k € Z) with following fundamental relations:

/ / / /
Qitm k =T Qiky Qi ktn = S ik, bitm k =T 0ik, 0i kyn = ' Di,
I | _
aikbik = ¢~ " bipak, aikbi—l,k — qbi—l,kaik-

All other combinations from {a;x, bik }1<i<m, 1<k<n COMMute.

AN

o U,(b_)=(t;, fi| i € Z) := the lower Borel subalgebra of U,(gl,,)
with fundamental relations:  ¢;..,, = 7't;, fixm = fi,

tit; =tits, tifi=q “fiti,  tific1 = qficats,

fifi=fifi (J#i+£1 (modm)),

fifixr — @+ a ) fifixrfi+ fixn /7 =0 (g-Serre relations).

e For each k, the algebra homomorphism U,(b_) — B,, ,, is given by
t; — a;p,  fi— ai_klbz-k. (minimal representations of U,(b_))

15
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RLL = LLR relations (Quantum group)

R-matrix:  R(z) := Z(q —2/qQ)E;; @ By + Z(l — 2)Ey ® Ejj
i=1 17
+ Z ((¢=q¢ B ® Eji+ (¢ — ¢~ )2E; ® Eij) .
1<J
a1 b _
L-operators:  Ly(z) := 2k
bm—l,k
bmk < Amk

RLL = LLR relations:
R(z/w)Ly(2)'Ly(w)? = Ly(w)?Li(2) R(z/w),
Li(2)'Ly(w)? = Ly(w)*Ly(z)* (k #1 (modn)),
where Li(2)! := Li(2) ® 1, Lp(w)? :=1® Li(w).

16
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Gauge invariant subalgebra A, ,, = BY  of B,,,,

Gauge group: G :=(C*)™" > g = (gik). Gitmk = Jiks Ji.k+n = Jik-
Gauge transformation: The algebra automorphism of B,, ,, is given by
Ak gikaik9;é+11 bik, — Qikbikgﬁll,kﬂ,
e, Lp(z)— gkLk(Z)gk_il (gr := diag(gik, 92k, - - - » Gmk))-

e Assume that m,n are mutually prime integers = 2.

e m := mod-n inverse of m (mm =1 (modn), m=1,2,...,n—1).
e The gauge invariant subalgebra A,, ,, := Bg%n of B, n 1s generated by
1\ E1
v = (@i (bikbiv 1 g1 bicmm—1)"1) ",

41
bjill = ([1;2, 11— bix)” "~ € center of B, .

o [C,n.n := the quotient skew field of A,, , is an appropriate quanti-
zation of the rational function field C(z;x|1 < ¢ < m,1 S kS n).

17
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g-commutation relations of x;.’s

e B:={(pmodm, umodn) € Z/mZLXZ/nZ | u=0,1,....,mm—1}.
g if (umodm, vmodn) € B,

* P = 1 otherwise.
® g, = (p,LW/p,LL—l,I/)2 e {1, qi2}. (definition of g, )
Fundamental relations of x,.’s:
Titm k = TTiky, Liktn = STik (r:=rt=mm .= g/l-mm)
Titpu,k+vTik = QuuvTikTitp, k+v O=pu<m, 02v<n)

Example. If (m,n) = (2,3), then m = 2 and

g 1 ¢ 1 g% ¢* =01
Pl = [q q 1] -l [1 ¢’ q‘2] ( v=0h2 ) |
11211 = 11211, T12T11 = C]_233113312, L1311 = Cl251311$13,
L2111 — L11L21, L22X11 = (]255‘113322, L2311 = C]_235‘11513‘23-

18
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Example. (1) If (m,n) = (2,29 + 1), then m =g+ 1 and

1 ¢2 ¢ - ¢? ¢ =01
G| = 1 2 ¢2 ... g2 q—2] (V:O,1,2,...,291,2g>'
k—1 k
l<k=En = z1211 = q<_1) 2T11T1k, TopT1l = q(_l) 2T11T9k.

(2) If (m,n)=(29g+1,2), then m =1 and

g 1 1 1
q g ¢
qg 1 ¢ q° L=0,1,2,....29—1,2g
Pl =y el = (u—o,l '
q g ¢
q 1 K

Observation: Ay, = A, 2, Tijk < Tk, < ¢, T <> S, S T

19
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Example. (1) If (m,n) = (3,4), then m = 3 and

0] =

qg 1 q ¢
[p,ul/]:qqlq
q 9 q 1

=2 _ 92
L1211 —(q “T11X12, 13L11 — L1113, £14T11 — ¢ " T11L14, - - -

q—2

¢>
1

(2) If (m,n) = (4,3), then m =1 and

1
q
[pMV] — 1
1

-
1
q
1

K==

Observation: A3 4 = Ay 3,

1

Tik < Thi, q <>, T <> 8, S <> T.

R =
1
O O
= =
(NN V)

~ NS

Quantum Groups and Quantizations of Isomonodromic Systems

Y

1
, 1

, 2
2,3 )

20



Gen KUROKI  (Tohoku Univ.) Quantum Groups and Quantizations of Isomonodromic Systems
Example. (1) If (m,n) = (3,5), then m = 2 and

[puV] =

1
q|l, lau]= g q 1 ¢ q
1

K=
_ =

1 1

qg 1

1 ¢q
_ =2 2

L1211 — L11LX12, L13L11 — ¢ " X11213, L1411 — " L11L14, . - -

(2) If (m,n) = (5,3), then m = 2 and

g 1 g 1 ¢ 2% ¢
g q 1 1 ¢ q¢°
pwl=11 ¢ q|, lgwl=|¢7 1 ¢
g 1 g ¢ q¢° 1
g q 1 1 q¢* q¢°
Observation: As s = As3, T < Tii, ¢ q, TS, ST,

21
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Symmetries of A, ,

Duality. The algebra isomorphism A,, ,, = A,, ,,, is given by
Lik <> ki, (<~ (¢, T <85 ST,
Reversal. The algebra involution of A,, ,, is given by
1 ~1 -1

Tik <> T—j—k, q<¢q , TS, ST

Translation. For any integers u, v
the algebra automorphism of A,, ,, is given by

xik'_)x’i—l—,u,k—l—V7 QI—>q7 ’)"I—)’I"7 S — S.

22
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Extended affine Weyl groups W(Afi)_l) /W\//'(A(l) )

n—1

° W(A(l) ) = (rg,T1,--+,"m—_1,w) with fundamental relations:
rirg =1r; (JZ 4,0+ 1 (modm)), ririar; = rioriricr, =1,
wriw ™t =11 (Tigm = 15).

ol =17 1+ ToriWrm_1---ri11r; (translations).
o W (AW ) = (ri, 79, ) X (T, T, ., T} 2 S,y X 2

° W(A( ) ) .= (S0, $1,- - .,Sn_1, @) with fundamental relations:
sksi = sisg ([ Z k,k+1 (modn)), sgpSki1Sk = Skr1SkSki1, Si = 1,
wsEw L= Spr1 (Skan = Sk).

oUp :=Sk_1---S$281WSn_1-"Sk+1Sr  (translations).

o /I/I\?(Agzl) = (81,82, ..,8p—1) X (U1, Us, ..., Up) =S, X Z".

23
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Explicit formulae of the action of W (A'" ) on K,,.,

m—1
W(A(l) ) = (10,15, T'm—1,w) acts on Kpp n = Q(Apm.n) by

—1Gii1+1 — Ci41,1+2

1
ri(Til) = Ty — S SPuxiy1,1P; 5,

P 141

—1¢2l 1+1,0+1 —1 p—1
Ti(iﬁz‘ﬂ,l) = Tjt1,] + S D = S Pz'l $7;lP7;,l+1,
il

Ti(le) — X4 (] 7’:—é Z,Z + 1 (mOd m))7

w(Tj1) = Tjy1,,
where Cik ‘= LikLik+1"" " "Tik+n—1 and

n—
Py = E LikTq k+1 xz Kkt l—2Ti41 k1L i41 k141" LTia1 kdn—1 -

24
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Explicit formulae of the action of W (A!"” ) on K,,.,

n—1
o W(A( ) ) = (50, 81y -+, Sn—1,@) acts on Ky, , = Q(A,,.n) by

1941k — djtokdl -1 .
= Q11 1T k+1Qk;

Sk(Tik) = Tj — 1T

Qj—i—l,k
Ao — d.
15k +1,k+1 -1
k(T k41) = Tjpgr +17 QJ =7 Qj+1,k%kQ ik
ik

sp(zj1) =x (I Zkk+1(modn)),
w (1) = Tj14+1,
where dzk = Li4+m—1,k " " LTi+1,kLik and

m—j j—1

_/A\

Qik = E Litm—1,k+1 """ Titj+1,k+1Titj k+1 Litj—2,k " LTit1 kTik -

j=1

25
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Duality of the extended affine Weyl group actions

o :Egkm’n) et szk E Am,v’u C,I(lllrﬂn’n) = C’Lk‘ E Am,n, P,L(],{rn’n) = 1k E Am,n,
ng,n) .= (s;-action on K,,.), w{™™ 1= (w-action on K,,.,,), etc.

e The algebra isomorphism 6 : A,, ,, — A, ., is defined by

O(z) =™, 0(g) = g7 0(r) =571, 0(s) =L,

e [ hen
H(ngl’n)) — d(—nk,TfZL—H,—z" Q(Pi(?’n)) — Q(—nI;T7)7,+1,—z—1
H(dE?’”)) = C(—nl;@i—mﬂ’ 9(Q§Zn’”)) = PYI:Tl),—i—m—I—l

e [ herefore
9 ormm) — S(j;;’inl) 0  Oowlmn) = (w(”’m))_1 00,

0 o s,gm’n) = T(_nkT_ni 0of, OHowmn) = (wm)=log,

26
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Lax representations of the actions of r; and s,

X-operators: X = Xjp(2) := e 1
—k

roz Li+m—1k

(1) The action of r; on {x1k, ..., Tmk} is uniquely characterized by
i i) \—1

(1) . _1CGik — Ci4+1,k+1 B
G =1+s Fit1i  (Cik = TikTit1,k " Titm—1,k)
k )
1

0 1 -1 —1%mk — Cm+1,k+1
G,g)::1+rk ly=lg—1 2 mrLEY R
Pmk

(2) The action of sy is uniquely characterized by
S(XinXi k+1) = XieXik+1, s(Xi) = Xy (I £k (modn)),
Sk dik = div1 kr1 (dik = Tigm—1k " Tit1 kTik)-

(Es;'s are matrix units.)

27
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Quantum ¢-difference isomonodromic systems

Monodromy matrix:  X;x(2) := X;6(2) X5 k41(2) - - - Xik4n-1(2).
Matrix g-difference shift operator (shift parameter = s):

T, sv(s) :=diag(s 1, s72,...,s7™v(s™2) (v(z) is m-vector valued).
Linear g-difference equation: T, sv(2) = X11(2)v(2).

Connection matrix preserving transformations:

(1) sx(X11(2)) = Xq1(2) for k=1,2,...,n — 1.

(2) @(X11(2)) = X177 X11(2) X141 = Te s X1 1 T aX01(2) X1 g1
o Up =5Sp_1°-828510S8n—1""* Sk+15k-

The action of (U1, Us,...,U,) =Z"
— Quantum g-difference isomonodromic dynamical system
with n time variables

e The action of W(A,,(jb)_l) —— Symmetry of the dynamical system

28
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Example ((m,n) = (3,2)) e Tit+3,k = TTiky Tik+2 = STik.
_ =2 2
® 11711 — X11x11, L2111 = (¢ “T11X21, I31T11 — ¢ T11X31,
_ 2 =9
L1211 — 1112, X22X11 — q T11X22, L3211 — (¢ “X11T32.
® P = Tjy1 k+1 + Tik,
Qik = Tit2 kt1Tit1.k+1 T Tit2 k+1Tik + Tit1 kTik-
_ —1
o r1(x11) = s(woo + x11)T21(T13 + T12) ™,
_ -1 —1
ri(xo1) = s~ (xo2 + x11) @o1(x13 + T12),
W(Tik) = Tit1 k-

® si(r11) = T(CU42£U32 + T40T21 + X31221) " 1$12(513‘32£1322 + T32711 + T21711),
s1(r12) = ($423332 + T42T21 + T31T21)T11(X32T22 + T32X11 + T21X11) L
W (Tik) = Tik+1. (Uy = wry, Uy =r1w)

—~

_ —1
Ui(x11) = (243733 + T43%22 + T30%22) " X13(T33%23 + T33%12 + T22T12).

e U1 generates quantum ¢Pry (g-difference Panlevé IV system).
The action of W(Ag)) is symmetry of quantum ¢Ppy .

29



Gen KUROKI  (Tohoku Univ.) Quantum Groups and Quantizations of Isomonodromic Systems

Action of /I/I\//'(A(l) ) X /M\//'(A(l) ) on K,,,, as alg. autom.

m—1 n—1

Theorem. For any mutually prime integers m,n = 2, the action of
W(Af,i)_l) X W(Af,blzl) on Kpn = Q(Am. ) as algebra automorphisms
is constructed. This is a quantization of the KNY action of

WAL ) x W (A)) on Clatl £i<m,1 <k <n).

Easy Part. Lax representations = braid relations of r; and s;.

Difficult Part. To show that
r; and s act on K, , = Q(As.n) as algebra automorphisms.

Sketch of proof. Let ¢, bevappropriately corrected Chevalley generators
in By, and put p; := @?i 7. Then Ad(p;)z; = pimjlpi_l = r;(x;1).
Therefore r; acts on Ky, 5, as algebra automorphisms. The duality leads

to that sj also acts on K, ,, as algebra automorphisms.
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Chevalley generators F;

Monodromy matrix:  1L(z) := L1(2)L2(2) - - - Ly(2).

(IL(2) is the product of the L-operators of the minimal representations.)
_Al Bl m . . . .

L(z) = B + 2 +

0 Ap, By,

o R(z/w)L(2)'L(w)? = L(w)?*L(2)'R(z/w)
— F; = A;lBi satisfy the ¢-Serre relations.

V
o R; .= F,L.ai r; generate the Weyl group action on the skew field generated

by A;, B;, and parameters a) = ¢ (A € D).

e But the action of Ad(R;) does not preserve the skew field generated by
. ban, and parameters ay = ¢

Tt = @ik (Dikbit1 k1 bitmm—1)
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Correction factors for F;

® ’Cm,n — Q(Am,n) C Q(Bm,n)
e x~y <= Jc € (the center of Q(B;,.n))> s.t. cx = y.
e n:= mod-m inverse of n (nn =1 (modm), n=1,2,...,m—1).

® Vi = birbit1 k+1- - bitsin—1k+nn—1 (V1g are correction factors).

~

(Cf. Lik — aik(bikbi+17k+1 s bi—|—fr7z,m—1)_11 m = mod-n inverse of m)
~1 B U, L :

ec. Php~v, F,=v,A "B, (motivation to find v;).

o v, :=viF; =v;1A; 1B, ~ vECo Lp., (corrected F3).

e Using ; instead of F}, we can construct the action of the affine Weyl
group W(A( ) 1) on Ko = Q(Ap,,n) as algebra automorphisms.
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Generators of the W(Agll)-action on K, = Q(Amn)

V
o Hp :=C(q,r,s")[g™* ], e =FEuch, o =¢/ —¢/i.

¢ ‘Am,n = (‘Am,n ® Hm)/I (® — ®(C(q,r’,s’))' y
where I := the two-sided ideal generated by ¢;; ® 1 — 1 ® ¢~ *5i .
~ V~x—1 ~—1 ~ Vx—1

| _ NV &V _ V= AV
o Tie T, =&l Ti€l T, =&, TiEjT; =& (JFLiI+ 1)
V

® p; = gpf" r;.  (generators of the W(Afi)_l)—action on Kpu.n)

e Ad(p;) generate the action of W(A?(,,}L)_l) on Q(Am.n @ Hm).

e The actions of Ad(p;)’s on Q(A.,.n ® H,,) induce

the actions of r; € W(Afjb)_l) on Ko =Q(Amn):
Ad(pi)za = ri(Th) = SPz'zxz'Jrl,lPi,_lil,
Ad(py)ziv1y = ri(zi1y) = s1P; 0y Py,
Ad(pi)zji = ri(xj) = zji (J # 4,0+ 1 (modm)).
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Summary of Results

§2. (for any symmetrizable GCM A = [a;;])
e Ad-action of complex powers of Chevalley generators f; in U,(g)

—> the action of the Weyl group on Q(U,(n) ® U,(h))
(quantum g-difference version of the NY math.QA/0012028 action)

—> Reconstruction of the Hasegawa math.QA/0703036 action

§3. (for any mutually prime integers m,n = 2)

® B,,.n := the minimal representation of U,(b)®" C Uq(gAlm)@m.

® C n := Q(the gauge invariant subalgebra A, ,, of B,,.»)

—> Kyn.n = Quantization of C(xx|l = ¢ =m,1 = k < n).

e Complex powers of the corrected Chevalley generators in 5,, ,,

— W(Ag)_l)—action on Ko.n

— W(ASL)—J X W(A,,(llll)—action on Kp»n  (by the m < n duality)
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Other Problems

Problem. Construct commuting Hamiltonians in U,(n) ® U,(h) with
Weyl group symmetry.

Hint. Commuting transfer matrices for "AL'BL* = CL*DL"" algebras.
(F=q 2H®H A= P(F)"'RF, B=F, C=P(F), D=R)
Problem. Construct commuting Hamiltonians in A,, ,

with W(Ag)_l) X W(Afllzl) symmetry.

Classical Case. det(X!"""™(2) — (=1)"w) = det(X\""™ (w) — (=1)™2)
generates the invariants of birational W (A% ) x W(A'Y)) action.
Problem. Construct solutions of quantum (g-)isomonodromic systems.

Conjecture. Schrodinger equation of any quantum (g-)isomonodromic
system has (non-confluent or confluent) (g-)hypergeometric solutions.
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