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Abstract

We establish a theory of complexes of relative correspondences. The theory generalizes
the known theory of complexes of correspondences of smooth projective varieties. It will
be applied in the sequel of this paper to the construction of the triangulated category of
motives over a base variety.
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We have the theory of algebraic correspondences of smooth projective varieties for the Chow
group and for the higher Chow group. We first recall the classical theory of correspondences
for the Chow group. For smooth projective varieties X, Y over a field k, let CH"(X X Y') be
the Chow group of codimension r cycles of X x Y. An element of this group is said to be
a correspondence from X to Y. One has composition of correspondences defined as follows.
Let Z be another smooth projective variety. For u € CH"(X x Y) and v € CH*(Y x Z), the
composition v ov € CH™~ ™Y (X » 7) is defined by

wov = pi3.(Piau - Pisv)

where for example py, is the projection from X X Y x Z to X x Y. One has associativity for
composition: (uwov)ow =uo(vow). The theory of motives (to be precise Chow motives) over
k is based on the theory of correspondences. The basic idea is to consider the additive category
where objects are smooth projective varieties, morphisms are given by correspondences, and
composition given by composition of correspondences.

Instead of the Chow group one can take the higher Chow group. For u € CH"(X X Y,n)
and v € CH*(Y x Z,m) the composition v ov € CH ™ Y (X x 7 n + m) is defined by the
same formula. Indeed we can do this at the level of chain complexes. Recall for a variety X
the cycle complex (Z"(X,-),0) is a chain complex where Z7(X,n) is the free abelian group on
the set of non-degenerate irreducible subvarieties V' of X x (0" meeting faces properly (see §0
for details). The boundary map 0 is given by restricting cycles to codimension one faces and
taking an alternating sum. The homology of this complex is the group CH"(X,n). For X and
Y smooth projective, Z"(X x Y,-) is the complex of “higher” correspondences from X to Y.
Foru € Z"(X xY,n) and v € Z°(Y x Z, m) the pull-backs pj,u and pj;v may not meet properly
in X xY x Z x O™, But according to a moving lemma the subcomplex

2N(X XY, )®Z(Y x Z,)
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of Z'( X XY, ) ®Z*(Y x Z,-) generated by elements u ® v, where u, v are non-degenerate irre-
ducible subvarieties such that pj,u and p3;v meet properly, is a quasi-isomorphic subcomplex.
For such u and v, the composition u o v € Zrts=dmY (X » 7 .) is defined, yielding a map of

complexes '
p: (X XY, )2 (Y x Z,-) — ZrtsdmY (X« 7).

If W is a fourth smooth projective variety, the subcomplex Z(X XY, )QZ(Y x Z, - )RZ(Zx W, ),
generated by u ® v ® w such that the triple pj,u, p35v, p5,w is properly intersecting on the four-
fold product, is a quasi-isomorphic subcomplex. For such u, v, w, one has uovow € Z(X x W, )
defined by p14.(piou - pigv - piyw), and the following holds: uovow = (uov)ow = wuo (vow).

Complexes Z(X x Y, -) and the partially defined composition were used in the construction
of a theory of the triangulated category of mized motives over k, see [6]. An object of the
category is a diagram of smooth projective varieties which consists of a sequence of smooth
projective varieties and higher correspondences between them, subject to certain conditions.

We would like to generalize this to relative correspondences. Let S be a quasi-projective
variety over k. By a smooth variety X over S we mean a smooth variety over k, equipped
with a projective map to S (the map X — S need not be smooth). Let X and Y be smooth
varieties over S. A natural choice for the complex of correspondences from X to Y would be
Z,(X xgY,-), the cycle complex of dimension a cycles of the fiber product X xg Y. Since
the variety X Xg Y is not smooth, we need to replace this with another complex of abelian
groups F'(X,Y’). Concretely F(X,Y) is the cone of the restriction map of the cycle complexes
Z(X xY,:) = Z(X xY — X xgY,-), shifted by —1. Even after replacing it with F(X,Y),
there is no partially defined composition map. What we can achieve is the following.

(1) There is a complex F(X,Y) and an injective quasi-isomorphism of complexes Z(X Xg
Y,:) = F(X,Y). To be precise one should keep track of the dimensions of the cycle complex,
which we ignore now.

(2) If Z is another smooth variety, projective over S, there is a quasi-isomorphic subcomplex

L F(X,Y)RF(Y,Z) = F(X,Y)® F(Y,Z) .
(3) There is another complex F(X,Y,Z) and a surjective quasi-isomorphism
o1 F(X,Y,Z) — F(X,Y)&F(Y, Z) .

(4) There is a map of complexes ¢ : F(X,Y,Z) —» F(X,Z) .

In the derived category at least, one has an induced map F(X,Y) ® F(Y,Z) — F(X,Z) ob-
tained by composing =1, 071, and . This map plays the role of composition. One should note,
in contrast to the case S = Speck, there is no composition map defined on F(X,Y)QF(Y, Z);
the composition ¢ is defined only on F'(X,Y, 7).

The pattern persists for more than three varieties. For the formulation it is convenient to
change the notation as follows. In the above situation, write X;, X, and X3 in place of X, Y, Z;
let

F(Xl, XQ, X3 —I[{Q}) = F(Xl, XQ) X F(XQ, Xg)

and
F(Xl, XQ, Xg’{2}) = F(Xl, XQ)@F(XQ, Xg) .

Then the maps are of the form 1y : F(X1, Xo, X3 [{2}) — F(X1, Xs, X3|{2}), 02 : F(X1, X5, X3) —
F(Xl,XQ,Xg | {2}), and Y2 - F(Xl,XQ,Xg) — F(Xl,Xg).
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The generalization goes as follows.

(1) For each sequence of smooth varieties over S, Xi,---X,, (n > 2), there corresponds a

complex F(Xy,---,X,). If n = 2 there is an injective quasi-isomorphism Z(X; xg Xs,:) —
F(Xy,Xs).
For a subset of integers S = {iy, -+ ,i,_1} C (1,n), let ip =1, i, = n and
F(Xla"' 7Xn-||—S) = F(Xioa"' 7Xi1) ®F(Xi1"" 7Xi2) Q.- ®F(Xia71"” 7Xia) :
There is a complex F(Xy, -, X,|S) and an injective quasi-isomorphism
ts: F(Xy, -, X,|S) = F(Xy,--, X, ]9) .
We assume F(Xy, -, X,|0) = F(Xy, -, X,).
(2) For S C S’ there is a surjective quasi-isomorphism
oss : F(X1, -, X,|9) = F(Xy,--, X,|9) .
For S ¢ 8" € 8", ogsn = 0g157055. In particular we have o5 := opg : F(Xy, -+, X,) —
F(Xy, -, X,]9).
(3) For K = {ky, -+ ,ky} C (1,n) disjoint from S, a map
PK - F<X17 7Xn|S) _>F(Xl7 7‘?16\1"” 7‘?/9\1,"" 7Xn|S> .
If K is the disjoint union of K" and K”, one has px = prr@gn.
(4) If K and S are disjoint ogg and ¢ commute.
Indeed there is a more precise description. Each complex F(Xi,---, X)) is a degreewise free

Z-module on a given set of generators. In the situation of (1), for a set of generators

ar € F(X; X)) k=1,---,a—-1,

k—17?
there is a condition whether the set is properly intersecting. The F(Xi,---,X,|S) is the
subcomplex generated by a; ® -+ ® a,_1 for properly intersecting tuples aq, -+ ,qq_1. In
particular it is a multiple subcomplex of F'(X,---, X, [S). For the full details and additional
properties see §2.

The description of F(Xy, -+, X, [S) in terms of properly intersecting sets may seem ex-
cess baggage. In order to describe variants of such subcomplexes, however, it is necessary
to utilize the notion of properly intersecting sets. To illustrate this by a simple example, let
n < m and given a sequence of varieties Xi,---,X,,, a subset S C (1,n), and an element
f e F(X,, - ,X,). The subcomplex of F(Xy,---,X,|S) generated by a1 ® - -+ ® a,_1 such
that {ay, -, aq_1, f} is properly intersecting is a quasi-isomorphic subcomplex. This subcom-
plex is denoted [F (X7, -, X,|S)]s and called the distinguished subcomplex with respect to
the constraint f. The full argument on variations of such subcomplexes can be found in §3.

In §1 and 2, we define the complexes F'(Xi,---,X,) as above for a sequence of smooth
quasi-projective varieties Xy, -, X,,, each equipped with a projective map to a base variety
S. We now explain the ideas for the construction in case n < 3.

In §1, given a smooth variety M and a finite ordered open covering U of an open set
U C M, we define a complex Z(M,U) which is quasi-isomorphic to the cycle complex Z(A,-)
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of A= M —U. If W= {U}, the covering consisting of U only, Z(M,U) is the cone of the
restriction map Z(M) — Z(U), shifted by —1. In general one replaces Z(U) by Z(U), the Cech
complex with respect to the covering.

Assume M’ is another smooth variety, U’ a finite ordered open covering of U" C M’; assume
also there are smooth maps ¢ : M — Y and ¢ : M’ — Y. Let M xy M’ be the fiber
product and p: M xy M' — M, p' : M xy M'" — M’ be the projections. One has a covering
pUIL "W of the open set p~'U Up' U’ of M xy M'. For u € Z(M,U) and v € Z(M', W)
one has the pull-backs p*u € Z(M xy M',p~'U) and p*v € Z(M xy M',p'"'W), and if they
meet properly, their product is defined as an element of Z(M xy M’ p~"UII p' "W). The
subcomplex Z(M,U)R@Z(M', W) C Z(M,U) ® Z(M', W) generated by such v ® v is shown to
be a quasi-isomorphic subcomplex, and the product gives a map of complexes

p: (M, WRZ(M' W) — Z(M xy M, p~ UL p' W) .

If p: M — N is a projective map, V a covering of an open set of V C N, then p~!V is an
open covering of p~'V C M, and there is the projection map p, : Z(M,p~*V) — Z(N, V).

If we apply this to A = X xgY C M = X x Y and the covering consisting only of
Uy := M — A, one obtains a complex Z(X x Y, {Uj2}). If we set F'(X,Y") to be this complex our
problem is partially solved. If Z is another variety over S, one has F(Y,Z) = Z(Y x Z,{Us3})
with Usys =Y X Z —Y Xg Z, and there is the product map

p: (X XY {UR}OZ(Y x Z,{Uss}) = Z(X x Y x Z,{pry (Ur2), pgs (Uz3)}) -

The problem remains, since from the target of p there is no projection pi3, to the cycle complex
Z(X X Z,{Ulg}) where U13 =XxzZ-X Xg Z.
One notices here that there is a restriction map

7 (X XY x Z,{U123}) = 2(X X Y x Z,{p1z3 (U12), py3 (Uas)} ) ,

where Uypz = X XY X Z—X xgY xgZ, since Ujo3 contains both ppy (Ur2) and pyy (Uzs). The map
7 is a quasi-isomorphism, since both complexes are quasi-isomorphic to Z(X XgY X gZ). Assume
for simplicity Y is projective. One then defines the projection along p;3 as the composition

Pi3s L(X XY x Z,{Ua3}) = 2(X x Y x Z,{p1aU13}}) = 2(X x Z,{U3}) .

Here the first map is the restriction, which is defined since Ujs3 D p1_31 U,3, and the second map
is the projection along p;3. Consider now the double complex

Z(X X Y, {Um})@Z(Y X Z, {Ugg})

Z(X XY x Z,{U13}) —— Z(X xY x Z,{pi5 (Ur2), a3 (Ua3)})

where the upper right corner and lower left corner are placed in degree 0, and let F/(X,Y, Z)
be the total complex. In other words it is the cone of r 4 p shifted by —1. The required
properties are satisfied with this. The map o : F(X,Y,Z) — F(X,Y)®F(Y,Z) is given by
the projection to Z(X x Y, {Up}NRZL(Y x Z,{Us}), the map ¢ : F(X,Y,Z) — F(X,Z) is
obtained by composing the projection to Z(X X Y x Z,{Uja3}) with the map pi3..

The construction of the complexes F(Xy,---,X,) for n > 3 and the maps o, ¢ consists
of a systematic generalization of the above. In §1 we discuss the properties of the complexes
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Z(M,U) and their tensor products. In §2 we construct the complexes F(Xy,---,X,|S) and
the maps ¢, o, and ¢. The construction uses a variant of the so-called bar complez. Since this
construction appears again in a different context in Part II, we give an axiomatic description.

In §4 we construct the diagonal cycles which play the role of the identity. Let Ay €
Z(X x5 X,0) be the element given by the diagonal X C X x¢X. Its image under the inclusion
to F(X,X) is also denoted Ax; it has degree 0 and boundary zero. One can construct, for

n > 2, an element Ax(1,--- ,n) € F(X,---,X) of degree 0 with boundary zero, satisfying the
properties below. For the statement we introduce some notation. When X is understood, for
m

any subset I = {j1, -+ ,jm} C[l,n] set F(I)=F(X,---,X)and Ax(I) = Ax(j1,** ,Jm) €
F(I). For S C (1,n) let 75 : F(Xy, -+, X,) — F(Xy,---,X,[S) be the composition of og
and ¢g.

(1) One has Ax(1,2) = Ax € F(X, X).

(2) It S ={iy, -+ ,iq1} C (1,n), and Iy, -- , I, 1 the corresponding segmentation, one has

TS<AX(17 R 7n)) = A(Il) K- ® A(Ia—l)

in F(X, -, XTS) = F([)® - ® F(I,_,).

(3) For K C (1,n), px(A(L,---,n)) = A([1,n] — K).

We then show the existence of “diagonal extensions”. To explain it in the simplest case, let
n < m, and assume given a sequence of varieties X; on [1,n]. Setting X; = X,, for i € [n,m]
we extend the sequence to [1,m]. On [n,m] one has a constant sequence, so there is the
diagonal cycle A([n,m]) € F([n,m]) = F(X,, -, X,). Recall the map 7, : F'(Xy,---, X)) =
F(Xy, -, X,) ® F([n,m]). There is then a map of complexes called the diagonal extension

diag : F(X1, -+, X,) = F(Xy,---, X,)

such that 7,diag : F(Xy, -+, X,) — F(Xy, -+, X,) ® F([n,m]) coincides with u — u ®
A([n,m]). In other words, diag(u) is a canonical lifting of u ® A([n,m]) with respect to 7,.
The map diag is also compatible with the maps .

The constructions and results in Part I show that the classes of smooth varieties over S, the
complexes F'(Xy,---,X,) and the maps o, ¢ form a quasi DG category. To be more specific,
a symbol over S is a formal finite sum @@ (X,/5,7,) where X, is a smooth variety over S and
ro € Z. To a finite sequence of symbols Ky, -+, K, (n > 2) and a subset S C (1,n) one can
associate a complex of abelian groups F(Ky,--- , K,|S); if K; = (X;,r;), then F(Ky,--- | K,) is
the complex F\(Xy, -, X,|9), the integers r; specifying the dimensions of the cycle complexes
involved. One has maps og¢ and pg for F(Ky,--- , K,|S) as well. The class of symbols over S,
the complexes F'(Ky,---, K,|S), the maps osg¢, ¢k, along with additional structure — gener-
ating set for the complex, notion of properly intersecting elements, distinguished subcomplexes
with respect to constraints, diagonal cycles and diagonal extension — constitute a quasi DG
category.

In the sequel of this paper we introduce the notion of quasi DG category, which is a gen-
eralization of DG category. A quasi DG category consists of a class of objects, complexes
F(Xy, -, X,|S) for a sequence of objects, maps oggs, ¢k and additional structure that are
subject to a set of axioms. The axioms is an abstraction of the properties verified for the
relative cycle complexes.



In the section titled “Basic notions” we have collected materials needed throughout the
paper.

Contents.

§0. Basic notions.

§1. The Cech cycle complexes Z(M,W).

§2. Function complexes F/(Xy, -+, X,,).

§3. Distinguished subcomplexes with respect to a constraint.
§4. The diagonal cycle and the diagonal extension.

0 Basic notions

(0.1) The cycle complex. In this paper k is an arbitrary ground field, and one considers sepa-
rated schemes of finite type (we will simply say schemes) over k. A variety is a reduced, possibly
reducible scheme over k.

The references for the cycle complex are [1], [2], [3]. We briefly recall some definitions and
results that will be needed in this paper.

Let O' =P, — {1} and O" = (O")" with coordinates (z1,- - ,x,). Faces of (0" are intersec-
tions of codimension one faces, and the latter are divisors of the form ngl = {z; = a} where
a =0 or co. A face of dimension m is canonically isomorphic to [J™.

Let X be an equi-dimensional variety (or a scheme). Let Z"(X x ") be the free abelian
group on the set of codimension r irreducible subvarieties of X x [J" meeting each X X face
properly. An element of Z"(X x ") is called an admissible cycle. The inclusions of codimension
one faces 9, , : ngl — [" induce the map

0= (—1)"(67p — 670) 1 Z"(X x O") = 2'(X x O"7")

One has 9o d = 0. Let m; : X x " — X x O"! i = 1,--- ,n be the projections, and
7 ZN(X xO" 1) — Z7(X xO") be the pull-backs. Let Z"(X,n) be the quotient of Z"(X x ")
by the sum of the images of 7. Thus an element of Z"(X,n) is a represented uniquely by a
cycle whose irreducible components are non-degenerate (not a pull-back by m;). The map 0
induces a map 0 : Z"(X,n) — Z"(X,n — 1), and 9 0 0 = 0. The complex Z"(X, ) thus defined
is the cycle complex of X in codimension r. The higher Chow groups are the homology groups

of this complex:
CH"(X,n) = H,Z"(X,) .

Note CH"(X,0) = CH"(X), the Chow group of X. In this paper we would rather use the
indexing by dimensions: for s € Z, Z,(X,-) = Z9mX="(X .) and CH,(X,n) is the homology
group.

If X is a quasi-projective variety and U is an open set, letting Z = X — U, one has an exact
sequence of complexes 0 — Zs(Z,-) = Zs(X,-) = Z5(U,-). The localization theorem [2]says
that the induced map Z4(X,-)/Zs(Z, ) — Zs(U, ) is a quasi-isomorphism (indeed a homotopy
equivalence).

A proper map f : X — Y gives rise to a map of complexes f, : Z4(X,-) = Z4(Y,-). A flat
map f: X — Y of dimension d induces a map of complexes f*: Z4(Y, ) = Zs1q(X, ). There



is also a partially defined pull-back map f* associated with a map f: X — Y if Y is smooth.
See [3].

There is a result called the “easy moving lemma” in [3]; a generalization of this lemma will
be discussed in §1.

(0.2) Multiple complexes. By a complex of abelian groups we mean a graded abelian group
A* with a map d of degree one satisfying dd = 0. If u: A — B and v : B — C are maps of
complexes, we define u-v : A — C by (u-v)(x) = v(u(z)). So u-v is vou in the usual notation.
As usual we also write vu for v o u (but not for v - u).

A double complex A = (A%;d',d") is a bi-graded abelian group with differentials d' of
degree (1,0), d” of degree (0,1), satisfying d'd” + d"d" = 0. Its total complex Tot(A) is the
complex with Tot(A)* = @D, A™ and the differential d = d’' 4-d”. In contrast a “double”
complex A = (A%;d', d") is a bi-graded abelian group with differentials d’ of degree (1,0), d” of
degree (0, 1), satisfying d'd” = d"d'. Tts total complex Tot(A) is given by Tot(A)* = P AW
and the differential d = d’' + (—1)‘d” on A™.

Let (A,d4) and (B,dg) be complexes. Then (A" = A7 @ B;1® dp,ds ® 1) is a “double”
complex; notice the first grading comes from the grading of B. Its total complex has differential
d given by

i+j=k

drz®y)=(-1)"¥r@y+rdy .

Note this differs from the usual convention.

More generally n > 2 one has the notion of n-tuple complex and “n-tuple” complex. An
n-tuple (resp. “n-tuple”) complex is a Z"-graded abelian group A" with differentials
dy, -+ ,d,, dp raising i, by 1, such that for k # ¢, dydy + dedy, = 0 (vesp. dpdy = dydy).
A single complex Tot(A), called the total complex, is defined in either case. As a variant one
can define partial totalization: For a subset S = [k,¢] C [1,n] with cardinality > 2, one can
“totalize” in degrees in S, so the result Tot”(A) is an m-tuple (resp. “m-tuple”) complex,
where m =n — | S| + 1.

For n complexes A}, --- , A%, the tensor product A} ® --- ® A? is an “n-tuple” complex.

The difference between n-tuple and “n-tuple” complexes is slight, so we often do not make
the distinction. There is an obvious notion of maps of n-tuple (“n-tuple”) complexes.

If A is an n-tuple complex and B an m-tuple complex, and when S = [k, ¢] C [1,n] with
m =n — |S| + 1 is specified, one can talk of maps of m-tuple complexes Tot”(A) — B. When
the choice of S is obvious from the context, we just say maps of multiple complexes A — B. For
example if A is an n-tuple complex and B an (n — 1)-tuple complex, for each set S = [k, k + 1]
in [1,n] one can speak of maps of (n — 1)-tuple complexes Tot”(A) — B; if n = 2 there is no
ambiguity.

(0.2.1) Multiple subcomplezes of a tensor product complexr. Let A and B be complexes.
A double subcomplex C* C A* ® B’ is a submodule closed under the two differentials. If
Tot(C') — Tot(A ® B) is a quasi-isomorphism, we say C** is a quasi-isomorphic subcomplex.
It is convenient to let A*®B* denote such a subcomplex. (Note it does not mean the tensor
product of subcomplexes of A and B.) Likewise a quasi-isomorphic multiple subcomplex of
Al ® -+ ® A2 is denoted AR -+ QA?.

(0.3) Tensor product of “double” complexes. —Let A** = (A*P;d/,,d’}) be a “double” complex
(so d' has degree (1,0), d” has degree (0,1), and d'd’ = 0, d"d” = 0 and d'd’" = d"d"). The



associated total complex Tot(A) has differential d4 given by dq = d' + (—1)*d” on A“P. The
association A — Tot(A) forms a functor. Let (B%%; d’z, ds) be another “double” complex. Then
the tensor product of A and B as “double” complexes, denoted A**® x B**, is by definition the
“double” complex (E"; dy, d), where

FeT — @ AP ® Bb,q

a+b=c,p+q=r

and dfy = (=1)’d, @ 1+ 1@ dy, df = (-1)1d4y @ 1+ 1@ d}.
The tensor product complex Tot(A) ® Tot(B) and the total complex of A** x B** are
related as follows. There is an isomorphism of complexes

u : Tot(A) ® Tot(B) — Tot(A** x B**)

given by u = (—1)% - id on the summand AP ® B9,
Let A, B, C be “double” complexes. One has an obvious isomorphism of “double” complexes
(Ax B) x C=Ax (B xC);itis denoted A x B x C. The following diagram commutes:

Tot(A) ® Tot(B) ® Tot(C) —=% Tot(A x B) ® Tot(C)

164 |

Tot(A) @ Tot(B x C)  ——  Tot(Ax BxC) .

The composition defines an isomorphism v : Tot(A) ® Tot(B) ® Tot(C') = Tot(A x B x C).
One can generalize this to the case of tensor product of more than two “double” complexes.
If Ay,---, A, are “double” complexes, there is an isomorphism of complexes

Uy Tot(A;) ® -+ @ Tot(A,,) — Tot(A; x -+ x Ay)

which coincides with the above u if n = 2, and is in general a composition of u’s in any order.
As in case n = 3, one has commutative diagrams involving u’s; we leave the details to the
reader.

Let A, B, C be “double” complexes and p : A** x B** — (C** be a map of “double”
complexes, namely it is bilinear and for o € A%? and 8 € B™4,

dpla® B)=p((-1)'da® f+a®dp)

and
d"pla® p) = p((-1)!d"a® B +a@d'p) .

Composing Tot(p) : Tot(A x B) — Tot(C) with u : Tot(A) ® Tot(B) = Tot(A x B), one
obtains the map
p : Tot(A) ® Tot(B) — Tot(C) ;

it is given given by (—1)% - p on the summand A%" ® B4,
The same holds for a map of “double” complexes p: A} x --- x A, — C.

(0.4) The bar complezx (§2). Let (A, d4) be a differential graded algebra, namely a complex of
abelian groups with associative multiplication, satisfying d(a - 8) = (—1)%85(da) - 8+ a - (dB).
(Usually one considers a differential graded algebra with augmentation, and take A to be its



augmentation ideal.) The bar complex B(A) is, as an abelian group, the tensor algebra (over
Z) T(A) = @cZO Aze.
Give a grading by
deg(a1 ® - ®@a.) = Z(deg a; — 1)
and give a pair of differentials by (put ¢; = deg(a;) — 1)

don® - ®a)=—> (1)@ Qa1 @dala;) @ D ac

Pl ® - Qo) = Z(_l)ijiej MR ® (i )@ Da .

Since dd = 0, pp = 0 and dp + pd = 0 as can be verified, dpay = d + p is a differential. The
bar complex is the complex with the grading and the differential dp(4). There is a filtration by
subcomplexes of B(A) so that the successive quotients are

Al ®@---® A[l] (c times )
as complexes.

(0.5) Finite ordered sets, partitions and segmentations. Let I be a non-empty finite totally
ordered set (we will simply say a finite ordered set), so I = {iy, - ,in}, i1 < -+ < iy, where
n = |I|. The initial (resp. terminal) element of I is iy (resp. i,); let in(l) = iy, tm(I) = 4,. If

n>2let I =1—{in(I),tm(/)}.

If I = {iy, -+ ,in}, a subset I’ of the form [i,,ip] = {i4, - ,ip} is called a sub-interval.

In the main body of the paper, for the sake of concreteness we often assume I = [1,n] =
{1,--- ,n}, a subset of Z. More generally a finite subset of Z is an example of a finite ordered
set.

A partition of I is a disjoint decomposition into sub-intervals I, - - - , I, such that there is a
sequence of integers i < iy < --+ < i,_1 < j so that Iy = [ix_1,ix — 1], with ip =7 and 7, = j+ 1.

So far we have assumed I and I; to be of cardinality > 1. In some contexts we allow
only finite ordered sets with at least two elements. There instead of partition the following

notion plays a role. Given a subset of I, 3 = {iy,--- ,i,_1}, where i; < iy < -+ < i,_1, ONe
has a decomposition of I into the sub-intervals Iy,--- , I,, where I = [iy_1,1;], with ig = iy,
iq = in. Thus the sub-intervals satisfy I N Iy = {ix} for k= 1,--- ,a — 1. The sequence of
sub-intervals I, -- - , I, is called the segmentation of I corresponding to ¥. (The terminology
is adopted to distinguish it from the partition).

Finite ordered sets of cardinality > 1 and partitions appear in connection with a sequence
of fiberings. On the other hand, finite ordered sets of cardinality > 2 and segmentations appear
when we consider a sequence of varieties (or an associated sequence of fiberings). See below.

(0.6) Sequence of fiberings (§1). Let n > 2. A sequence of fiberings consists of smooth varieties
M; (1<i<n)andY; (1 <i<n—1), together with smooth maps M; — Y; and M;,; — Y.
For a sub-interval I = [j, k] C [1,n] of cardinality > 1, one defines M| to be the fiber product
M; Xy, My X -+ Xy, My. It Iy, - | I is a partition of [1,n], then one has smooth varieties
My, -+, M;, , which form a sequence of smooth varieties over appropriate Y’s.

(0.7)Sequence of varieties (§2).  Let n > 2. A sequence of smooth varieties over S is a set of
smooth varieties X; indexed by i € [1,n], where each X; is equipped with a projective map to
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S. For a sub-interval I = [j, k| of cardinality > 2, let X; be the direct product [, , X;. Given
an segmentation Iy, --- , I. corresponding to ¥ = {i;}, the varieties X;, and the projections to
X, form a sequence of fiberings.

(0.8) The class of symbols over S. Let S be a quasi-projective variety. Let (Smooth/k , Proj/5)
be the category of smooth varieties X equipped with projective maps to S. A symbol over S is

an object the form

D (Xa/S,7a)

acA
where X, is a collection of objects in (Smooth/k , Proj/S) indexed by a finite set A, and r, € Z.
The class of objects over S is denoted Symb(S).

1 The Cech cycle complexes Z(M,U)

Let k be a fixed ground field. By a smooth variety over k we mean a smooth quasi-projective
equi-dimensional variety over k.

(1.1) I-coverings. Let M be a smooth variety over k, A C M a closed set, and U := M — A.
Let I be a finite ordered set. An open covering of U indexed by I (or just an I-covering of U)
is a set of open sets U = {U, }ier, with U;U; = U. It is also denoted by (1, U).

If V'.C M is another open set, J is another finite ordered set and V = {V}},c; a J-covering
of V', a map of coverings (I,U) — (J,V), or just U — 'V for short, is an order preserving map
A J — I such that Uy D V; for j € J. One then has V' C U. We thus have the category of
I-coverings of open sets of M, for varying I; it is denoted by Cov(O(M)). The subcategory of
I-coverings of a given U C M is denoted Cov(U C M), or just Cov(U).

If W is an [-covering of U and X : J — [ is an order preserving map, define A\*U to be
the J-covering of U’ = U;Uy(;) given by j +— U,y). There is a natural map of coverings
A (I, U) — (J, A*U). For composition of maps A, M*U is contravariant functorial. A map of
coverings A : (I,U) — (J,V) factors as (I, U)——(J,\*U) — (J, V).

If U is an I-covering of U and W an I’-covering of U’ then one has an I 1T I’-covering U ITW
of UUU’. Here I 111" is ordered so that i < i’ fori € I and i’ € I'.

For the rest of this section, without so mentioning an indexing set [ is always finite ordered,
and a map between them is always order preserving.

The notion of coverings and maps can be defined for I unordered or infinite. For our
purposes we restrict to finite ordered indexing sets.

(1.2) The complex Z(M,U). For a variety X let Z4(X,-) denote the cubical cycle complex as
in [3]; an element of the complex is uniquely represented by an admissible cycle on X x O7,
whose components are non-degenerate. We have the cycle complex Z4(U, ), s € Z for an open
set U C M. We will abbreviate it to Zs(U), or Z(U). From now we often drop the dimension
s from the notation, as long as there is no confusion.

For an I-covering U of U, we define a complex denoted Z(M,U) to be the total complex
associated to the double complex A** defined as follows. Let

A% = 2(M, —a) ,
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and for p > 0,
Aa,p+1 = @ Z<Ui07"'7ip’ —a)
io <+ <ip
where Uy, .. ;, = Uy, N---NUs,. It is convenient to set Uy = M, and when p = —1, we interpret
(ig, -+ ,ip) = 0, so @ = (ap) € Z(M). With this convention, the differential § of degree (0,1)
is given by sending a € @ Z(Uj,,... ;,) to
5(a)i07"'7ip+1 = Z<_1)pir+l aio,---,ﬁ,---,ip+1 ’Ui07---,ip+1 :

(The sign differs from the usual sign convention of Cech complexes. ) The differential 0 of

degree (1,0) is the boundary map of each cycle complex. The differential of the total complex
isd=0+(—1)% on A*P.

2(MU) = [2(M) " @2V~ D 2Uii) = = B ZTigs,) =]

10<i1 10 < <ip

Note the natural map
L Zs(A) — Zg(M,U)

is a quasi-isomorphism. This follows from the localization theorem for the cycle complex [2].
If (J,V) covers V, and A : (I,U) — (J,V) a map of coverings, there is the induced map of
complexes

(M, \) : Z(M,U) = Z(M, V) ;

thus we have a functor Z(M, —) from the category Cov(O(M)) to C(Ab). The following square
commutes:

2w MY g v)

2(A) —— Z(B).

Here B = M — V', and the bottom is the map induced by inclusion.

As special cases of Z(M, \), we have restriction maps and pull-backs (in general, a map
Z(M, ) between cycle complexes is a composition of restriction and pull-back).

If I =J and U, V are coverings such that V; C U;, there is the restriction map

Z(M,U) — Z(M,V) .

If A:J — Iisamap and V = AU, then \* : (I,U) — (J,\*U) induces a map (called
pull-back)
N Z(M,U) — (M, AU

(1.3) Push-forward and pull-back. 1f p : M — N is a projective map, B C N a closed set
with complement V' such that p~'V = U and V € Cov(V C N), then p~'V € Cov(U C M)
is defined in the obvious manner, and push-forward on cycle complexes induces a map (also
called the push-forward)

Pyt Zs(M,p~'V) — Z (N, V) .

It is compatible with p, : Zs(A) — Zs(B) via the maps ¢.
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The push-forward is covariant functorial in p. It commutes with the maps of functoriality
for coverings: For a map A : (I,U) — (J,V) of coverings in Cov(O(N)), one has the induced
map of coverings A : (I,p~U) — (J,p~'V) in Cov(O(M)), and the following square commutes:

2(Mp~u) Y 2(M,pY)

P« D

(N, N vy

Let p : M — N be a smooth map of relative dimension d. For V € Cov(V C N), the

pull-back map
P* 1 Zs(N,V) = Zora(M,p~'V)

is defined. It is compatible with the pull-back map
p*:24(B) = Zyrq(p~'B)

(B is the complement of V') via the maps ¢. The pull-back is contravariant functorial in p. It
commutes with functoriality maps for coverings V.

(1.4) Restricted tensor product and the product map.  Let M, M’ and Y be smooth varieties
and ¢ : M — Y, ¢ : M' — Y be smooth maps of varieties. Let M o M’ := M xy M’ and
p:MoM — M, p : Mo M — M be the projections.

Mo M

AN
N

Let a,b € Z, and ¢ = a + b — dim Y. We define a subcomplex
Zo(M)RZy(M') C Zo(M) @ Zyy(M')

as follows. An element a®f € Z,(M)®Zy(M') (a and 3 are assumed to be irreducible) is in the
subcomplex iff p*« and p’* 8 meet properly in Mo M’, and the product p*a-p™* 5 € Z.(M o M').
We define
aoy f=aofB :=pa-pp.
(We say briefly that the condition is that a o § € Z(M ¢ M') be defined.)
Then the following conditions are satisfied; (i) is non-trivial and proved later in this section,
and the rest are immediate from the definitions.

(i) The inclusion of the subcomplex is a quasi-isomorphism.
(ii) There is a map of complexes

py = p: Zo(M)QRZy(M'") — Zo(M o M)

12



which sends a ® 8 to a oy 3.

(iii) If 7 : N — M is a smooth map of dimension d, the pull-back 7*®id : Zo(M)RZy(M') —
Zara(N) @ Zy(M') takes the subcomplex Z,(M)®Zy(M’) into Z,a(N)®Zy(M'). We thus have
the induced map

7 ®id : Zo(M)QRZy(M') = Zara(N)RZy(M') .
Similar property holds for pull-backs in M’. This applies in particular to open immersions into
M or M.

If #: M — N is a projective map, the push-forward 7, ® id : Zo(M) @ Zp(M') = Z,(N) ®

Zy(M') takes the subcomplex Z,(M)®2Z,(M’) into Z,(N)@Zy(M'):

T @ id : Lo (M)RZy(M') — Zo(N)RZy(M') .
Similar property holds for push-forward in M’.

To state the next level of generalization, let M; — Y; < My — Y5 < M3 be a sequence
of smooth varieties and smooth maps. We have M; ¢ M,y = M, Xy, M;+, as before, and
Mo My o M3 = My Xy, My Xy, M3. Note My o My o My = (My o My) o Mz = My o (My o Ms).
Let p; : My o My o M3 — M; be the projection.

M1<>M2<>M3
M1<>M2 MgOMg

NN
NN S |

Define a subcomplex
Z(M)RZ(My)RZ(Ms) C Z(M;) ® Z(My) ® Z(Ms)

as follows. (In what follows we will not specify the dimensions a; for Z, (M;).) An element
a1 @ ag ® ag € Z(My) ® Z(Mz) @ Z(Ms) (o are assumed irreducible) is in the subcomplex iff
the following conditions (i)-(iii) are satisfied:

(i) pjaq and pias meet properly in My o Moo M3, and piay - phas € Z(My o Moo Ms). (This
is equivalent to an analogous condition for the pull-backs of oy and ay to My ¢ Ms.)

(ii) psae and pias meet properly in My © My o My, and pias - piasg € Z(My o My o Ms).

(iii) pjoq - pyas and piag meet properly in My o My o Ms, and (piaq - pias) - phas € Z(M; o
My o Ms).

Similarly pja; and pias - pias and meet properly in M o My o Ms, and pia; - (phas - pias) €
Z(M; o My o M3). Note then the two triple intersections coincide.

By (iii) one can define

a1 0 0 (3= piag - pias - pyas € Z(My o My o Ms).
1 2
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By (i) and (iii), oy 0 ap € Z(My o My) and (a1 o ao,a3) € Z(M; o My)®Z(Ms3). Similarly
a0 g € Z(My o Ms) and (aq, ay 0 az) € Z(M,)®Z(Ms o Ms). Further,

ajoagoag=(agoag)oaz=ajo(ayoans).

The following statements hold, the only non-trivial one being the first assertion in (i).

(i) The inclusion of the subcomplex is a quasi-isomorphism. There are also inclusions
2(M)SL(M)EZ(My) C (2(My)Z(Ma)) @ Z(My)
and

(ii) There is a map of complexes
Py, : (M) RZ(My)RZ(Ms) — Z(My o My)RZ(Ms)
which sends (aq, @, ) to (g o ag, ag), a similar map
Py, + Z(My)RZ(Mz)QZ(Ms) — Z(My)QZ(Ms o Ms)

and

PYLYs - Z(M1)®Z(M2)®Z(M3) — Z:(Ml oMy o Mg)
which sends (aq, ag, a3) to ag o ag o ag. One has py,y, = py,pv,, where py, is the product map
Z(My o My)RZ(Ms) — Z(My o My o M3). Similarly py,y, = py; pvs-

We may shorten the notation and write p; for py, and pio for py,y,. We may alternatively
write p([1,2],[3]) for py,, p([1],[2,3]) for py,, and p([1,3]) for py,v,. Here [j, k] denotes the set
of integers between j and k.

The inclusions and the product maps are compatible in the sense that the following square

commutes: -

Z(M)QZ(Ma)RZ(Ms) ——  Z(My o Mo)QZ(Ms)
incl incl
. v, ®1
LM)EGZ(Ms) © Z(Ms) 2255 2(My o M) © 2(Ms) .

Similarly for py,.
(iii) If 7 : Ny — M is a smooth map of dimension d, the pull-back

takes the subcomplex Z(M;)®Z(Ma)®Z(M3) into Z(N;)@Z(M;)®Z(Ms). So the map 7*®1®
1: Z(My)RZ(M3)RZ(Ms) — Z(N1)RZ(My)®Z(Ms) is defined. Similar property in each M;.
If 7 : M7 — Nj is a projective map, the push-forward

takes the Z(M;)®Z(Ms)®Z(Ms) into Z(N;)RZ(My)®2Z(Ms). Similar property in each M;.
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The general formulation, which involves n varieties, goes as follows. Let n > 2, and assume
given smooth varieties M; (1 <i<mn)and Y; (1 <i<n— 1) with smooth maps M; — Y; and
M; 1 — Y;. (We call such data a sequence of fiberings indexed by [1,n].)

M1\ /M2 \ M,
le }/2 Yn—l
For a sub-interval I = [}, k] C [1,n], let
M]:MjOMj_HO"'OMk .
There are projection maps p; : My — M; for each ¢ € I. One can define a subcomplex

Z(M)® - ®Z(M,) C 2(M) ® - - @ Z(M,,)

so that properties analogous to (i)-(iii) above are satisfied. The details will be given later in
(1.6)-(1.9). Here we only note that the product map is of the following form.

Let I,---, 1. be a partition of [1,n] into sub-intervals, see §0. The varieties My, ,--- , M|
form a sequence of fiberings. The product map is of the form

c

pll, o 1) : Z(M)® - - ®Z(My) — Z(Mp)@ -+ @Z(M,)
that sends (aq, -+, ) to (o, -+, ), where ay, = oj o -+ oy if I; =[5, K.

(1.5) Product map between Cech cycle complezes. Let M, M’ and Y be as above. For open
subsets U € M and U’ € M',let Uo U’ = U xy U' = p " (U)Np " (U") € Mo M. If A A’
are complements of U, U’, Ao A" := A xy A’ is the complement of p~"(U) U p'~"(U").

Given coverings U € Cov(U C M) and V € Cov(U" C M’), one defines a quasi-isomorphic
subcomplex

Z<M7 u)@Z(M,7 u/) C Z»(M, u) ® Z,(]\4/7 u/)
as the direct sum
@ ZJ(Um, 77;P>®Z’<‘/}O,"' ,jq) C @ Z’(Uzo, 77:p> ® Z(‘/jo’ 7jq> .
Then one defines a map
pY = p : ZJ(M’ u)®Z<M/, u/) — Z(M o Ml,pflu Hp/—lul>

which sends a ® o/ € Z(M,U)®Z(M', W) to a oy o’ given by

(@ 0oy & igipjorijy = Qigmiyy O Wi -
Here o consists of components ..., € Z(Uj,.,...;,), where we interpret ay € Z(M) if p =
—1. Recall Z(M,U) and Z(M’,U') are “double” complexes, so their tensor product may also
be viewed as a “double” complex. One verifies that py is a map of “double” complexes.
The induced map of simple complexes, which sends o @ o € Z(Uj,... ;,, a)RZ(V; b) to
(—1)2@+Dq 0y o, will also be denoted py. (For the sign change, see (0.3) ).

0, 7j‘I’
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IfA:U—Vand N : U — V' are maps of coverings of open sets of M, M’, respectively,
there is an induced map of coverings p "W IT p "W — p~ 'V II p/ "V, and one easily verifies
that the following diagram commutes, either as a diagram of “double” complexes or as one of
simple complexes.

(M, W)QZ(M', W) —L— (Mo M p 'ULp W)
A®>\’l
LM, QLM V) L (Mo M, p VI p V)

Since A o A’ is the complement of p~'U U p/ *U’, the above p gives rise to a map in the
derived category
Py : Za(A) X Zb(A/> — Z’a+b7dimY(A <& A/)

which makes the following diagram commute:

2MA @ 2(M W) LMWEZ(M W)~ Z(M o M, p~ ULy~ W)
L@ .
2(A) ® Z(A') SN Z(Ao A" .

All this can be generalized as follows. Let M; (1 <i<n)andY; (1 <i<n—1) besmooth
varieties with smooth maps M; — Y; and M;,; — Y;, as before. Let U; C M, be open sets, and
A; = M; — U;. For an interval I = [j, k], one has M; and the projections p; : M; — M;. The
complement of the union of p; *U; for i € I is A; = Ajo---0A, fU; € Cov(U; C M;), then
one can define a quasi-isomorphic subcomplex

Z’(Mlaul)® e ®Z’(Mn7UN) C Z’(Mhul) D Z’(M’thn) .

For a partition Iy, - - I, of [1,n], let

a covering of Ujcs, (p; *U;) € M;,. We have a map
p(ly, - 1)t Z(My, W)@ - - - ®Z (M, W) — Z(My, Up, )@ - - - @Z(My, , Uy, )

(put appropriate signs as in the case n = 2).
See (1.9) for a continuation of this subsection.

(1.6) Distinguished subcomplezes of cycle complezes. In [3|Bloch showed, for a smooth variety
X, the subcomplex of Z(X,-) consisting of the cycles meeting a given set of subvarieties of X
properly is a quasi-isomorphic subcomplex. We discuss a generalization of this.

Let X be a smooth quasi-projective variety. A finite set {a1, -+, a,} of irreducible subva-
rieties of X is properly intersecting if for any subset {i1,--- 4.} of {1,--- ,n}, the intersection
a;, N -+ Nay, is empty or has codimension equal to the sum of the codimensions of o, . A set
of cycles {ay, -+, a,, } is properly intersecting if for all irreducible components of «;’s the above
condition is satisfied. Then the intersection cycle oy, - ay, - - - - - o, is well-defined, independent
of the order of taking intersections.
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Let Xi,---,X,, and T be a set of smooth quasi-projective varieties, and W = {WW,} be
a finite set of admissible cycles of X; x --- x X, x T x [0 (admissible means meeting faces
properly). Let m; : X7 X -+ X X, x T'— X; be the projection. Let si,--- s, be a sequence of
integers. We have the cycle complexes Z,(X;) and their tensor product Z,, (X;)®- - -®Zs, (X,).
From now we will usually drop the dimensions from the notation.

We define the subcomplex (called the distinguished subcomplex with respect to T and W)

[Z(X1) @ @ Z(X,)]lw C 2(X1) ®@--- @ Z(X,)
as the subgroup generated by elements
A ® ®Oé7« S Z’(X17n1) ® ®Z<XT7nT)

where «; are irreducible non-degenerate subvarieties satisfying the following condition:
(PI) For each A, the set of cycles

* *
{mlay,- - 7oy, Wy, faces }

is properly intersecting in X; x --- x X, x T x O™+t x [0 Here we employ the following
obvious abuse of notation:
e 7, denotes also the projection X; x --- x X, x T x Omt -+ x O — X, x O™
e W, denotes its pull-back by the projection X; x --- x X, x T x Omt+nr » OO —
Xy X oo x X, x T x O%;
e afaceisa closed set of the form X x- - -x X, xT x F where F is a face of "+ 17 x [0,
By a distinguished subcompler we mean the distinguished subcomplex with respect to some

T and W.

Theorem. The inclusion [Z(X;) ® -+ @ Z(X,)lw C Z(X1) ® -+ ® Z(X,) is a quasi-
1somorphism.

This is proved in case X; are smooth projective in [6], Part II, generalizing [3].

The case X; are smooth quasi-projective is similar. We sketch here an argument commu-
nicated to us by M. Levine. Assume r = 1, so we must show Zy (X) — Z(X) is a quasi-
isomorphism. Take a projective closure X of X, let Z = X — X, and consider the following
commutative diagram:

2(2) — 2(X) —  2X)

|
2(72) — Zw(X) — Zw(X).

By the localization theorem [2]we know the map Z(X)/Z(Z) — 2(X) is a quasi-isomorphism.
The same proof shows Zw (X)/2(Z) — Zw(X) is a quasi-isomorphism. The argument in
[3]shows Zy (X) — Z(X) is a quasi-isomorphism; although X is singular, the same proof works
since W is contained in the smooth locus of X. Hence one obtains the conclusion. We leave
the case r > 2 to the reader.

Remarks. (1) The intersection of a finite number of distinguished subcomplexes is a dis-
tinguished subcomplex.
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(2) For simplicity the defining condition (PI) may be phrased as follows, dropping 7* and
Out-tne 5 O The set {ay, - - -, a,., Wy, faces } is properly intersecting in X x -+ x X, x T,

(3) The condition (PI) is equivalent to: For each A and each face I of O™+ +m x (0% the
set of cycles {ay, -+, a,., WAN F } is properly intersecting in X3 x - - - x X, x T". It follows from
the following lemma.

(4) All the distinguished subcomplexes in the sequel of this paper are of the type in Example
below.

Lemma. Let X be a smooth variety, aq, - -+, a, be cycles on X, and 21, - , z,, be properly
intersecting cycles on X. Then the following are equivalent:
(i) {aq, -+ ,an, 21, , zm} is properly intersecting in X.

(ii) For each intersection zj N---Nz; , where 1 < jy < jo < --- < j, <m, the set
{0417"' y Ony 24y N "'ﬂsz}
15 properly intersecting in X .

(1.6.1)Example. We will often see the following type of subcomplexes. Let {Vi,---, Vj}
be a finite set of admissible cycles V; on X; x -+ x X, x T" x [0%. We assume the set

{Vi,-+, Vi, faces}
is properly intersecting. Consider the subcomplex generated by elements
0@ ®a € 2(X1,m) @ @ 2(X,ny)
where «; are irreducible non-degenerate subvarieties satisfying the following condition:
{miay, -, mra,, Vi, -+, Vi, faces }

is properly intersecting in X; x - -+ x X,. x T'x [J*. Then it is a distinguished subcomplex. [Note
it differs from the distinguished subcomplex with respect to {Vi,--- ,Vj}, in which the proper
intersection property is required with respect to each of V; separately.]

To verify this assertion, one takes as the set W the collection of the partial intersections
Vi,---, Vi, and apply the above lemma.

(1.7) The compler Z(M,)® - - @Z(M,). Assume given a sequence of fiberings, namely
(%) Smooth varieties M; (i =1,--- ,n) and Y; (1 <i < n—1), and smooth maps M; — Y;
and M, 1 — Y.
For an interval I = [j, k] C [1,n], let

M[IMjOMjJrlO"‘OMk.

There are projection maps pr; : M; — M, for each i € I. More generally, if I C I’ there
is the projection py; : My — M;, which is smooth. If I = [1,n], My, = Myo---o M, C
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My x -+ x M,. There are projections pi n; = p; : My — M;, m : My x -+ X M,, — M;, and
we have a commutative diagram:

M ) N My x -+ x M,
Phn,1
Di M;
Ur
Pr
M;
Let {Iy,---,I,} be a partition of an interval I = [j, k| into sub-intervals, namely there is

an increasing sequence j =iy < - -+ < 4,41 = k+ 1 such that I, = [is, 4441 — 1]. Then there are
projections
M[a — YiaJrl_l <— M[

a+1l °
So after renumbering
M(/L = Mfaa }/ﬁl = }/;

41— 1

we have another sequence of fiberings indexed by [1,7]. Thus My, ¢ --- <o M; makes sense and
coincides with Mj.

In what follows we fix a sequence of integers a; € Z, and take the complexes Z,, (M;). To
an interval I = [j, k] we assign the integer

k k—1
ar = E a; — g dimY;
i=j i=j

and take it as the dimension of the cycle complex Z(M). With this agreement we will drop
the dimensions from the notation.

Proposition.  For a set of elements «; € Z(M;, m;),i € [1,n], the following conditions
are equivalent:

(i) The set of cycles {pjo;(i = 1,--- ,n), faces } is properly intersecting in Mj; ) x O™+,

(ii) The set of cycles {ma;(i = 1,--- ,n), M}, faces } is properly intersecting in M x - - - x
M, x Omitmn,

When this condition is satisfied we will say that the set {c;(i = 1,--- ,n), faces } is properly
intersecting in Mj; ,,). The equivalence follows from the obvious

Lemma. Let X be a smooth variety andY C X a smooth subvariety (both assumed to be
equi-dimensional). For a set of cycles ay, -+, a, on X, the following are equivalent.

(i) The set {cv,- - ,an, Y} is properly intersecting in X.

(ii) The set {ay, - ,a,} is properly intersecting in X, the intersection o;; NY is proper for
each i, and the set {a; - Y} is properly intersecting in'Y.
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We define the subcomplex
Z(M)® - - RZ(M,) C (M) ® - -+ ® Z(M,)

to be the one generated by elements a; ® --- ® «,,, with each «; irreducible /I\lon—degenerate,
and {ay, -+, oy, faces} properly intersecting in M1 ). It is also denoted by @),y ,2(Mi).

The proposition shows that it coincides with the distinguished subcomplex with respect to
W = {Mp,} (the set consisting of one closed set):

Z(M)® - OZ(My) = [Z(M1) @ -+ @ Z(My)] (a3 -

Let o; € Z(M;,m;),i € [1,n] be elements such that {ay,-- -, an, faces} is properly inter-
secting in Mj;,). Then for each interval I = [j,k] C [1,n], the set {oy,- -, o4} satisfies an
analogous condition, thus

[To see this note the projection Mp ) — M is smooth, and the pull-back by a smooth map
preserves the proper intersection property of cycles. | Thus the intersection in M; x ™ +mk

(p;jaj> o (P?kak)

is defined and € Z(M;). This is denoted by

Qj O+ O Q=0Q;0: -0y
j j
Y,  Yi

or just by aj.
If I,--- , I, is a partition of I then

(p;,11a117 T 7p;,17«a17‘) E Z<MII>® e ®Z(MIT)

and
allo...oalT:aI

in Z(My). So one has the product map
ply o 1)t Z(M)® -+ @Z(My) = Z(Mp)@ - ®Z(My,)
that maps (g, , ) to (ag, -, az.).

(1.8) Properties of the product map p(Iy,--- ,I,).

(0) One clearly has, for any partition Iy, -- , I. of [1,n], the inclusion
[(18)] Z(M;) C ((IX> Z(M))® - ® ((%’9 2(M;)) .
T 1 r

The product map p([y, - -, I,) satisfies the following properties.
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(1) If Ky,--- , K is a partition of [1,r], namely K, = [k, kpy1 — 1] with ky = 1, kg1 —1 =1,
let
Jb:[kbu"'U]k,H_l—l, 1§b§8.
Then Ji,---,J is another partition of [I,n]. Let M, = M, and Y/ = Y;, ;. Then
My, = My, We/liave the product/inap p(KL, - K) 2 @ 2(M7) = Qg 2(M, ), namely
p(K1, - Ks) Qg 2(M1,) = @y g Z2(My,). The following diagram commutes:

p(Ih e 717‘)

®[1,n} Z(M;) ®[1,r] Z(Mr,)

p(le"' 7<]s) p(Kh 7Ks)

®[1,s] Z’(MJb)

(2) The following square commutes (where the vertical maps are inclusions):

®[1,r] Z’(Mfa)

— I, Iy
11 2(M) AU

= = N)®-@p(Ir
®,20M) @ 0@, 2(M;) "N @ 2(My,) .

Remark. For the map p(Iy,- -, I,) the following labeling will be useful as well (which we
have employed before). To a partition I, = [i,, 1,41 — 1] as above, one can associate a subset
S C [1,n — 1] given by

S = [{liasias1 — 2]

(remove from each I, the terminal element, and take disjoint union for a). Note the varieties
M, are obtained by taking fiber products over Y; with ¢ € S. The sequence of dimensions for
the target of p(Iy,---,1I,) is

Zsi— Z dimY;, i=1,---,r.

i€lg 1€SNI,

Giving a partition to sub-intervals is equivalent to giving a subset S of [1,7 — 1]. One may

write pg in place of p(Iy,--- , ;). Then the commutativity (1) can be written:

pPs = psrps
whenever S is the disjoint union of S” and S”. (Let S’ correspond to the partition Iy,--- , I,
S" C [1,r — 1] correspond to Kj,---, K, and S correspond to Ji,---,J;. By means of the

renumbering ¢ : [1,7 — 1] — [1,n — 1] given by ¢(¢) = iy — 1, S” can be identified with a
subset of [1,n — 1]. Then one has S = S"I11 5".)
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(1.9) Properties 0f® Z(M;,U;). This subsection is a continuation of (1.5). We list the prop-
erties of the complex Z(M;, U1)® - - - ®Z(M,,, Uy,).

(a) The subcomplex is functorial in U;. If U; — V; are maps in Cov(M;), there is an induced
map

Z(My, U )@ - - RZL(M,,, Wy,) — Z(My, V)& -+ RZ(M,,,V,,)

(b) The map p(Iy,- -, I,) is functorial in U;. If U; — V; are maps of coverings the following
diagram commutes:

(I, 0r)
R

Z(My, Up)& - - RZ(M,, Uy,) - Z(Myp,,Up,)® -+ - @Z(My,, Uy,)

(ML V)G - OU(M,, Vo) 0 2(My, V)G - O2(My,, V)

)~
Among the following properties, (0)-(2) are parallel to those in the previous subsection.
(0) For any partition Iy, --- , I, of [1,n], there is inclusion

@ Z(M;, ;) C (A Z(M;, W) ) @ -+ ® (@ Z(M;, W;) )

[1,71] I I

(1) If Ky,---, K, is a partition of [1,r], and Jy,--- ,Js is the resulting partition of [1,n],
then p(Kla e 7Ks)p(]1> e a-[r) = p(le Ty JS)
(2) The following square commutes (where the vertical maps are inclusions):

N I, I, —
Q1,0 2(Mi, W) A @ 2(M, Uy,

~ 7~ 1)®-@p(Ir
®), 2 W) @+ © @, (M W) " @y 2(Mi,,)
(3) If m : Ny — M is a smooth map, there is the corresponding map
7" & id : Z(M17 u1)® cee ®Z(Mn, un> — Z(Nl, W_lul)®Z(M2, UQ>® cee ®Z(Mn, Un) .

This is functorial in U;. The same in each M;. If 7 : M; — N is a projective map, there is the
map, functorial in U;,

T, @ dd : Z(My, 77U - - RZ(M,, Uy) — Z(Ny, UL My, Up) - - - RZ(M,,, Uy,
The quasi-isomorphisms ¢ : Z(A4;) = Z(M;,U;) induce a quasi-isomorphism

F Q 2(A) = @ Z2(M;, W) -

1,n] [1,n]

Composing with the inverse of the inclusion @Z(Mi,ui) — & Z(M;,U;), one obtains an
isomorphism in the derived category

L ® 2(A) = ® 2(M,U)

[1,n] [1,n]

(It is a slight abuse of notation to use the same ¢ for a map in the derived category.) For a
partition Iy, --- , I of [1,n], there is a unique map in the derived category

p(ly, - 1)t Z(A) @ - @ 2(A,) — 2(An) ® - ® Z(Ar,)
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which makes the following diagram commute:

I’r‘) —

— I,
®[1,n] Z’(M“ ul) L> ®[1,r] Z’(M]Hult)

| |-
Qua2A) @ 2(Ay) .

The maps ¢ and p satisfy the following properties.
(4) For p(Iy,--- ,I,) one has commutativity analogous to (1) above.
(5) If 7 : Ny — M, is a smooth map, the map

T ®@id : (A1) ® 2(A2) @ - @ Z(An) = 2(m7TAD) ® Z(A) ® - - @ L(Ay)
and the 7* ® id in (3) above are compatible via the maps ¢. If 7 is a projective map

T ®id: 2 A) @ 2(A2) ® -+ © 2(Ay) = Z(A) ® 2(A) ® -+ - @ Z(Ay)

and the 7, ® id in (3) above are compatible via the maps ¢.

2  Function complexes F(Xy, -+, X,)

(2.1) For an integer n > 2, let [1,n] = {1,...,n}. We will consider subsets I of [1,n] with
cardinality > 2. Such [ is a finite ordered set. For notions regarding finite ordered sets, see

(0.5). In particular recall for a subset 3 C I there corresponds a segmentation.
In what follows we will consider sequences of varieties parametrized by I. It is often conve-
nient to give definitions and constructions in case I = [1,n].

(2.2) Let S be a quasi-projective variety and X7, -, X,, be smooth quasi-projective varieties,
each equipped with a projective map to S (we call such X; a sequence of varieties over S). For
asubset I C [1,n], let X; = []..; X; (product over k). So Xpi,) = X1 x --- x X,.

For a non-empty subset I C [1,n], let X1, = [[X; x []X; be the natural isomorphism
i€l igl
(switching factors); define the closed subset A; C X ) by the Cartesian square

X[l,n] % HXz X HXz

iel igl
jl; L) HSXZ X HXz
iel igl

where [[4 denotes fiber product over S.

e For example, if I consists of a single element, A; = X7y, if I = {1,2}, A; = (X x5
Xo) X Xy x oo x Xps if I =[1,n], App = X1 Xg Xo Xg- - x5 X,,.

e If I C I’ then A; D Ap. For two subsets I and I’ with non-empty intersection,
A[U[/ = A[ N A[/.

Let Ur = X — Ar. Upyy is the complement of Xy xg Xy xg -+ xg X,,. If I C I', then
Uy CcUp. If INT is non-empty, Uy,p = Uy U Up.
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Let J be a subset of (1,n) =[2,n—1]. If § = {j1 - - j.}, recall the associated intervals are
given by J*¥ = [jg, jri1] for k =0,--- ,r with jo = 1 and j,,1 = n. To each J* there corresponds
the closed set A C X1, = Xy X -+ x X, and its complement Uj;». The intersection of A ’s
is Apn), and the union of Uj’s is Upy ). We thus have a covering of Up 5, indexed by [0, 7]:

Ud) ={Uyp,Up,--- ,Up} .

Taking M = X}, and U = U(J) in the construction of the previous section, one obtains
the complex

Zs(X11n, WD) -

As before the differential is denoted d, and when necessary we write Z,(X1,,, U(J))® where the
upper indexing is the cohomological degree. There is a natural quasi-isomorphism

L ZS(Xl Xg X+ Xg Xn) — ZS(X[M],H(H)) .

Note in the discussion so far, one can replace [1,n] by any subset I of [1,n] and a subset

d C 1. More specifically, we have:
e One has the product

Xi=][x.

i€l
Associated to a subset I C I is a closed set A; C Xy and its complement U; (to be specific,

we write A;cp and Upep). In particular, A is the fiber product of all X; over S, and Uy its
complement.

e ForasetJcC ]f of cardinality r, there corresponds a set of intervals
J=J@cl), 0<i<r,
of I. Thus we have an [0, r]-covering of Uy
W@ = U@ CT) = {Upo,-- , Up} .

This gives us the a complex Z(Xy, U(J C 1)) equipped with a quasi-isomorphism from Z(Ay).
e Note Ujcy is an open set of Xi; it should be distinguished from the open set U, C

We have natural maps between such complexes, the restriction and the projection.
(1) For § C 7', one has the restriction map, which is a quasi-isomorphism:

To define it, assume I = [1,n| for simplicity. Let J = {ji, -+, 5.}, J* = [, jrs1] for
0 <k <rasabove. Let ' = {ji, -, 4.}, and define a map A : [0,7'] — [0, r] as follows. For
each j, there is a unique k such that jr—1 < j; < jx. Then J] = [j;_;,71] C Jr—1,7k) = Jr. I
we set A(t) = k, then \ is order-preserving and U;; C Uy, ; in other words A : U(J) — U(J') is
a map of coverings. It induces the map between the Cech cycle complexes as stated.
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(2) Assume now that S is projective. For £ € I([) — d, we have the projection along X,
mx, A X, U C 1)) = 2(Xi—qp, WT C T —{¢})) .

The definition in case I = [1,n] is as follows. Let p : Xp ) — Xpn—qe be the projection.
One has p~!(Ur) = U for a subset I C [1,n] — {¢} (more precisely, p™*(Urcpin—{et) = Urcin-)
If ¢ € (Jk, Je+1), the associated intervals to J C [1,n] — {¢} are

(T = {J0, oo gt gk ey, R gy
and the associated open covering is {Uz }. Since
p Up =Usn CUyi
one has the restriction map
Z(Xpmp {Uso, -+, Upr}) = (X {Ugo, -+, Upe})
Composing it with the projection
Pe : Z( X {Ugos -+ Usr }) = 2( X~y {Ujo, - -+, Usr })

one obtains the stated map.

More generally for a subset K C ]f — J one has the corresponding projection
TK : Z(XH,U(B C H)) — Z(XH,K,U(H cl— K)) .

If K=K UK" g =ngnmg, namely the following diagram commutes.

Z(X1,U(d)) LS 2(X1-x, U(J))

A%

Z(Xi—g, U(T))

In particular, mgnmg = Tr TR
(3) The quasi-isomorphism ¢ : Z(Ap) — Z(Xy, U(J)) is compatible with restriction maps and
projections. It means, for projection, the commutativity of the following diagram:

(XL U@) —= 2(Xik, U(J))

| i

Z(Ar) — Z(Ar-x) -
Here 7 at the bottom is the map induced by the projection Ay — Aj_g.

We would like to have projection maps as above in general, under the assumption S quasi-
projective and X; — S projective.

Let S < S a compactification, namely an open immersion to a projective variety. For each
X; take a projective variety X; with a projective map X; — S extending p;. (We say XZ-/S is
a compactification of X;/S.)
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Then one has B B
X[Ln] = HXZ and X[l,n] = HXZ .

To I C [1,n], there corresponds a closed set Ay C X1, and its complement Uy (resp. Ar C

X1, and its complement Uy).
Given J C (1,n), we define a partial compactification by

XH

[1,n

p= [ X7 with X =

1€[1,n]

X; ifie(l,n)—7
X; ifie{l,nfugd

For I C [1,n], define the closed subset A2 C X [HLn] by the following diagram:

i€l idl

| |

A;} — [IsX; < [TX] .
iel idl

If I C I’ then A?]] > A?,. For two subsets I and I’ with non-empty intersection, A;}Ul, =
AY N AL Further, if TN ({1,n}Ud) # 0, namely if X = X; for some element i € I, then
AE} = A;. In particular, A?l,n} =App = X1 Xg - x5 Xy,

Let Ul = X8 . — A9 If I C I' then Ul C Ul; if INT # 0, U, = Ul UUS. Note

) 1]
Ut = Ul
d
Xnm C X[y
U U
u c Ul

The g specifies U(J), a covering of U[Hm] = Upn. So we have the complex Z,(X[HIM,U(H))

and a quasi-isomorphism Z(X; xg x -+ xg X)) — Z(X[‘qlm, U(d)).

As before the same construction can be applied to a subset I of [1,n], and a subset J C I.
One has the product Xj and its partial compactification X]?. Each subset I C I corresponds to

a closed set A%. A subset J C T gives a covering U(J) of Uy, and thus the complex Z(X{,U(J))
quasi-isomorphic to Z(Aj).

We have again the following maps with similar properties.

(1) For J € &', we have X/ > X/ and U(J € T) D U(J" C I). Hence the restriction map
(which is a quasi-isomorphism)

Z(X],W(@) = 2(X{,W(@)) -
(2) For £ € I — g, not containing either end of I,
Ty, 2(XE W) = 2(XD (D))
This is defined in the same way as before, since the projection p : X]? = X]?_{z} x X — X]?_{e}

is projective.

26



More generally for K C T—g one has the projection mx : Z(X?,U(J C T)) — 2(X? ., U C
I-— K)) If K = K/UK”, T — MTKgNTK!.

(3) The quasi-isomorphism ¢ : Z(A;) — Z(X?,U(J)) is compatible with restrictions and
projections.

(2.3) The complex F(I). For simplicity let

the differential is denoted d , and write F([1,n],d)* to specify the grading.
There is the restriction map, for § C J’ with |J'| = |J| + 1,

ry9  F([1,n],d) = F([1,n],7) .

This is a quasi-isomorphism. If J' = JU {k}, let J-r = {i € J|i > k}, and |J-| its cardinality;
define the map
r:F([1,n],d) = F([1,n],7)

to be (—1)|3>k"f’373/.
Let
AYP = @ 97([1771]?3)10
a=|J|+1
the sum over J with a = |J| + 1. Then one has rr = 0. With differentials r, d, this forms a
“double” complex. The total complex Tot(A) is a complex with differential r + (—1)*d (which
will be also be denoted by d if no confusion is likely) on A“P. Define

F([1,n]) = Tot(A) .

The same construction applies to any finite subset I C [1,n], so that one has a complex
F(I). It has complexes F(I,d)[—(|d| + 1)] as subquotients. Here recall for a complex (K°*,d),
the shift K*[1] is defined by (K*[1])’ = K**' and dxp) = —d.

If |I| =2, F(I) = F(I,0)[—1], so there is a quasi-isomorphism Z(A;)[—1] — F(I). If |I| > 3,
F(I) is acyclic. This follows from the lemma below.

(2.4) Let T be a non-empty finite ordered set, and P(T") be the set of subsets S C T' (including
the empty set). Suppose to each S € P(T') there corresponds a complex Cg € C(Ab), and
to each inclusion S C S’ there corresponds a map of complexes fgg : Cs — Cg, satisfying
fss = Zd, and fS’S”fSS’ = fSS” for S C S/ C S”.

We then have a “double” complex

0-Ch— P Cs— P Cs—---—=Cr—0.
1S]=1 15| =2

Here the maps are signed sums of the maps fg¢ with |S’| = |S|+ 1, the signs being specified as
in (2.3). We can form its total complex Tot(Cs). One proves the following lemma by induction
on n.

Lemma. Assume for each S C S" the map fsg is a quasi-isomorphism. Then Tot(Cy) is
acyclic.

27



(2.5) The complex F(I|X) and the product map p. Let ¥ C I and I, -+, I.be the segmentation
of I by . Set
FUE)=FLH)F (L)@ - F(,.),

the tensor product of the simple complexes F(I;). The differential, also denoted d, is given by
d(al R---® ac) = Z(_1)2j>idegf’<]’ R Qo ® d(@i) R Rag .

As a module F(I [X) is the direct sum of F(I1,71) @ F(I5,d2) @ - - - @ F(I., d.), where J; varies

over subsets of I;.
One has quasi-isomorphic c-tuple subcomplexes

?<]17 31)®?(]2732)® e ®?(Ica 36) - 3.'“(-[1731> X ?(127 32) K- ® C-F(-[ca HC) .
The sum of them
FUIX) =TT (L)@ - @F (1) =P F(11,5)RF (11, 32)® - - - ®F(I.., 3..)

is a subcomplex of F(I [X) if the differential d is defined by the same formula as above, and
the inclusion F(I|X) — F(I [X) is a quasi-isomorphism.
For our convenience we write

3:(-[73-"_2) - 3:(-[1;81) ®?(12732) K- ® 3:(-[0730> )
it §J C 19— 3, I, -, 1. is the segmentation of I by >, and J;, =J N [i Similarly
37(]73|2) = ?(11,31)®?(12,82)® . ®?(IC,HC) .

For J C J' there is the corresponding map such as r345 : F(I,J|3) — F(I,J'X).

Recall F(I) was defined to be the total complex of a “double” complex. Likewise there is
a “double” complex whose total complex is canonically isomorphic to F(I|3). We explain this
in the case |X| = 1.

Let A**, B** be the “double” complexes as above defining F([1, m]), F([m, n]), respectively.
In A @ B = @ F([1,m],J)? @ F([m,n],d')? there is a quasi-isomorphic subcomplex

AP QB = @ F([1,m], §)*@F ([m,n], J')" .
Recall from (0.3) that A** x B** is the “double” complex E** defined by

EoT — @ A% ® Bbyq

atb=c ptq=r

and appropriate differentials d, r. Let A**xB** be the “double” subcomplex given by E[" =
PBosi—e prgr A®P@B. By (0.3) there is an isomorphism of complexes

u : Tot(A)® Tot(B) = Tot(A**x B**) .

Although the groups on the two sides are identical, the differentials are different, and u is not
the identity.
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More generally, let A®,--- | A%* be the “double” complexes for F(I;),--- ,F(I.), respec-
tively. Then there is a quasi-isomorphic “double” subcomplex A7*X --- X A%® of AT® x---x A%*
and a quasi-isomorphism of complexes

u: F(I)38) S Tot (AT X - x AS®) .

m
F([1,n]). Let A*>*, B**, C** be the “double” complexes as above defining F([1,m]), F([m,n])
and F([1, n]), respectively. The product maps p : F([1,m], J)@F([m,n],d") — F([1,n], Ju{m}u
J') define a map of “double” complexes

We next define a map of complexes (called the product map) p : F([1,m])@F ([m,n]) —
[

piAKB — O .

(One can verify the compatibility of p and the second differential r.) Taking Tot and using the
isomorphism u above we get a map of complexes p : F([1, m])@F ([m,n]) — F([1,n]).

More generally if Iy,--- , I, be a segmentation of I C [1,n], and I, N [;;1 = k, there is the
corresponding product map

Pk - ?(Il>® s ®§(It>®§(lt+1>® s ®?(Ic) - ?(Il)@) T ®?(It U It+1)® T ®?(Ic) .

This is defined just as above, changing the order of totalization and tensor product in the
factors F(I;), F(I;41), only.

The map py, is of the form pg : F(I|X) — F(I|X — {k}). The following diagram commutes
(for distinct k, k' € X):

FUL) = TR - {k))

P! P/

FUS-{K}Y) = FUS (kD).
For K C ¥ let px : F(I|X) — F(I]X — K) be the composition of p for £ € K in any order.

(2.5.1) Dimensions of the cycle complexes. The dimensions of the cycle complexes can be
specified as follows. To each interval [i,7+ 1] C [1,n], an integer a; € Z is assigned. To a subset
I C[l,n],if j =in(I), k = tm(I), let

aj = Zai— Z dlIIl)(Z

Jj<i<k J<i<k—1

We then have the following property: If tm(/) = in(I’) = ¢, then aj,p = aj+ap —dim X.. Thus
we have the map p : F(I)QF(I') — F(I UI"). We also have the map 7x : F(I) — F(I — K),
to be defined in the next subsection.

(2.6) The map mr. Recall for a subset K C [ disjoint from J U X, one has the map mg :
F(I,3|¥) = F(I — K,J|¥). This is compatible with the maps ry g.

Using this we will produce, for K C I — X, a map of complexes n : F(I|X) — F(I — K|X).
Let mx : @ F(1,3|2) = P F(I—K,J|X) be the sum of the maps 7 : F(I,7J|2) = F(I-K, J|%)
for K disjoint from J, and the zero maps on F(I,J|X) if K N J # (. The repeated use of g
will not lead to a confusion.
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In (2.7) we summarize and and complement the properties of the complexes F(/, J|X) and
the maps p, 7. In (2.8) we collect the properties of F(/]X) and the maps p, k. Note (2.8)
rests only on the properties (2.7).

(2.7) Properties of F(I,d|2) and the maps r, p, and .

(0) To each I C [1,n] and J C IO , there corresponds a complex F(1,J) of free Z-modules.
For § C &', there is the corresponding quasi-isomorphism ryy : F(I,d) — F(1,J’). The ryy

is transitive for the inclusion J C J° € J”. For K C I — J, one has a map of complexes
Tk F(,9) - F( - K, J).

There is a quasi-isomorphism Z(A;) — F(I,0).

In addition, we have the following structures (1)-(4).

(1) For ¥ C i and J C j(3 — Y, there is a quasi-isomorphic multiple subcomplex of free
Z-modules
vy F(LIE) = F(IL,ITY) .
If ¥ =0, then F(I,7|0) = F(I,0). The inclusion is compatible with tensor product, namely if

Y D Y and Y gives the segmentation I;,--- ,I. of I, and J; = J N [z, then one has inclusion of
c-fold complexes
f_f([, 3‘2) C 35(]1781|21) Q- ® ‘rf([mgc|zc> (271>

where the latter group is viewed as a subgroup of F(I,J [X) by the tensor product of the
inclusions F(I;, J:|%:) € F(L;,di [X0).

(2) For § C 7', there is a quasi-isomorphism of complexes r54 : F(I,J|X) — F(I,7'|%),
transitive in J. If ¥ = (), it coincides with the map ry4 : F(I,J) — F(I,J’) in (0). The map r
is compatible with the inclusion (2.7.1), namely the following square commutes:

F(LIAY) — F,50|5) @ - F (., d%:)
Ta,a’l l@””aiyaé

FLIX) = F,&5) @ @F(, dc[>) -
(3) For K C X there is the corresponding map of complexes
pr F(, %) - FUL,JUK|E - K) .

If K =K' I K” then px = pgrpgr. If ¥ =0, it coincides with the map px in (0). The map
pK, where K is disjoint from X, is compatible with the inclusion (2.7.1), namely the following
diagram commutes, where K; = K N %;.

F(I1,7|%) s D T (L, 3:]%)
Pkl l@ﬁxi
(4) To K C 19 — Y disjoint from K, there corresponds the map of complexes
i F(LIY) - F(I - K, %) .

If K =K'II K" then mx = mgngs. If 3 = (), it coincides with the map 7 in (0). The map
Tk is compatible with the inclusion (2.7.1).
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The maps r, p, and 7 commute with each other. The commutativity of » and p means the
commutativity of the following square:

F(1,9|) ELUN F(I1,3|)
PK PK

FILIUK|S — K) M g1 K, § UK|Y — K).

The reader may write down the commutative diagrams for the commutativity of » and 7, and
of p and 7.

(5) The maps r, p and 7 provide another map in the derived category. Let K C ¥. We
have the maps

I(1,01%)
PK
FIOL-K) 25 FUI,K|T-K)

F(I - K, 0| - K)

Since the map 7 is a quasi-isomorphism, inverting it gives a map in the derived category of
abelian groups
o FLOTE) - FI-K,0]E - K) .

We call this the composition map.

The map ¢k satisfies (a) transitivity in K, which says ox = pgnpg if K = K'II K", and
(b) compatibility with tensor product. To state the latter, let I be partitioned by m to I’ and
I", ¥ be a subset containing m, and K be a subset of ¥ — {m}. Let ¥ be partitioned by m to
¥ and X' and K' = KNI, K" = KN1". Then the following diagram commutes:

_ FIL0TE) @ F(I7,0T2")

WKl P QP

FU,0TE)
—KWE-K) = FI' - K 0] - K)®@FI" — K",0Ts" — K") .

F(I

(2.8) Properties of F(1|X) and the maps p, 7.

(1) F(I|¥) is a multiple complex of free Z-modules. For ¥ C [ corresponding to the
segmentation Iy, --- , I, of I, there is an injective quasi-isomorphism of multiple complexes

b FUIE) = FUTE) = F(0) @ - 0 F(,) .

If ¥ DY/, ¥/ gives the segmentation I1,---,I. of I, and X; = XN Ii;, then one has inclusion
FUX) CFLIE) @ @F(|2.) (2.8.1)
where the latter group is viewed as a subgroup of F(I [X) by the tensor product the inclusions

(2) For K C ¥ there is a map of multiple complexes px : F(I|X) — F(I|X — K). If
K=K UK’ pgx = pgrpg. The pg is compatible with the inclusion (2.8.1).
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(3) For K C _;—Z, there is the associated map 7x : F(I|X) - F(I - K|X). f K = K'II K"
then m = mgnmg : FUI|E) — F(I — K|X). The map mx is compatible with the inclusion in
(2.8.1).

pr and mx commute with each other, namely the following square commutes:

101)3) LA FU|IT - K')
TK TK

FI-KX) 2% FUI-K-K|2-K').
(4) F(1|X) is acyclic unless ¥ = [If1= [1,n] and I; = [i,i + 1],

FU) = FL)E- 6T (L)
= J(,0)[-1]®- - &F([,—1,0)[-1] .

So one has quasi-isomorphisms

FU|) = FINE - @F (In_1) = (AL)[-1] @ - ® Z(A,_)[-1] .

(2.9) Variant of the bar complex. ~ We give a variant of the bar complex. In the next subsection
we will give a further variant, which will be applied to the complexes F(I|%).

Let n > 2 and assume:

(1) To each subset I C [1,n] of cardinality > 2, a complex of abelian groups (A(I)®,d,) is
assigned.

(2) For a segmentation of I into I’ and I”, there corresponds a map of complexes p :
A(l') ® A(I") — A(I). If I is segmented into three intervals I’, I” I", then the following
commutes:

ATy ® A(I") @ A(T") 225 A(T'UT") @ A(I")
P

AN A(I"u Iy =22, A(I

).

In the following we write a - 8 for p(a ® ().
For a partition ([y,--- ,I.) of [1,n], one has the complex A(l;) ® A(l,) ® --- ® A(1.). Let

B(A) =@ A(L) @ A(lL) @ - @ A(l,)
the sum over all segmentations. Give a grading by
deg(an @--- @ ac) = Y _(dega; — 1)
and give differentials by (put €¢; = deg(a;) — 1)

don® - @ag) == (-1)Z>90 @ @i @da(on) @+ D a

Pl ® - @ a) = Z(_I)ijfiej MR @A ® (i )@ Da .
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One verifies dd = 0, pp = 0 and dp + pd = 0, so that dp(ay = d + p is a differential. Thus
with the grading deg and the differential dp(ay, B(A) is a complex; we call it the bar complex
associated to (A(I);da, p). To specify n we may write B([1,n]; A).

For a subset X C (1,n) there corresponds a segmentation Iy, --- , I. of [1,n]. Let

A([L,n] %) = A(Lh) © A(L) © - @ A(L) .

Then
B([1,n]; A) = @A([Ln] %)

as a group. The differential d is the sum of d : A([1,n] TX) — A([1,n] T2).
For k£ € ¥ the product map induces a map

pr = A([L,n] TX) = A([L,n] TE - {k}) ,

so that p is the sum of them.
There are quotient complexes of B([1,n]) defined as follows. For a subset S C (1,n),
D55 A([1, 7] [X) is a subcomplex of B([1,n]); the quotient complex is denoted B([1,n] ]5):

B([1,n]TS) = @ A([L,n] T%) .

DS
For S =0, B([1,n] [0) = B([1,n]). If S C S’ there is a natural surjection of complexes
Tss 1 B([L,n] [9) = B([L,n] TS") .

IfScS cS”then 1950 = TgrgnTsgr.

Note the above construction can be applied to any subset I C [1,n], |I| > 2, in place of
[1,n]. So one has the complex B(I) and, for S C I, the complex B(I |S).

If S corresponds to a segmentation Iy, - - - , I. of [1, n], there is a natural equality of complexes

BUTS) = B(h) @ @ B(L,)

Here the right hand side is the usual tensor product of complexes.

(2.10) Further variant of the bar complex. Let n > 2 and we make the following assumption. It
is the same condition that the complexes F(7, ) satisfy, except there is no quasi-isomorphism
with the cycle complex Z(Aj). Besides the complexes F(/, J), we will encounter another example
in a later section.

Assumption (A)

(A-0) To each subset I of [1,n] and J C _}), there corresponds a complex A(I,J) of free
Z-modules. For J C g’ there is a corresponding map ryy : A(L,d) — A(I,J'); the map is

transitive in J. For K C ;—3 one has a map g : A(I,J) = A(l — K, J); one has g = mg/mgn
f K=KT1K". . .
(A-1)For ¥ C Tand g C 1%, let A(1,J [X) be the tensor product A([1,d1)®- - -®A(1.,Jd.),

where I, --- I, is the segmentation of I by >, and J; = J N I;. There is a quasi-isomorphic
multiple subcomplex of free Z-modules

it A(LLJS) — AL, ITY) .
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If X =0, then A(7,J|0) = A(,0). If X D ¥ and ¥’ gives the segmentation Iy, --- , I, of I, and
d; = d N I;, then one has inclusion of c¢-fold complexes

A(L,3|%) C A(1,011%1) ® - @ A(I, Jc| ) (2.10.1)
where the latter group is viewed as a subgroup of A(I,J [X) by the tensor product of the
inclusions A(1;,d;3;) € A(L;, i [%0).

(A-2) For J C &', there is a quasi-isomorphism of complexes 1545 : A(L,J|X) — A(L,J'|%),
transitive in J. If ¥ = (), it coincides with the map 54 : A(I,J) — A(1,J’) in (0). The map r
is compatible with the inclusion (2.10.1).

(A-3) For K C X there is the corresponding map of complexes

pr P ALGE) - A(LLJUK|YE - K) .
If K =K' K” then px = pgrpgr. If ¥ =0, it coincides with the map px in (0). The map
pK, where K is disjoint from 3, is compatible with the inclusion (2.10.1).
(A-4) To K C ]O — Y disjoint from K, there corresponds the map of complexes
ik A(LJYE) — AL — K, J|Y) .
If K = K'II K" then g = mgnmg. If 3 =), it coincides with the map 7 in (0). The map

Tk is compatible with the inclusion (2.10.1).

The maps r, p, and m commute with each other.
We note that the same construction as before gives us the composition map ¢ : A(I,0 [X) —
A(I — K,0 Y — K) in the derived category.

We constructed F(I|X) from F(I,J|X); the same procedure gives us complexes A(/|¥) and
pertinent maps as follows.
(1) Let I C [1,n] and ¥ C I. If ¥ C I corresponds to the segmentation Iy,--- 1. of I,
there is a quasi-isomorphic multiple subcomplex of free Z-modules
1y A(IE) 5 AT TY)=A(L) ® - ® A(1,) .
We let the same A(I|X) denote its total complex.

If ¥ D Y/ ¥/ gives the segmentation Iy,--- ,I. of I and X; =X N [c;, then one has inclusion
AIIS) € A(L[S) © - @ A(LIS,)
where the latter group is viewed as a subgroup of A(I [X) by the the tensor product of the
inclusions ¢y, : A(L|%3;) C AL [%).
(2) For K C X there is a map of multiple complexes px : A([|X) — A(I|X — K). If
K =K K", pg = pgrprr- The pg is compatible with the inclusion A(I|X) C ®A(L;|%;) in
(1).
(3) For K C I — %, there is a map of multiple complexes mx : A(I|X) - A(I — K|X). If
K = K'II K" then g = mgngr » A(I|X) = A(I — K|X). 7k and pgr commute with each
other, namely the following square commutes:
AIR) 2 AR - K
TK TK

Al - K|2) 25 AT -K[E - K') .

34



(4) The complex A([) is acyclic if |I| > 3. Hence A(I|X) is acyclic unless ¥ = I.

To compare with the previous subsection, (1) and (2) are weaker assumptions than before; (3)
gives additional structure, and (4) is satisfied because A(I) if of the form € A(1, 7).

One can now define the bar complex B([1,n]; A) as before. To be precise B([1,n]; A) =

D5, A([1,n]|X) as a group, and the differential is given by dpa) = d + p, where d and p are
defined as follows. If Iy,--- 1. is the partition of [1,n] corresponding to 3, for an element
a=0 @ - ®a € A([1,n]|X), let ¢; = deg(a;) — 1 and

d(a1®"'®o~/c):_Z(_1>2j>ieja1®"'®O~/i—1®d,4<ai)®"'®ac7

,5(051 XX ac) = Z (_1>2j2i€jpk¢71 (Oé)

2<i<c
with ki—l = tm([l_l)
For S C (1,n) there is defined the corresponding quotient B([1,n]|S); for S C S’ there is
a natural surjection ogg : B([1,n]|S) — B([1,n]|S"). The construction applies to any subset

I C[l,n] and S C I, so one has B(I), B(I|S), and maps og .
It follows from (4) that the maps ogg : B(I|S) — B(I|S’) are quasi-isomorphisms. Indeed

A(I|%) is acyclic unless ¥ = I, so the quotient map B(I|S) — A(I|I) is a quasi-isomorphism.
If S corresponds to the segmentation Iy, --- , I., let
B(ITS)=B(L)®---® B(l.) .
One has an injective quasi-isomorphism
ts: B(I|S) = B(I]S)

defined as the sum of the quasi-isomorphisms A(I|X) — A(1]|%1)®- - @ A(I.|%.), where ¥ D §
and Xq,---, Y, is the segmentation of X given by S.
For S C 5, also define the map 75 : B(I[S) — B(I]S’) as follows. Let ¥ O S, {I;} the

segmentation of I by S, and ¥; = ¥ N [;. In case ¥ O ', if {I}} the segmentation of I by S’

and ¥} =3 N I}, there in an inclusion
A(L2) @ -+ @ A(L]S,) — A(I|Z) @ -+ - @ AL .

Define 75/ to be this inclusion on the summand A(/;|¥)®- - -® A(1.]%.) with ¥ D S’, and zero
on the summand with 3 2 S’. The maps 755 and ogg are compatible, namely the following
diagram commutes:

B(I|S) -2 BUITS)

s’ Ts s/

B(I|S") —=% BUITSY) .
If ScS cS”then rg9n =79 5/Ts 5.

For K C I disjoint from S, one has a map

ox : B(I|S) = B(I — K|S)
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given as follows. Define a quotient complex of B(I|S) by
Bk(I|S):= & Al]Y).

D]
(JUXINK=0

There is a map
Bk (I|S) — B(I — K|S)
which is the sum of 7y : A(I,J|X) - Al — K,J|X). By definition ¢k is the composition of
the quotient map B(I|S) — Bg(I]S) with the above map.
If K = K'II K" then ¢x = ¢rrpr : B(I|S) — B(I — K|S). If K and S’ are disjoint, the
maps og g and ¢ commute with each other, namely the following diagram commutes.
B(11S) =% B(I]9)
@Kl PK

B(I — K|S) 2% B(I-K|S)

(2.11) Properties of the complex B(I|S). For future reference we collect properties of the bar
complex.

(1) B(I) is a complex of free Z-modules. For S C I corresponding to a segmentation
Ii,--- 1. of I, let B(I[S) = B(;) ® ---® B(I.). B(I|S) is a complex of free Z-modules
together with an injective quasi-isomorphism tg : B(I]S) < B(IS). If S =0, B(I|0) = B(I).

65 =1,1=[1n]and I, =[i,i+1],

B(II) = A& ©A(L,-1)[1]
= AL O)E - BA(L 1, 0) = A(LLO|T).
If S > 8, S gives the segmentation Iy, -+, I, and S; = IC; N .S, then one has inclusion

B(I|S) € B(11|S1) ® --- @ B(L.|S.) € B(ITS) .

(2) For subsets S C S’ there corresponds a surjective quasi-isomorphism ogg : B(I|S) —
B(1|S"). One has oggn = 0g/g105¢. The o is compatible with the inclusion B(I|S) C

B(L]51) ® - ® B(I.|S.), namely if S € 8" and S/ = 5" N ]j, the following commutes:
B(I|S) < B([|5)®---® B(I|S.)

og gl ®US'LS”~L
B(1]5") — B(L[5) ®---© B(L|S;) -

There are quasi-isomorphisms (in general not surjective or injective) 7ss : B(I [S) —
B([TS’) for S € S’. One has 7957 = Tg 51 Tg 5"
The maps ogg and 7gg are compatible via the maps tg, tg.
(3) There are maps ¢ : B(I|S) — B(I — K|S) which satisfy o = ¢rrpg if K = K'TTK”
and are compatible with ogg/. The following square commutes in the derived category.
B(IlS) —— A(1,0]1) e A(L,0T1)

‘PKJ( PK
B(I-K|S) —% AI-K.0-K) —— AI-K0TI - K)
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Here the right vertical map is the composition map mentioned in Assumption (A).

In addition, we have:

(2.12) Proposition. Let R, J be disjoint subsets of I, with J non-empty. Then the following
sequence of complexes is exact (the maps are alternating sums of the quotient maps o)

B(I|R)—— & BU|RUS)—— @ BU|RUS)—Z=---— B(I|RUJ)—0.
ScJ |S|=1 ScJ ,|S|=2

Moreover the total complex of the sequence is acyclic. (Equivalently, the induced map o :
B(I|R) — Ker <a tDscs 521 BUIRUS) = Dgcy 51=2 BUIRU S)) is a surjective quasi-

isomorphism.)

Proof. For ¥ C I the complex A(I|X) appears in B(I|R U S) as a direct summand iff
> D RUS. Thus the sequence in question is the direct sum over X of the following:

A(IE) — D A(IE) — D AIIS) = - .
SCJN(Z-R) ,|S|=1 SCJN(Z—R) ,|S|=2

If JN (X — R) # 0 this is exact, even with 0 at left. If JN (X — R) = 0 this is trivially exact.

(2.13) The complex F(I|S). With the notation in (2.1)-(2.8), we take the association of com-
plexes I +— F(I), together with quasi-isomorphisms F(7]X) — F(I [X) and the maps p; and
7. Apply the construction of the bar complex. We obtain the complexes B(I|S) and the maps
o, p. We employ the notation

F([L,n]|S) or F(Xy, -, X,|9)

for this complex. We use the same letter S for the base variety and for a subset of (1,n), but
this should not cause confusion. Likewise for any subset I of [1,n] there are the complexes

F(I|S).

One has F(I|)) = F(I). For S C S’ there is a natural surjection ogg : F(I]S) — F(I|S").
For K C I disjoint from K, there is the map px : F(I]S) — F(I — K|S).

These complexes and the maps satisfy the properties we have proven to hold in general. In
particular

F(I|I)=3(1,0|I) .
Thus the following maps are all quasi-isomorphisms (let I = [1,n], I; = [i,i + 1]):

F(I) — F(I|I)=3(,01I)
— F(I,071)
A Z’<A11) Q- Z’(Afn—l)
providing an isomorphism F(I) = Z(A;,) ® -+ ® Z(A;,_,) in the derived category. If |I]| = 2,
F(I)=3(I,0).

According to (2.5.1), we must specify dimensions for the cycle complexes by assigning
integers to each [i,i+1],i=1,--- ,n— 1.
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(2.14) The quasi DG category Symb(S). Let S be a quasi-projective variety, and Symb(S) be
the class of symbols over S, (0.8). Recall a symbol is a finite formal sum @ (X./S, 1), where
X, is a smooth variety with a projective map to S. There is direct sum of symbols.

There is a structure of quasi DG category on Symb(S) defined as follows. For a finite
sequence of symbols of the form (X;/S,r;), let

F((Xl/sa 7“1), T (Xn/S7 Tn))
be the complex F(X7,---,X,,) with respect to the sequence of dimensions
[’Z,Z+ 1] |—>diH1Xi+1 — Titr1 +r; ,7; = 1, , N — 1.

For any sequence of symbols K;, define the complex F(K7,--- , K,) by linearity.

We thus have the complexes F(Ky,-- -, K,|S), and maps osg/, @k satisfying the properties
as before.

The class of objects Symb(S), together with these complexes and maps, still denoted
Symb(S). It will be proven in a later section that this forms a quasi DG category.

Remark. There is the structure of a category on Symb(S) as in [4]. This is not used in
this paper, and we refer the reader to [4]for details. Let us only say that the homomorphism
group is

Hom((X/S,r),(Y/S,s)) = CHaimy—s+r(X XgY)

and the composition is to be defined appropriately.

3 Distinguished subcomplexes with respect to constraints

In §1 we discussed distinguished subcomplexes of the form Z(M;)® - - - ©Z(M,,) for a sequence of
fiberings M; on [1,n|. There are other forms of distinguished subcomplexes of the tensor product
Z(M,) ®---®Z(M,). For example if M; is a sequence of fiberings on [1,n + 1] and an element
f € Z(M,,1) is given, we may want to consider a subcomplex of Z(M;)® - - - @Z(M,,) generated
by a; ® - -+ ® a, that is properly intersecting with f. We will explain such generalizations in
(3.1), (3.2).

In (3.3)-(3.5) we proceed to discuss variants where Z(M;) is replaced with Z(M;,U;), F(I)
or F'(I). In (3.5) we consider the complex F(I|S) as defined in §2, and show typically a result
as follows. If J is another finite ordered set with tm(/) = in(J) = ¢, and f(J|T) € F(J|T) an
element, there is a distinguished subcomplex [F'(I|S)]; of F(I]S) such that the map

()@ f:[F(I|S)]; = FIUJISU{ctuT)

is defined. In [8]we will only be concerned with F'(I|S) and its distinguished subcomplexes.

The rest of this section (3.6)-(3.9) has to do with a particular example of a distinguished
subcomplex. Such a subcomplex appears in [8], where we construct the complex F(K;,--- , K,)
for a sequence of diagrams K;. So we suggest the reader to read this part only when it is needed
in [§]

(3.1) We give a prototype for the distinguished subcomplexes which appear in this section.
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Let I = [1,n] be a sub-interval of I = [-N, N’]. Let M; (i = —N,--- ,N') and Y; (=N <
i < N’ — 1) be smooth varieties with smooth maps M; — Y; and M;;; — Y;, namely M; is
a sequence of fiberings indexed by I. One has the product M_y x --- x My, and a subspace
M_y w7, the fiber product.

Assume given a set of elements f; € Z(M;, m;) fori € [-N, N'|—[1, n], which are irreducible,
non-degenerate, satisfying the following condition: The set {f; (i € [N, N’] — [1,n]), faces }
is properly intersecting in M|_y n X [J*. Define the quasi-isomorphic subcomplex

[Z(M)& - - ©Z(My)] 14

to be the subcomplex of Z(M;)® - - - ®Z(M,) generated by elements a; ® - - - ® a,, with each
«; irreducible, such that the set

{ag, - ,an, fi (1 €[-N,N']—[1,n]), faces }

is properly intersecting in M|_y .
We show this is a distinguished subcomplex. Indeed consider the set of cycles

V ={Mpnn, fi (i € [-N,NT—[1,n])}

in M_y X --- X Mpys; together with the faces it is properly intersecting. By the lemma in
(1.7), the required condition is equivalent to {a, -, a,, V, faces} being properly intersecting
in M_n X -+ x Mys. Thus the complex is of the type of Example in (1.6.1).

The following properties are obvious from the definitions.

(1) For each m with n < m < N’, one has a similarly defined complex [Z(M;)® - - - ®Z(My)] (11
to be precise one uses only the cycles f; with i € [=N, N'| —[1,m]. There is a map

(=) @ fongr : [Z(M)® -+ - QZ(Myn)]p = [Z(M1)® - - - QZ( M1

that sends a; ® -+ @ v, to 1 ® -+ - @ 0y, @ frna1. The same holds for the map f; ® (=), i < 0.
(2) If I, --- , I, is a partition of [1,n], the product induces a map

p(Li o 1) [2(M)@ -+ @Z(My)]p = [2(M7)@ -+ @Z(M, )] -

(3.2) To generalize the above it will be convenient to state the relevant structure of the cycle
complex as axioms. Axioms (a)-(c) are evidently satisfied for the cycle complex. Axiom (d)
consists of the existence of distinguished subcomplexes, that are generalizations of the above
prototype.

(3.2.1) Distinguished subcomplex with respect to a constraint. The complex Z(M,e) has
the following structure.

(a)(set of generators) There is a set 8(M, m) such that Z(M,m) is free on 8(M, m). (Specif-
ically it is the set of irreducible non-degenerate admissible cycles.) 8(M,m) is additive in M,
namely if M = M'II M”, then (M, m) = 8§(M',m) L 8(M",m).

(b)(notion of proper intersection) Let M; be a sequence of fiberings indexed by [1,n]. If A
is a subset of [1,n] and {a; € 8(M;,m;) | i € A} is a set of elements indexed by A, we are
given whether or not the set {a;| i € A} is properly intersecting. (Instead of saying {«; , faces }
is properly intersecting, we may just say {«;} is properly intersecting.) We have:
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o If {ay| i € A} is properly intersecting, for any subset B of A, {«;| i € B} is properly
intersecting.

e Let A and A’ be subsets such that tm(A) + 1 < in(A’) (A and A’ are not adjacent).
If {ai] i € A} and {a;| ¢ € A’} are properly intersecting sets indexed by A and A’
respectively, the union {«;| ¢ € AU A’} is also properly intersecting.

o If {ay, - ,a,} is properly intersecting, then for any i, writing do; = > ¢, with
B, € S(M;,m; — 1), each set

{041, e aai—laﬁllﬂai-‘rla e 7Oln}

is properly intersecting. In other words, the notion of proper intersection is compatible
with 0.

o Assume M; = M/ Il M/ and «; € 8(M]) for i € A. Then {«o; € 8(M;)|i € A} is properly
intersecting if and only if {a; € 8(M/)|i € A} is properly intersecting.

Let Z(M;)& - - - ®2Z(M,,) be the submodule generated by a; ®- - -®@a,, where a; € 8(M;, m;)
and {aq, -+, ,} is properly intersecting. This is a subcomplex by the third property. It is
additive in each variable M.

(¢)(product map) When {ay,---,a,} with o € 8(M;, m;) is properly intersecting, the
product ay o ---oa, € Z(My o ---o My, my + ---m,) is defined. For this product, we have:

e The product gives a map of complexes p : ®Z(M;) — Z(M; o -+ o M,).

e More generally if I, - -, I, is a partition of [1,n], and oy, € Z(Mj;) is the product of a;’s
for i € I;, then the set {o,, -+, ay, } is properly intersecting. Further the resulting map
p(l, -+ 1) : ®Z(M;) — ®Z(M;,) is a map of complexes.

e The product p(1y,--- ,I,) satisfies associativity as in (1.8).

(d)(distinguished subcomplexes) Let I be a finite (totally) ordered set, and (M;);c; be a
collection of smooth varieties indexed by I (we do not assume given a sequence of varieties on
I). We will consider distinguished subcomplexes of @), ; Z(1;) obtained specifically as follows.
The basic type is (d-1). By taking tensor products and finite intersections we get (d-2) and
(d-3).

(d-1) Let I be a finite ordered set and I < I an inclusion. The image of I need not be a
sub-interval of I. Then there is a partition Iy,--- , I, of I such that

e The image of each [, is a sub-interval of T.

e For each a, tm(/,) + 1 < in(Z,41) (I, are not adjacent to each other).

Assume given a sequence of fiberings M; indexed by I, extending the given M; on I. Specif-
ically we must give M; for i € I, Y; for ¢ € I — {tm(I)} and maps from M to Y.
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Let f = (f;) be a set of properly intersecting elements f; € 8(M;, m;), where j varies over
a subset A of I — I. Let I’ be a subset of I. The set of data consisting of

I—<T;, Monl, I'i f=(f)

is called a constraint (the set f; € 8(M;,m;) itself is also called a constraint). Then the
subcomplex generated by ®;c; «;, where the set

{as(iel), fi(jeA)}

is properly intersecting, is a quasi-isomorphic subcomplex of §),.; Z(M;). This subcomplex is

denoted
@Z(M)liny |
il
or [@,c; Z(M;)]s, and called the distinguished subcomplex with respect to (I, I'; f), or {f}.

If I = [1,n], the image of I is a sub-interval, I’ = I and f is empty (namely A is empty)
then the corresponding subcomplex is just ®;c;2(M;). For the prototype discussed before,
I =[1,n],I=[-N,N'], A=1—1, and I’ = I. Generalizing the notation for the prototype
case, if I’ = I, the subcomplex is written

(@ 2(M)® ® 2(M)® - ® @ 2(M,)]; -

i€l i€ls icl,

(The hat over I, indicates the cycles «; for i € I, are properly intersecting.) If in addition f is
empty, it coincides with ®iel1 Z(M;) ® ®i612 Z(M)® - ® @ielr Z(M;).

(d-2) One can consider tensor products of subcomplexes in (d-1), as follows. Let I, ..  I®
be a partition of I. For each k assume given a finite ordered set I* and an inclusion I* < I¥,

a sequence of varieties MF indexed by I*, extending the given M; on I*, properly intersecting
elements f* = {fF e 8(M},m%) | j € A¥ CTIF — I*}, and a subset (I*)' C I*. The set of data

{1, 1%); "1 Mronlt; (IYY; fh

is called a constraint. Note that there is no imposed relation between I*’s for distinct k’s. The
image of I* in I* need not be a sub-interval. If s = 1 the data is the same as in (d-1).

....... —_—
Then the subcomplex of @), Z(M;) generated by ®;es o, where for each k the set
{oi 1€ (IM)), f7 (GeAH}
is properly intersecting, is a quasi-isomorphic subcomplex. If the collection (I*) is denoted by

I, (f*) by f, (I*)") by I’, then the subcomplex may be denoted [@),;; Z(M;)]1.r;s. Since there

is no interaction between I*’s, the subcomplex coincides with the tensor product

[® Z’(Mi)]]ll,(ll)’;fl ® AR ® [® Z’(Mi>]]137(15)’;f3 .

iell iels
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(d-3) The intersection of a finite number of subcomplexes of type (d-2) is a distinguished
subcomplex.

For subcomplexes of type (d-1) it is described as follows. Foreachv =1,--- ¢, let [ — I(v)
be an inclusion into a finite ordered set. Let M (v); be an extension of M; to I(v), f(v) = (f(v);)
be properly intersecting elements where j € A(v) C I(v)—1, and I(v)" C I asubset. No relation
is imposed between the data for distinct v. One thus has a finite set of constraints

(I 1) M@)on ) 105 [)}, .

For each v one has the distinguished subcomplex [Q),.; Z(M;)]iw),1(v);f(); the intersection

([ 2(M)iw) 1 0ysw)

el
is again a quasi-isomorphic subcomplex, and called the distinguished subcomplex with respect
to the finite set of constraints.

We can do the same for subcomplexes of type (d-2). For each v = 1,--- ¢, consider a
constraint: a partition I(v)!,---, I(v)*™) of I, and for each k = 1,--- ,s(v),

I(v)" = I(v)";  an extension M(v)" of M to I*; (I(v)*) Cc I(v)"; f(v)* = (f(w)}).
Take the corresponding distinguished subcomplex, and then take the intersection for v. The
resulting subcomplex is still a distinguished subcomplex. This is the most general type of
distinguished subcomplexes in (d). It is still denoted by [&),c Z(M;)]r s

One shows the tensor product of complexes of type (d-3) is again of the same type. So it
is the smallest class of subcomplexes containing (d-1), and closed under taking tensor product
and finite intersections.

By a distinguished subcomplex (with respect to a constraint) we mean any one of type (d),
especially (d-3).

(e)(properties) It is evident from the definition that subcomplexes in (d) have the following
properties.

e In case (d-1), for j € A one has a map

(2@ f; (@Ml = [ & Z(Mi)lirogys

iel ieIU{j}
that sends ®;er a; to (®er o) ® f;. Similarly for the cases (d-2) and (d-3).

e Incase (d-1),if I’ = I, I is a sub-interval of I (namely r = 1), and .Jy, - - - , J, is a partition
of I, the product induces a map

P+ 1) (@20 = (@ 2(My )]

i€l
More generally assume I’ is a sub-interval of I and Jy,---,J, a partition of I’. Let
I =(—-1I)U{l,---,s} be the finite ordered set obtained from I by replacing I’ by
{1,---,s}; it parametrizes the set of varieties M; fori € I — 1" and M, for j=1,--- s.
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Ifl=(I-1)u{l, +++, s} is the finite ordered set obtained from I in a similar manner,
there is an injection / < I, and there is a sequence of varieties on I extending {M;, My, }.
There is the product map (product within I”)

P13 Js) H[Q@Z(Mi)liry = [ @ Z(Mi) @ Q Z(My))]iq1, sy

iel iel-1' J

Similarly for the cases (d-2) and (d-3).

(3.2.2) Generalizations of properly intersecting sets. In (3.2.1)(b) we discussed the condi-
tion of proper intersection for a; € S(M;, m;). Here are some generalizations.

(1) For a set of elements a; € Z(M;,m;), i = 1,--- ,n, let us say the set {ay, - ,a, } is
properly intersecting if the following condition is satisfied: Let A be set of ¢ such that a; # 0.
For i € A write a; = > ¢, with «,, irreducible non-degenerate. Then for any choice of v;
for ¢ € A, the set

i€ A}

{ai v;
is properly intersecting.

(2) Let Ly, - -, Ly be disjoint intervals of [1,n], and «o; € ®ieLJ_ Z(M;,m;) for j=1,---b.
Writing each o as a sum of tensors of elements in 8(M;, m;), one can define the condition of
proper intersection for the set {ay, -+, ap}.

(3) Let Jy,---,Js be disjoint intervals of [1,n], and «; € Z(M;,, m;). One can define for
{ai, -+, as} the condition of proper intersection. More generally, assume each J; is partitioned
into Jj1,- -+, Jik,; then for a set of elements «; € ®j Z(My,;), i =1,--- s, one can define the
condition of proper intersection.

(3.2.3) Generalizations of constraints. Now that the notion of proper intersection has been
generalized, we can also generalize the notion of constraints and the corresponding distinguished
subcomplexes. For simplicity consider only the type (d-1), but one can do the same for (d-2)
and (d-3).

(1) Keep the notation of (d-1). Let J; CI—1,j=1,--- s be a disjoint set of intervals and
fi € Z(Mj,) be a properly intersecting set of elements. One can then form the corresponding
distinguished subcomplex.

(2) More generally, let J; CI—1, j=1,---,s be a disjoint set of intervals in I — I, where
each J; is partitioned into Jj,- -+, Jjr,. Let f; € @,2(My, ), j = 1,---,s, be a properly
intersecting set of elements. One has the corresponding distinguished subcomplex.

In all these variants the distinguished subcomplexes are denoted [&),; Z(M;)]r:5-

(3.3) Distinguished subcomplezes of Z(My,U;) @ - -+ @ Z(M,,U,) with respect to constraints.
Let M and U be as in (1.2). We can repeat all of (3.2) for the complex Z(M,U). Since
Z(M,U) = @, Z(U;), where I varies over subsets of the indexing set of U, an element a €
Z(M,U) is of the form ), ay with ay € Z(U;). There is a filtration of Z(M, U) by subcomplexes
such that the successive quotients are direct sums of Z(Uy).

Since Z(Uy) is Z-free on the set 8(Ur), Z(M,U) is free on

S(M, U) = H[S(U[) .
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Let M; be a sequence of fiberings indexed by [1, n], and let U; be a finite covering of U; C M,;.
For elements «; € 8(M;,U;), i varying over a subset A C [1,n], we have defined in §1 when
{a;} is properly intersecting. The properties in (3.2.1)(b) are satisfied.

When «;, i =1, -+ ,n are properly intersecting the product ayo---oq, € Z(Myo Mo+ ¢
M,, Uy IT--- IIU,,) is defined. The properties in (3.2.1)(c) are satisfied.

One can proceed as in (3.2.1)(d), except one replaces Z(M;) with Z(M;,U;), to define
distinguished subcomplexes of tensor product @ Z(M;,U;) with respect to a constraint. For
example, as in (d-1), one can define a distinguished subcomplex of the form

(@ Z(M;, W)]n,rv;

i€l
where f; € 8(M;,U;), j € A C I — 1, is a properly intersecting set. One shows this is a
quasi-isomorphic subcomplex of ),.; Z(M;, U;) by considering a filtration and reducing to the
case (3.2.1).

Generalization of proper intersection (3.2.2) and of constraints (3.2.3) can be given in the
same manner.

(3.4) Distinguished subcomplexes of F(I1|X) with respect to constraints. From §2 recall F(I) =
®F(I,3). Since F(I,3) = Z(XZ,U(J)) is Z-free on 8(X?, U(T)), F(I) is Z-free on

Sx(I) == [[s(X7,(@)) -
J

There is a filtration on F(I) by subcomplexes such that the successive quotients are direct sums
of F(1,J) as complexes. To show the subcomplexes appearing in (3.4.1) and (3.4.2) below are
quasi-isomorphic subcomplexes, we use this filtration and reduce to the case Z(X?, U(J) ).

To a segmentation of I = [1,n] into sub-intervals Iy, --- , I, and a set of subsets J; C I,
there corresponds a sequence of fiberings consisting of X ?11, e, X }q: (In this subsection all
intervals are of cardinality > 2.) For simplicity we often write X; for Xlg. If i = tm I, the
sequence looks like:

Xh\ / A \ X,
Xil Xi,-,l :

More generally, let Iy, --- , I, be sub-intervals of I such that tm(/;) < in(/;;;) for each i
(then we say that the set {I;} is almost disjoint). We can complement it to a segmentation of /

by adding sub-intervals of cardinality 2, [j, 7 + 1], not contained in any I;. There corresponds
a sequence of fiberings consisting of X, and X[ ;1. So for elements a; € 85(/;), one has

the condition for the set {ay,---,a,} be properly intersecting on X? where § = Ug;. The
properties (3.2.1)(b) are satisfied.
If I,---, I, is a segmentation of I, and {a; € 85(;)} is a properly intersecting set, the

product aj o --- o, € F(I) is defined. The properties (3.2.1)(c) are satisfied with obvious
changes in notation.

What we will describe in the rest of this subsection is a repetition of (3.2.1)(d) in this
setting. There is to be no essential change, but notation appears different. We start with the
counterpart of the subcomplex Z(M;)® - - - @Z(M,).
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(3.4.1) Definition. For a segmentation I,--- , I. of I, let
F()QF(I)® - - - ®F(I,)

be the quasi-isomorphic subcomplex of F(I;) ® F(Iy) ® --- @ F(I,) generated by elements
a) ® -+ ® ., where a; € 85(1;) are properly intersecting.

If ¥ C (1,n) is the subset corresponding to the segmentation, we also write F([1,n]|X) for
the distinguished subcomplex. The same definitions apply to any subset I of [1,n].

This definition coincides with the one in (2.5), which is F(1|X) = @, F(I,J|%).

According to (3.2.2), the notion of proper intersection can be generalized as follows. Let

I,---, I, be almost disjoint in I, and ¥; C I;. For elements o; € F([;|>;), i = 1,--- ,r, one
has the condition of proper intersection.

(3.4.2) Let I be a finite ordered set, Lq,--- , L, be almost disjoint sub-intervals such that
UL,; = I; equivalently, in(L;) = in(I), tm(L;) = in(L;4+1) or tm(L;)+1 = in(L;41), and tm(L,) =
tm(/). Assume given a sequence of varieties X; on I. Consider the complex F(L)®---@F(L,).
Following (3.2.1)(d), we give the definition of its distinguished subcomplexes.

(d-1) This corresponds to (3.2.1)(d-1). First note there are subcomplexes described as
follows. Let I;,---,1I. be a set of almost disjoint sub-intervals of I with union 7, that is
coarser than Lj,---, L,; this means each I, is a union of L;’s, and if I,, 1,1 C L;, then

tm(/,) = in(Z,41). Then there are subsets ¥; C I; such that the segmentations of I; by %;,
when combined for all 7, give precisely the L;’s. For our convenience we call such Iy,--- I,
a regrouping of Lyi,---, L,. Then the complex F([;|X;) ® -+ ® F(I|X.) is a distinguished
subcomplex of F(L;)®- - -®@F(L,). The coarser the regrouping is, the smaller the corresponding
subcomplex is. If I, and I, satisfy tm(/,) = in(,11) = ¢, then replacing I,, [,+1 by I, U I,41
gives another regrouping, then the corresponding subcomplex

FLIS) @ @ F(Ly ULt |Se ULt} USast) @ - @ F(LIS0)

is a subcomplex of F(I1|31) ® - -+ @ F(L.|X.).

Let I — I be an inclusion into another finite ordered set I such that the image of each I, is
a sub-interval; we say the inclusion is compatible with (I3, -, I.). For example, let [ = [1,7],
I =1[1,3], I = [3,4], Iy = [5,7]. Let I =1[0,9] and I < I be defined by i — i for ¢ < 4, and
i+— 1+ 1 fori>5.

1 3 4 5 7
Assume given an extension of X to I. Let Jy,---,.Js C I be sub-intervals of I such that the set

{L;, J;}:; is almost disjoint, and f; € F(J;), j =1,--- ,s be a properly intersecting set. Then
one can define the distinguished subcomplex

[F(L|%1) ® -+ @ F(Le| )|y -

45



It is the subcomplex generated by a1 @ - -+ ® a., a; € F(L;|;), such that {oq, - ,ac, fj (7 =
1,--+,s) } is properly intersecting.

It is obvious to see this is a special case of (3.2.1)(d-1). From X on I we obtain a sequence
of fiberings consisting of X, and X; ;1) for [j,7 + 1] C I — UL;; this extends to a sequence
consisting of Xy, and Xy; ;1) for [j,7 + 1] C I — UL;. The regrouping specifies the set I’ in
(3.2.1)(d-1).

Note that according to (3.2.2) the constraint can be generalized as follows. If T; C J; are
subsets, one may take properly intersecting elements f; € F(J;|T}).

(d-2) Tensor products of subcomplexes of type (d-1) are again of the same form. First we
note tensor products of complexes of the form F(L;) ® - - - ® F(L,) are again of the same form.

Let I’ be another finite ordered set, L, - - - , L!, almost disjoint sub-intervals with union I’. Let
IUI’ denote the disjoint union of I and I’, where i < i’ ifi € I,7 € I', and let X be a sequence
of varieties on JUI'. Then Lq,---,L,, L},---, L, are almost disjoint sub-intervals with union

I UI'. The corresponding complex is the tensor product

FL)@ - F(L,)F (L) @ @ F(L.,) .

To describe tensor products of complexes of type (d-1), let I',--- , I* be almost disjoint
sub-intervals of I with union I.
For each k assume given the following data. Let IF,--- I fk be almost disjoint sub-intervals

of I* such that UI¥ = I*. Each I is assumed to be a union of some of L,’s. Let I¥ be another
finite ordered set, and I* < I* be an embedding compatible with (IF,---  I*¥). On I* given

» Leg
a sequence of varieties X7 that extends X on I*. For distinct k, there is no relation between

X,

Given also sub-intervals J¥ C I* such that {I¥ J*} is almost disjoint in I*¥, and properly
intersecting elements f; € F(JF|T}), where T} C (Jj’?])o. Let X% C (IF)° be subsets such that
the segmentations of If? by ¥¥, when combined for all k, i, give precisely L,’s.

Then the distinguished subcomplex of the following form is defined:

[ ® (U e- I,
This is no other than a tensor product of distinguished subcomplexes of type (d-1).

(d-3) One can take finite intersections of subcomplexes of type (d-2):

With the notation in (d-2), we fix I and L,’s, and X;. We let vary the choices of the
following data: sub-intervals I*; and for each k sub-intervals I¥, inclusion I* — T, extension
X" to I*, sub-intervals J]’-€ and elements ff :

The subcomplex satisfies the following properties (we restrict to the case (d-1) for simplic-
ity).

Properties. (1) The [F([1]|%1) ® --- ® F(L|X.)]s is a quasi-isomorphic subcomplex of
FLIZ) @ - @ F(L|E.). If J = J, satisfies tm(/;) = in(J) = ¢ and tm(J) < in(/;11), then
one has a map
(=)Rf(JIT) : [F([1]%1)®- - -@F (I.|X.)] f — [F(L1]X1)®- - - @F (LUJ|Z,U{c}UT)®- - - @F (I.|3.)] s
similarly if tm(/;) < in(J) and tm(J) = in(l;41). If tm(];) = in(J) = ¢ and tm(J) = in(f;11) =

c, one has

(e fUIT) [FhE5) © - @ F(Le|X)];

— [?([1|21) SR ®9:<]z U JUIi+1|Zi U{C} uTu {c’}UZiH) SR ®5([C|ZC)]f .
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(2) If ¥ D X', there is the corresponding product map

p o [FLZ) @ @ F(LefZ)] = [FIL[E) @ - - @ F (LX) -

(3.5) Distinguished subcomplexes of F(I|S) with respect to a constraint. Keep the same nota-
tion from the previous subsection. According to the definition in §2, F/(1) = @, F(I|X), where

Y. varies over subsets of ]O .
Recall F(I) is Z-free on S85(I). So F(I|X2) is Z-free on 84(I|X), the subset of 85(11) X -+ x
85(I,) consisting of (v, -+, ) which are properly intersecting. Thus F'(I) is free on the set

Sp(I) =[] 8+11%) .

We can repeat (3.4) with F(I) replaced with F'(1).

If I, - , I is an almost disjoint set of sub-intervals of I = [1,n], and a; € Sg(I;), one has
the condition of proper intersection for {ay,---,a,}. The properties (3.2.1)(b) are satisfied
with obvious changes. Unlike for F(I) there is no product aj o - -- o q.

(3.5.1) Definition. For a segmentation Iy,- -, I. of I, let
F(L)®F(L)® - ®F(I,)

be the quasi-isomorphic subcomplex of F(I;) ® F(l3) ® --- ® F(I,) generated by elements
a; ® -+ ® ., where a; € 8p(I;) is a set of properly intersecting elements. If S C (1,n)
is the subset corresponding to the segmentation, we also write F'(I|S) for the distinguished
subcomplex.

The complex is equal to

P F(L|2)® - QF(L[%,)

the sum over X; C Ii Since each summand equals F(I|X), where ¥ = (UX;) U S, one has
F(I]S) = @y5¢ F(I]X), which agrees with the definition of F'(]S) given in §2.

(3.5.2) One can repeat (3.4.2). Let I be a finite ordered set, Ly, -+, L, be almost disjoint
sub-intervals such that UL; = I; equivalently, in(L;) = in(/), tm(L;) = in(L;41) or tm(L;)+1 =
in(L;+1), and tm(L,) = tm(]). Assume given a sequence of varieties X; on I. Consider the
complex F(L1) ® --- ® F(L,). Below we only discuss its subcomplexes of type (d-1).

Let I,,---,1I. be a set of almost disjoint sub-intervals of I with union I, that is coarser

than Lq,---,L,; let S; C I; such that the segmentations of I; by .5;, when combined for all
1, give precisely the L;’s. Let I — I be an inclusion into a finite ordered set I such that the
image of each I, is a sub-interval. Assume given an extension of X to I. Let Jy,---,J; C I be
sub-intervals of I such that the set {I;, J;}; ; is almost disjoint, and f; € F(J;|T;),j=1,---,s
be a properly intersecting set. Then one can define the distinguished subcomplex

[F(1L]S1) @« @ F(L]|S)lny -

It is the subcomplex generated by a; @ - -+ ® a., a; € F(I;]S;), such that {aq, - ,ac, fj (7 =
1,--+,s)} is properly intersecting.
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The discussions for tensor products and finite intersections are parallel to (3.4.2). We have
the same properties as Property (1) in (3.4).

(3.6) Variant of (3.2). We explain a particular example of (3.2) in steps (A) to (C). The rest
of this section will be used only in Par II.

(A) This is a special case of (3.2.1)(d-1), but we describe it for clarity. Let I be a finite
ordered set, and [ a sub-interval. (Recall in (3.2.1)(d-1), I need not be a sub-interval.) Assume
given a sequence of fiberings M; indexed by I. Note one has the space M, the fiber product of
M; for 1 € 1.

Assume given, for each interval J C I— I of cardinality > 1, an element f(J) € Z(M;,my);
they are subject to the following condition: For any disjoint set of intervals Jy, - - -, J, contained
in I — I, the set

{f(J1)7 e af(‘]a)v faCGS}
is properly intersecting in My x [J*.
Then the subcomplex of ),.; Z(M;) generated by ®;era; satisfying the following condition is
distinguished: For each disjoint set of intervals Jy,--- , J, contained in I — I, the set

{ai (i el), f(h), - f(Ja), faces}

is properly intersecting in Mj. The subcomplex is denoted [@ie] Z(M; )15 or [@ie[ Z(M;)]¢.
If J satisfies tm(/) 4+ 1 = in(J), there is a map

() ® f(J) : [@Z(M)]; — [ Z(M)&Z(M,)]s

el 1€l

that sends ®;e; a; to ®;er a; @ f(J). The target is the distinguished subcomplex of the same
kind associated to the sequence consisting of M; for i € I and M;. More precisely let I U {J}
be the finite ordered set obtained by adjoining to [ a single point J; any element of [ is smaller
than J. Let I/J be the finite ordered set obtained from I by contracting J to a point. Then
I'U{J} is a sub-interval of I/J. There is a sequence of varieties indexed by I/J, in which J
corresponds to M;. To J' C 1/J — (I U {J}) there corresponds f(J') € Z(M,). Then the
target complex is of the form [, Z(M;)QZ(M)])s.;-

If J satisfies tm(J) + 1 = in(/), one has a similar map f(J) ® (—).

Asin (3.2), one can generalize the notion of constraint and take elements f(.J) € @ \Z(My,),
where J, is a partition of J.

If I,--- , I, is a partitioned of I, there is the product map
p: @200 > ® 2(My)s
1€ 1=1,---,r

(B) Let I' = [1,n] and I? = [m, {] be sub-intervals of T', T?, respectively. Assume given are:
e a sequence of fiberings M; on T': (M; — Y; < M;,;), and
e a sequence of fiberings L; on I?: (L; — Z; < Li11).
If n < m assume that (n,m) C I' N 12, namely m — 1 < tm(T'), in(I?) < n + 1, and (M;) and
(L;) coincide on (n,m) as a sequence of fiberings, namely M; = L; for i € (n,m), Y; = Z; for

48



i € [n,m — 1], and the projections coincide. In the following figure a solid line segment (resp.
dotted line segment) represents I (resp. I).

I n tm(I")
in(I?) m.o 2

One can then define another sequence of fiberings (M;,Y;) on I := [in(I'), tm(I%)] by

M;={ M;=1L; ifn<i<m,

We call it the glueing of M; and L; along (n,m). The subset I' U I? of T is an interval if
m = n+ 1. Note in this case the condition M; = L; on (n,m) is vacuous.
In addition, assume given a constraining set of cycles, which consists of:
e for each interval J C I' — I' an element f(J) € Z(Mj), and for J C I? — I? an element

—~

g(J) € Z(Ly). As in Step(A) one may take f(J) € @, Z(My,) where {J,} is a partition of J.
For simplicity, though, we assume in the following f(.J) € Z(M;). The general case is left to
the reader.

We require:
(i) For a disjoint set of intervals Jy,- -, J, contained in I' — I, the set

{f(J,) (w=1,---,a), faces }

is properly intersecting in Mp:. Similar condition with respect to L; and g(J).

(i) If n < m, there is a further condition. We say an interval J is between I' and I? if
n < in(J) < tm(J) < m; for such J we require f(J) = g(J) € Z(M;). Let J be an interval
contained in T — (I' U I?); then J is either to the left of I, between I' and I2, or to the right
of I2. Define f(.J) € Z(M;) by

f(J) if J is to the left of I,
f(J) = f(J)=g(J) if Jis between I'' and I?
g(J) if J is to the right of I°.

The set {f(J)} is the glueing of {f(J)} and {g(J)}. )
~ We also require: For a disjoint set of intervals Jy, - -, J, contained in T — (I U I?), the set
{f(J,) (v=1,--- ,a), faces } is properly intersecting in M;.

Given such data we will define a quasi-isomorphic complex

@ (M) & §3; 2(Ly) i s

of the complex @iep Z(M;) ® ®jel2 Z(L;). It is generated by (0 ® -+ ® ) @ (B, @ - - - ® o),
with each «; or §; irreducible non-degenerate, such that the following conditions are satisfied:
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i) For a disjoint set of intervals J,--- , J, contained in I' — I', the set
]

{ag,+,an, [f(J,) (v=1,--- a), faces}

is properly intersecting in Mp. Similar condition for 5’s and g(J).

(ii) Assume n < m. For a disjoint set of intervals Jy, - - - , J, contained in T — (I* U I?), the
set {aq, -+, Qn, By, Be, f(JV) (v =1,---,a), faces } is properly intersecting in ]\Zﬁ. In
case n > m, there is no condition (ii).

This is a distinguished subcomplex of the form (3.2.1)(d-3). The subcomplex, denoted
Z(I*;1%);, for short, has the following properties.

(1) Z(I'; 1), is contained in Z(I';I?) = @Il Z(M;) ® @12 Z(L;). There are three cases
accordington=m—1,n>m,orn<m—1. If m=n+1, Z(I'; I*);, is contained in

BronZ(WL));
the distinguished subcomplex of QnurZ(M) = Z(M)® - @ Z(My)RZ(Lnt1)® - - - OZ(Ly)
with respect to the constraint {f(J)}. If n > m,

Mﬂmmz@uMM®@MML

(2) Assume that J satisfies tm(7') + 1 = in(J), but not necessarily that it lies between I*
and 72. Then one has the map

(5@ f() @id: Z(I 1) g — Z(INU{T} 1) g

which sends (®;ep104) ® (Rjerzf;) to (@iena; ® f(J)) ® (®jerzf;). To explain the target,
I' U {J} is the finite ordered set which is the disjoint union of I' and one point {J} (J is
viewed as a point); it is regarded as a sub-interval of I'/J, the finite ordered set obtained
from T' by contracting J to a single point. There is a sequence of varieties on I'/.J, in which
J corresponds to Mjy. To (I' U{J} < I/J,M; f) and (I? — 1% L,g) we may associate the
distinguished subcomplex Z(I* U {J}; I*)n,y2.4,4. Note the target group Z(I' U J; I?)s, may
be of type n > m in the classification in (1).

If J satisfies tm(J) = in(I') — 1, one has

f) @ (=) @id: Z(I 1) s = Z{JYU TS )4y

Similarly one has the maps id®g(J)®(—) : Z(I';1?) 5, — Z(IY{J}UI?) 4, and id@(—)@g(J) :
(I P g = Z(I5 12 U{J}) 10
(3) Given a partition of I' (or I?) there is the product map, as in (A).

(C) For a further generalization assume given, for k =1,--- ¢,
e finite ordered set I* and a sub-interval I*, and
e a sequence of fiberings M on I*,
satisfying the following condition: If n = tm(I*) < m = in(I*1), one has (n,m) C It N IF+L
and the sequences M*, M**1 coincide on (n,m).
Note if r < s and tm(I*) < in(I*!) for k =r,--- ,s — 1, one can “glue” M* k=r,--- s
to another sequence of fiberings M on I := [in(I"), tm(I*)]. One has inclusion I" U---UI°® C L.

As a constraint, given a collection of cycles
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e for each interval J C I¥ — I*, an element f*(.J) € Z(M¥),
satisfying the following condition:
(i) For a disjoint set of intervals J,--- ,J, contained in ¥ — I*, the set

{f*(1,) v=1,--- ,a), faces }

is properly intersecting in M.

(ii) If n = tm(I*) < m = in(I*1) and J is an interval between I* and I**! then f*(.J) =
FE4I(7) € 2(M).

If r < s and tm(I*) < in(I**!) for k = r,--- ,s — 1, one can glue f*(J) so that for each
J C I—(I"U---UI®) there corresponds f(J) € Z,(MJ). We require, for a disjoint set of intervals
Ju, -+, J, contained in I — (I"U---UI*), the set {f(J,,), faces } is properly intersecting in ]\;[ﬁ.

We will define a distinguished subcomplex denoted
[g? 2(M;)& @ Z(MP)® - @ (IX) Z(M)] 1 ge s

or Z(I';- -+ ;I°) for short. It is generated by tensors
(Qiena) ® -+ @ (Qicreas), of € Z(M),

satisfying the following condition. Let of = {aF | i € I*}.
. e For each pair r < s as in (ii) above, and a set of intervals .J;,--- ,.J, contained in
I—(I"U---UI°), the set .

{a", -+, f(J,), faces}
is properly intersecting in Mﬁ. (If r = s = k, the condition reads: For each k, the set
{o*,  f(J,), faces} is properly intersecting in M. ) The subcomplex is distinguished, and
satisfies the following properties.
__ Properties. (1) Z(IY--- 519 is a subcomplex of @ Z(M}) @ Qp L(MP) @ -+ ®
@ ;. Z(Mf). For r < s as in (ii) above, if I"U---U I® is an interval,

Z(IY I, cz(ly - T U U T ;Ic)f.

The latter is the distinguished subcomplex associated with the intervals FcTFfork #r,--- s,
I"U---UI* CI the sequences MP* for k # r,---,s and M, and the constraint consisting of

fk(‘])7 k 7é707"' S, and f(‘])
(2) For an interval J with tm(/*) + 1 = in(J), one has the map

(I 1)y = 2T TP U { T} 5 1)

which sends (®;cpa)) @ - ® (Riere) t0 (Riena}) @+ @ (el @ f(J)) @ -+ @ (Rjereas).
Similarly for the operation f(J) ® (—) on the k-th spot.
(3) Given a partition of I*, there is the corresponding product map.

(3.7) Variant of (3.3). We have variants of (3.3), as (3.6) for (3.2). We have only to replace
Z(M;) with Z(M;,U;). In Step (C), one has a distinguished subcomplex of the form

It 12 Ic
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having the same properties as in (3.6).

(3.8) Variant of (3.4). In the setting of (3.4), the variant of (3.7) can be described as follows.
Assume given:

e For each k = 1,--- , ¢, finite ordered set I¥, a sub-interval I* C I¥, a subset % C _;k,
and a sequence of smooth varieties X¥ indexed by I*.
It is required that if n = tm(/*) < m = in(J**'), then [n,m] C I¥ NI**! and X¥ and X
coincide on [n,m]. If r < s and tm(I*) < in(I**!) for k = r,--- ;s — 1, one can glue X¥ for
k=r,--- s to obtain another sequence of smooth varieties X indexed by [:=I"U---UI. One
has I"U---UI® C I. The set I"U---UI® is an interval if tm(I*) = in(I**") for k =r,--- ,s—1.

e For each interval J C I* — I* and a subset T' C I there is given an element f*(J|T)
FJ|T) = F(J|T; XF).
If n = tm(l) < m = in(lyy1) and J is between I* and I**!) then require f*(J|T) =
fFIT) € FUJIT; XEF). Ifr < s and tm(/*) < in(/*™) for k = r,--- s — 1, one can glue

F¥(J|T) so that for each J C T— (;T U---u fs) there corresponds an element f(.J|T) € F(J|T).
We require that for any almost disjoint set of intervals Jy,---,J, in I— (Io "U--- U 19 *) and
T, C JC,),7 the set {f(J,|T,) (v=1,---,a), faces } is properly intersecting in Xj.
One can then define a distinguished subcomplex of the form
[FINEDND - @F (175 ]z -

Properties. (1) [F(IMXY® - @F(1¢|X)]; is a quasi-isomorphic subcomplex of
FIHEYH) @ - @ F(I°]2°). For r < s, if in addition I" U --- U I* is an interval, then

[FIEH® - @F (1754
coincides with
[F(HEHY®---@FITU---UPIE U US U {tm(I"), -+, tm(I* )} )@ - - @F (1)) 7 .
(2) If J C I*F - T* with tm(7%) = in(J) = ¢, then (=) ® f*(J|T) on the k-th factor gives a
map
[FIMEHY® - @F(I5)]y — [FUENS - @FIT U ISP U{FUT)& - - @F(1°]5°)] -

Similarly for f*(J|T) ® (=) on the k-th factor.
(3) If ©¥ D ©* there is the corresponding product map

[FIZHS - @F (I — [FIHZ S - - - RF (T[] .

(3.9) Variant of (3.5). One can do the same as (3.8), with F(/|X) replaced with F'(I|S). One
thus has a distinguishes subcomplex of the form

[FISY& - @F(I°S°)]f

where S* C I*, and f* is a set of elements f*(J|T) € F(J|T; XF). One has the same properties
as in Properties (1), (2) in (3.8).
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4 The diagonal cycle and the diagonal extension

We keep the notation of §2. We abbreviate X? to X, and U? to U;. The map ry4 : F(1,d|2) —
F(I1,J'|%) is written 7y, if J' = J U {k}.

(4.1) The diagonal cycles A(I). Let X be a smooth variety, projective over S, and X; = X
be a constant sequence of varieties on [1,n]. There is the diagonal embedding A : X — X xg
-+ x g X; denote the image of the fundamental class of X by A(1,---,n) € Z(X xg--- xgX).
There is a natural quasi-isomorphism

L Z(X Xg-+Xg X) — Z’(X[l,n]7{U[l,n]}) = ?([1,%],@) .

We use the same A(1,--- ,n) to denote its image under this map. It thus consists of A(1,--- ,n)
in Z(Xp ), and the zero element in Z(Up ). Similarly for any I C [1,n] we have an element
A(I) € F(1,0); it is a cocycle of degree zero. As an element of F(I), it has degree 1.

For a subset ¥ C I, letting Iy, --- , I. be the segmentation of I given by 32, one verifies the
tensor product

AIE)=AL)RA(L) @ - A(l,) € F(I1,0) ® - @ F(L.,0)

is indeed in the subcomplex F(I,0]X). As an element of the complex F(I|X), its degree is c.
The elements A(7) are closed under p and 7, namely:
(1) For k € X, pr(A(I[2)) = ri(AU|E = {k})) in F(L {k}E = {k}).

(2) For K C I Y, 1k (A(IE)) = Al — K|X) in F(I — K|Y).
By (1) one sees that the collection
A(I) == (A(I]D))s € ®F(L,0/2) C F(I)

is a cocycle of degree 0 in the complex F(I). If I = [1,n], one should think of A(/) as
A([1,2]) ® -+ @ A([n — 1,n]), not as A([1,n]). The following proposition contains a more
precise statement.
(4.2) Proposition. (1) If |I| =2, then A(I) = A(I) € F(I).

(2)If S C I, and Iy, - , 1. the corresponding segmentation, one has

Ts(A()) = A(L) @ --- @ A(L)

in F(ITS) = F(I,) ® ---® F(1.). (Recall ¢ : F(I) — F(I]S) is the composition of og :
F(I)— F(I|S) and vs : F(I|S) — F(I]S).)

(3) For K C I, px(A(I)) = A — K).

Since A(I) depends on X, we will write Ax(I) for A(I) and Ax (1) for A(I). If |I| = 2,
Ax(I) is the usual diagonal Ay.

(4.3) The diagonal embedding J.. Let X be a sequence of varieties on I = [1,n]. Given an
element k € I (we allow k =1 or kK = n) and an integer m > 2, let I"= [1,n] be the ordered
set

{1, k=1,ky, - km k+1,---,n},
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where £ is repeated m times. There is a natural surjection I~ — I which sends k; to k& and
is the identity on I~ — {k;}, so there is an induced sequence of varieties on /" Let X; and
X7~ be the corresponding varieties. There is a closed embedding 6 : X; — X;- given by
(X1, ,Tp) = (T1, - Th—1, Tk, Thy Ty1, -+ L) (x) repeated m times). Note all this
makes sense for any subset I C [1,n], an element k € I, and m > 2.

For the statement of the following proposition only, we write I (resp. 17) instead of I (resp.
I7). Recall for a subset I C I there corresponds a closed set A; C Xy, and Uj is its complement.
Thus for I’ C 17 the corresponding set is Ay C X7~ One verifies:

Proposition. (1) Let I C 1 and I' C 1" be subsets such that I' — {k;} = I — {k} and
I' — I is a surjection. Then the following square is Cartesian:

A — X
[
Ap — Xr-.

Hence 6~ (Up) = U;.

(2) If 3 C T and J C (I)° are subsets such that J = J, then 7 *U(J") = U(J). We thus
have a map of complezes (see (1.3) )

5. (X, U()) — 2(Xim W) .

We refer to this 6, : F(I,d) — F(I7J’) as the diagonal embedding associated to the surjection
I"— I

Proof. (1) Left to the reader.

(2) Itk & g, let {J°---,J"} be the segmentation of T by J. There is ¢ such that k € J°.
Then the segmentation of I by J’ is {J°,---,J"}, where J7 is the inverse image of J7; J7 is
bijective to J7 if j # i. Apply (1) to J7 and J7 for each j to obtain the claim. The case k € J
is similar.

(4.4) The maps 0, and A(X,%'). Keeping the notation, we will define a map of complexes
F(,3)%) — F(5TNY)

when the following condition is satisfied:

~

J =53, % —{k} > —{k},and, if k € ¥ then X' N {ky,- -, ky} is non-empty.
(If k¢ 2, ¥ N{ky, -, kn} may be empty.) According to cases, we will give it the name §, or
A(X,%). From now on we assume k # 1,n; at the end of this subsection we will mention the
necessary changes in the case k =1 or n.

(0) Case k ¢ X.  If ¥ is the empty set, we have the map 0, : F(I,7|X) — F(I7'|X")
defined in the previous subsection. There are two subcases:
(a) Case k ¢ J. Then J’ as above is uniquely determined.

(b) Case k € J. Then J' = (g — {k}) U{k;} for j =1,--- ,m. So we write (9;), for J,.

One shows:
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(4.4.1) Lemma. (1) In cases (a) and (b), 6. commutes with ry, k' # k. For d, in (a),
the following commutes:

O

F(1,9) — F(I33d)
FLIU{KY) 2 F(a 0 (k) -

(2) In case (b), let § = JoU{k}. If k &€ d and j # j', the following commutes:

Fe) Y F Uk}

(6j’)* Tkj/

FU, 90U ki) —2s F(I590U {kj by }) -

Proof. (1) is left to the reader. The point in the proof of (2) is, if § : U,.. n > Uk ko k1, m
denotes the diagonal embedding, its image is disjoint from the subset Uy, ... Ky ki < kj.

For each ¢ > 0 consider the direct sum @y _, F(I,d), where J C I varies over subsets with
cardinality ¢, and similarly @_, F(I 7). Let 326, : Dy F(,d) = Dy F(L7) be
the sum of all 0, defined above. The lemma implies that it commutes with r (the signed sum
of r;), so it gives a map of complexes F(I) — F(I).

If ¥ is not empty, but does not contain k, one generalizes the above in the obvious way and
defines the map d, : F(I,J|X) — F(I,J'|>). The above lemma also generalizes, so the sum of
0. commutes with 7.

Assume now k € 3, ¥/ C (1)° such that ¥/ — {ky, -+ ,kp} — ¥ — {k} and X' - 2. Let
J' C (I° be a subset such that J' = J; since k € J, 7’ is uniquely determined. We have two
cases:

(I) Case k € ¥ and |¥'| = |¥|.  One can define A(X,Y) : F(I1,J|2) — F(IJ'|X'). For
simplicity assume ¥ = {k}, and let I, I be the segmentation of I by k. Let ¢ = k; be the
element in X', I7, I, be the segmentation of I"by ¢, and ¢, " be the embeddings corresponding
to the surjections I/ — I;. Then the map A(X, %) : F(I,J|X) — F(IJ'|Y) is defined by
A YN (W @u”) = 0L () @07 (u"). That this definition makes sense follows from the following
claim.

Claim.  Let u; be elements in Z(Xy,) for i = 1,2, such that {uy,us, faces} is properly
intersecting in X; (so one has uy o uy € Z(Xy) defined). Then for the cycles 0. (uy),d” (us),
respectively on Xy, i = 1,2, the set {5, (u1), 0} (uz), faces } is properly intersecting in X, and
one has

0. (1 0 uz) = &, (ur) 0 0 (u2)
m Z(X[~)

(4.4.2) Lemma. Assume we are in case (I); let ¥' = (¥ — {k}) U {k;}.
(1) A(X,%) commutes with ry if K € I — (JUX).
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(2) A3, %) commutes with py if k' # k. Further, the following square commutes:

F(1,9|%) ettt F(I )
P Pk
FULIURNS — (k) 25 F(0 U — (k) -

The assertion (2) follows from the identity d.(u; o ug) = 0% (u1) o 0 (uz) in the claim.
(IT) Case |X'| > |¥|. We will define the map
A F(1,12) = F(1L,3'1Y)

as follows. For simplicity assume ¥ = {k}, the general case being similar. Let I, I be the
segmentation of I by k, and I{,---,I;,, the segmentation of I"by ¥’. One has F(/,J|X) =
3:(-[1731)(89:(]2732)7 and

HT(I: 3/‘21) = ?(Iia 3/1)®9:([é> ®)® e ®EF([{)> ®)®9~(II§+1>3§)+1) :
Note I}, - -+, I; correspond to constant sequences on X;. The map A(3,Y’) is defined by
u@u —ol(u) @ A(L) @ - @ A(L) ® 87 (u")

where ¢, : F(11,d1) — F(I7,3}) is the map associated to the surjection I] — I;, and similarly
for the map 6. We have used the following claim.

Claim.  Let u; be elements in Z(Xy,) for i = 1,2, such that {uy,us, faces} is properly
intersecting in Xy (so one has uy ouy € Z(Xy) defined). Then the set of cycles

{00(ur), A(13), -+, A(Ly), 02 (uz), faces }
1s properly intersecting in X~ One has
0 (ur) © A(I3) = & (u1)
where &' is associated to the surjection I} U Iy — I1; similarly for A(I}) o 8" (uy).

(4.4.3) Lemma. Assume we are in case (I1I).
(1) A3, %) commutes with vy if k' # k, and with py if k' # k.
(2) If t = k; € X', the following commutes:

A(S,5)
—

F(1,3%) F(5 9%
A(Evi’—{f})l pe
FULIIY —{}) —— FLLTULGE -{).

(4.4.4) Case k=1 orn. If k =mn, minor changes are needed as follows.
(a) In case X' N {nq, - ,n,} = 0 we have the map ¢, : F(I,J|X) — F(IJ'|X’). This is
defined as in case (0) above. Lemma (4.4.1) holds without change.
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(b) In case X' N{ny, - ,n,}t # 0, we have A(X,Y) : F(I,3|2) — F(I,7'|Y), defined as
in case (II) above, by the formula u +— ¢, (u) ® A ® --- ® A. Lemma (4.4.3) holds, where if >’
consists of a single element one replaces A(3, X' — {¢}) by d..

(4.5) Consider now the map
diag = diag(I,1) =Y 0.+ Y AL, Y): @ F(II%) - PFIIT)

which is the sum of §, and A(X,¥’). The three lemmas jointly imply:

Proposition. The map diag commutes with © + p.

Proof. Assume k # 1,n (the proof is similar in those cases). By the lemmas, we have:

r(Q 6.0 =0_6)r;
For A(X, %) of type (I) or (II), k' # k;,
reAE,Y) = A, X))y,

pk’A<27 E,) = A<Ea E,)Pk' )

For A(X, %) of type (I),
P A, YY) = (65)wpr 5

Also,
Y. Do mAET)= Y Y mAEY).
type(Il) k;ex’ type(I)or(Il) k;eX’
overk

In calculating (7+p) diag, in light of the last identity one can disregard the terms )  pp, A(X, '),
the sum over type (II), and ), A(X, X'), the sum over type (I) or (II). For the other identities
above, careful examination of the signs show that they still hold if 7/ (resp. px) is replaced by
Ty (resp. pg). Hence we obtain the assertion.

(4.6) The map diag : F(I) — F(I") is compatible with ¢ and 7:

Proposition. (1) If k' # k, op diag(I,I") = diag(I — {k'}, 1" — {K'})pr, namely the
following square commutes:

F(I) diag(I,I) P

Pr/ Pt

P(I = {k}) "E2 P ()

Ifte{ky, - km}, pediag(l, ) = diag(I, I"— {{}); if m = 2 interpret the right hand side as
the identity.
(2) If k=n, L€ {ny, - ,ny}, let I1, I" be the segmentation of I" by L. Then the following

diagram commutes: .
diag(I,I") F([A)

diag(I,I{)l lﬂ
F(I;) —— F)®F(I").
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The lower horizontal map is u — u ® A(I"). Note I" parametrizes a constant sequence of
varieties, so one has A(I") € F(I"). Similarly in case k=1, £ € {11,---, 1,,}.

Ifl1<k<nand € {ky, - kn}, let I, Iy be the segmentation of I by k, and I7, 15 of I”
by £. One then has a commutative diagram:

F(I) diag(I,1) F(I)

’“l ln

F(L)® F(l,) —— F(I})®F()),
where the lower horizontal arrow is diag(ly, I]) ® diag(I, 15).

Proof. We only verify the last statement. The map A(3,Y') is defined so that if ¢ € ¥,
the following commutes:

F(1,9|%) 2 F(I,9|%)
F(11,0:121) @ F(I2,32%) —— TF(I1,31|1E7) @ F(13, 05[%5) -

Here g, = d N I;, ¥; = ¥ N I;, and similarly for J; and ¥.. The vertical inclusions are the
canonical ones, and the lower horizontal arrow is A(X;, X)) ® A(Xe,3)). Taking the sum over
A(X,Y) we obtain the claim.

(4.7) Al of (4.3)-(4.6) can be extended as follows. Given a subset {k, k", k", ---} of I =[1,n],
and a set of integers > 2, m,m/,m”,-- -, let

F:{l,"',k—l,/ﬁ,"',km,"',kll,"',/f;n/,"',n}

be the ordered set where k, k' k”,--- are repeated m,m’,m”,--- times. One can then define
the diagonal extension diag : F'(I) — F(I") that satisfies properties as above.

(4.8) One can state more generally assumptions on a set of complexes A([,J|¥) satisfying
Assumption (A) in §2, under which the same constructions can be performed.

For a constant sequence I 3 i — X, we assume, as in (4.1), the existence of a distinguished
element A(I) € A(I,0), which is a cocycle of degree 0. Require that the tensor products
A(IX) are in A(Z,0|X), and they are subject to the same identities with respect to p,r, 7 as
n (4.1). Then the element A(I) € A(I) is defined, and (4.2) satisfied, with F(I|S) replaced
with B(I]S).

Also assume there are maps of complexes 6, : A(I,J|X) — A(I7J|X') when k ¢ 3, and
require Lemma (4.4.1) to hold. When k € ¥, assume there are maps A(X,Y) : A(1,J|X) —
A(I7,7'1%), that are defined using ¢, and tensor product as in (4.4), for which (4.4.2) and
(4.4.3) hold.

Under these assumptions one can define the the map diag : B(/) — B(I") and Proposition
(4.6) is satisfied.
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