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0. Introduction

Fock space representations of Wakimoto type for non-twisted affine Lie algebras are constructed
in [W], [FeFr1], [FeFr2], and [Kur]. (There are in fact many other references by physicists.) In
this note, Fock space representations for twisted affine Lie algebras are researched.

Section 1 shall be devoted to the definition of a twisted affine Lie algebra ĝ associated to a
finite dimensional simple Lie algebra g and its diagram automorphism σ. In Section 2, we shall
explain a finite dimensional counterpart of Fock space representations, which is a realization
of g by first order differential operators on an open cell in the flag variety of g. Fock space
representations are constructed by replacing the differential operators by Bosonic fields which
is defined in Section 3. In Section 4, we shall construct Fock space representations of the
twisted affine Lie algebras. The main result is Theorem 4.7. We shall also deduce several
corollaries from this theorem. In particular, we shall explain how to prove the Kac-Kazhdan
conjecture [KK] for the Kac-Moody Lie algebras of affine type (in twiseted cases as well as in
non-twisted ones).

1. Twisted affine Lie algebras

Let g be a finite dimensional simple Lie algebra of type Xr over C and h∨ its dual Coxeter
number. Denote its triangular decomposition by g = n−⊕h⊕n+, where h is a Cartan subalgebra
of g and n± are maximal nilpotent subalgebras of g. Let σ be a diagram automorphism of g.
The order N of σ is 1, 2, or 3. (N = 2 for Xr = Ar, Dr, E6 and N = 3 for Xr = D4.) Denote
the eigenspace decomposition of g with respect to σ by g =

⊕N−1
i=0 gi, where we put

gi := {X ∈ g | σ(X) = exp(2π
√
−1

N
i)X } for i ∈ Z.

For any vector subspace V of g, denote V ∩gi by Vi. For example, n±,i = n±∩gi and hi = h∩gi.
Then g0 becomes a simple Lie algebra and h0 is its Cartan subalgebra.

Let us define the affine Lie algebra ĝ associated to the pair (g, σ). When N = 1, ĝ is called
a non-twisted affine Lie algebra. In the other cases (N = 2, 3), ĝ is called a twisted one. In
the following, we shall mainly consider the twisted cases. Put Ri := ti/NC[t, t−1]. Define the
subalgebra Lg of the loop algebra g⊗ C[t1/N , t−1/N ] by

Lg :=
N−1⊕
i=0

gi ⊗Ri,
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which is called a twisted loop Lie algebra. For any subalgebra a of g stable under the action
of σ, put La :=

⊕N−1
i=0 ai ⊗Ri. Let d be a derivation t d

dt
acting on Lg. Then Lg⊕Cd possesses

a natural semidirect Lie algebra structure. As a vector space, we define ĝ by

ĝ := Lg⊕ CK ⊕ Cd.

Its Lie algebra structure is defined by

[X ⊗ tm, Y ⊗ tn] = [X,Y ]⊗ tm+n + (X|Y )mδm+n,0K,

[d, X ⊗ tm] = mX ⊗ tm,

K ∈ center of ĝ,

where (.|.) is a non-degenerate symmetric bilinear form on g defined by

traceg(adX adY ) = 2h∨(X|Y ) for X, Y ∈ g.

Then ĝ is a central extension of Lg ⊕ Cd and is isomorphic to the Kac-Moody Lie algebra of
type X(N)

r ([Kac] Chapter 8).

2. Finite dimensional counter part

Put b− := n− ⊕ h (the lower Borel subalgebra of g). Let G be a connected and simply
connected Lie group with Lie algebra g, B− the Lie subgroup corresponding to b−, and U+ the
one corresponding to n+. The flag variety is defined by F := B−\G and its origin is defined by
o := B−\B−. Then the U+-orbit oU+ is a Zariski open cell in F and is isomorphic to U+ as a
right homogeneous G-space. Moreover the exponential map from n+ to U+ is an isomorphism
of algebraic varieties. Thus oU+ is naturally isomorphic to n+ as an algebraic variety. Let λ be
a Lie algebra character of b− (i.e. a Lie algebra homomorphism from b− into C). In general,
such a λ is a trivial extension of an element of h∗, where h∗ denotes the dual vector space of
h. Define the actions L and R of g on the structure ring C[B−U+] of B−U+ by

(L(X)f)(x) :=
d

ds

∣∣∣∣∣
s=0

f(exp(−sX)x)

(R(X)f)(x) :=
d

ds

∣∣∣∣∣
s=0

f(x exp(sX)) for x ∈ B−U+ and X ∈ g.

Put M∗
λ := { f ∈ C[B−U+] | L(Y )f = −λ(Y )f for Y ∈ b− }. Then, since R(X) preserves M∗

λ

for X ∈ g, we obtain a natural left g-module structure on M∗
λ . The action of R(X) on M∗

λ

shall be denoted by Rλ(X). Let vλ be a unique function in M∗
λ which takes the constant value

1 on U+. Then vλ is a highest weight vector of M∗
λ .

Remark 2.1. In fact, M∗
λ is isomorphic to the contragredient dual representation of the lowest

weight left Verma module of g. Namely, for any g-module V which possesses a highest weight
vector v with weight λ, there is a unique g-homomorphism from M∗

λ into V which sends vλ to
v.

M∗
λ is a free C[oU+]-module of rank one: M∗

λ = C[oU+]vλ. The structure ring C[oU+]
is isomorphic to a polynomial ring generated by dim n+ variables. Hence oU+ ≃ Cdim n+ .
For X ∈ g the operator Rλ(X) can be represented by a first order differential operator with
coefficients in the polynomial ring. This is a finite dimensional counterpart of Fock space
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representations of Wakimoto type. Fock space representations shall be constructed by replacing
differential operators by operators of Bosonic fields.

For any α ∈ h∗0, we put

n+,i,α := {X ∈ n+,i,α | [H,X] = α(H)X for H ∈ h0 },
∆+,i := {α ∈ h∗0 | n+,i,α ̸= 0}.

Then, for α ∈ ∆+,i we can write n+,i,α = Ce+,i,α, because dim n+,i,α = 1 (see [Kac]). Since

n+ =
N−1⊕
i=0

⊕
α∈∆+,i

n+,i,α, we can define a coordinate system x = (xi,α) on n+ by

X =
N−1∑
i=0

∑
α∈∆+,i

xi,α(X)ei,α for X ∈ n+.

Recall that we have the natural isomorphism oU ≃ n+. We obtain a coordinate system (also
denoted by x) on oU+. Under the coordinate system, for X ∈ g the operator Rλ(X) can be
written in the following form:

Rλ(X) =
∑
i,α

Ri,α(X; x)
∂

∂xi,α

+
∑
i,a

ρi,a(X;x)λ(Hi,a),(2.1)

where {Hi,a | a = 1, . . . , dim hi} is a basis of hi and the summations run over i = 0, . . . , N − 1,
α ∈ ∆+,i, a = 1, . . . , dim hi.

3. Bosonic fields and Fock spaces

Let κ be a complex number. Define the associative algebraA with 1 by the following conditions:

• A is generated by the following set:

A := {xi,α[−m], δi,α[m], pi,a[m] |
i = 0, · · · , N − 1, α ∈ ∆+,i, a = 1, · · · , dim hi, m ∈ Z+ i

N
};

• Then A is a quotient of the tensor algebra generated by A. The relations of A are
generated by the following ones:

[δi,α[m], xj,β[n]] = δi,jδα,βδm+n,0,

[pi,a[m], pj,b[n]] = κ(Hi,a|Hj,b)mδm+n,0,

(other commutators) = 0.

Denote by O the subalgebra of A generated by the set of all xi,α[m]’s.

Remark 3.1. If κ ̸= 0, then the center of A is equal to the subalgebra generated by {p0,a[0] |
a = 1, · · · , dim h0}. But κ = 0 implies that the center of A is generated by the set of all
pi,a[m]’s.

In order to define a triangular decomposition of A, we put

A+ := {xi,α[m], δi,α[n], pi,a[m] ∈ A | m > 0, n ≥ 0},
A− := {xi,α[m], δi,α[n], pi,a[n] ∈ A | m ≤ 0, n < 0},
A0 := {p0,a[0] | a = 1, · · · , dim h0}.
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Let A± be the subalgebra of A generated by A± and A0 the one generated by A0. Each of them
is isomorphic to polynomial rings: A± ≃ C[A±], A0 ≃ C[A0]. It follows that A− ⊗ A0 ⊗ A+

can be identified with the polynomial ring C[A] generated by A as an algebra. Moreover we
have the following isomorphism of vector spaces:

C[A] = A− ⊗A0 ⊗A+ → A, a− ⊗ a0 ⊗ a+ 7→ a−a0a+.

This isomorphism defines a triangular decomposition of A and is called normal product. The
normal product of a ∈ C[A] shall be denoted by

.

.a
.
..

For λ ∈ h∗0, let Iλ be the left ideal generated by A+ and { p0,a−λ(H0,a)1 | a = 1, · · · , dim h0 }.
The Fock space Fλ with highest weight λ is defined by

Fλ := A/Iλ.

Denoting the vector 1mod Iλ in Fλ by |λ⟩, we obtain the following:

Fλ = A|λ⟩, A+|λ⟩ = 0, p0,a[0]|λ⟩ = λ(H0,a)|λ⟩.

These relations characterize the left A-module structure of Fλ if κ ̸= 0.
In fact the algebra A is too small to realize in it the twisted affine Lie algebra ĝ. It is

necessary to extend A. Let Â be an extension of A and Ô an associated extension of O. But,
if Â is too large, then we can not calculate a certain 2-cocycle ω (see bellow) of the twisted
loop algebra Lg with coefficients in Ô . An appropriate extension Â shall be defined as follows.

Let Θ be the C-derivation Θ acting on A which is characterized by

Θ(a[m]) := ma[m] for a[m] = xi,α[m], δi,α[m], pi,a[m].

Putting A[m] := {a ∈ A | Θ(a) = ma}, we have a gradation of A:

A =
⊕

m∈ 1
N

Z
A[m], A[m]A[n] ⊆ A[m+ n].

Generally, for any vector subspace V of A, we shall denote V ∩A[m] by V [m]. (For example,
O[m] = O∩A[m].) Since Θ preserves and acts on O, it follows that O =

⊕
m∈ 1

N
Z
O[m]. Define

the decreasing filtration A.
[m] of A[m] by

An[m] :=
⊕
l≥n

A−[m− l]A0A+[l] for n ∈ 1
N
Z.

The completion of A[m] with respect to this filtration shall be denoted by Â [m]:

Â [m] := proj lim
n→∞

A[m]/An[m].

Put Â :=
⊕

m Â [m]. Then A is dense in Â under the linear topology induced by the filtration.
Since the multiplication map fromA[m]⊗A[n] intoA[m+n] is continuous, the algebra structure
of A is naturally extended to that of Â . Denote by Ô the closure of O in Â . The action of
A on Fλ can be continuously extended to that of Â .

The derivation Θ on A is naturally extended to that on Â . We shall consider the algebra
generated by Â and Θ. More precisely, let Â [Θ] be the associative algebra with 1 defined by
the following conditions:

• Â [Θ] is isomorphic to Â ⊗ C[Θ] as a vector space;
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• Θa = aΘ+ma for a ∈ Â [m], i.e. [Θ, a] = Θ(a).

Put ξ := (λ, c),where λ ∈ h∗0 and c ∈ C. Then there exists a unique extension of the action
of Â on Fλ to that of Â [Θ] with the property Θ|λ⟩ = c|λ⟩. When we regard Fλ as a left
Â [Θ]-module, we denote it by Fξ = Fλ,c. We shall construct a Lie algebra homomorphism

from the twisted affine Lie algebra ĝ into Â [Θ] so that we shall obtain a representation of ĝ
in Fξ.

As formal Laurent series in z, we define Bosonic fields xi,α(z), δi,α(z), pi,a(z) by

xi,α(z) :=
∑

m∈Z− i
N

z−mxi,α[m],

δi,α(z) :=
∑

m∈Z+ i
N

z−m−1δi,α[m],

pi,a(z) :=
∑

m∈Z+ i
N

z−m−1pi,a[m].

Let each of a1(z), . . . , an(z) be one of the Bosonic fields xi,α(z), δi,α(z), pi,a(z), ∂xi,α(z), ∂δi,α(z),
∂pi,a(z), · · ·, where ∂ denotes ∂

∂z
. Put a(z1, . . . , zn) :=

.

.a1(z1) · · · an(zn)
.
.. Then a(z, . . . , z) is

well-defined as a formal Laurent series with coefficients in Â .

4. Fock space representations

Let U =
⊕

m U [m] and V =
⊕

m V [m] be graded vector spaces, where m runs over 1
N
Z. We

define the restricted hom set H̃omC(U, V ) by

H̃omC(U, V )[m] := {f ∈ HomC(U, V ) | f(U [n]) ⊆ V [m+ n] for n ∈ 1
N
Z},

H̃omC(U, V ) :=
⊕
m
H̃omC(U, V )[m].

Let a =
⊕

m a[m] be a graded Lie algebra and V a graded left a-module. The exterior product∧p a possesses the induced natural gradation. We can define a cochain complex (C̃
.
, d) as

follows:

C̃p := H̃omC(
∧p a, V ),

(df)(l1, · · · , lp+1) :=
∑

1≤i≤p+1
(−1)i−1li(f(l1, · · · , l̂i, · · · , lp+1))

+
∑

1≤i<j≤p+1
(−1)i+jf([li, lj], l1, · · · , l̂i, · · · , l̂j, · · · , lp+1),

where f ∈ C̃p, li ∈ a, and the hats ̂ means eliminations. We shall denote the p-th coboundary,
cocycle, and cohomology group of this complex by B̃p(a, V ), Z̃p(a, V ), and H̃p(a, V ) respec-
tively. We call H̃p(a, V ) the restricted Lie algebra cohomology of a with coefficients in V .

Recall that we have the realization (2.1) of g by first order differential operators with
polynomial coefficients. For X ∈ gi, we define X̃(z) by

X̃(z) :=
∑
i,α

.

.Ri,α(X;x(z))δi,α(z)
.
. +

∑
i,a

.

.ρi,a(X; x(z))pi,a(z)
.
..

We can expand X̃(z) in the following form:

X̃(z) =
∑

m∈Z+ i
N

z−m−1π̃(X ⊗ tm) for X ∈ gi,
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where we obtain π̃(X ⊗ tm) ∈ Â . We also set π̃(d) := Θ. Thus we obtain a linear map π̃ from
Lg⊕ Cd into Â [Θ]. For a, b ∈ Lg⊕ Cd, define ω(a, b) ∈ Â by

ω(a, b) := [π̃(a), π̃(b)]− π̃([a, b]),

where the bracket [a, b] in the left-hand side is the commutator in the Lie algebra Lg⊕Cd not
in ĝ. The Wick theorem proves ω(a, b) ∈ Ô . Therefore we can define the left (Lg⊕Cd)-module
structure on Ô by

(Lg⊕ Cd)× Ô → Ô , (a, b) 7→ [π̃(a), b].

Since Lg⊕Cd and Ô have natural 1
N
Z-gradations, we can consider the restricted Lie algebra

cohomology H̃
.
(Lg ⊕ Cd, Ô ). Moreover ω is a 2-cocycle in Z̃(Lg ⊕ Cd, Ô ) and defines a

cohomology class [ω] ∈ H̃2(Lg⊕Cd, Ô ). The standard 2-cocycle c2 of Lg⊕Cd, which gives a
realization of ĝ, is defined by

c2(X ⊗ tm, Y ⊗ tn) := (κ− h∨)(X|Y )mδm+n,0,

c2(d, X ⊗ tm) := 0.

Then c2 defines a cohomology class [c2] in H̃2(Lg⊕ Cd, Ô ).

Lemma 4.1. The values of ω and c2 coincide on
∧2(Lb+ ⊕ Cd).

The proof is followed from the Wick theorem.

Lemma 4.2. Consider the canonical inclusions Lh → Lb+ → Lg and the canonical projection
Ô → C. Then they induce canonical isomorphisms bellow:

H̃p(Lg⊕ Cd, Ô ) ≃ H̃p(Lb+ ⊕ Cd, Ô ) ≃ H̃p(Lh⊕ Cd,C).

The standard spectral sequence technique shows this lemma. (The detail of non-twisted case
can be found in [Kur].)

For ξ ∈ (h0 ⊕ Cd)∗ we can define the algebra automorphism τξ of Â [Θ] by

τξ(p0,a[0]) := p0,a[0] + ξ(H0,a), τξ(Θ) := Θ + ξ(d).

Then, putting fξ := τξ ◦ π̃ − π̃, we have fξ ∈ Z̃1(Lg⊕ Cd, Ô ) and

fξ(l) = ξ(l) for l ∈ h0 ⊕ Cd = h0 ⊗ 1⊕ Cd,
fξ(l) = 0 for l ∈ (Lb+ ⊕ Cd)′,

where (Lb+ ⊕ Cd)′ is the derived Lie subalgebra of Lb+ ⊕ Cd. In general, the derived Lie
subalgebra of a is defined by a′ := [a, a] Note that (Lb+ ⊕ Cd)/(Lb+ ⊕ Cd)′ is canonically
isomorphic to h0 ⊕ Cd. Denote by gξ the restriction of fξ on Lb+ ⊕ Cd. Then fξ and gξ give

the cohomology classes [fξ] ∈ H̃1(Lg⊕ Cd, Ô ) and [gξ] ∈ H̃1(Lb+ ⊕ Cd, Ô ).

Lemma 4.3. The map ξ 7→ [fξ] is an isomorphism from (h0 ⊕ Cd)∗ onto H̃1(Lg⊕ Cd, Ô ).

Lemma 4.4. The map ξ 7→ [gξ] is an isomorphism from (h0 ⊕ Cd)∗ onto H̃1(Lb+ ⊕ Cd, Ô ).

The above two lemmas are deduced from Lemma 4.2.

Lemma 4.5. H̃0(Ln+, Ô ) ≃ Ô
Ln+

= C, where Ô
Ln+

:= { a ∈ Ô | [π̃(Ln+), a] = 0 }.
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The similar method of the poof of Lemma 4.2 shows that the inclusion 0 → Ln+ and the
projection Ô → C induce an isomorphism from H̃0(Ln+, Ô ) onto H̃0(0,C) = C.

Lemma 4.6. There exists a unique Γ ∈ H̃omC(Lg ⊕ Cd, Ô ) which satisfies the following
conditions:

c2 = ω + dΓ,(4.1)

Γ = 0 on Lb+ ⊕ Cd.(4.2)

Proof. Existence. It follows from Lemmas 4.1 and 4.2 that ω and c2 give a same cohomology

class in H̃2(Lg⊕Cd, Ô ). Namely there exists Γ̃ ∈ H̃omC(Lg⊕Cd, Ô ) such that c2 = ω + dΓ̃.
But Lemma 4.1 and the definition of c2 imply that dΓ̃ = 0 on

∧2(Lb+ ⊕ Cd). Therefore the
restriction of Γ̃ on

∧2(Lb+ ⊕ Cd) becomes a 1-cocycle in Z̃1(Lb+ ⊕ Cd, Ô ). By Lemma 4.4
we can choose some ξ ∈ (h0 ⊕ Cd)∗ and a ∈ Ô so that Γ̃ = gξ + da on

∧2(Lb+ ⊕ Cd). Put
Γ := Γ̃− fξ − da. Then Γ satisfies (4.1) and (4.2).

Uniqueness. Assume that Γ′ ∈ H̃omC(Lg ⊕ Cd, Ô ) is also satisfies (4.1) and (4.2) and put
u := Γ′−Γ. Then u satisfies (i) du = 0 and (ii) u = 0 on Lb+⊕Cd. By (i) and Lemma 4.3 we
can take some ξ ∈ (h0⊕Cd)∗ and a ∈ Ô so that u = fξ + da. The definition of fξ implies that
fξ = 0 on Ln+. Therefore it follows from (ii) that da = 0 on Ln+. Since Lemma 4.5 implies
a ∈ C and hence da = 0. This and (ii) imply that fξ = 0 on Lb+ ⊕Cd. Then ξ = 0 and hence
fξ = 0. We have just proved u = 0.

Using the linear map Γ in the theorem, we define the linear map π: ĝ → Â [Θ] by

π(l) := π̃(l) + Γ(l) for l ∈ Lg⊕ Cd,
π(K) := κ− h∨.

From (4.1) we can immediately obtain the following main result of this article.

Theorem 4.7. The linear map π is a Lie algebra homomorphism from ĝ into Â [Θ]. Hence
the Fock space Fξ can be regarded as a left ĝ-module with level κ− h∨.

We call the ĝ-modules Fξ Fock space representations of the twisted affine Lie algebra.
Recall that ĝ can be regarded as a Kac-Moody Lie algebra of affine type. Its Cartan

subalgebra is equal to Lh⊕ Cd⊕ CK. A pair of k ∈ C and ξ ∈ (Lh⊕ Cd)∗ can be identified
with a weight of ĝ. Namely the corresponding weight in (Lh⊕ Cd⊕ CK)∗ is defined by

a 7→ ξ(a) (for a ∈ Lh⊕ Cd), K 7→ k

Then (4.2) deduces the following result.

Corollary 4.8. For κ ∈ C and ξ ∈ Lh⊕ Cd, the Fock space representation Fξ of ĝ possesses
a highest weight (κ− h∨, ξ).

It is easy to calculate the formal character of the Fock spaces. Thus we obtain the following.

Corollary 4.9. The formal character of Fξ is equal to that of the left Verma module Mξ of
ĝ with the same highest weight. Hence, if the pair of κ and ξ is enough generic, then Fξ is
isomorphic to Mξ.
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Let us consider the case of κ = 0, in which the level of a Fock space representation is
critical, i.e. level = −h∨. If κ = 0, then the center of Â is very large (Remark 3.1). Hence we
can find many singular vectors with the following forms:

pi1,a1 [m1] · · · piM ,aM [mM ] |ξ⟩, m1 ≤ · · · ≤ mM < 0,

where |ξ⟩ is a highest vector of Fξ. Denote by F ξ the quotient space of Fξ divided by the
ĝ-submodule generated by the singular vectors mentioned above. Note that there is another
construction of F ξ. Namely, if we start without pi,a[m]’s, then we shall obtain F ξ using the
construction similar to that of Fξ. Anyway a simple ĝ module Lξ with highest weight (−h∨, ξ)
is isomorphic to some subquotient of F ξ. If ξ is enough generic, then F ξ is isomorphic to Lξ.
Making the above argument precise (cf. [H]), we can obtain the following result.

Corollary 4.10. The Kac-Kazhdan conjecture [KK] is true for the Kac-Moody Lie algebras
of affine type (in twisted cases as well as in non-twisted ones).

References

[DGK] Doedhar, V. V., Gabber, O., Kac, V.: Structure of some categories of representations
of infinite-dimensional Lie algebras. Adv. Math. 45, 92–116 (1982)

[FeFr1] Feigin, B., Frenkel, E.: Representation of affine Kac-Moody algebras, bosonization
and resolutions. In: Brink, L., Friedan, D., Polyakov, A.M. (eds.) Physics and Math-
ematics of Strings. Memorial volume for Vadim Knizhnik, pp. 271–316. Singapore,
New Jersey, London, Hong Kong: World Scientific 1990

[FeFr2] Feigin, B., Frenkel, E.: Affine Kac-Moody algebras and semi-infinite flag manifolds.
Commun. Math. Phys. 128, 161–189 (1990)

[GW] Goodman, R., Wallach, N. R.’: Higher-order Sugawara operators for affine Lie alge-
bras. Trans. A. M. S. 315, No. 1, 1–55 (1989)

[H] Hayashi, T.: Sugawara operators and Kac-Kazhdan conjecture. Invent. math. 94,
13–52 (1988)

[Kac] Kac, V. G.: Infinite dimensional Lie algebras (Second Edition). Cambridge, London,
New York, New Rochelle, Melbourne Sydney: Cambridge University Press (1985)

[KK] Kac, V. G., Kazhdan, D. A.: Structure of representations with highest weight of
infinite-dimensional Lie algebras. Adv. in Math. 34, 97–108 (1979)

[Ku] Ku, J. M.: Structure of the Verma module M(−ρ) over Euclidean Lie algebras. J.
Alg. 124, 367–387 (1989)

[Kur] Kuroki, G.: Fock space representations of affine Lie algebras and integral represen-
tations in the Wess-Zumino-Witten models. Commun. Math. Phys. 141, 511–542
(1991)

[W] Wakimoto, N.: Fock representations of the affine Lie algebra A
(1)
1 . Commun. Math.

Phys. 104, 605–609 (1986)

8


