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Abstract

We establish a theory of complexes of relative correspondences. The theory generalizes
the known theory of complexes of correspondences of smooth projective varieties. It will
be applied in the sequel of this paper to the construction of the triangulated category of
motives over a base variety.
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We have the theory of algebraic correspondences of smooth projective varieties for the Chow
group and for the higher Chow group. We first recall the classical theory of correspondences
for the Chow group. For smooth projective varieties X, Y over a field k, let CHr(X × Y ) be
the Chow group of codimension r cycles of X × Y . An element of this group is said to be
a correspondence from X to Y . One has composition of correspondences defined as follows.
Let Z be another smooth projective variety. For u ∈ CHr(X × Y ) and v ∈ CHs(Y × Z), the
composition u ◦ v ∈ CHr+s−dimY (X × Z) is defined by

u ◦ v = p13 ∗(p
∗
12u · p∗23v)

where for example p12 is the projection from X × Y × Z to X × Y . One has associativity for
composition: (u ◦ v) ◦w = u ◦ (v ◦w). The theory of motives (to be precise Chow motives) over
k is based on the theory of correspondences. The basic idea is to consider the additive category
where objects are smooth projective varieties, morphisms are given by correspondences, and
composition given by composition of correspondences.

Instead of the Chow group one can take the higher Chow group. For u ∈ CHr(X × Y, n)
and v ∈ CHs(Y × Z,m) the composition u ◦ v ∈ CHr+s−dimY (X × Z, n +m) is defined by the
same formula. Indeed we can do this at the level of chain complexes. Recall for a variety X
the cycle complex (Zr(X, ·), ∂) is a chain complex where Zr(X,n) is the free abelian group on
the set of non-degenerate irreducible subvarieties V of X × □n meeting faces properly (see §0
for details). The boundary map ∂ is given by restricting cycles to codimension one faces and
taking an alternating sum. The homology of this complex is the group CHr(X,n). For X and
Y smooth projective, Zr(X × Y, ·) is the complex of “higher” correspondences from X to Y .
For u ∈ Zr(X×Y, n) and v ∈ Zs(Y ×Z,m) the pull-backs p∗12u and p∗23v may not meet properly
in X × Y × Z ×□n+m. But according to a moving lemma the subcomplex

Zr(X × Y, ·)⊗̂Zs(Y × Z, ·)
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of Zr(X × Y, ·)⊗Zs(Y ×Z, ·) generated by elements u⊗ v, where u, v are non-degenerate irre-
ducible subvarieties such that p∗12u and p∗23v meet properly, is a quasi-isomorphic subcomplex.
For such u and v, the composition u ◦ v ∈ Zr+s−dimY (X × Z, ·) is defined, yielding a map of
complexes

ρ : Zr(X × Y, ·)⊗̂Zs(Y × Z, ·)→ Zr+s−dimY (X × Z, ·) .

IfW is a fourth smooth projective variety, the subcomplex Z(X×Y, ·)⊗̂Z(Y ×Z, ·)⊗̂Z(Z×W, ·),
generated by u⊗ v⊗w such that the triple p∗12u, p

∗
23v, p

∗
34w is properly intersecting on the four-

fold product, is a quasi-isomorphic subcomplex. For such u, v, w, one has u◦v◦w ∈ Z(X×W, ·)
defined by p14 ∗(p

∗
12u · p∗23v · p∗34w), and the following holds: u ◦ v ◦w = (u ◦ v) ◦w = u ◦ (v ◦w).

Complexes Z(X × Y, ·) and the partially defined composition were used in the construction
of a theory of the triangulated category of mixed motives over k, see [6]. An object of the
category is a diagram of smooth projective varieties which consists of a sequence of smooth
projective varieties and higher correspondences between them, subject to certain conditions.

We would like to generalize this to relative correspondences. Let S be a quasi-projective
variety over k. By a smooth variety X over S we mean a smooth variety over k, equipped
with a projective map to S (the map X → S need not be smooth). Let X and Y be smooth
varieties over S. A natural choice for the complex of correspondences from X to Y would be
Za(X ×S Y, ·), the cycle complex of dimension a cycles of the fiber product X ×S Y . Since
the variety X ×S Y is not smooth, we need to replace this with another complex of abelian
groups F (X, Y ). Concretely F (X, Y ) is the cone of the restriction map of the cycle complexes
Z(X × Y, ·) → Z(X × Y − X ×S Y, ·), shifted by −1. Even after replacing it with F (X, Y ),
there is no partially defined composition map. What we can achieve is the following.

(1) There is a complex F (X,Y ) and an injective quasi-isomorphism of complexes Z(X ×S

Y, ·) → F (X,Y ). To be precise one should keep track of the dimensions of the cycle complex,
which we ignore now.

(2) If Z is another smooth variety, projective over S, there is a quasi-isomorphic subcomplex

ι : F (X,Y )⊗̂F (Y, Z) ↪→ F (X,Y )⊗ F (Y, Z) .

(3) There is another complex F (X, Y, Z) and a surjective quasi-isomorphism

σ : F (X,Y, Z)→ F (X,Y )⊗̂F (Y, Z) .

(4) There is a map of complexes φ : F (X, Y, Z)→ F (X,Z) .
In the derived category at least, one has an induced map F (X, Y ) ⊗ F (Y, Z) → F (X,Z) ob-
tained by composing ι−1, σ−1, and φ. This map plays the role of composition. One should note,
in contrast to the case S = Spec k, there is no composition map defined on F (X,Y )⊗̂F (Y, Z);
the composition φ is defined only on F (X,Y, Z).

The pattern persists for more than three varieties. For the formulation it is convenient to
change the notation as follows. In the above situation, write X1, X2 and X3 in place of X, Y, Z;
let

F (X1, X2, X3 ⌉⌈{2}) := F (X1, X2)⊗ F (X2, X3)

and
F (X1, X2, X3|{2}) := F (X1, X2)⊗̂F (X2, X3) .

Then the maps are of the form ι2 : F (X1, X2, X3 ⌉⌈{2}) ↪→ F (X1, X2, X3|{2}), σ2 : F (X1, X2, X3)→
F (X1, X2, X3 | {2}), and φ2 : F (X1, X2, X3)→ F (X1, X3).
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The generalization goes as follows.

(1) For each sequence of smooth varieties over S, X1, · · ·Xn (n ≥ 2), there corresponds a
complex F (X1, · · · , Xn). If n = 2 there is an injective quasi-isomorphism Z(X1 ×S X2, ·) →
F (X1, X2).

For a subset of integers S = {i1, · · · , ia−1} ⊂ (1, n), let i0 = 1, ia = n and

F (X1, · · · , Xn ⌉⌈S) := F (Xi0 , · · · , Xi1)⊗ F (Xi1 , · · · , Xi2)⊗ · · · ⊗ F (Xia−1 , · · · , Xia) .

There is a complex F (X1, · · · , Xn|S) and an injective quasi-isomorphism

ιS : F (X1, · · · , Xn|S) ↪→ F (X1, · · · , Xn ⌉⌈S) .

We assume F (X1, · · · , Xn|∅) = F (X1, · · · , Xn).
(2) For S ⊂ S ′ there is a surjective quasi-isomorphism

σS S′ : F (X1, · · · , Xn|S)→ F (X1, · · · , Xn|S ′) .

For S ⊂ S ′ ⊂ S ′′, σS S′′ = σS′ S′′σS S′ . In particular we have σS := σ∅S : F (X1, · · · , Xn) →
F (X1, · · · , Xn|S).

(3) For K = {k1, · · · , kb} ⊂ (1, n) disjoint from S, a map

φK : F (X1, · · · , Xn|S)→ F (X1, · · · , X̂k1 , · · · , X̂kb , · · · , Xn|S) .

If K is the disjoint union of K ′ and K ′′, one has φK = φK′φK′′ .
(4) If K and S ′ are disjoint σS S′ and φK commute.

Indeed there is a more precise description. Each complex F (X1, · · · , Xn) is a degreewise free
Z-module on a given set of generators. In the situation of (1), for a set of generators

αk ∈ F (Xik−1
, · · · , Xik) k = 1, · · · , a− 1 ,

there is a condition whether the set is properly intersecting. The F (X1, · · · , Xn|S) is the
subcomplex generated by α1 ⊗ · · · ⊗ αa−1 for properly intersecting tuples α1, · · · , αa−1. In
particular it is a multiple subcomplex of F (X1, · · · , Xn ⌉⌈S). For the full details and additional
properties see §2.

The description of F (X1, · · · , Xn ⌉⌈S) in terms of properly intersecting sets may seem ex-
cess baggage. In order to describe variants of such subcomplexes, however, it is necessary
to utilize the notion of properly intersecting sets. To illustrate this by a simple example, let
n < m and given a sequence of varieties X1, · · · , Xm, a subset S ⊂ (1, n), and an element
f ∈ F (Xn, · · · , Xm). The subcomplex of F (X1, · · · , Xn|S) generated by α1 ⊗ · · · ⊗ αa−1 such
that {α1, · · · , αa−1, f} is properly intersecting is a quasi-isomorphic subcomplex. This subcom-
plex is denoted [F (X1, · · · , Xn|S)]f and called the distinguished subcomplex with respect to
the constraint f . The full argument on variations of such subcomplexes can be found in §3.

In §1 and 2, we define the complexes F (X1, · · · , Xn) as above for a sequence of smooth
quasi-projective varieties X1, · · · , Xn, each equipped with a projective map to a base variety
S. We now explain the ideas for the construction in case n ≤ 3.

In §1, given a smooth variety M and a finite ordered open covering U of an open set
U ⊂ M , we define a complex Z(M,U) which is quasi-isomorphic to the cycle complex Z(A, ·)
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of A = M − U . If U = {U}, the covering consisting of U only, Z(M,U) is the cone of the
restriction map Z(M)→ Z(U), shifted by −1. In general one replaces Z(U) by Z(U), the Čech
complex with respect to the covering.

Assume M ′ is another smooth variety, U′ a finite ordered open covering of U ′ ⊂M ′; assume
also there are smooth maps q : M → Y and q′ : M ′ → Y . Let M ×Y M ′ be the fiber
product and p : M ×Y M ′ → M , p′ : M ×Y M ′ → M ′ be the projections. One has a covering
p−1U⨿ p′−1

U′ of the open set p−1U ∪ p′−1U ′ of M ×Y M ′. For u ∈ Z(M,U) and v ∈ Z(M ′,U′)
one has the pull-backs p∗u ∈ Z(M ×Y M ′, p−1U) and p′∗v ∈ Z(M ×Y M ′, p′−1

U′), and if they
meet properly, their product is defined as an element of Z(M ×Y M ′, p−1U ⨿ p′−1

U′). The
subcomplex Z(M,U)⊗̂Z(M ′,U′) ⊂ Z(M,U) ⊗ Z(M ′,U′) generated by such u ⊗ v is shown to
be a quasi-isomorphic subcomplex, and the product gives a map of complexes

ρ : Z(M,U)⊗̂Z(M ′,U′)→ Z(M ×Y M ′, p−1U⨿ p′
−1
U′) .

If p : M → N is a projective map, V a covering of an open set of V ⊂ N , then p−1V is an
open covering of p−1V ⊂M , and there is the projection map p∗ : Z(M, p−1V)→ Z(N,V).

If we apply this to A = X ×S Y ⊂ M = X × Y and the covering consisting only of
U12 := M−A, one obtains a complex Z(X×Y, {U12}). If we set F (X, Y ) to be this complex our
problem is partially solved. If Z is another variety over S, one has F (Y, Z) = Z(Y × Z, {U23})
with U23 = Y × Z − Y ×S Z, and there is the product map

ρ : Z(X × Y, {U12})⊗̂Z(Y × Z, {U23})→ Z(X × Y × Z, {p−1
12 (U12), p

−1
23 (U23)} ) .

The problem remains, since from the target of ρ there is no projection p13 ∗ to the cycle complex
Z(X × Z, {U13}) where U13 = X × Z −X ×S Z.

One notices here that there is a restriction map

r : Z(X × Y × Z, {U123})→ Z(X × Y × Z, {p−1
12 (U12), p

−1
23 (U23)} ) ,

where U123 = X×Y ×Z−X×SY ×SZ, since U123 contains both p−1
12 (U12) and p−1

23 (U23). The map
r is a quasi-isomorphism, since both complexes are quasi-isomorphic to Z(X×SY ×SZ). Assume
for simplicity Y is projective. One then defines the projection along p13 as the composition

p13 ∗ : Z(X × Y × Z, {U123})→ Z(X × Y × Z, {p−1
13 U13}})→ Z(X × Z, {U13}) .

Here the first map is the restriction, which is defined since U123 ⊃ p−1
13 U13, and the second map

is the projection along p13. Consider now the double complex

Z(X × Y, {U12})⊗̂Z(Y × Z, {U23})yρ

Z(X × Y × Z, {U123})
r−−−→ Z(X × Y × Z, {p−1

12 (U12), p
−1
23 (U23)})

where the upper right corner and lower left corner are placed in degree 0, and let F (X,Y, Z)
be the total complex. In other words it is the cone of r + ρ shifted by −1. The required
properties are satisfied with this. The map σ : F (X,Y, Z) → F (X,Y )⊗̂F (Y, Z) is given by
the projection to Z(X × Y, {U12})⊗̂Z(Y × Z, {U23}), the map φ : F (X,Y, Z) → F (X,Z) is
obtained by composing the projection to Z(X × Y × Z, {U123}) with the map p13 ∗.

The construction of the complexes F (X1, · · · , Xn) for n ≥ 3 and the maps σ, φ consists
of a systematic generalization of the above. In §1 we discuss the properties of the complexes
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Z(M,U) and their tensor products. In §2 we construct the complexes F (X1, · · · , Xn|S) and
the maps ι, σ, and φ. The construction uses a variant of the so-called bar complex. Since this
construction appears again in a different context in Part II, we give an axiomatic description.

In §4 we construct the diagonal cycles which play the role of the identity. Let ∆X ∈
Z(X×S X, 0) be the element given by the diagonal X ⊂ X×S X. Its image under the inclusion
to F (X,X) is also denoted ∆X ; it has degree 0 and boundary zero. One can construct, for

n ≥ 2, an element ∆X(1, · · · , n) ∈ F (

n︷ ︸︸ ︷
X, · · · , X) of degree 0 with boundary zero, satisfying the

properties below. For the statement we introduce some notation. When X is understood, for

any subset I = {j1, · · · , jm} ⊂ [1, n] set F (I) = F (

m︷ ︸︸ ︷
X, · · · , X) and ∆X(I) = ∆X(j1, · · · , jm) ∈

F (I). For S ⊂ (1, n) let τS : F (X1, · · · , Xn) → F (X1, · · · , Xn ⌉⌈S) be the composition of σS

and ιS.

(1) One has ∆X(1, 2) = ∆X ∈ F (X,X).
(2) If S = {i1, · · · , ia−1} ⊂ (1, n), and I1, · · · , Ia−1 the corresponding segmentation, one has

τS(∆X(1, · · · , n) ) = ∆(I1)⊗ · · · ⊗∆(Ia−1)

in F (X, · · · , X ⌉⌈S) = F (I1)⊗ · · · ⊗ F (Ia−1).
(3) For K ⊂ (1, n), φK(∆(1, · · · , n) ) = ∆([1, n]−K).

We then show the existence of “diagonal extensions”. To explain it in the simplest case, let
n < m, and assume given a sequence of varieties Xi on [1, n]. Setting Xi = Xn for i ∈ [n,m]
we extend the sequence to [1,m]. On [n,m] one has a constant sequence, so there is the
diagonal cycle ∆([n,m]) ∈ F ([n,m]) = F (Xn, · · · , Xn). Recall the map τn : F (X1, · · · , Xm)→
F (X1, · · · , Xn)⊗ F ([n,m]). There is then a map of complexes called the diagonal extension

diag : F (X1, · · · , Xn)→ F (X1, · · · , Xm)

such that τn diag : F (X1, · · · , Xn) → F (X1, · · · , Xn) ⊗ F ([n,m]) coincides with u 7→ u ⊗
∆([n,m]). In other words, diag(u) is a canonical lifting of u ⊗∆([n,m]) with respect to τn.
The map diag is also compatible with the maps φ.

The constructions and results in Part I show that the classes of smooth varieties over S, the
complexes F (X1, · · · , Xn) and the maps σ, φ form a quasi DG category. To be more specific,
a symbol over S is a formal finite sum

⊕
α(Xα/S, rα) where Xα is a smooth variety over S and

rα ∈ Z. To a finite sequence of symbols K1, · · · , Kn (n ≥ 2) and a subset S ⊂ (1, n) one can
associate a complex of abelian groups F (K1, · · · , Kn|S); if Ki = (Xi, ri), then F (K1, · · · , Kn) is
the complex F (X1, · · · , Xn|S), the integers ri specifying the dimensions of the cycle complexes
involved. One has maps σS S′ and φK for F (K1, · · · , Kn|S) as well. The class of symbols over S,
the complexes F (K1, · · · , Kn|S), the maps σS S′ , φK , along with additional structure – gener-
ating set for the complex, notion of properly intersecting elements, distinguished subcomplexes
with respect to constraints, diagonal cycles and diagonal extension – constitute a quasi DG
category.

In the sequel of this paper we introduce the notion of quasi DG category, which is a gen-
eralization of DG category. A quasi DG category consists of a class of objects, complexes
F (X1, · · · , Xn|S) for a sequence of objects, maps σS S′ , φK and additional structure that are
subject to a set of axioms. The axioms is an abstraction of the properties verified for the
relative cycle complexes.
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In the section titled “Basic notions” we have collected materials needed throughout the
paper.

Contents.

§0. Basic notions.
§1. The Čech cycle complexes Z(M,U).
§2. Function complexes F (X1, · · · , Xn).
§3. Distinguished subcomplexes with respect to a constraint.
§4. The diagonal cycle and the diagonal extension.

0 Basic notions

(0.1) The cycle complex. In this paper k is an arbitrary ground field, and one considers sepa-
rated schemes of finite type (we will simply say schemes) over k. A variety is a reduced, possibly
reducible scheme over k.

The references for the cycle complex are [1], [2], [3]. We briefly recall some definitions and
results that will be needed in this paper.

Let □1 = P1
k−{1} and □n = (□1)n with coordinates (x1, · · · , xn). Faces of □n are intersec-

tions of codimension one faces, and the latter are divisors of the form □n−1
i,a = {xi = a} where

a = 0 or ∞. A face of dimension m is canonically isomorphic to □m.
Let X be an equi-dimensional variety (or a scheme). Let Zr(X × □n) be the free abelian

group on the set of codimension r irreducible subvarieties of X × □n meeting each X × face
properly. An element of Zr(X×□n) is called an admissible cycle. The inclusions of codimension
one faces δi,a : □n−1

i,a ↪→ □n induce the map

∂ =
∑

(−1)i(δ∗i,0 − δ∗i,∞) : Zr(X ×□n)→ Zr(X ×□n−1) .

One has ∂ ◦ ∂ = 0. Let πi : X × □n → X × □n−1, i = 1, · · · , n be the projections, and
π∗
i : Zr(X×□n−1)→ Zr(X×□n) be the pull-backs. Let Zr(X,n) be the quotient of Zr(X×□n)

by the sum of the images of π∗
i . Thus an element of Zr(X,n) is a represented uniquely by a

cycle whose irreducible components are non-degenerate (not a pull-back by πi). The map ∂
induces a map ∂ : Zr(X,n)→ Zr(X,n− 1), and ∂ ◦ ∂ = 0. The complex Zr(X, ·) thus defined
is the cycle complex of X in codimension r. The higher Chow groups are the homology groups
of this complex:

CHr(X,n) = HnZ
r(X, ·) .

Note CHr(X, 0) = CHr(X), the Chow group of X. In this paper we would rather use the
indexing by dimensions: for s ∈ Z, Zs(X, ·) = ZdimX−r(X, ·), and CHs(X,n) is the homology
group.

If X is a quasi-projective variety and U is an open set, letting Z = X−U , one has an exact
sequence of complexes 0 → Zs(Z, ·) → Zs(X, ·) → Zs(U, ·). The localization theorem [2]says
that the induced map Zs(X, ·)/Zs(Z, ·)→ Zs(U, ·) is a quasi-isomorphism (indeed a homotopy
equivalence).

A proper map f : X → Y gives rise to a map of complexes f∗ : Zs(X, ·) → Zs(Y, ·). A flat
map f : X → Y of dimension d induces a map of complexes f ∗ : Zs(Y, ·) → Zs+d(X, ·). There
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is also a partially defined pull-back map f ∗ associated with a map f : X → Y , if Y is smooth.
See [3].

There is a result called the “easy moving lemma” in [3]; a generalization of this lemma will
be discussed in §1.

(0.2) Multiple complexes. By a complex of abelian groups we mean a graded abelian group
A• with a map d of degree one satisfying dd = 0. If u : A → B and v : B → C are maps of
complexes, we define u ·v : A→ C by (u ·v)(x) = v(u(x)). So u ·v is v ◦u in the usual notation.
As usual we also write vu for v ◦ u (but not for v · u).

A double complex A = (Ai,j; d′, d′′) is a bi-graded abelian group with differentials d′ of
degree (1, 0), d′′ of degree (0, 1), satisfying d′d′′ + d′′d′ = 0. Its total complex Tot(A) is the
complex with Tot(A)k =

⊕
i+j=k A

i,j and the differential d = d′ + d′′. In contrast a “double”

complex A = (Ai,j; d′, d′′) is a bi-graded abelian group with differentials d′ of degree (1, 0), d′′ of
degree (0, 1), satisfying d′d′′ = d′′d′. Its total complex Tot(A) is given by Tot(A)k =

⊕
i+j=k A

i,j

and the differential d = d′ + (−1)id′′ on Ai,j.
Let (A, dA) and (B, dB) be complexes. Then (Ai,j = Aj ⊗ Bi; 1⊗ dB, dA ⊗ 1) is a “double”

complex; notice the first grading comes from the grading of B. Its total complex has differential
d given by

d(x⊗ y) = (−1)deg ydx⊗ y + x⊗ dy .

Note this differs from the usual convention.
More generally n ≥ 2 one has the notion of n-tuple complex and “n-tuple” complex. An

n-tuple (resp. “n-tuple”) complex is a Zn-graded abelian group Ai1,··· ,in with differentials
d1, · · · , dn, dk raising ik by 1, such that for k ̸= ℓ, dkdℓ + dℓdk = 0 (resp. dkdℓ = dℓdk).
A single complex Tot(A), called the total complex, is defined in either case. As a variant one
can define partial totalization: For a subset S = [k, ℓ] ⊂ [1, n] with cardinality ≥ 2, one can
“totalize” in degrees in S, so the result TotS(A) is an m-tuple (resp. “m-tuple”) complex,
where m = n− |S|+ 1.

For n complexes A•
1, · · · , A•

n, the tensor product A•
1 ⊗ · · · ⊗ A•

n is an “n-tuple” complex.
The difference between n-tuple and “n-tuple” complexes is slight, so we often do not make

the distinction. There is an obvious notion of maps of n-tuple (“n-tuple”) complexes.
If A is an n-tuple complex and B an m-tuple complex, and when S = [k, ℓ] ⊂ [1, n] with

m = n− |S|+ 1 is specified, one can talk of maps of m-tuple complexes TotS(A)→ B. When
the choice of S is obvious from the context, we just say maps of multiple complexes A→ B. For
example if A is an n-tuple complex and B an (n− 1)-tuple complex, for each set S = [k, k+1]
in [1, n] one can speak of maps of (n − 1)-tuple complexes TotS(A) → B; if n = 2 there is no
ambiguity.

(0.2.1) Multiple subcomplexes of a tensor product complex. Let A and B be complexes.
A double subcomplex Ci,j ⊂ Ai ⊗ Bj is a submodule closed under the two differentials. If
Tot(C) ↪→ Tot(A ⊗ B) is a quasi-isomorphism, we say C• • is a quasi-isomorphic subcomplex.
It is convenient to let A•⊗̂B• denote such a subcomplex. (Note it does not mean the tensor
product of subcomplexes of A and B.) Likewise a quasi-isomorphic multiple subcomplex of
A•

1 ⊗ · · · ⊗ A•
n is denoted A•

1⊗̂ · · · ⊗̂A•
n.

(0.3) Tensor product of “double” complexes. Let A•,• = (Aa,p; d′A, d
′′
A) be a “double” complex

(so d′ has degree (1, 0), d′′ has degree (0, 1), and d′d′ = 0, d′′d′′ = 0 and d′d′′ = d′′d′). The
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associated total complex Tot(A) has differential dA given by dA = d′ + (−1)ad′′ on Aa,p. The
association A 7→ Tot(A) forms a functor. Let (Bb,q; d′B, d

′′
B) be another “double” complex. Then

the tensor product of A and B as “double” complexes, denoted A•,•×B•,•, is by definition the
“double” complex (Ec,r; d′E, d

′′
E), where

Ec,r =
⊕

a+b=c ,p+q=r

Aa,p ⊗Bb,q

and d′E = (−1)bd′A ⊗ 1 + 1⊗ d′B, d
′′
E = (−1)qd′′A ⊗ 1 + 1⊗ d′′B.

The tensor product complex Tot(A) ⊗ Tot(B) and the total complex of A•,• × B•,• are
related as follows. There is an isomorphism of complexes

u : Tot(A)⊗ Tot(B)→ Tot(A•,• ×B•,•)

given by u = (−1)aq · id on the summand Aa,p ⊗Bb,q.
Let A, B, C be “double” complexes. One has an obvious isomorphism of “double” complexes

(A×B)× C = A× (B × C); it is denoted A×B × C. The following diagram commutes:

Tot(A)⊗ Tot(B)⊗ Tot(C)
u⊗1−−−→ Tot(A×B)⊗ Tot(C)y1⊗u

yu

Tot(A)⊗ Tot(B × C)
u−−−→ Tot(A×B × C) .

The composition defines an isomorphism u : Tot(A)⊗ Tot(B)⊗ Tot(C)
∼→ Tot(A×B × C).

One can generalize this to the case of tensor product of more than two “double” complexes.
If A1, · · · , An are “double” complexes, there is an isomorphism of complexes

un : Tot(A1)⊗ · · · ⊗ Tot(An)→ Tot(A1 × · · · × An)

which coincides with the above u if n = 2, and is in general a composition of u’s in any order.
As in case n = 3, one has commutative diagrams involving u’s; we leave the details to the
reader.

Let A, B, C be “double” complexes and ρ : A•,• × B•,• → C•,• be a map of “double”
complexes, namely it is bilinear and for α ∈ Aa,p and β ∈ Bb,q,

d′ρ(α⊗ β) = ρ((−1)bd′α⊗ β + α⊗ d′β)

and
d′′ρ(α⊗ β) = ρ((−1)qd′′α⊗ β + α⊗ d′′β) .

Composing Tot(ρ) : Tot(A × B) → Tot(C) with u : Tot(A) ⊗ Tot(B)
∼→ Tot(A × B), one

obtains the map
ρ̂ : Tot(A)⊗ Tot(B)→ Tot(C) ;

it is given given by (−1)aq · ρ on the summand Aa,p ⊗Bb,q.
The same holds for a map of “double” complexes ρ : A1 × · · · × An → C.

(0.4) The bar complex (§2). Let (A, dA) be a differential graded algebra, namely a complex of
abelian groups with associative multiplication, satisfying d(α · β) = (−1)deg β(dα) · β +α · (dβ).
(Usually one considers a differential graded algebra with augmentation, and take A to be its
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augmentation ideal.) The bar complex B(A) is, as an abelian group, the tensor algebra (over
Z) T (A) =

⊕
c≥0A

⊗c.
Give a grading by

deg(α1 ⊗ · · · ⊗ αc) =
∑

(degαi − 1)

and give a pair of differentials by (put ϵj = deg(αj)− 1 )

d̄(α1 ⊗ · · · ⊗ αc) = −
∑

(−1)
∑

j>i ϵj α1 ⊗ · · · ⊗ αi−1 ⊗ dA(αi)⊗ · · · ⊗ αc ,

ρ̄(α1 ⊗ · · · ⊗ αc) =
∑

(−1)
∑

j≥i ϵj α1 ⊗ · · · ⊗ αi−2 ⊗ (αi−1 · αi)⊗ · · · ⊗ αc .

Since d̄d̄ = 0, ρ̄ρ̄ = 0 and d̄ρ̄ + ρ̄d̄ = 0 as can be verified, dB(A) = d̄ + ρ̄ is a differential. The
bar complex is the complex with the grading and the differential dB(A). There is a filtration by
subcomplexes of B(A) so that the successive quotients are

A[1]⊗ · · · ⊗ A[1] (c times )

as complexes.

(0.5) Finite ordered sets, partitions and segmentations. Let I be a non-empty finite totally
ordered set (we will simply say a finite ordered set), so I = {i1, · · · , in}, i1 < · · · < in, where
n = |I|. The initial (resp. terminal) element of I is i1 (resp. in); let in(I) = i1, tm(I) = in. If

n ≥ 2, let
◦
I = I − {in(I), tm(I)}.

If I = {i1, · · · , in}, a subset I ′ of the form [ia, ib] = {ia, · · · , ib} is called a sub-interval.
In the main body of the paper, for the sake of concreteness we often assume I = [1, n] =

{1, · · · , n}, a subset of Z. More generally a finite subset of Z is an example of a finite ordered
set.

A partition of I is a disjoint decomposition into sub-intervals I1, · · · , Ia such that there is a
sequence of integers i < i1 < · · · < ia−1 < j so that Ik = [ik−1, ik−1], with i0 = i and ia = j+1.

So far we have assumed I and Ii to be of cardinality ≥ 1. In some contexts we allow
only finite ordered sets with at least two elements. There instead of partition the following

notion plays a role. Given a subset of
◦
I , Σ = {i1, · · · , ia−1}, where i1 < i2 < · · · < ia−1, one

has a decomposition of I into the sub-intervals I1, · · · , Ia, where Ik = [ik−1, ik], with i0 = i1,
ia = in. Thus the sub-intervals satisfy Ik ∩ Ik+1 = {ik} for k = 1, · · · , a − 1. The sequence of
sub-intervals I1, · · · , Ia is called the segmentation of I corresponding to Σ. (The terminology
is adopted to distinguish it from the partition).

Finite ordered sets of cardinality ≥ 1 and partitions appear in connection with a sequence
of fiberings. On the other hand, finite ordered sets of cardinality ≥ 2 and segmentations appear
when we consider a sequence of varieties (or an associated sequence of fiberings). See below.

(0.6) Sequence of fiberings (§1). Let n ≥ 2. A sequence of fiberings consists of smooth varieties
Mi (1 ≤ i ≤ n) and Yi (1 ≤ i ≤ n − 1), together with smooth maps Mi → Yi and Mi+1 → Yi.
For a sub-interval I = [j, k] ⊂ [1, n] of cardinality ≥ 1, one defines MI to be the fiber product
Mj ×Yj

Mj+1 × · · · ×Yk−1
Mk. If I1, · · · , Ic is a partition of [1, n], then one has smooth varieties

MI1 , · · · ,MIc , which form a sequence of smooth varieties over appropriate Y ’s.

(0.7)Sequence of varieties (§2). Let n ≥ 2. A sequence of smooth varieties over S is a set of
smooth varieties Xi indexed by i ∈ [1, n], where each Xi is equipped with a projective map to
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S. For a sub-interval I = [j, k] of cardinality ≥ 2, let XI be the direct product
∏

i∈I Xi. Given
an segmentation I1, · · · , Ic corresponding to Σ = {ik}, the varieties XIt and the projections to
Xik form a sequence of fiberings.

(0.8)The class of symbols over S. Let S be a quasi-projective variety. Let (Smooth/k ,Proj/S)
be the category of smooth varieties X equipped with projective maps to S. A symbol over S is
an object the form ⊕

α∈A
(Xα/S, rα)

where Xα is a collection of objects in (Smooth/k ,Proj/S) indexed by a finite set A, and rα ∈ Z.
The class of objects over S is denoted Symb(S).

1 The Čech cycle complexes Z(M,U)

Let k be a fixed ground field. By a smooth variety over k we mean a smooth quasi-projective
equi-dimensional variety over k.

(1.1) I-coverings. Let M be a smooth variety over k, A ⊂ M a closed set, and U := M − A.
Let I be a finite ordered set. An open covering of U indexed by I (or just an I-covering of U)
is a set of open sets U = {Ui}i∈I , with ∪iUi = U . It is also denoted by (I,U).

If V ⊂M is another open set, J is another finite ordered set and V = {Vj}j∈J a J-covering
of V , a map of coverings (I,U) → (J,V), or just U → V for short, is an order preserving map
λ : J → I such that Uλ(j) ⊃ Vj for j ∈ J . One then has V ⊂ U . We thus have the category of
I-coverings of open sets of M , for varying I; it is denoted by Cov(O(M)). The subcategory of
I-coverings of a given U ⊂M is denoted Cov(U ⊂M), or just Cov(U).

If U is an I-covering of U and λ : J → I is an order preserving map, define λ∗U to be
the J-covering of U ′ = ∪jUλ(j) given by j 7→ Uλ(j). There is a natural map of coverings
λ∗ : (I,U) → (J, λ∗U). For composition of maps λ, λ∗U is contravariant functorial. A map of
coverings λ : (I,U)→ (J,V) factors as (I,U)

λ∗
−−−→(J, λ∗U)→ (J,V).

If U is an I-covering of U and U′ an I ′-covering of U ′ then one has an I ⨿ I ′-covering U⨿U′

of U ∪ U ′. Here I ⨿ I ′ is ordered so that i < i′ for i ∈ I and i′ ∈ I ′.
For the rest of this section, without so mentioning an indexing set I is always finite ordered,

and a map between them is always order preserving.
The notion of coverings and maps can be defined for I unordered or infinite. For our

purposes we restrict to finite ordered indexing sets.

(1.2) The complex Z(M,U). For a variety X let Zs(X, ·) denote the cubical cycle complex as
in [3]; an element of the complex is uniquely represented by an admissible cycle on X × □n,
whose components are non-degenerate. We have the cycle complex Zs(U, ·), s ∈ Z for an open
set U ⊂ M . We will abbreviate it to Zs(U), or Z(U). From now we often drop the dimension
s from the notation, as long as there is no confusion.

For an I-covering U of U , we define a complex denoted Z(M,U) to be the total complex
associated to the double complex A•,• defined as follows. Let

Aa,0 = Z(M,−a) ,
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and for p ≥ 0,
Aa,p+1 =

⊕
i0<···<ip

Z(Ui0,··· ,ip ,−a)

where Ui0,··· ,ip = Ui0 ∩ · · · ∩Uip . It is convenient to set U∅ = M , and when p = −1, we interpret
(i0, · · · , ip) = ∅, so α = (α∅) ∈ Z(M). With this convention, the differential δ of degree (0, 1)
is given by sending α ∈

⊕
Z(Ui0,··· ,ip) to

δ(α)i0,··· ,ip+1 =
∑

(−1)p−r+1 αi0,··· ,îr,··· ,ip+1
|Ui0,··· ,ip+1 .

(The sign differs from the usual sign convention of Čech complexes. ) The differential ∂ of
degree (1, 0) is the boundary map of each cycle complex. The differential of the total complex
is d = ∂ + (−1)aδ on Aa,p.

Zs(M,U) =
[
Z(M)

δ−−−→
⊕

Z(Ui0)
δ−−−→

⊕
i0<i1

Z(Ui0 i1)→ · · · →
⊕

i0<···<ip

Z(Ui0,··· ,ip)→ · · · ] .

Note the natural map
ι : Zs(A)→ Zs(M,U)

is a quasi-isomorphism. This follows from the localization theorem for the cycle complex [2].
If (J,V) covers V , and λ : (I,U) → (J,V) a map of coverings, there is the induced map of

complexes
Z(M,λ) : Z(M,U)→ Z(M,V) ;

thus we have a functor Z(M,−) from the category Cov(O(M)) to C(Ab). The following square
commutes:

Z(M,U)
Z(M,λ)−−−→ Z(M,V)x x

Z(A) −−−→ Z(B) .

Here B = M − V , and the bottom is the map induced by inclusion.
As special cases of Z(M,λ), we have restriction maps and pull-backs (in general, a map

Z(M,λ) between cycle complexes is a composition of restriction and pull-back).
If I = J and U, V are coverings such that Vi ⊂ Ui, there is the restriction map

Z(M,U)→ Z(M,V) .

If λ : J → I is a map and V = λ∗U, then λ∗ : (I,U) → (J, λ∗U) induces a map (called
pull-back)

λ∗ : Z(M,U)→ Z(M,λ∗U) .

(1.3) Push-forward and pull-back. If p : M → N is a projective map, B ⊂ N a closed set
with complement V such that p−1V = U and V ∈ Cov(V ⊂ N), then p−1V ∈ Cov(U ⊂ M)
is defined in the obvious manner, and push-forward on cycle complexes induces a map (also
called the push-forward)

p∗ : Zs(M, p−1V)→ Zs(N,V) .

It is compatible with p∗ : Zs(A)→ Zs(B) via the maps ι.
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The push-forward is covariant functorial in p. It commutes with the maps of functoriality
for coverings: For a map λ : (I,U) → (J,V) of coverings in Cov(O(N)), one has the induced
map of coverings λ : (I, p−1U)→ (J, p−1V) in Cov(O(M)), and the following square commutes:

Z(M, p−1U)
Z(M,λ)−−−→ Z(M, p−1V)yp∗ yp∗

Z(N,U)
Z(N,λ)−−−→ Z(N,V) .

Let p : M → N be a smooth map of relative dimension d. For V ∈ Cov(V ⊂ N), the
pull-back map

p∗ : Zs(N,V)→ Zs+d(M, p−1V)

is defined. It is compatible with the pull-back map

p∗ : Zs(B)→ Zs+d(p
−1B)

(B is the complement of V ) via the maps ι. The pull-back is contravariant functorial in p. It
commutes with functoriality maps for coverings V.

(1.4) Restricted tensor product and the product map. Let M , M ′ and Y be smooth varieties
and q : M → Y , q′ : M ′ → Y be smooth maps of varieties. Let M ⋄M ′ := M ×Y M ′ and
p : M ⋄M ′ →M , p′ : M ⋄M ′ →M ′ be the projections.

M M ′

Y

M ⋄M ′

Let a, b ∈ Z, and c = a+ b− dimY . We define a subcomplex

Za(M)⊗̂Zb(M
′) ⊂ Za(M)⊗ Zb(M

′)

as follows. An element α⊗β ∈ Za(M)⊗̂Zb(M
′) (α and β are assumed to be irreducible) is in the

subcomplex iff p∗α and p′∗β meet properly in M ⋄M ′, and the product p∗α ·p′∗β ∈ Zc(M ⋄M ′).
We define

α ◦Y β = α ◦ β := p∗α · p′∗β .

(We say briefly that the condition is that α ◦ β ∈ Z(M ⋄M ′) be defined.)
Then the following conditions are satisfied; (i) is non-trivial and proved later in this section,

and the rest are immediate from the definitions.

(i) The inclusion of the subcomplex is a quasi-isomorphism.
(ii) There is a map of complexes

ρY = ρ : Za(M)⊗̂Zb(M
′)→ Zc(M ⋄M ′)
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which sends α⊗ β to α ◦Y β.
(iii) If π : N →M is a smooth map of dimension d, the pull-back π∗⊗id : Za(M)⊗Zb(M

′)→
Za+d(N)⊗Zb(M

′) takes the subcomplex Za(M)⊗̂Zb(M
′) into Za+d(N)⊗̂Zb(M

′). We thus have
the induced map

π∗ ⊗ id : Za(M)⊗̂Zb(M
′)→ Za+d(N)⊗̂Zb(M

′) .

Similar property holds for pull-backs in M ′. This applies in particular to open immersions into
M or M ′.

If π : M → N is a projective map, the push-forward π∗ ⊗ id : Za(M)⊗ Zb(M
′)→ Za(N)⊗

Zb(M
′) takes the subcomplex Za(M)⊗̂Zb(M

′) into Za(N)⊗̂Zb(M
′):

π∗ ⊗ id : Za(M)⊗̂Zb(M
′)→ Za(N)⊗̂Zb(M

′) .

Similar property holds for push-forward in M ′.

To state the next level of generalization, let M1 → Y1 ← M2 → Y2 ← M3 be a sequence
of smooth varieties and smooth maps. We have Mi ⋄ Mi+1 = Mi ×Yi

Mi+1 as before, and
M1 ⋄M2 ⋄M3 = M1 ×Y1 M2 ×Y2 M3. Note M1 ⋄M2 ⋄M3 = (M1 ⋄M2) ⋄M3 = M1 ⋄ (M2 ⋄M3).
Let pi : M1 ⋄M2 ⋄M3 →Mi be the projection.

M1 M2

Y1

M1 ⋄M2

Y2

M2 ⋄M3

M3

M1 ⋄M2 ⋄M3

Define a subcomplex

Z(M1)⊗̂Z(M2)⊗̂Z(M3) ⊂ Z(M1)⊗ Z(M2)⊗ Z(M3)

as follows. (In what follows we will not specify the dimensions ai for Zai(Mi).) An element
α1 ⊗ α2 ⊗ α3 ∈ Z(M1)⊗ Z(M2)⊗ Z(M3) (αi are assumed irreducible) is in the subcomplex iff
the following conditions (i)-(iii) are satisfied:

(i) p∗1α1 and p∗2α2 meet properly in M1 ⋄M2 ⋄M3, and p∗1α1 · p∗2α2 ∈ Z(M1 ⋄M2 ⋄M3). (This
is equivalent to an analogous condition for the pull-backs of α1 and α2 to M1 ⋄M2.)

(ii) p∗2α2 and p∗3α3 meet properly in M1 ⋄M2 ⋄M3, and p∗2α2 · p∗3α3 ∈ Z(M1 ⋄M2 ⋄M3).
(iii) p∗1α1 · p∗2α2 and p∗3α3 meet properly in M1 ⋄M2 ⋄M3, and (p∗1α1 · p∗2α2) · p∗3α3 ∈ Z(M1 ⋄

M2 ⋄M3).
Similarly p∗1α1 and p∗2α2 · p∗3α3 and meet properly in M1 ⋄M2 ⋄M3, and p∗1α1 · (p∗2α2 · p∗3α3) ∈

Z(M1 ⋄M2 ⋄M3). Note then the two triple intersections coincide.

By (iii) one can define

α1 ◦
Y1

α2 ◦
Y2

α3 := p∗1α1 · p∗2α2 · p∗3α3 ∈ Z(M1 ⋄M2 ⋄M3).
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By (i) and (iii), α1 ◦ α2 ∈ Z(M1 ⋄ M2) and (α1 ◦ α2, α3) ∈ Z(M1 ⋄ M2)⊗̂Z(M3). Similarly
α2 ◦ α3 ∈ Z(M2 ⋄M3) and (α1, α2 ◦ α3) ∈ Z(M1)⊗̂Z(M2 ⋄M3). Further,

α1 ◦ α2 ◦ α3 = (α1 ◦ α2) ◦ α3 = α1 ◦ (α2 ◦ α3) .

The following statements hold, the only non-trivial one being the first assertion in (i).

(i) The inclusion of the subcomplex is a quasi-isomorphism. There are also inclusions

Z(M1)⊗̂Z(M2)⊗̂Z(M3) ⊂ (Z(M1)⊗̂Z(M2))⊗ Z(M3)

and
Z(M1)⊗̂Z(M2)⊗̂Z(M3) ⊂ Z(M1)⊗ (Z(M2))⊗̂Z(M3)) .

(ii) There is a map of complexes

ρY1 : Z(M1)⊗̂Z(M2)⊗̂Z(M3)→ Z(M1 ⋄M2)⊗̂Z(M3)

which sends (α1, α2, α2) to (α1 ◦ α2, α3), a similar map

ρY2 : Z(M1)⊗̂Z(M2)⊗̂Z(M3)→ Z(M1)⊗̂Z(M2 ⋄M3) ,

and
ρY1Y2 : Z(M1)⊗̂Z(M2)⊗̂Z(M3)→ Z(M1 ⋄M2 ⋄M3)

which sends (α1, α2, α3) to α1 ◦ α2 ◦ α3. One has ρY1Y2 = ρY2ρY1 , where ρY2 is the product map
Z(M1 ⋄M2)⊗̂Z(M3)→ Z(M1 ⋄M2 ⋄M3). Similarly ρY1Y2 = ρY1ρY2 .

We may shorten the notation and write ρi for ρYi
and ρ12 for ρY1Y2 . We may alternatively

write ρ([1, 2], [3]) for ρY1 , ρ([1], [2, 3]) for ρY2 , and ρ([1, 3]) for ρY1Y2 . Here [j, k] denotes the set
of integers between j and k.

The inclusions and the product maps are compatible in the sense that the following square
commutes:

Z(M1)⊗̂Z(M2)⊗̂Z(M3)
ρY1−−−→ Z(M1 ⋄M2)⊗̂Z(M3)yincl

yincl

Z(M1)⊗̂Z(M2)⊗ Z(M3)
ρY1⊗1
−−−→ Z(M1 ⋄M2)⊗ Z(M3) .

Similarly for ρY2 .
(iii) If π : N1 →M1 is a smooth map of dimension d, the pull-back

π∗ ⊗ 1⊗ 1 : Z(M1)⊗ Z(M2)⊗ Z(M3)→ Z(N1)⊗ Z(M2)⊗ Z(M3)

takes the subcomplex Z(M1)⊗̂Z(M2)⊗̂Z(M3) into Z(N1)⊗̂Z(M2)⊗̂Z(M3). So the map π∗⊗1⊗
1 : Z(M1)⊗̂Z(M2)⊗̂Z(M3)→ Z(N1)⊗̂Z(M2)⊗̂Z(M3) is defined. Similar property in each Mi.

If π : M1 → N1 is a projective map, the push-forward

π∗ ⊗ 1⊗ 1 : Z(M1)⊗ Z(M2)⊗ Z(M3)→ Z(N1)⊗ Z(M2)⊗ Z(M3)

takes the Z(M1)⊗̂Z(M2)⊗̂Z(M3) into Z(N1)⊗̂Z(M2)⊗̂Z(M3). Similar property in each Mi.
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The general formulation, which involves n varieties, goes as follows. Let n ≥ 2, and assume
given smooth varieties Mi (1 ≤ i ≤ n) and Yi (1 ≤ i ≤ n− 1) with smooth maps Mi → Yi and
Mi+1 → Yi. (We call such data a sequence of fiberings indexed by [1, n].)

M1 M2

Y1 Y2

· · ·
Mn

Yn−1

For a sub-interval I = [j, k] ⊂ [1, n], let

MI = Mj ⋄Mj+1 ⋄ · · · ⋄Mk .

There are projection maps pi : MI →Mi for each i ∈ I. One can define a subcomplex

Z(M1)⊗̂ · · · ⊗̂Z(Mn) ⊂ Z(M1)⊗ · · · ⊗ Z(Mn)

so that properties analogous to (i)-(iii) above are satisfied. The details will be given later in
(1.6)-(1.9). Here we only note that the product map is of the following form.

Let I1, · · · , Ic be a partition of [1, n] into sub-intervals, see §0. The varieties MI1 , · · · ,MIc

form a sequence of fiberings. The product map is of the form

ρ(I1, · · · , Ic) : Z(M1)⊗̂ · · · ⊗̂Z(Mn)→ Z(MI1)⊗̂ · · · ⊗̂Z(MIc) ,

that sends (α1, · · · , αn) to (αI1 , · · · , αIc), where αIi = αj ◦ · · · ◦ αk if Ii = [j, k].

(1.5) Product map between Čech cycle complexes. Let M , M ′ and Y be as above. For open
subsets U ⊂ M and U ′ ⊂ M ′, let U ⋄ U ′ = U ×Y U ′ = p−1(U) ∩ p′−1(U ′) ⊂ M ⋄M ′. If A,A′

are complements of U , U ′, A ⋄ A′ := A×Y A′ is the complement of p−1(U) ∪ p′−1(U ′).
Given coverings U ∈ Cov(U ⊂ M) and V ∈ Cov(U ′ ⊂ M ′), one defines a quasi-isomorphic

subcomplex
Z(M,U)⊗̂Z(M ′,U′) ⊂ Z(M,U)⊗ Z(M ′,U′)

as the direct sum ⊕
Z(Ui0,··· ,ip)⊗̂Z(Vj0,··· ,jq) ⊂

⊕
Z(Ui0,··· ,ip)⊗ Z(Vj0,··· ,jq) .

Then one defines a map

ρY = ρ : Z(M,U)⊗̂Z(M ′,U′)→ Z(M ⋄M ′, p−1U⨿ p′
−1
U′)

which sends α⊗ α′ ∈ Z(M,U)⊗̂Z(M ′,U′) to α ◦Y α′ given by

(α ◦Y α′)i0···ipj0···jq = αi0···ip ◦Y α′
j0···iq .

Here α consists of components αi0···ip ∈ Z(Ui0,··· ,ip), where we interpret α∅ ∈ Z(M) if p =
−1. Recall Z(M,U) and Z(M ′,U′) are “double” complexes, so their tensor product may also
be viewed as a “double” complex. One verifies that ρY is a map of “double” complexes.
The induced map of simple complexes, which sends α ⊗ α′ ∈ Z(Ui0,··· ,ip , a)⊗̂Z(Vj0,··· ,jq , b) to
(−1)a(q+1)α ◦Y α′, will also be denoted ρY . (For the sign change, see (0.3) ).
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If λ : U → V and λ′ : U′ → V′ are maps of coverings of open sets of M , M ′, respectively,
there is an induced map of coverings p−1U ⨿ p′−1

U′ → p−1V ⨿ p′−1
V′, and one easily verifies

that the following diagram commutes, either as a diagram of “double” complexes or as one of
simple complexes.

Z(M,U)⊗̂Z(M ′,U′)
ρ−−−→ Z(M ⋄M ′, p−1U⨿ p′−1

U′)yλ⊗λ′

y
Z(M,V)⊗̂Z(M ′,V′)

ρ−−−→ Z(M ⋄M ′, p−1V⨿ p′−1
V′)

Since A ⋄ A′ is the complement of p−1U ∪ p′−1U ′, the above ρ gives rise to a map in the
derived category

ρY : Za(A)⊗ Zb(A
′)→ Za+b−dimY (A ⋄ A′)

which makes the following diagram commute:

Z(M,U)⊗ Z(M ′,U′) ←↩ Z(M,U)⊗̂Z(M ′,U′)
ρ−−−→ Z(M ⋄M ′, p−1U⨿ p′−1

U′)xι⊗ι

xι

Z(A)⊗ Z(A′)
ρ−−−→ Z(A ⋄ A′) .

All this can be generalized as follows. Let Mi (1 ≤ i ≤ n) and Yi (1 ≤ i ≤ n− 1) be smooth
varieties with smooth maps Mi → Yi and Mi+1 → Yi, as before. Let Ui ⊂Mi be open sets, and
Ai = Mi − Ui. For an interval I = [j, k], one has MI and the projections pi : MI → Mi. The
complement of the union of p−1

i Ui for i ∈ I is AI = Aj ⋄ · · · ⋄ Ak. If Ui ∈ Cov(Ui ⊂ Mi), then
one can define a quasi-isomorphic subcomplex

Z(M1,U1)⊗̂ · · · ⊗̂Z(Mn,Un) ⊂ Z(M1,U1)⊗ · · · ⊗ Z(Mn,Un) .

For a partition I1, · · · Ir of [1, n], let

UIa =
⨿
i∈Ia

p−1
i Ui ,

a covering of ∪i∈Ia (p
−1
i Ui) ⊂MIa . We have a map

ρ(I1, · · · , Ir) : Z(M1,U1)⊗̂ · · · ⊗̂Z(Mn,Un)→ Z(MI1 ,UI1)⊗̂ · · · ⊗̂Z(MIr ,UIr)

(put appropriate signs as in the case n = 2).
See (1.9) for a continuation of this subsection.

(1.6) Distinguished subcomplexes of cycle complexes. In [3]Bloch showed, for a smooth variety
X, the subcomplex of Z(X, ·) consisting of the cycles meeting a given set of subvarieties of X
properly is a quasi-isomorphic subcomplex. We discuss a generalization of this.

Let X be a smooth quasi-projective variety. A finite set {α1, · · · , αn} of irreducible subva-
rieties of X is properly intersecting if for any subset {i1, · · · , ir} of {1, · · · , n}, the intersection
αi1 ∩ · · · ∩αir is empty or has codimension equal to the sum of the codimensions of αik . A set
of cycles {α1, · · · , αn} is properly intersecting if for all irreducible components of αi’s the above
condition is satisfied. Then the intersection cycle αi1 ·αi2 · · · · ·αir is well-defined, independent
of the order of taking intersections.

16



Let X1, · · · , Xr, and T be a set of smooth quasi-projective varieties, and W = {Wλ} be
a finite set of admissible cycles of X1 × · · · × Xr × T × □ℓλ (admissible means meeting faces
properly). Let πi : X1 × · · · ×Xr × T → Xi be the projection. Let s1, · · · , sr be a sequence of
integers. We have the cycle complexes Zsi(Xi) and their tensor product Zs1(X1)⊗· · ·⊗Zsr(Xr).
From now we will usually drop the dimensions from the notation.

We define the subcomplex (called the distinguished subcomplex with respect to T and W )

[Z(X1)⊗ · · · ⊗ Z(Xr)]W ⊂ Z(X1)⊗ · · · ⊗ Z(Xr)

as the subgroup generated by elements

α1 ⊗ · · · ⊗ αr ∈ Z(X1, n1)⊗ · · · ⊗ Z(Xr, nr)

where αi are irreducible non-degenerate subvarieties satisfying the following condition:
(PI) For each λ, the set of cycles

{π∗
1α1, · · · , π∗

rαr,Wλ, faces }

is properly intersecting in X1 × · · · ×Xr × T ×□n1+···+nr ×□ℓλ . Here we employ the following
obvious abuse of notation:

• πi denotes also the projection X1 × · · · ×Xr × T ×□n1+···+nr ×□ℓλ → Xi ×□ni ;
• Wλ denotes its pull-back by the projection X1 × · · · × Xr × T × □n1+···+nr × □ℓλ →

X1 × · · · ×Xr × T ×□ℓλ ;
• a face is a closed set of the formX1×· · ·×Xr×T×F where F is a face of□n1+···+nr×□ℓλ .

By a distinguished subcomplex we mean the distinguished subcomplex with respect to some
T and W .

Theorem. The inclusion [Z(X1) ⊗ · · · ⊗ Z(Xr)]W ⊂ Z(X1) ⊗ · · · ⊗ Z(Xr) is a quasi-
isomorphism.

This is proved in case Xi are smooth projective in [6], Part II, generalizing [3].
The case Xi are smooth quasi-projective is similar. We sketch here an argument commu-

nicated to us by M. Levine. Assume r = 1, so we must show ZW (X) ↪→ Z(X) is a quasi-
isomorphism. Take a projective closure X̄ of X, let Z = X̄ − X, and consider the following
commutative diagram:

Z(Z) −−−→ Z(X̄) −−−→ Z(X)

∥
x x

Z(Z) −−−→ ZW (X̄) −−−→ ZW (X) .

By the localization theorem [2]we know the map Z(X̄)/Z(Z)→ Z(X) is a quasi-isomorphism.
The same proof shows ZW (X̄)/Z(Z) → ZW (X) is a quasi-isomorphism. The argument in
[3]shows ZW (X̄)→ Z(X̄) is a quasi-isomorphism; although X̄ is singular, the same proof works
since W is contained in the smooth locus of X̄. Hence one obtains the conclusion. We leave
the case r ≥ 2 to the reader.

Remarks. (1) The intersection of a finite number of distinguished subcomplexes is a dis-
tinguished subcomplex.
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(2) For simplicity the defining condition (PI) may be phrased as follows, dropping π∗ and
□n1+···+nr ×□ℓλ : The set {α1, · · · , αr,Wλ, faces } is properly intersecting in X1×· · ·×Xr×T .

(3) The condition (PI) is equivalent to: For each λ and each face F of □n1+···+nr ×□ℓλ , the
set of cycles {α1, · · · , αr,Wλ∩F } is properly intersecting in X1×· · ·×Xr×T . It follows from
the following lemma.

(4) All the distinguished subcomplexes in the sequel of this paper are of the type in Example
below.

Lemma. Let X be a smooth variety, α1, · · · , αn be cycles on X, and z1, · · · , zm be properly
intersecting cycles on X. Then the following are equivalent:

(i) {α1, · · · , αn, z1, · · · , zm} is properly intersecting in X.
(ii) For each intersection zj1 ∩ · · · ∩ zjp, where 1 ≤ j1 < j2 < · · · < jp ≤ m, the set

{α1, · · · , αn, zj1 ∩ · · · ∩ zjp}

is properly intersecting in X.

(1.6.1)Example. We will often see the following type of subcomplexes. Let {V1, · · · , Vk}
be a finite set of admissible cycles Vj on X1 × · · · ×Xr × T ×□ℓj . We assume the set

{V1, · · · , Vk, faces}

is properly intersecting. Consider the subcomplex generated by elements

α1 ⊗ · · · ⊗ αr ∈ Z(X1, n1)⊗ · · · ⊗ Z(Xr, nr)

where αi are irreducible non-degenerate subvarieties satisfying the following condition:

{π∗
1α1, · · · , π∗

rαr, V1, · · · , Vk, faces }

is properly intersecting in X1×· · ·×Xr×T ×□∗. Then it is a distinguished subcomplex. [Note
it differs from the distinguished subcomplex with respect to {V1, · · · , Vk}, in which the proper
intersection property is required with respect to each of Vj separately.]

To verify this assertion, one takes as the set W the collection of the partial intersections
V1, · · · , Vk, and apply the above lemma.

(1.7) The complex Z(M1)⊗̂ · · · ⊗̂Z(Mn). Assume given a sequence of fiberings, namely

(⋆) Smooth varieties Mi (i = 1, · · · , n) and Yi (1 ≤ i ≤ n−1), and smooth maps Mi → Yi

and Mi+1 → Yi.
For an interval I = [j, k] ⊂ [1, n], let

MI = Mj ⋄Mj+1 ⋄ · · · ⋄Mk .

There are projection maps pI,i : MI → Mi for each i ∈ I. More generally, if I ⊂ I ′, there
is the projection pI′,I : MI′ → MI , which is smooth. If I = [1, n], M[1,n] = M1 ⋄ · · · ⋄Mn ⊂
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M1 × · · · ×Mn. There are projections p[1,n],i = pi : M[1,n] →Mi, πi : M1 × · · · ×Mn →Mi, and
we have a commutative diagram:

M[1,n] M1 × · · · ×Mr

MI

Mi

↪→

pI,i

pi
πi

p[1,n],I

Let {I1, · · · , Ir} be a partition of an interval I = [j, k] into sub-intervals, namely there is
an increasing sequence j = i1 < · · · < ir+1 = k + 1 such that Ia = [ia, ia+1 − 1]. Then there are
projections

MIa → Yia+1−1 ←MIa+1 .

So after renumbering
M ′

a = MIa , Y ′
ℓ = Yiℓ+1−1

we have another sequence of fiberings indexed by [1, r]. Thus MI1 ⋄ · · · ⋄MIr makes sense and
coincides with MI .

In what follows we fix a sequence of integers ai ∈ Z, and take the complexes Zai(Mi). To
an interval I = [j, k] we assign the integer

aI =
k∑

i=j

ai −
k−1∑
i=j

dimYi

and take it as the dimension of the cycle complex Z(MI). With this agreement we will drop
the dimensions from the notation.

Proposition. For a set of elements αi ∈ Z(Mi,mi), i ∈ [1, n], the following conditions
are equivalent:

(i) The set of cycles {p∗iαi(i = 1, · · · , n), faces } is properly intersecting in M[1,n]×□m1+···mn .
(ii) The set of cycles {π∗

i αi(i = 1, · · · , n),M[1,n], faces } is properly intersecting in M1×· · ·×
Mn ×□m1+···mn .

When this condition is satisfied we will say that the set {αi(i = 1, · · · , n), faces } is properly
intersecting in M[1,n]. The equivalence follows from the obvious

Lemma. Let X be a smooth variety and Y ⊂ X a smooth subvariety (both assumed to be
equi-dimensional). For a set of cycles α1, · · · , αn on X, the following are equivalent.

(i) The set {α1, · · · , αn, Y } is properly intersecting in X.
(ii) The set {α1, · · · , αn} is properly intersecting in X, the intersection αi ∩Y is proper for

each i, and the set {αi · Y } is properly intersecting in Y .
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We define the subcomplex

Z(M1)⊗̂ · · · ⊗̂Z(Mn) ⊂ Z(M1)⊗ · · · ⊗ Z(Mn)

to be the one generated by elements α1 ⊗ · · · ⊗ αn, with each αi irreducible non-degenerate,

and {α1, · · · , αn, faces} properly intersecting in M[1,n]. It is also denoted by
⊗̂

i∈[1,n]Z(Mi).
The proposition shows that it coincides with the distinguished subcomplex with respect to

W = {M[1,n]} (the set consisting of one closed set):

Z(M1)⊗̂ · · · ⊗̂Z(Mn) = [Z(M1)⊗ · · · ⊗ Z(Mn)]{M[1,n]} .

Let αi ∈ Z(Mi,mi), i ∈ [1, n] be elements such that {α1, · · · , αn, faces} is properly inter-
secting in M[1,n]. Then for each interval I = [j, k] ⊂ [1, n], the set {αj, · · · , αk} satisfies an
analogous condition, thus

αj ⊗ · · · ⊗ αk ∈ Z(Mj)⊗̂ · · · ⊗̂Z(Mk) .

[To see this note the projection M[1,n] → MI is smooth, and the pull-back by a smooth map
preserves the proper intersection property of cycles. ] Thus the intersection in MI ×□mj+···+mk

(p∗I,jαj) · · · · · (p∗I,kαk)

is defined and ∈ Z(MI). This is denoted by

αj ◦
Yj

· · · ◦
Yk−1

αk = αj ◦ · · · ◦ αk

or just by αI .
If I1, · · · , Ir is a partition of I then

(p∗I,I1αI1 , · · · , p∗I,IrαIr) ∈ Z(MI1)⊗̂ · · · ⊗̂Z(MIr)

and
αI1 ◦ · · · ◦ αIr = αI

in Z(MI). So one has the product map

ρ(I1, · · · , Ir) : Z(M1)⊗̂ · · · ⊗̂Z(Mn)→ Z(MI1)⊗̂ · · · ⊗̂Z(MIr) ,

that maps (α1, · · · , αn) to (αI1 , · · · , αIr).

(1.8) Properties of the product map ρ(I1, · · · , Ir).
(0) One clearly has, for any partition I1, · · · , Ir of [1, n], the inclusion⊗̂

[1,n]

Z(Mi) ⊂ (
⊗̂
I1

Z(Mi) )⊗ · · · ⊗ (
⊗̂
Ir

Z(Mi) ) .

The product map ρ(I1, · · · , Ir) satisfies the following properties.
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(1) If K1, · · · , Ks is a partition of [1, r], namely Kb = [kb, kb+1−1] with k1 = 1, ks+1−1 = r,
let

Jb = Ikb ∪ · · · ∪ Ikb+1−1 , 1 ≤ b ≤ s .

Then J1, · · · , Js is another partition of [1, n]. Let M ′
a = MIa and Y ′

ℓ = Yiℓ+1−1. Then

M ′
Kb

= MJb . We have the product map ρ(K1, · · · , Ks) :
⊗̂

[1,r] Z(M
′
a)→

⊗̂
[1,s] Z(M

′
Kb
), namely

ρ(K1, · · · , Ks) :
⊗̂

[1,r] Z(MIa)→
⊗̂

[1,s] Z(MJb). The following diagram commutes:

⊗̂
[1,n] Z(Mi)

⊗̂
[1,r] Z(MIa)

⊗̂
[1,s] Z(MJb)

ρ(I1, · · · , Ir)

ρ(K1, · · · , Ks)ρ(J1, · · · , Js)

(2) The following square commutes (where the vertical maps are inclusions):⊗̂
[1,n] Z(Mi)

ρ(I1,··· ,Ir)−−−−−→
⊗̂

[1,r] Z(MIa)y y⊗̂
I1
Z(Mi)⊗ · · · ⊗

⊗̂
Ir
Z(Mi)

ρ(I1)⊗···⊗ρ(Ir)−−−−−−−→
⊗

[1,n] Z(MIa) .

Remark. For the map ρ(I1, · · · , Ir) the following labeling will be useful as well (which we
have employed before). To a partition Ia = [ia, ia+1 − 1] as above, one can associate a subset
S ⊂ [1, n− 1] given by

S =
⨿
a

[ia, ia+1 − 2]

(remove from each Ia the terminal element, and take disjoint union for a). Note the varieties
MIa are obtained by taking fiber products over Yi with i ∈ S. The sequence of dimensions for
the target of ρ(I1, · · · , Ir) is∑

i∈Ia

si −
∑

i∈S∩Ia

dimYi , i = 1, · · · , r.

Giving a partition to sub-intervals is equivalent to giving a subset S of [1, n− 1]. One may
write ρS in place of ρ(I1, · · · , Ir). Then the commutativity (1) can be written:

ρS = ρS′′ρS′

whenever S is the disjoint union of S ′ and S ′′. (Let S ′ correspond to the partition I1, · · · , Ir,
S ′′ ⊂ [1, r − 1] correspond to K1, · · · , Ks, and S correspond to J1, · · · , Js. By means of the
renumbering φ : [1, r − 1] → [1, n − 1] given by φ(ℓ) = iℓ+1 − 1, S ′′ can be identified with a
subset of [1, n− 1]. Then one has S = S ′ ⨿ S ′′.)
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(1.9) Properties of
⊗̂

Z(Mi,Ui). This subsection is a continuation of (1.5). We list the prop-
erties of the complex Z(M1,U1)⊗̂ · · · ⊗̂Z(Mn,Un).

(a) The subcomplex is functorial in Ui. If Ui → Vi are maps in Cov(Mi), there is an induced
map

Z(M1,U1)⊗̂ · · · ⊗̂Z(Mn,Un)→ Z(M1,V1)⊗̂ · · · ⊗̂Z(Mn,Vn) .

(b) The map ρ(I1, · · · , Ir) is functorial in Ui. If Ui → Vi are maps of coverings the following
diagram commutes:

Z(M1,U1)⊗̂ · · · ⊗̂Z(Mn,Un)
ρ(I1,··· ,Ir)−−−−−→ Z(MI1 ,UI1)⊗̂ · · · ⊗̂Z(MIr ,UIr)y y

Z(M1,V1)⊗̂ · · · ⊗̂Z(Mn,Vn)
ρ(I1,··· ,Ir)−−−−−→ Z(MI1 ,VI1)⊗̂ · · · ⊗̂Z(MIr ,VIr) .

Among the following properties, (0)-(2) are parallel to those in the previous subsection.
(0) For any partition I1, · · · , Ir of [1, n], there is inclusion⊗̂

[1,n]

Z(Mi,Ui) ⊂ (
⊗̂
I1

Z(Mi,Ui) )⊗ · · · ⊗ (
⊗̂
Ir

Z(Mi,Ui) ) .

(1) If K1, · · · , Ks is a partition of [1, r], and J1, · · · , Js is the resulting partition of [1, n],
then ρ(K1, · · · , Ks)ρ(I1, · · · , Ir) = ρ(J1, · · · , Js).

(2) The following square commutes (where the vertical maps are inclusions):⊗̂
[1,n] Z(Mi,Ui)

ρ(I1,··· ,Ir)−−−−−→
⊗̂

[1,r] Z(MIa ,UIa)y y⊗̂
I1
Z(Mi,Ui)⊗ · · · ⊗

⊗̂
Ir
Z(Mi,Ui)

ρ(I1)⊗···⊗ρ(Ir)−−−−−−−→
⊗

[1,n] Z(MIa,UIa
) .

(3) If π : N1 →M1 is a smooth map, there is the corresponding map

π∗ ⊗ id : Z(M1,U1)⊗̂ · · · ⊗̂Z(Mn,Un)→ Z(N1, π
−1U1)⊗̂Z(M2,U2)⊗̂ · · · ⊗̂Z(Mn,Un) .

This is functorial in Ui. The same in each Mi. If π : M1 → N1 is a projective map, there is the
map, functorial in Ui,

π∗ ⊗ id : Z(M1, π
−1U1)⊗̂ · · · ⊗̂Z(Mn,Un)→ Z(N1,U1)⊗̂Z(M2,U2)⊗̂ · · · ⊗̂Z(Mn,Un) .

The quasi-isomorphisms ι : Z(Ai)→ Z(Mi,Ui) induce a quasi-isomorphism

⊗ι :
⊗
[1,n]

Z(Ai)→
⊗
[1,n]

Z(Mi,Ui) .

Composing with the inverse of the inclusion
⊗̂

Z(Mi,Ui) ↪→
⊗

Z(Mi,Ui), one obtains an
isomorphism in the derived category

ι :
⊗
[1,n]

Z(Ai)→
⊗̂
[1,n]

Z(Mi,Ui) .

(It is a slight abuse of notation to use the same ι for a map in the derived category.) For a
partition I1, · · · , Ir of [1, n], there is a unique map in the derived category

ρ(I1, · · · , Ir) : Z(A1)⊗ · · · ⊗ Z(An)→ Z(AI1)⊗ · · · ⊗ Z(AIr)
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which makes the following diagram commute:⊗̂
[1,n] Z(Mi,Ui)

ρ(I1,··· ,Ir)−−−−−→
⊗̂

[1,r] Z(MIt ,UIt)xι xι⊗
[1,n]Z(Ai)

ρ(I1,··· ,Ir)−−−−−→
⊗

[1,r]Z(AIt) .

The maps ι and ρ satisfy the following properties.
(4) For ρ(I1, · · · , Ir) one has commutativity analogous to (1) above.
(5) If π : N1 →M1 is a smooth map, the map

π∗ ⊗ id : Z(A1)⊗ Z(A2)⊗ · · · ⊗ Z(An)→ Z(π−1A1)⊗ Z(A2)⊗ · · · ⊗ Z(An)

and the π∗ ⊗ id in (3) above are compatible via the maps ι. If π is a projective map

π∗ ⊗ id : Z(π−1A1)⊗ Z(A2)⊗ · · · ⊗ Z(An)→ Z(A1)⊗ Z(A2)⊗ · · · ⊗ Z(An)

and the π∗ ⊗ id in (3) above are compatible via the maps ι.

2 Function complexes F (X1, · · · , Xn)

(2.1) For an integer n ≥ 2, let [1, n] = {1, . . . , n}. We will consider subsets I of [1, n] with
cardinality ≥ 2. Such I is a finite ordered set. For notions regarding finite ordered sets, see

(0.5). In particular recall for a subset Σ ⊂
◦
I there corresponds a segmentation.

In what follows we will consider sequences of varieties parametrized by I. It is often conve-
nient to give definitions and constructions in case I = [1, n].

(2.2) Let S be a quasi-projective variety and X1, · · · , Xn be smooth quasi-projective varieties,
each equipped with a projective map to S (we call such Xi a sequence of varieties over S). For
a subset I ⊂ [1, n], let XI =

∏
i∈I Xi (product over k). So X[1,n] = X1 × · · · ×Xn.

For a non-empty subset I ⊂ [1, n], let X[1,n]
∼→

∏
i∈I

Xi ×
∏
i ̸∈I

Xi be the natural isomorphism

(switching factors); define the closed subset AI ⊂ X[1,n] by the Cartesian square

X[1,n]
∼−−−→

∏
i∈I

Xi ×
∏
i̸∈I

Xix x
AI

∼−−−→
∏

S
i∈I

Xi ×
∏
i̸∈I

Xi

where
∏

S denotes fiber product over S.

• For example, if I consists of a single element, AI = X[1,n]; if I = {1, 2}, AI = (X1 ×S

X2)×X3 × · · · ×Xn; if I = [1, n], A[1,n] = X1 ×S X2 ×S · · · ×S Xn.
• If I ⊂ I ′, then AI ⊃ AI′ . For two subsets I and I ′ with non-empty intersection,

AI∪I′ = AI ∩ AI′ .

Let UI = X[1,n] − AI . U[1,n] is the complement of X1 ×S X2 ×S · · · ×S Xn. If I ⊂ I ′, then
UI ⊂ UI′ . If I ∩ I ′ is non-empty, UI∪I′ = UI ∪ UI′ .
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Let J be a subset of (1, n) = [2, n− 1]. If J = {j1 · · · jr}, recall the associated intervals are
given by Jk = [jk, jk+1] for k = 0, · · · , r with j0 = 1 and jr+1 = n. To each Jk there corresponds
the closed set AJk ⊂ X[1,n] = X1× · · · ×Xn and its complement UJk . The intersection of AJk ’s
is A[1,n], and the union of UJk ’s is U[1,n]. We thus have a covering of U[1,n] indexed by [0, r]:

U(J) = {UJ0 , UJ1 , · · · , UJr} .

Taking M = X[1,n] and U = U(J) in the construction of the previous section, one obtains
the complex

Zs(X[1,n],U(J)) .

As before the differential is denoted d, and when necessary we write Zs(X[1,n],U(J))
• where the

upper indexing is the cohomological degree. There is a natural quasi-isomorphism

ι : Zs(X1 ×S × · · · ×S Xn)→ Zs(X[1,n],U(J)) .

Note in the discussion so far, one can replace [1, n] by any subset I of [1, n] and a subset

J ⊂
◦
I . More specifically, we have:

• One has the product

XI =
∏
i∈I

Xi .

Associated to a subset I ⊂ I is a closed set AI ⊂ XI and its complement UI (to be specific,
we write AI⊂I and UI⊂I). In particular, AI is the fiber product of all Xi over S, and UI its
complement.

• For a set J ⊂
◦
I of cardinality r, there corresponds a set of intervals

J i = J i(J ⊂ I) , 0 ≤ i ≤ r ,

of I. Thus we have an [0, r]-covering of UI

U(J) = U(J ⊂ I) = {UJ0 , · · · , UJr} .

This gives us the a complex Z(XI,U(J ⊂ I)) equipped with a quasi-isomorphism from Z(AI).
• Note UI⊂I is an open set of XI; it should be distinguished from the open set UI⊂[1,n] ⊂

X[1,n].

We have natural maps between such complexes, the restriction and the projection.
(1) For J ⊂ J′, one has the restriction map, which is a quasi-isomorphism:

Z(XI,U(J))→ Z(XI,U(J
′)) .

To define it, assume I = [1, n] for simplicity. Let J = {j1, · · · , jr}, Jk = [jk, jk+1] for
0 ≤ k ≤ r as above. Let J′ = {j′1, · · · , j′r′}, and define a map λ : [0, r′] → [0, r] as follows. For
each j′t there is a unique k such that jk−1 < j′t ≤ jk. Then J ′

t = [j′t−1, j
′
t] ⊂ [jk−1, jk] = Jk. If

we set λ(t) = k, then λ is order-preserving and UJ ′
t
⊂ UJk ; in other words λ : U(J) → U(J′) is

a map of coverings. It induces the map between the Čech cycle complexes as stated.
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(2) Assume now that S is projective. For ℓ ∈
◦
I − J, we have the projection along Xℓ

πXℓ
: Z(XI,U(J ⊂ I))→ Z(XI−{ℓ},U(J ⊂ I− {ℓ})) .

The definition in case I = [1, n] is as follows. Let p : X[1,n] → X[1,n]−{ℓ} be the projection.
One has p−1(UI) = UI for a subset I ⊂ [1, n]−{ℓ} (more precisely, p−1(UI⊂[1,n]−{ℓ}) = UI⊂[1,n].)

If ℓ ∈ (jk, jk+1), the associated intervals to J ⊂ [1, n]− {ℓ} are

{J̄ i} = {J0, · · · , Jk−1, Jk − {ℓ}, Jk+1, · · · , Jr} ,

and the associated open covering is {UJ̄i}. Since

p−1UJ̄i = UJ̄i ⊂ UJi ,

one has the restriction map

Z(X[1,n], {UJ0 , · · · , UJr})→ Z(X[1,n], {UJ̄0 , · · · , UJ̄r}) .

Composing it with the projection

p∗ : Z(X[1,n], {UJ̄0 , · · · , UJ̄r})→ Z(X[1,n]−{ℓ}, {UJ̄0 , · · · , UJ̄r})

one obtains the stated map.

More generally for a subset K ⊂
◦
I − J one has the corresponding projection

πK : Z(XI,U(J ⊂ I))→ Z(XI−K ,U(J ⊂ I−K)) .

If K = K ′ ∪K ′′, πK = πK′′πK′ , namely the following diagram commutes.

Z(XI,U(J)) Z(XI−K ,U(J))

Z(XI−K′ ,U(J))

πK

πK′ πK′′

In particular, πK′′πK′ = πK′πK′′ .
(3) The quasi-isomorphism ι : Z(AI)→ Z(XI,U(J)) is compatible with restriction maps and

projections. It means, for projection, the commutativity of the following diagram:

Z(XI,U(J))
πK−−−→ Z(XI−K ,U(J))xι xι

Z(AI)
πK−−−→ Z(AI−K) .

Here πK at the bottom is the map induced by the projection AI → AI−K .

We would like to have projection maps as above in general, under the assumption S quasi-
projective and Xi → S projective.

Let S ↪→ S̄ a compactification, namely an open immersion to a projective variety. For each
Xi take a projective variety X̄i with a projective map X̄i → S̄ extending pi. (We say X̄i/S̄ is
a compactification of Xi/S.)
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Then one has
X[1,n] =

∏
Xi and X̄[1,n] :=

∏
X̄i .

To I ⊂ [1, n], there corresponds a closed set AI ⊂ X[1,n] and its complement UI (resp. ĀI ⊂
X̄[1,n] and its complement ŪI).

Given J ⊂ (1, n), we define a partial compactification by

XJ
[1,n] :=

∏
i∈[1,n]

X ′
i with X ′

i =

{
X̄i if i ∈ (1, n)− J

Xi if i ∈ {1, n} ∪ J

For I ⊂ [1, n], define the closed subset AJ
I ⊂ XJ

[1,n] by the following diagram:

XJ
[1,n]

∼−−−→
∏
i∈I

X ′
i ×

∏
i̸∈I

X ′
ix x

AJ
I

∼−−−→
∏

S
i∈I

X ′
i ×

∏
i̸∈I

X ′
i .

If I ⊂ I ′ then AJ
I ⊃ AJ

I′ . For two subsets I and I ′ with non-empty intersection, AJ
I∪I′ =

AJ
I ∩ AJ

I′ . Further, if I ∩ ({1, n} ∪ J) ̸= ∅, namely if X ′
i = Xi for some element i ∈ I, then

AJ
I = AI . In particular, AJ

[1,n] = A[1,n] = X1 ×S · · · ×S Xn.

Let U J
I = XJ

[1,n] − AJ
I . If I ⊂ I ′ then U J

I ⊂ U J
I′ ; if I ∩ I ′ ̸= ∅, U J

I∪I′ = U J
I ∪ U J

I′ . Note

U J
[1,n] = U[1,n].

X[1,n] ⊂ XJ
[1,n]

∪ ∪
UI ⊂ U J

I

The J specifies U(J), a covering of U J
[1,n] = U[1,n]. So we have the complex Z(XJ

[1,n],U(J))

and a quasi-isomorphism Z(X1 ×S × · · · ×S Xn)→ Z(XJ
[1,n],U(J)).

As before the same construction can be applied to a subset I of [1, n], and a subset J ⊂
◦
I .

One has the product XI and its partial compactification XJ
I . Each subset I ⊂ I corresponds to

a closed set AJ
I . A subset J ⊂

◦
I gives a covering U(J) of UI, and thus the complex Z(XJ

I ,U(J))
quasi-isomorphic to Z(AI).

We have again the following maps with similar properties.
(1) For J ⊂ J′, we have XJ

I ⊃ XJ′

I and U(J ⊂ I) ⊃ U(J′ ⊂ I). Hence the restriction map
(which is a quasi-isomorphism)

Z(XJ
I ,U(J))→ Z(XJ′

I ,U(J
′)) .

(2) For ℓ ∈ I− J, not containing either end of I,

πXℓ
: Z(XJ

I ,U(J))→ Z(XJ
I−{ℓ},U(J)) .

This is defined in the same way as before, since the projection p : XJ
I = XJ

I−{ℓ} × X̄ℓ → XJ
I−{ℓ}

is projective.
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More generally forK ⊂
◦
I−J one has the projection πK : Z(XJ

I ,U(J ⊂ I))→ Z(XJ
I−K ,U(J ⊂

I−K)). If K = K ′ ∪K ′′, πK = πK′′πK′ .
(3) The quasi-isomorphism ι : Z(AI) → Z(XJ

I ,U(J)) is compatible with restrictions and
projections.

(2.3) The complex F(I). For simplicity let

F([1, n], J) = Z(XJ
[1,n],U(J)) ;

the differential is denoted d , and write F([1, n], J)• to specify the grading.
There is the restriction map, for J ⊂ J′ with |J′| = |J|+ 1,

rJ,J′ : F([1, n], J)→ F([1, n], J′) .

This is a quasi-isomorphism. If J′ = J ∪ {k}, let J>k = {i ∈ J|i > k}, and |J>k| its cardinality;
define the map

r : F([1, n], J)→ F([1, n], J′)

to be (−1)|J>k|rJ,J′ .
Let

Aa,p =
⊕

a=|J|+1

F([1, n], J)p

the sum over J with a = |J| + 1. Then one has rr = 0. With differentials r, d, this forms a
“double” complex. The total complex Tot(A) is a complex with differential r + (−1)ad (which
will be also be denoted by d if no confusion is likely) on Aa,p. Define

F([1, n]) = Tot(A) .

The same construction applies to any finite subset I ⊂ [1, n], so that one has a complex
F(I). It has complexes F(I, J)[−(|J| + 1)] as subquotients. Here recall for a complex (K•, d),
the shift K•[1] is defined by (K•[1])p = Kp+1 and dK[1] = −d.

If |I| = 2, F(I) = F(I, ∅)[−1], so there is a quasi-isomorphism Z(AI)[−1]→ F(I). If |I| ≥ 3,
F(I) is acyclic. This follows from the lemma below.

(2.4) Let T be a non-empty finite ordered set, and P(T ) be the set of subsets S ⊂ T (including
the empty set). Suppose to each S ∈ P(T ) there corresponds a complex CS ∈ C(Ab), and
to each inclusion S ⊂ S ′ there corresponds a map of complexes fS S′ : CS → CS′ , satisfying
fS S = id, and fS′ S′′fS S′ = fS S′′ for S ⊂ S ′ ⊂ S ′′.

We then have a “double” complex

0→ C∅ →
⊕
|S|=1

CS →
⊕
|S|=2

CS → · · · → CT → 0 .

Here the maps are signed sums of the maps fS S′ with |S ′| = |S|+1, the signs being specified as
in (2.3). We can form its total complex Tot(CS). One proves the following lemma by induction
on n.

Lemma. Assume for each S ⊂ S ′ the map fS S′ is a quasi-isomorphism. Then Tot(CS) is
acyclic.
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(2.5)The complex F(I|Σ) and the product map ρ. Let Σ ⊂
◦
I and I1, · · · , Ic be the segmentation

of I by Σ. Set
F(I ⌉⌈Σ) := F(I1)⊗ F(I2)⊗ · · · ⊗ F(Ic) ,

the tensor product of the simple complexes F(Ii). The differential, also denoted d, is given by

d(α1 ⊗ · · · ⊗ αc) =
∑

(−1)
∑

j>i degαj α1 ⊗ · · · ⊗ αi−1 ⊗ d(αi)⊗ · · · ⊗ αc .

As a module F(I ⌉⌈Σ) is the direct sum of F(I1, J1)⊗ F(I2, J2)⊗ · · · ⊗ F(Ic, Jc), where Ji varies

over subsets of
◦
Ii.

One has quasi-isomorphic c-tuple subcomplexes

F(I1, J1)⊗̂F(I2, J2)⊗̂ · · · ⊗̂F(Ic, Jc) ⊂ F(I1, J1)⊗ F(I2, J2)⊗ · · · ⊗ F(Ic, Jc) .

The sum of them

F(I|Σ) = F(I1)⊗̂F(I2)⊗̂ · · · ⊗̂F(Ic) :=
⊕

F(I1, J1)⊗̂F(I2, J2)⊗̂ · · · ⊗̂F(Ic, Jc)

is a subcomplex of F(I ⌉⌈Σ) if the differential d is defined by the same formula as above, and
the inclusion F(I|Σ)→ F(I ⌉⌈Σ) is a quasi-isomorphism.

For our convenience we write

F(I, J ⌉⌈Σ) = F(I1, J1)⊗ F(I2, J2)⊗ · · · ⊗ F(Ic, Jc) ,

if J ⊂
◦
I − Σ, I1, · · · , Ic is the segmentation of I by Σ, and Ji = J ∩

◦
Ii. Similarly

F(I, J|Σ) := F(I1, J1)⊗̂F(I2, J2)⊗̂ · · · ⊗̂F(Ic, Jc) .

For J ⊂ J′ there is the corresponding map such as rJ,J′ : F(I, J|Σ)→ F(I, J′|Σ).
Recall F(I) was defined to be the total complex of a “double” complex. Likewise there is

a “double” complex whose total complex is canonically isomorphic to F(I|Σ). We explain this
in the case |Σ| = 1.

Let A•,•, B•,• be the “double” complexes as above defining F([1,m]), F([m,n]), respectively.
In Aa,p ⊗Bb,q =

⊕
F([1,m], J)p ⊗ F([m,n], J′)q there is a quasi-isomorphic subcomplex

Aa,p⊗̂Bb,q =
⊕

F([1,m], J)p⊗̂F([m,n], J′)q .

Recall from (0.3) that A•,• ×B•,• is the “double” complex E•,• defined by

Ec,r =
⊕

a+b=c ,p+q=r

Aa,p ⊗Bb,q

and appropriate differentials d, r. Let A•,•×̂B•,• be the “double” subcomplex given by Ec,r
1 =⊕

a+b=c ,p+q=r A
a,p⊗̂Bb,q. By (0.3) there is an isomorphism of complexes

u : Tot(A)⊗̂Tot(B)
∼→ Tot(A•,•×̂B•,•) .

Although the groups on the two sides are identical, the differentials are different, and u is not
the identity.
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More generally, let A•,•
1 , · · · , A•,•

c be the “double” complexes for F(I1), · · · ,F(Ic), respec-
tively. Then there is a quasi-isomorphic “double” subcomplex A•,•

1 ×̂ · · · ×̂A•,•
c of A•,•

1 ×· · ·×A•,•
c

and a quasi-isomorphism of complexes

u : F(I|Σ) ∼→ Tot(A•,•
1 ×̂ · · · ×̂A•,•

c ) .

We next define a map of complexes (called the product map) ρ : F([1,m])⊗̂F([m,n]) →
F([1, n]). Let A•,•, B•,•, C•,• be the “double” complexes as above defining F([1,m]), F([m,n])
and F([1, n]), respectively. The product maps ρ : F([1,m], J)⊗̂F([m,n], J′)→ F([1, n], J∪{m}∪
J′) define a map of “double” complexes

ρ : A•,•×̂B•,• → C•,• .

(One can verify the compatibility of ρ and the second differential r.) Taking Tot and using the
isomorphism u above we get a map of complexes ρ : F([1,m])⊗̂F([m,n])→ F([1, n]).

More generally if I1, · · · , Ic be a segmentation of I ⊂ [1, n], and It ∩ It+1 = k, there is the
corresponding product map

ρk : F(I1)⊗̂ · · · ⊗̂F(It)⊗̂F(It+1)⊗̂ · · · ⊗̂F(Ic)→ F(I1)⊗̂ · · · ⊗̂F(It ∪ It+1)⊗̂ · · · ⊗̂F(Ic) .

This is defined just as above, changing the order of totalization and tensor product in the
factors F(It), F(It+1), only.

The map ρk is of the form ρk : F(I|Σ) → F(I|Σ − {k}). The following diagram commutes
(for distinct k, k′ ∈ Σ):

F(I|Σ) ρk−−−→ F(I|Σ− {k})yρk′

yρk′

F(I|Σ− {k′}) ρk−−−→ F(I|Σ− {k, k′}) .

For K ⊂ Σ let ρK : F(I|Σ)→ F(I|Σ−K) be the composition of ρk for k ∈ K in any order.

(2.5.1)Dimensions of the cycle complexes. The dimensions of the cycle complexes can be
specified as follows. To each interval [i, i+1] ⊂ [1, n], an integer ai ∈ Z is assigned. To a subset
I ⊂ [1, n], if j = in(I), k = tm(I), let

aI =
∑
j≤i≤k

ai −
∑

j≤i≤k−1

dimXi .

We then have the following property: If tm(I) = in(I ′) = c, then aI∪I′ = aI+aI′−dimXc. Thus
we have the map ρ : F(I)⊗̂F(I ′) → F(I ∪ I ′). We also have the map πK : F(I) → F(I −K),
to be defined in the next subsection.

(2.6)The map πK. Recall for a subset K ⊂
◦
I disjoint from J ∪ Σ, one has the map πK :

F(I, J|Σ)→ F(I −K, J|Σ). This is compatible with the maps rJ,J′ .

Using this we will produce, for K ⊂
◦
I −Σ, a map of complexes πK : F(I|Σ)→ F(I −K|Σ).

Let πK :
⊕

F(I, J|Σ)→
⊕

F(I−K, J|Σ) be the sum of the maps πK : F(I, J|Σ)→ F(I−K, J|Σ)
for K disjoint from J, and the zero maps on F(I, J|Σ) if K ∩ J ̸= ∅. The repeated use of πK

will not lead to a confusion.
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In (2.7) we summarize and and complement the properties of the complexes F(I, J|Σ) and
the maps ρ, πK . In (2.8) we collect the properties of F(I|Σ) and the maps ρ, πK . Note (2.8)
rests only on the properties (2.7).

(2.7) Properties of F(I, J|Σ) and the maps r, ρ, and π.

(0) To each I ⊂ [1, n] and J ⊂
◦
I , there corresponds a complex F(I, J) of free Z-modules.

For J ⊂ J′, there is the corresponding quasi-isomorphism rJ,J′ : F(I, J) → F(I, J′). The rJ,J′

is transitive for the inclusion J ⊂ J′ ⊂ J′′. For K ⊂
◦
I − J, one has a map of complexes

πK : F(I, J)→ F(I −K, J).
There is a quasi-isomorphism Z(AI)→ F(I, ∅).
In addition, we have the following structures (1)-(4).

(1) For Σ ⊂
◦
I and J ⊂

◦
I − Σ, there is a quasi-isomorphic multiple subcomplex of free

Z-modules
ιΣ : F(I, J|Σ)→ F(I, J ⌉⌈Σ) .

If Σ = ∅, then F(I, J|∅) = F(I, ∅). The inclusion is compatible with tensor product, namely if

Σ ⊃ Σ′ and Σ′ gives the segmentation I1, · · · , Ic of I, and Ji = J∩
◦
Ii, then one has inclusion of

c-fold complexes
F(I, J|Σ) ⊂ F(I1, J1|Σ1)⊗ · · · ⊗ F(Ic, Jc|Σc) (2.7.1)

where the latter group is viewed as a subgroup of F(I, J ⌉⌈Σ) by the tensor product of the
inclusions F(Ii, Ji|Σi) ⊂ F(Ii, Ji ⌉⌈Σi).

(2) For J ⊂ J′, there is a quasi-isomorphism of complexes rJ,J′ : F(I, J|Σ) → F(I, J′|Σ),
transitive in J. If Σ = ∅, it coincides with the map rJ,J′ : F(I, J)→ F(I, J′) in (0). The map r
is compatible with the inclusion (2.7.1), namely the following square commutes:

F(I, J|Σ) ↪→ F(I1, J1|Σ1)⊗ · · · ⊗ F(Ic, Jc|Σc)yrJ,J′

y⊗rJi,J′i

F(I, J′|Σ) ↪→ F(I1, J
′
1|Σ1)⊗ · · · ⊗ F(Ic, J

′
c|Σc) .

(3) For K ⊂ Σ there is the corresponding map of complexes

ρK : F(I, J|Σ)→ F(I, J ∪K|Σ−K) .

If K = K ′ ⨿K ′′ then ρK = ρK′′ρK′ . If Σ = ∅, it coincides with the map ρK in (0). The map
ρK , where K is disjoint from Σ, is compatible with the inclusion (2.7.1), namely the following
diagram commutes, where Ki = K ∩ Σi.

F(I, J|Σ) ↪→
⊕

F(Ii, Ji|Σi)yρK

y⊗ρKi

F(I, J ∪K|Σ−K) ↪→
⊕

F(Ii, Ji ∪Ki|Σi −Ki)

(4) To K ⊂
◦
I − Σ disjoint from K, there corresponds the map of complexes

πK : F(I, J|Σ)→ F(I −K, J|Σ) .

If K = K ′ ⨿K ′′ then πK = πK′′πK′ . If Σ = ∅, it coincides with the map πK in (0). The map
πK is compatible with the inclusion (2.7.1).
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The maps r, ρ, and π commute with each other. The commutativity of r and ρ means the
commutativity of the following square:

F(I, J|Σ)
rJ,J′−−−→ F(I, J′|Σ)yρK

yρK

F(I, J ∪K|Σ−K)
rJ∪K,J′∪K−−−−−→ F(I −K, J′ ∪K|Σ−K) .

The reader may write down the commutative diagrams for the commutativity of r and π, and
of ρ and π.

(5) The maps r, ρ and π provide another map in the derived category. Let K ⊂ Σ. We
have the maps

F(I, ∅|Σ)yρK

F(I, ∅|Σ−K)
r∅,K−−−→ F(I,K|Σ−K)yπK

F(I −K, ∅|Σ−K)

Since the map r is a quasi-isomorphism, inverting it gives a map in the derived category of
abelian groups

φK : F(I, ∅ ⌉⌈Σ)→ F(I −K, ∅ ⌉⌈Σ−K) .

We call this the composition map.
The map φK satisfies (a) transitivity in K, which says φK = φK′′φK′ if K = K ′ ⨿K ′′, and

(b) compatibility with tensor product. To state the latter, let I be partitioned by m to I ′ and
I ′′, Σ be a subset containing m, and K be a subset of Σ− {m}. Let Σ be partitioned by m to
Σ′ and Σ′′, and K ′ = K ∩ I ′, K ′′ = K ∩ I ′′. Then the following diagram commutes:

F(I, ∅ ⌉⌈Σ) = F(I ′, ∅ ⌉⌈Σ′)⊗ F(I ′′, ∅ ⌉⌈Σ′′)yφK

yφK′⊗φK′′

F(I −K, ∅ ⌉⌈Σ−K) = F(I ′ −K ′, ∅ ⌉⌈Σ′ −K ′)⊗ F(I ′′ −K ′′, ∅ ⌉⌈Σ′′ −K ′′) .

(2.8) Properties of F(I|Σ) and the maps ρ, π.

(1) F(I|Σ) is a multiple complex of free Z-modules. For Σ ⊂
◦
I corresponding to the

segmentation I1, · · · , Ir of I, there is an injective quasi-isomorphism of multiple complexes

ιΣ : F(I|Σ) ↪→ F(I ⌉⌈Σ) := F(I1)⊗ · · · ⊗ F(Ir) .

If Σ ⊃ Σ′, Σ′ gives the segmentation I1, · · · , Ic of I, and Σi = Σ ∩
◦
Ii, then one has inclusion

F(I|Σ) ⊂ F(I1|Σ1)⊗ · · · ⊗ F(Ic|Σc) (2.8.1)

where the latter group is viewed as a subgroup of F(I ⌉⌈Σ) by the tensor product the inclusions
ιΣi

: F(Ii|Σi) ⊂ F(Ii ⌉⌈Σi).
(2) For K ⊂ Σ there is a map of multiple complexes ρK : F(I|Σ) → F(I|Σ − K). If

K = K ′ ⨿K ′, ρK = ρK′′ρK′ . The ρK is compatible with the inclusion (2.8.1).
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(3) For K ⊂
◦
I −Σ, there is the associated map πK : F(I|Σ)→ F(I−K|Σ). If K = K ′⨿K ′′

then πK = πK′′πK′ : F(I|Σ) → F(I −K|Σ). The map πK is compatible with the inclusion in
(2.8.1).

ρK′ and πK commute with each other, namely the following square commutes:

F(I|Σ) ρK′−−−→ F(I|Σ−K ′)yπK

yπK

F(I −K|Σ) ρK′−−−→ F(I −K −K ′|Σ−K ′) .

(4) F(I|Σ) is acyclic unless Σ =
◦
I . If I = [1, n] and Ii = [i, i+ 1],

F(I|
◦
I ) = F(I1)⊗̂ · · · ⊗̂F(In−1)

= F(I1, ∅)[−1]⊗̂ · · · ⊗̂F(In−1, ∅)[−1] .

So one has quasi-isomorphisms

F(I|
◦
I ) ↪→ F(I1)⊗̂ · · · ⊗̂F(In−1)←↩ Z(AI1)[−1]⊗ · · · ⊗ Z(AIn−1)[−1] .

(2.9)Variant of the bar complex. We give a variant of the bar complex. In the next subsection
we will give a further variant, which will be applied to the complexes F(I|Σ).

Let n ≥ 2 and assume:
(1) To each subset I ⊂ [1, n] of cardinality ≥ 2, a complex of abelian groups (A(I)•, dA) is

assigned.
(2) For a segmentation of I into I ′ and I ′′, there corresponds a map of complexes ρ :

A(I ′) ⊗ A(I ′′) → A(I). If I is segmented into three intervals I ′, I ′′, I ′′′, then the following
commutes:

A(I ′)⊗ A(I ′′)⊗ A(I ′′′)
ρ⊗1−−−→ A(I ′ ∪ I ′′)⊗ A(I ′′′)yρ yρ

A(I ′)⊗ A(I ′′ ∪ I ′′′)
1⊗ρ−−−→ A(I) .

In the following we write α · β for ρ(α⊗ β).
For a partition (I1, · · · , Ic) of [1, n], one has the complex A(I1)⊗ A(I2)⊗ · · · ⊗ A(Ic). Let

B(A) =
⊕

A(I1)⊗ A(I2)⊗ · · · ⊗ A(Ic)

the sum over all segmentations. Give a grading by

deg(α1 ⊗ · · · ⊗ αc) =
∑

(degαi − 1)

and give differentials by (put ϵj = deg(αj)− 1 )

d̄(α1 ⊗ · · · ⊗ αc) = −
∑

(−1)
∑

j>i ϵj α1 ⊗ · · · ⊗ αi−1 ⊗ dA(αi)⊗ · · · ⊗ αc ,

ρ̄(α1 ⊗ · · · ⊗ αc) =
∑

(−1)
∑

j≥i ϵj α1 ⊗ · · · ⊗ αi−2 ⊗ (αi−1 · αi)⊗ · · · ⊗ αc .
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One verifies d̄d̄ = 0, ρ̄ρ̄ = 0 and d̄ρ̄ + ρ̄d̄ = 0, so that dB(A) = d̄ + ρ̄ is a differential. Thus

with the grading deg and the differential dB(A), B(A) is a complex; we call it the bar complex
associated to (A(I); dA, ρ). To specify n we may write B([1, n];A).

For a subset Σ ⊂ (1, n) there corresponds a segmentation I1, · · · , Ic of [1, n]. Let

A([1, n] ⌉⌈Σ) = A(I1)⊗ A(I2)⊗ · · · ⊗ A(Ic) .

Then
B([1, n];A) =

⊕
Σ

A([1, n] ⌉⌈Σ)

as a group. The differential d̄ is the sum of d̄ : A([1, n] ⌉⌈Σ)→ A([1, n] ⌉⌈Σ).
For k ∈ Σ the product map induces a map

ρ̄k : A([1, n] ⌉⌈Σ)→ A([1, n] ⌉⌈Σ− {k}) ,

so that ρ̄ is the sum of them.
There are quotient complexes of B([1, n]) defined as follows. For a subset S ⊂ (1, n),⊕

Σ ̸⊃S A([1, n] ⌉⌈Σ) is a subcomplex of B([1, n]); the quotient complex is denoted B([1, n] ⌉⌈S):

B([1, n] ⌉⌈S) =
⊕
Σ⊃S

A([1, n] ⌉⌈Σ) .

For S = ∅, B([1, n] ⌉⌈∅) = B([1, n]). If S ⊂ S ′ there is a natural surjection of complexes

τS S′ : B([1, n] ⌉⌈S)→ B([1, n] ⌉⌈S ′) .

If S ⊂ S ′ ⊂ S ′′ then τS S′′ = τS′ S′′τS S′ .
Note the above construction can be applied to any subset I ⊂ [1, n], |I| ≥ 2, in place of

[1, n]. So one has the complex B(I) and, for S ⊂
◦
I , the complex B(I ⌉⌈S).

If S corresponds to a segmentation I1, · · · , Ic of [1, n], there is a natural equality of complexes

B(I ⌉⌈S) = B(I1)⊗ · · · ⊗ B(Ic) .

Here the right hand side is the usual tensor product of complexes.

(2.10)Further variant of the bar complex. Let n ≥ 2 and we make the following assumption. It
is the same condition that the complexes F(I, J) satisfy, except there is no quasi-isomorphism
with the cycle complex Z(AI). Besides the complexes F(I, J), we will encounter another example
in a later section.

Assumption (A)

(A-0) To each subset I of [1, n] and J ⊂
◦
I , there corresponds a complex A(I, J) of free

Z-modules. For J ⊂ J′ there is a corresponding map rJ,J′ : A(I, J) → A(I, J′); the map is

transitive in J. For K ⊂
◦
I −J one has a map πK : A(I, J)→ A(I−K, J); one has πK = πK′πK′′

if K = K ′ ⨿K ′′.

(A-1) For Σ ⊂
◦
I and J ⊂

◦
I−Σ, let A(I, J ⌉⌈Σ) be the tensor product A(I1, J1)⊗· · ·⊗A(Ic, Jc),

where I1, · · · , Ic is the segmentation of I by Σ, and Ji = J ∩
◦
Ii. There is a quasi-isomorphic

multiple subcomplex of free Z-modules

ιΣ : A(I, J|Σ)→ A(I, J ⌉⌈Σ) .

33



If Σ = ∅, then A(I, J|∅) = A(I, ∅). If Σ ⊃ Σ′ and Σ′ gives the segmentation I1, · · · , Ic of I, and
Ji = J ∩

◦
Ii, then one has inclusion of c-fold complexes

A(I, J|Σ) ⊂ A(I1, J1|Σ1)⊗ · · · ⊗ A(Ic, Jc|Σc) (2.10.1)

where the latter group is viewed as a subgroup of A(I, J ⌉⌈Σ) by the tensor product of the
inclusions A(Ii, Ji|Σi) ⊂ A(Ii, Ji ⌉⌈Σi).

(A-2) For J ⊂ J′, there is a quasi-isomorphism of complexes rJ,J′ : A(I, J|Σ) → A(I, J′|Σ),
transitive in J. If Σ = ∅, it coincides with the map rJ,J′ : A(I, J)→ A(I, J′) in (0). The map r
is compatible with the inclusion (2.10.1).

(A-3) For K ⊂ Σ there is the corresponding map of complexes

ρK : A(I, J|Σ)→ A(I, J ∪K|Σ−K) .

If K = K ′ ⨿K ′′ then ρK = ρK′′ρK′ . If Σ = ∅, it coincides with the map ρK in (0). The map
ρK , where K is disjoint from Σ, is compatible with the inclusion (2.10.1).

(A-4) To K ⊂
◦
I − Σ disjoint from K, there corresponds the map of complexes

πK : A(I, J|Σ)→ A(I −K, J|Σ) .

If K = K ′ ⨿K ′′ then πK = πK′′πK′ . If Σ = ∅, it coincides with the map πK in (0). The map
πK is compatible with the inclusion (2.10.1).

The maps r, ρ, and π commute with each other.
We note that the same construction as before gives us the composition map φK : A(I, ∅ ⌉⌈Σ)→

A(I −K, ∅ ⌉⌈Σ−K) in the derived category.

We constructed F(I|Σ) from F(I, J|Σ); the same procedure gives us complexes A(I|Σ) and
pertinent maps as follows.

(1) Let I ⊂ [1, n] and Σ ⊂
◦
I . If Σ ⊂

◦
I corresponds to the segmentation I1, · · · , Ic of I,

there is a quasi-isomorphic multiple subcomplex of free Z-modules

ιΣ : A(I|Σ) ↪→ A(I ⌉⌈Σ) = A(I1)⊗ · · · ⊗ A(Ic) .

We let the same A(I|Σ) denote its total complex.

If Σ ⊃ Σ′, Σ′ gives the segmentation I1, · · · , Ic of I and Σi = Σ ∩
◦
Ii, then one has inclusion

A(I|Σ) ⊂ A(I1|Σ1)⊗ · · · ⊗ A(Ic|Σc)

where the latter group is viewed as a subgroup of A(I ⌉⌈Σ) by the the tensor product of the
inclusions ιΣi

: A(Ii|Σi) ⊂ A(Ii ⌉⌈Σi).
(2) For K ⊂ Σ there is a map of multiple complexes ρK : A(I|Σ) → A(I|Σ − K). If

K = K ′ ⨿K ′′, ρK = ρK′′ρK′ . The ρK is compatible with the inclusion A(I|Σ) ⊂ ⊗A(Ii|Σi) in
(1).

(3) For K ⊂
◦
I − Σ, there is a map of multiple complexes πK : A(I|Σ) → A(I −K|Σ). If

K = K ′ ⨿ K ′′ then πK = πK′′πK′ : A(I|Σ) → A(I − K|Σ). πK and ρK′ commute with each
other, namely the following square commutes:

A(I|Σ) ρK′−−−→ A(I|Σ−K ′)yπK

yπK

A(I −K|Σ) ρK′−−−→ A(I −K|Σ−K ′) .
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(4) The complex A(I) is acyclic if |I| ≥ 3. Hence A(I|Σ) is acyclic unless Σ =
◦
I .

To compare with the previous subsection, (1) and (2) are weaker assumptions than before; (3)
gives additional structure, and (4) is satisfied because A(I) if of the form

⊕
A(I, J).

One can now define the bar complex B([1, n];A) as before. To be precise B([1, n];A) =⊕
Σ A([1, n]|Σ) as a group, and the differential is given by dB(A) = d̄ + ρ̄, where d̄ and ρ̄ are

defined as follows. If I1, · · · , Ic is the partition of [1, n] corresponding to Σ, for an element
α = α1 ⊗ · · · ⊗ αc ∈ A([1, n]|Σ), let ϵj = deg(αj)− 1 and

d̄(α1 ⊗ · · · ⊗ αc) = −
∑

(−1)
∑

j>i ϵj α1 ⊗ · · · ⊗ αi−1 ⊗ dA(αi)⊗ · · · ⊗ αc ,

ρ̄(α1 ⊗ · · · ⊗ αc) =
∑
2≤i≤c

(−1)
∑

j≥i ϵjρki−1
(α)

with ki−1 = tm(Ii−1).
For S ⊂ (1, n) there is defined the corresponding quotient B([1, n]|S); for S ⊂ S ′ there is

a natural surjection σS S′ : B([1, n]|S) → B([1, n]|S ′). The construction applies to any subset

I ⊂ [1, n] and S ⊂
◦
I , so one has B(I), B(I|S), and maps σS S′ .

It follows from (4) that the maps σS S′ : B(I|S)→ B(I|S ′) are quasi-isomorphisms. Indeed

A(I|Σ) is acyclic unless Σ =
◦
I , so the quotient map B(I|S)→ A(I|

◦
I ) is a quasi-isomorphism.

If S corresponds to the segmentation I1, · · · , Ic, let

B(I ⌉⌈S) := B(I1)⊗ · · · ⊗B(Ic) .

One has an injective quasi-isomorphism

ιS : B(I|S) ↪→ B(I ⌉⌈S)

defined as the sum of the quasi-isomorphisms A(I|Σ) ↪→ A(I1|Σ1)⊗· · ·⊗A(Ic|Σc), where Σ ⊃ S
and Σ1, · · · ,Σc is the segmentation of Σ given by S.

For S ⊂ S ′, also define the map τS S′ : B(I ⌉⌈S)→ B(I ⌉⌈S ′) as follows. Let Σ ⊃ S, {Ii} the
segmentation of I by S, and Σi = Σ ∩

◦
Ii. In case Σ ⊃ S ′, if {I ′j} the segmentation of I by S ′

and Σ′
j = Σ ∩

◦
I ′j, there in an inclusion

A(I1|Σ1)⊗ · · · ⊗ A(Ic|Σc) ↪→ A(I ′1|Σ′
1)⊗ · · · ⊗ A(I ′d|Σ′

d) .

Define τS S′ to be this inclusion on the summand A(I1|Σ1)⊗· · ·⊗A(Ic|Σc) with Σ ⊃ S ′, and zero
on the summand with Σ ̸⊃ S ′. The maps τS S′ and σS S′ are compatible, namely the following
diagram commutes:

B(I|S) ιS−−−→ B(I ⌉⌈S)yσS S′

yτS S′

B(I|S ′)
ιS′−−−→ B(I ⌉⌈S ′) .

If S ⊂ S ′ ⊂ S ′′ then τS S′′ = τS′ S′′τS S′ .

For K ⊂
◦
I disjoint from S, one has a map

φK : B(I|S)→ B(I −K|S)
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given as follows. Define a quotient complex of B(I|S) by

BK(I|S) :=
⊕
Σ⊃S

(J∪Σ)∩K=∅

A(I|Σ) .

There is a map
BK(I|S)→ B(I −K|S)

which is the sum of πK : A(I, J|Σ) → A(I − K, J|Σ). By definition φK is the composition of
the quotient map B(I|S)→ BK(I|S) with the above map.

If K = K ′ ⨿K ′′ then φK = φK′′φK′ : B(I|S)→ B(I −K|S). If K and S ′ are disjoint, the
maps σS S′ and φK commute with each other, namely the following diagram commutes.

B(I|S) σS S′−−−→ B(I|S ′)yφK

yφK

B(I −K|S) σS S′−−−→ B(I −K|S ′)

(2.11)Properties of the complex B(I|S). For future reference we collect properties of the bar
complex.

(1) B(I) is a complex of free Z-modules. For S ⊂
◦
I corresponding to a segmentation

I1, · · · , Ic of I, let B(I ⌉⌈S) = B(I1) ⊗ · · · ⊗ B(Ic). B(I|S) is a complex of free Z-modules
together with an injective quasi-isomorphism ιS : B(I|S) ↪→ B(I ⌉⌈S). If S = ∅, B(I|∅) = B(I).

If S =
◦
I , I = [1, n] and Ii = [i, i+ 1],

B(I|
◦
I ) = A(I1)[1]⊗̂ · · · ⊗̂A(In−1)[1]

= A(I1, ∅)⊗̂ · · · ⊗̂A(In−1, ∅) = A(I, ∅|
◦
I ).

If S ⊃ S ′, S ′ gives the segmentation I1, · · · , Ic and Si =
◦
Ii ∩ S, then one has inclusion

B(I|S) ⊂ B(I1|S1)⊗ · · · ⊗B(Ic|Sc) ⊂ B(I ⌉⌈S) .

(2) For subsets S ⊂ S ′ there corresponds a surjective quasi-isomorphism σS S′ : B(I|S) →
B(I|S ′). One has σS S′′ = σS′ S′′σS S′ . The σ is compatible with the inclusion B(I|S) ⊂
B(I1|S1)⊗ · · · ⊗B(Ic|Sc), namely if S ⊂ S ′′ and S ′′

i = S ′′ ∩
◦
Ii, the following commutes:

B(I|S) ↪→ B(I1|S1)⊗ · · · ⊗B(Ic|Sc)yσS S′′

y⊗σSi S
′′
i

B(I|S ′′) ↪→ B(I1|S ′′
1 )⊗ · · · ⊗B(Ic|S ′′

c ) .

There are quasi-isomorphisms (in general not surjective or injective) τS S′ : B(I ⌉⌈S) →
B(I ⌉⌈S ′) for S ⊂ S ′. One has τS S′′ = τS′ S′′τS S′ .

The maps σS S′ and τS S′ are compatible via the maps ιS, ιS′ .
(3) There are maps φK : B(I|S)→ B(I−K|S) which satisfy φK = φK′′φK′ if K = K ′⨿K ′′

and are compatible with σS S′ . The following square commutes in the derived category.

B(I|S) σ−−−→ A(I, ∅|
◦
I )

ι−−−→ A(I, ∅ ⌉⌈
◦
I )yφK

yφK

B(I −K|S) σ−−−→ A(I −K, ∅|
◦
I −K)

ι−−−→ A(I −K, ∅ ⌉⌈
◦
I −K)
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Here the right vertical map is the composition map mentioned in Assumption (A).

In addition, we have:

(2.12) Proposition. Let R, J be disjoint subsets of
◦
I , with J non-empty. Then the following

sequence of complexes is exact (the maps are alternating sums of the quotient maps σ)

B(I|R)
σ−−−→

⊕
S⊂J ,|S|=1

B(I|R ∪ S)
σ−−−→

⊕
S⊂J ,|S|=2

B(I|R ∪ S)
σ−−−→· · · → B(I|R ∪ J)→ 0 .

Moreover the total complex of the sequence is acyclic. (Equivalently, the induced map σ :

B(I|R) → Ker
(
σ :

⊕
S⊂J ,|S|=1 B(I|R ∪ S)→

⊕
S⊂J ,|S|=2B(I|R ∪ S)

)
is a surjective quasi-

isomorphism.)

Proof. For Σ ⊂
◦
I the complex A(I|Σ) appears in B(I|R ∪ S) as a direct summand iff

Σ ⊃ R ∪ S. Thus the sequence in question is the direct sum over Σ of the following:

A(I|Σ)→
⊕

S⊂J∩(Σ−R) ,|S|=1

A(I|Σ)→
⊕

S⊂J∩(Σ−R) ,|S|=2

A(I|Σ)→ · · · .

If J ∩ (Σ−R) ̸= ∅ this is exact, even with 0 at left. If J ∩ (Σ−R) = ∅ this is trivially exact.

(2.13)The complex F (I|S). With the notation in (2.1)-(2.8), we take the association of com-
plexes I 7→ F(I), together with quasi-isomorphisms F(I|Σ) ↪→ F(I ⌉⌈Σ) and the maps ρk and
πK . Apply the construction of the bar complex. We obtain the complexes B(I|S) and the maps
σ, φ. We employ the notation

F ([1, n]|S) or F (X1, · · · , Xn|S)

for this complex. We use the same letter S for the base variety and for a subset of (1, n), but
this should not cause confusion. Likewise for any subset I of [1, n] there are the complexes
F (I|S).

One has F (I|∅) = F (I). For S ⊂ S ′ there is a natural surjection σS S′ : F (I|S)→ F (I|S ′).

For K ⊂
◦
I disjoint from K, there is the map φK : F (I|S)→ F (I −K|S).

These complexes and the maps satisfy the properties we have proven to hold in general. In
particular

F (I|
◦
I ) = F(I, ∅|

◦
I ) .

Thus the following maps are all quasi-isomorphisms (let I = [1, n], Ii = [i, i+ 1]):

F (I) ↠ F (I|
◦
I ) = F(I, ∅|

◦
I )

↪→ F(I, ∅ ⌉⌈
◦
I )

←↩ Z(AI1)⊗ · · · ⊗ Z(AIn−1)

providing an isomorphism F (I) ∼= Z(AI1) ⊗ · · · ⊗ Z(AIn−1) in the derived category. If |I| = 2,
F (I) = F(I, ∅).

According to (2.5.1), we must specify dimensions for the cycle complexes by assigning
integers to each [i, i+ 1], i = 1, · · · , n− 1.
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(2.14) The quasi DG category Symb(S) . Let S be a quasi-projective variety, and Symb(S) be
the class of symbols over S, (0.8). Recall a symbol is a finite formal sum

⊕
α(Xα/S, rα), where

Xα is a smooth variety with a projective map to S. There is direct sum of symbols.
There is a structure of quasi DG category on Symb(S) defined as follows. For a finite

sequence of symbols of the form (Xi/S, ri), let

F
(
(X1/S, r1), · · · , (Xn/S, rn)

)
be the complex F (X1, · · · , Xn) with respect to the sequence of dimensions

[i, i+ 1] 7→ dimXi+1 − ri+1 + ri , i = 1, · · · , n− 1.

For any sequence of symbols Ki, define the complex F (K1, · · · , Kn) by linearity.
We thus have the complexes F (K1, · · · , Kn|S), and maps σS S′ , φK satisfying the properties

as before.
The class of objects Symb(S), together with these complexes and maps, still denoted

Symb(S). It will be proven in a later section that this forms a quasi DG category.

Remark. There is the structure of a category on Symb(S) as in [4]. This is not used in
this paper, and we refer the reader to [4]for details. Let us only say that the homomorphism
group is

Hom((X/S, r), (Y/S, s) ) = CHdimY−s+r(X ×S Y )

and the composition is to be defined appropriately.

3 Distinguished subcomplexes with respect to constraints

In §1 we discussed distinguished subcomplexes of the form Z(M1)⊗̂ · · · ⊗̂Z(Mn) for a sequence of
fiberingsMi on [1, n]. There are other forms of distinguished subcomplexes of the tensor product
Z(M1)⊗ · · · ⊗Z(Mn). For example if Mi is a sequence of fiberings on [1, n+1] and an element
f ∈ Z(Mn+1) is given, we may want to consider a subcomplex of Z(M1)⊗̂ · · · ⊗̂Z(Mn) generated
by α1 ⊗ · · · ⊗ αr that is properly intersecting with f . We will explain such generalizations in
(3.1), (3.2).

In (3.3)-(3.5) we proceed to discuss variants where Z(Mi) is replaced with Z(Mi,Ui), F(I)
or F (I). In (3.5) we consider the complex F (I|S) as defined in §2, and show typically a result
as follows. If J is another finite ordered set with tm(I) = in(J) = c, and f(J |T ) ∈ F (J |T ) an
element, there is a distinguished subcomplex [F (I|S)]f of F (I|S) such that the map

(−)⊗ f : [F (I|S)]f → F (I ∪ J |S ∪ {c} ∪ T )

is defined. In [8]we will only be concerned with F (I|S) and its distinguished subcomplexes.
The rest of this section (3.6)-(3.9) has to do with a particular example of a distinguished

subcomplex. Such a subcomplex appears in [8], where we construct the complex F(K1, · · · , Kn)
for a sequence of diagrams Ki. So we suggest the reader to read this part only when it is needed
in [8]

(3.1) We give a prototype for the distinguished subcomplexes which appear in this section.
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Let I = [1, n] be a sub-interval of I = [−N,N ′]. Let Mi (i = −N, · · · , N ′) and Yi (−N ≤
i ≤ N ′ − 1) be smooth varieties with smooth maps Mi → Yi and Mi+1 → Yi, namely Mi is
a sequence of fiberings indexed by I. One has the product M−N × · · · ×MN ′ and a subspace
M[−N,N ′], the fiber product.

Assume given a set of elements fi ∈ Z(Mi,mi) for i ∈ [−N,N ′]−[1, n], which are irreducible,
non-degenerate, satisfying the following condition: The set {fi (i ∈ [−N,N ′] − [1, n]), faces }
is properly intersecting in M[−N,N ′] ×□∗. Define the quasi-isomorphic subcomplex

[Z(M1)⊗̂ · · · ⊗̂Z(Mn)]{fi}

to be the subcomplex of Z(M1)⊗̂ · · · ⊗̂Z(Mn) generated by elements α1 ⊗ · · · ⊗ αn, with each
αi irreducible, such that the set

{α1, · · · , αn, fi (i ∈ [−N,N ′]− [1, n]), faces }

is properly intersecting in M[−N,N ′].
We show this is a distinguished subcomplex. Indeed consider the set of cycles

V = {M[−N,N ′], fi (i ∈ [−N,N ′]− [1, n])}

in M−N × · · · × MN ′ ; together with the faces it is properly intersecting. By the lemma in
(1.7), the required condition is equivalent to {α1, · · · , αn, V, faces} being properly intersecting
in M−N × · · · ×MN ′ . Thus the complex is of the type of Example in (1.6.1).

The following properties are obvious from the definitions.
(1) For eachm with n ≤ m ≤ N ′, one has a similarly defined complex [Z(M1)⊗̂ · · · ⊗̂Z(Mm)]{fi};

to be precise one uses only the cycles fi with i ∈ [−N,N ′]− [1,m]. There is a map

(−)⊗ fm+1 : [Z(M1)⊗̂ · · · ⊗̂Z(Mm)]f → [Z(M1)⊗̂ · · · ⊗̂Z(Mm+1)]f

that sends α1⊗ · · · ⊗αm to α1⊗ · · · ⊗αm⊗ fm+1. The same holds for the map fi⊗ (−), i < 0.
(2) If I1, · · · , Ir is a partition of [1, n], the product induces a map

ρ(I1, · · · , Ir) : [Z(M1)⊗̂ · · · ⊗̂Z(Mn)]f → [Z(MI1)⊗̂ · · · ⊗̂Z(MIr)]f .

(3.2) To generalize the above it will be convenient to state the relevant structure of the cycle
complex as axioms. Axioms (a)-(c) are evidently satisfied for the cycle complex. Axiom (d)
consists of the existence of distinguished subcomplexes, that are generalizations of the above
prototype.

(3.2.1) Distinguished subcomplex with respect to a constraint. The complex Z(M, •) has
the following structure.

(a)(set of generators) There is a set S(M,m) such that Z(M,m) is free on S(M,m). (Specif-
ically it is the set of irreducible non-degenerate admissible cycles.) S(M,m) is additive in M ,
namely if M = M ′ ⨿M ′′, then S(M,m) = S(M ′,m)⨿ S(M ′′,m).

(b)(notion of proper intersection) Let Mi be a sequence of fiberings indexed by [1, n]. If A
is a subset of [1, n] and {αi ∈ S(Mi,mi) | i ∈ A} is a set of elements indexed by A, we are
given whether or not the set {αi| i ∈ A} is properly intersecting. (Instead of saying {αi , faces }
is properly intersecting, we may just say {αi} is properly intersecting.) We have:
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• If {αi| i ∈ A} is properly intersecting, for any subset B of A, {αi| i ∈ B} is properly
intersecting.

• Let A and A′ be subsets such that tm(A) + 1 < in(A′) (A and A′ are not adjacent).
If {αi| i ∈ A} and {αi| i ∈ A′} are properly intersecting sets indexed by A and A′

respectively, the union {αi| i ∈ A ∪ A′} is also properly intersecting.

• If {α1, · · · , αn} is properly intersecting, then for any i, writing ∂αi =
∑

ciνβν with
βν ∈ S(Mi,mi − 1), each set

{α1, · · · , αi−1, βν , αi+1, · · · , αn}

is properly intersecting. In other words, the notion of proper intersection is compatible
with ∂.

• Assume Mi = M ′
i ⨿M ′′

i and αi ∈ S(M ′
i) for i ∈ A. Then {αi ∈ S(Mi)|i ∈ A} is properly

intersecting if and only if {αi ∈ S(M ′
i)|i ∈ A} is properly intersecting.

Let Z(M1)⊗̂ · · · ⊗̂Z(Mn) be the submodule generated by α1⊗· · ·⊗αn, where αi ∈ S(Mi,mi)
and {α1, · · · , αn} is properly intersecting. This is a subcomplex by the third property. It is
additive in each variable Mi.

(c)(product map) When {α1, · · · , αn} with αi ∈ S(Mi,mi) is properly intersecting, the
product α1 ◦ · · · ◦ αn ∈ Z(M1 ⋄ · · · ⋄Mn,m1 + · · ·mn) is defined. For this product, we have:

• The product gives a map of complexes ρ : ⊗̂Z(Mi)→ Z(M1 ⋄ · · · ⋄Mn).

• More generally if I1, · · · , Ir is a partition of [1, n], and αIj ∈ Z(MIj) is the product of αi’s
for i ∈ Ij, then the set {αI1 , · · · , αIr} is properly intersecting. Further the resulting map
ρ(I1, · · · , Ir) : ⊗̂Z(Mi)→ ⊗̂Z(MIj) is a map of complexes.

• The product ρ(I1, · · · , Ir) satisfies associativity as in (1.8).

(d)(distinguished subcomplexes) Let I be a finite (totally) ordered set, and (Mi)i∈I be a
collection of smooth varieties indexed by I (we do not assume given a sequence of varieties on
I). We will consider distinguished subcomplexes of

⊗
i∈I Z(Mi) obtained specifically as follows.

The basic type is (d-1). By taking tensor products and finite intersections we get (d-2) and
(d-3).

(d-1) Let I be a finite ordered set and I ↪→ I an inclusion. The image of I need not be a
sub-interval of I. Then there is a partition I1, · · · , Ir of I such that

• The image of each Ia is a sub-interval of I.

• For each a, tm(Ia) + 1 < in(Ia+1) (Ia are not adjacent to each other).

I1 I2
I

Assume given a sequence of fiberings Mi indexed by I, extending the given Mi on I. Specif-
ically we must give Mi for i ∈ I, Yi for i ∈ I− {tm(I)} and maps from M to Y .
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Let f = (fj) be a set of properly intersecting elements fj ∈ S(Mj,mj), where j varies over
a subset A of I− I. Let I ′ be a subset of I. The set of data consisting of

I ↪→ I; M on I; I ′; f = (fj)

is called a constraint (the set fj ∈ S(Mj,mj) itself is also called a constraint). Then the
subcomplex generated by ⊗i∈I αi, where the set

{αi (i ∈ I ′), fj (j ∈ A) }

is properly intersecting, is a quasi-isomorphic subcomplex of
⊗

i∈I Z(Mi). This subcomplex is
denoted

[
⊗
i∈I

Z(Mi)]I,I′;f ,

or [
⊗

i∈I Z(Mi)]f , and called the distinguished subcomplex with respect to (I, I ′; f), or {f}.
If I = [1, n], the image of I is a sub-interval, I ′ = I and f is empty (namely A is empty)

then the corresponding subcomplex is just ⊗̂i∈IZ(Mi). For the prototype discussed before,
I = [1, n], I = [−N,N ′], A = I − I, and I ′ = I. Generalizing the notation for the prototype
case, if I ′ = I, the subcomplex is written

[
⊗̂
i∈I1

Z(Mi)⊗
⊗̂
i∈I2

Z(Mi)⊗ · · · ⊗
⊗̂
i∈Ir

Z(Mi)]f .

(The hat over Ia indicates the cycles αi for i ∈ Ia are properly intersecting.) If in addition f is

empty, it coincides with
⊗̂

i∈I1 Z(Mi)⊗
⊗̂

i∈I2 Z(Mi)⊗ · · · ⊗
⊗̂

i∈Ir Z(Mi).

(d-2) One can consider tensor products of subcomplexes in (d-1), as follows. Let I1, · · · , Is
be a partition of I. For each k assume given a finite ordered set Ik and an inclusion Ik ↪→ Ik,
a sequence of varieties Mk

i indexed by Ik, extending the given Mi on Ik, properly intersecting
elements fk = {fk

j ∈ S(Mk
j ,m

k
j ) | j ∈ Ak ⊂ Ik − Ik}, and a subset (Ik)′ ⊂ Ik. The set of data

{(I1, · · · , Is); Ik ↪→ Ik; Mk on Ik; (Ik)′; fk}k

is called a constraint. Note that there is no imposed relation between Ik’s for distinct k’s. The
image of Ik in Ik need not be a sub-interval. If s = 1 the data is the same as in (d-1).

I2

I1

I3

I1

I2

Then the subcomplex of
⊗

i∈I Z(Mi) generated by ⊗i∈I αi, where for each k the set

{αi (i ∈ (Ik)′ ), fk
j (j ∈ Ak) }

is properly intersecting, is a quasi-isomorphic subcomplex. If the collection (Ik) is denoted by
I, (fk) by f , ((Ik)′ ) by I ′, then the subcomplex may be denoted [

⊗
i∈I Z(Mi)]I,I′;f . Since there

is no interaction between Ik’s, the subcomplex coincides with the tensor product

[
⊗
i∈I1

Z(Mi)]I1,(I1)′;f1 ⊗ · · · ⊗ [
⊗
i∈Is

Z(Mi)]Is,(Is)′;fs .
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(d-3) The intersection of a finite number of subcomplexes of type (d-2) is a distinguished
subcomplex.

For subcomplexes of type (d-1) it is described as follows. For each ν = 1, · · · , c, let I ↪→ I(ν)
be an inclusion into a finite ordered set. LetM(ν)i be an extension ofMi to I(ν), f(ν) = (f(ν)j)
be properly intersecting elements where j ∈ A(ν) ⊂ I(ν)−I, and I(ν)′ ⊂ I a subset. No relation
is imposed between the data for distinct ν. One thus has a finite set of constraints

{I ↪→ I(ν); M(ν) on I(ν); I(ν)′; f(ν)}ν .

For each ν one has the distinguished subcomplex [
⊗

i∈I Z(Mi)]I(ν),I(ν)′;f(ν); the intersection∩
ν

[
⊗
i∈I

Z(Mi)]I(ν),I(ν)′;f(ν)

is again a quasi-isomorphic subcomplex, and called the distinguished subcomplex with respect
to the finite set of constraints.

We can do the same for subcomplexes of type (d-2). For each ν = 1, · · · , c, consider a
constraint: a partition I(ν)1, · · · , I(ν)s(ν) of I, and for each k = 1, · · · , s(ν),

I(ν)k ↪→ I(ν)k; an extension M(ν)k of M to Ik; (I(ν)k)′ ⊂ I(ν)k; f(ν)k = (f(ν)kj ) .

Take the corresponding distinguished subcomplex, and then take the intersection for ν. The
resulting subcomplex is still a distinguished subcomplex. This is the most general type of
distinguished subcomplexes in (d). It is still denoted by [

⊗
i∈ Z(Mi)]I,I′;f .

One shows the tensor product of complexes of type (d-3) is again of the same type. So it
is the smallest class of subcomplexes containing (d-1), and closed under taking tensor product
and finite intersections.

By a distinguished subcomplex (with respect to a constraint) we mean any one of type (d),
especially (d-3).

(e)(properties) It is evident from the definition that subcomplexes in (d) have the following
properties.

• In case (d-1), for j ∈ A one has a map

(−)⊗ fj : [
⊗
i∈I

Z(Mi)]I,I′;f → [
⊗

i∈I∪{j}
Z(Mi)]I,I′∪{j};f

that sends ⊗i∈I αi to (⊗i∈I αi)⊗ fj. Similarly for the cases (d-2) and (d-3).

• In case (d-1), if I ′ = I, I is a sub-interval of I (namely r = 1), and J1, · · · , Js is a partition
of I, the product induces a map

ρ(J1, · · · , Js) : [
⊗̂
i∈I

Z(Mi)]f → [
⊗̂
i

Z(MJi)]f .

More generally assume I ′ is a sub-interval of I and J1, · · · , Js a partition of I ′. Let
Ī = (I − I ′) ∪ {1, · · · , s} be the finite ordered set obtained from I by replacing I ′ by
{1, · · · , s}; it parametrizes the set of varieties Mi for i ∈ I − I ′ and MJj for j = 1, · · · , s.
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If Ī = (I − I ′) ∪ {1, · · · , s} is the finite ordered set obtained from I in a similar manner,
there is an injection Ī ↪→ Ī, and there is a sequence of varieties on Ī extending {Mi,MJj}.
There is the product map (product within I ′)

ρ(J1, · · · , Js) : [
⊗
i∈I

Z(Mi)]I,I′;f → [
⊗

i∈I−I′
Z(Mi)⊗

⊗
j

Z(MJj)]̄I,{1,··· ,s};f

Similarly for the cases (d-2) and (d-3).

(3.2.2) Generalizations of properly intersecting sets. In (3.2.1)(b) we discussed the condi-
tion of proper intersection for αi ∈ S(Mi,mi). Here are some generalizations.

(1) For a set of elements αi ∈ Z(Mi,mi), i = 1, · · · , n, let us say the set {α1, · · · , αn } is
properly intersecting if the following condition is satisfied: Let A be set of i such that αi ̸= 0.
For i ∈ A write αi =

∑
ciναi ν with αi ν irreducible non-degenerate. Then for any choice of νi

for i ∈ A, the set
{αi νi | i ∈ A }

is properly intersecting.

(2) Let L1, · · · , Lb be disjoint intervals of [1, n], and αj ∈
⊗̂

i∈Lj
Z(Mi,mi) for j = 1, · · · , b.

Writing each αj as a sum of tensors of elements in S(Mi,mi), one can define the condition of
proper intersection for the set {α1, · · · , αb}.

(3) Let J1, · · · , Js be disjoint intervals of [1, n], and αi ∈ Z(MJi ,mi). One can define for
{α1, · · · , αs} the condition of proper intersection. More generally, assume each Ji is partitioned

into Ji1, · · · , Ji ki ; then for a set of elements αi ∈
⊗̂

j Z(MJi j), i = 1, · · · , s, one can define the
condition of proper intersection.

(3.2.3) Generalizations of constraints. Now that the notion of proper intersection has been
generalized, we can also generalize the notion of constraints and the corresponding distinguished
subcomplexes. For simplicity consider only the type (d-1), but one can do the same for (d-2)
and (d-3).

(1) Keep the notation of (d-1). Let Jj ⊂ I− I, j = 1, · · · , s be a disjoint set of intervals and
fj ∈ Z(MJj) be a properly intersecting set of elements. One can then form the corresponding
distinguished subcomplex.

(2) More generally, let Jj ⊂ I− I, j = 1, · · · , s be a disjoint set of intervals in I− I, where

each Jj is partitioned into Jj1, · · · , Jj ki . Let fj ∈
⊗̂

λ Z(MJj, λ), j = 1, · · · , s, be a properly
intersecting set of elements. One has the corresponding distinguished subcomplex.

In all these variants the distinguished subcomplexes are denoted [
⊗

i∈I Z(Mi)]I,I′;f .

(3.3) Distinguished subcomplexes of Z(M1,U1) ⊗ · · · ⊗ Z(Mn,Un) with respect to constraints.
Let M and U be as in (1.2). We can repeat all of (3.2) for the complex Z(M,U). Since
Z(M,U) =

⊕
I Z(UI), where I varies over subsets of the indexing set of U, an element α ∈

Z(M,U) is of the form
∑

I αI with αI ∈ Z(UI). There is a filtration of Z(M,U) by subcomplexes
such that the successive quotients are direct sums of Z(UI).

Since Z(UI) is Z-free on the set S(UI), Z(M,U) is free on

S(M,U) := ⨿IS(UI) .
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LetMi be a sequence of fiberings indexed by [1, n], and let Ui be a finite covering of Ui ⊂Mi.
For elements αi ∈ S(Mi,Ui), i varying over a subset A ⊂ [1, n], we have defined in §1 when
{αi} is properly intersecting. The properties in (3.2.1)(b) are satisfied.

When αi, i = 1, · · · , n are properly intersecting the product α1 ◦ · · · ◦αn ∈ Z(M1 ⋄M2 ⋄ · · · ⋄
Mn,U1 ⨿ · · · ⨿ Un) is defined. The properties in (3.2.1)(c) are satisfied.

One can proceed as in (3.2.1)(d), except one replaces Z(Mi) with Z(Mi,Ui), to define
distinguished subcomplexes of tensor product

⊗
Z(Mi,Ui) with respect to a constraint. For

example, as in (d-1), one can define a distinguished subcomplex of the form

[
⊗
i∈I

Z(Mi,Ui)]I,I′;f

where fj ∈ S(Mj,Uj), j ∈ A ⊂ I − I, is a properly intersecting set. One shows this is a
quasi-isomorphic subcomplex of

⊗
i∈I Z(Mi,Ui) by considering a filtration and reducing to the

case (3.2.1).
Generalization of proper intersection (3.2.2) and of constraints (3.2.3) can be given in the

same manner.

(3.4) Distinguished subcomplexes of F(I|Σ) with respect to constraints. From §2 recall F(I) =
⊕F(I, J). Since F(I, J) = Z(XJ

I ,U(J) ) is Z-free on S(XJ
I ,U(J) ), F(I) is Z-free on

SF(I) :=
⨿
J

S(XJ
I ,U(J) ) .

There is a filtration on F(I) by subcomplexes such that the successive quotients are direct sums
of F(I, J) as complexes. To show the subcomplexes appearing in (3.4.1) and (3.4.2) below are
quasi-isomorphic subcomplexes, we use this filtration and reduce to the case Z(XJ

I ,U(J) ).

To a segmentation of I = [1, n] into sub-intervals I1, · · · , Ir, and a set of subsets Ji ⊂
◦
Ii,

there corresponds a sequence of fiberings consisting of XJ1
I1
, · · · , XJr

Ir
. (In this subsection all

intervals are of cardinality ≥ 2.) For simplicity we often write XI for XJ
I . If ik = tm Ik, the

sequence looks like:

XI1 XI2

Xi1

· · ·
XIr

Xir−1

.

More generally, let I1, · · · , Ir be sub-intervals of I such that tm(Ii) ≤ in(Ii+1) for each i
(then we say that the set {Ii} is almost disjoint). We can complement it to a segmentation of I
by adding sub-intervals of cardinality 2, [j, j + 1], not contained in any Ii. There corresponds
a sequence of fiberings consisting of XIi and X[j,j+1]. So for elements αi ∈ SF(Ii), one has

the condition for the set {α1, · · · , αr} be properly intersecting on XJ
I , where J = ∪Ji. The

properties (3.2.1)(b) are satisfied.
If I1, · · · , Ir is a segmentation of I, and {αi ∈ SF(Ii)} is a properly intersecting set, the

product α1 ◦ · · · ◦ αr ∈ F(I) is defined. The properties (3.2.1)(c) are satisfied with obvious
changes in notation.

What we will describe in the rest of this subsection is a repetition of (3.2.1)(d) in this
setting. There is to be no essential change, but notation appears different. We start with the
counterpart of the subcomplex Z(M1)⊗̂ · · · ⊗̂Z(Mn).
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(3.4.1) Definition. For a segmentation I1, · · · , Ic of I, let

F(I1)⊗̂F(I2)⊗̂ · · · ⊗̂F(Ir)

be the quasi-isomorphic subcomplex of F(I1) ⊗ F(I2) ⊗ · · · ⊗ F(Ir) generated by elements
α1 ⊗ · · · ⊗ αr, where αi ∈ SF(Ii) are properly intersecting.

If Σ ⊂ (1, n) is the subset corresponding to the segmentation, we also write F([1, n]|Σ) for
the distinguished subcomplex. The same definitions apply to any subset I of [1, n].

This definition coincides with the one in (2.5), which is F(I|Σ) =
⊕

J F(I, J|Σ).

According to (3.2.2), the notion of proper intersection can be generalized as follows. Let

I1, · · · , Ir be almost disjoint in I, and Σi ⊂
◦
Ii. For elements αi ∈ F(Ii|Σi), i = 1, · · · , r, one

has the condition of proper intersection.

(3.4.2) Let I be a finite ordered set, L1, · · · , Lr be almost disjoint sub-intervals such that
∪Li = I; equivalently, in(L1) = in(I), tm(Li) = in(Li+1) or tm(Li)+1 = in(Li+1), and tm(Lr) =
tm(I). Assume given a sequence of varieties Xi on I. Consider the complex F(L1)⊗· · ·⊗F(Lr).
Following (3.2.1)(d), we give the definition of its distinguished subcomplexes.

(d-1) This corresponds to (3.2.1)(d-1). First note there are subcomplexes described as
follows. Let I1, · · · , Ic be a set of almost disjoint sub-intervals of I with union I, that is
coarser than L1, · · · , Lr; this means each Ia is a union of Li’s, and if Ia, Ia+1 ⊂ Li, then

tm(Ia) = in(Ia+1). Then there are subsets Σi ⊂
◦
Ii such that the segmentations of Ii by Σi,

when combined for all i, give precisely the Li’s. For our convenience we call such I1, · · · , Ic
a regrouping of L1, · · · , Lr. Then the complex F(I1|Σ1) ⊗ · · · ⊗ F(Ic|Σc) is a distinguished
subcomplex of F(L1)⊗· · ·⊗F(Lr). The coarser the regrouping is, the smaller the corresponding
subcomplex is. If Ia and Ia+1 satisfy tm(Ia) = in(Ia+1) = t, then replacing Ia, Ia+1 by Ia ∪ Ia+1

gives another regrouping, then the corresponding subcomplex

F(I1|Σ1)⊗ · · · ⊗ F(Ia ∪ Ia+1|Σa ∪ {t} ∪ Σa+1)⊗ · · · ⊗ F(Ic|Σc)

is a subcomplex of F(I1|Σ1)⊗ · · · ⊗ F(Ic|Σc).
Let I ↪→ I be an inclusion into another finite ordered set I such that the image of each Ia is

a sub-interval; we say the inclusion is compatible with (I1, · · · , Ic). For example, let I = [1, 7],
I1 = [1, 3], I2 = [3, 4], I3 = [5, 7]. Let I = [0, 9] and I ↪→ I be defined by i 7→ i for i ≤ 4, and
i 7→ i+ 1 for i ≥ 5.

1 3 4 5 7

Assume given an extension of X to I. Let J1, · · · , Js ⊂ I be sub-intervals of I such that the set
{Ii, Jj}i,j is almost disjoint, and fj ∈ F(Jj), j = 1, · · · , s be a properly intersecting set. Then
one can define the distinguished subcomplex

[F(I1|Σ1)⊗ · · · ⊗ F(Ic|Σc)]I;f .
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It is the subcomplex generated by α1 ⊗ · · · ⊗ αc, αi ∈ F(Ii|Σi), such that {α1, · · · , αc, fj (j =
1, · · · , s) } is properly intersecting.

It is obvious to see this is a special case of (3.2.1)(d-1). From X on I we obtain a sequence
of fiberings consisting of XLi

and X[j,j+1] for [j, j + 1] ⊂ I − ∪Li; this extends to a sequence
consisting of XLi

and X[j,j+1] for [j, j + 1] ⊂ I − ∪Li. The regrouping specifies the set I ′ in
(3.2.1)(d-1).

Note that according to (3.2.2) the constraint can be generalized as follows. If Tj ⊂
◦
Jj are

subsets, one may take properly intersecting elements fj ∈ F(Jj|Tj).

(d-2) Tensor products of subcomplexes of type (d-1) are again of the same form. First we
note tensor products of complexes of the form F(L1)⊗ · · · ⊗F(Lr) are again of the same form.
Let I ′ be another finite ordered set, L′

1, · · · , L′
r′ almost disjoint sub-intervals with union I ′. Let

I∪I ′ denote the disjoint union of I and I ′, where i < i′ if i ∈ I, i′ ∈ I ′, and let X be a sequence
of varieties on I ∪ I ′. Then L1, · · · , Lr, L

′
1, · · · , L′

r′ are almost disjoint sub-intervals with union
I ∪ I ′. The corresponding complex is the tensor product

F(L1)⊗ · · · ⊗ F(Lr)⊗ F(L′
1)⊗ · · · ⊗ F(L′

r′) .

To describe tensor products of complexes of type (d-1), let I1, · · · , Is be almost disjoint
sub-intervals of I with union I.

For each k assume given the following data. Let Ik1 , · · · , Ikck be almost disjoint sub-intervals
of Ik such that ∪Iki = Ik. Each Iki is assumed to be a union of some of La’s. Let Ik be another
finite ordered set, and Ik ↪→ Ik be an embedding compatible with (Ik1 , · · · , Ikck). On Ik given
a sequence of varieties Xk

i that extends X on Ik. For distinct k, there is no relation between
Xk’s.

Given also sub-intervals Jk
j ⊂ Ik such that {Iki , Jk

j } is almost disjoint in Ik, and properly
intersecting elements fk

j ∈ F(Jk
j |T k

j ), where T k
j ⊂ (Jk

j )
◦. Let Σk

i ⊂ (Iki )
◦ be subsets such that

the segmentations of Iki by Σk
i , when combined for all k, i, give precisely La’s.

Then the distinguished subcomplex of the following form is defined:[ ⊗
k=1,··· ,s

(
F(Ik1 |Σk

1)⊗ · · · ⊗ F(Ikck |Σ
k
ck
)
)]

I;f .

This is no other than a tensor product of distinguished subcomplexes of type (d-1).
(d-3) One can take finite intersections of subcomplexes of type (d-2):
With the notation in (d-2), we fix I and La’s, and Xi. We let vary the choices of the

following data: sub-intervals Ik; and for each k sub-intervals Iki , inclusion Ik ↪→ Ik, extension
Xk to Ik, sub-intervals Jk

j and elements fk
j .

The subcomplex satisfies the following properties (we restrict to the case (d-1) for simplic-
ity).

Properties. (1) The [F(I1|Σ1) ⊗ · · · ⊗ F(Ic|Σc)]f is a quasi-isomorphic subcomplex of
F(I1|Σ1) ⊗ · · · ⊗ F(Ic|Σc). If J = Jν satisfies tm(Ii) = in(J) = c and tm(J) < in(Ii+1), then
one has a map

(−)⊗f(J |T ) : [F(I1|Σ1)⊗· · ·⊗F(Ic|Σc)]f → [F(I1|Σ1)⊗· · ·⊗F(Ii∪J |Σi∪{c}∪T )⊗· · ·⊗F(Ic|Σc)]f ;

similarly if tm(Ii) < in(J) and tm(J) = in(Ii+1). If tm(Ii) = in(J) = c and tm(J) = in(Ii+1) =
c′, one has

(−)⊗ f(J |T ) : [F(I1|Σ1)⊗ · · · ⊗ F(Ic|Σc)]f

→ [F(I1|Σ1)⊗ · · · ⊗ F(Ii ∪ J ∪ Ii+1|Σi ∪ {c} ∪ T ∪ {c′} ∪ Σi+1)⊗ · · · ⊗ F(Ic|Σc)]f .
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(2) If Σk ⊃ Σ′
k, there is the corresponding product map

ρ : [F(I1|Σ1)⊗ · · · ⊗ F(Ic|Σc)]f 7→ [F(I1|Σ′
1)⊗ · · · ⊗ F(Ic|Σ′

c)]f .

(3.5) Distinguished subcomplexes of F (I|S) with respect to a constraint. Keep the same nota-
tion from the previous subsection. According to the definition in §2, F (I) =

⊕
Σ F(I|Σ), where

Σ varies over subsets of
◦
I .

Recall F(I) is Z-free on SF(I). So F(I|Σ) is Z-free on SF(I|Σ), the subset of SF(I1)× · · · ×
SF(Ir) consisting of (α1, · · · , αr) which are properly intersecting. Thus F (I) is free on the set

SF (I) :=
⨿
Σ

SF(I|Σ) .

We can repeat (3.4) with F(I) replaced with F (I).
If I1, · · · , Ir is an almost disjoint set of sub-intervals of I = [1, n], and αi ∈ SF (Ii), one has

the condition of proper intersection for {α1, · · · , αr}. The properties (3.2.1)(b) are satisfied
with obvious changes. Unlike for F(I) there is no product α1 ◦ · · · ◦ αr.

(3.5.1) Definition. For a segmentation I1, · · · , Ic of I, let

F (I1)⊗̂F (I2)⊗̂ · · · ⊗̂F (Ir)

be the quasi-isomorphic subcomplex of F (I1) ⊗ F (I2) ⊗ · · · ⊗ F (Ir) generated by elements
α1 ⊗ · · · ⊗ αr, where αi ∈ SF (Ii) is a set of properly intersecting elements. If S ⊂ (1, n)
is the subset corresponding to the segmentation, we also write F (I|S) for the distinguished
subcomplex.

The complex is equal to ⊕
F(I1|Σ1)⊗̂ · · · ⊗̂F(Ir|Σr)

the sum over Σi ⊂
◦
Ii. Since each summand equals F(I|Σ), where Σ = (∪Σi) ∪ S, one has

F (I|S) =
⊕

Σ⊃S F(I|Σ), which agrees with the definition of F (I|S) given in §2.

(3.5.2) One can repeat (3.4.2). Let I be a finite ordered set, L1, · · · , Lr be almost disjoint
sub-intervals such that ∪Li = I; equivalently, in(L1) = in(I), tm(Li) = in(Li+1) or tm(Li)+1 =
in(Li+1), and tm(Lr) = tm(I). Assume given a sequence of varieties Xi on I. Consider the
complex F (L1)⊗ · · · ⊗ F (Lr). Below we only discuss its subcomplexes of type (d-1).

Let I1, · · · , Ic be a set of almost disjoint sub-intervals of I with union I, that is coarser

than L1, · · · , Lr; let Si ⊂
◦
Ii such that the segmentations of Ii by Si, when combined for all

i, give precisely the Li’s. Let I ↪→ I be an inclusion into a finite ordered set I such that the
image of each Ia is a sub-interval. Assume given an extension of X to I. Let J1, · · · , Js ⊂ I be
sub-intervals of I such that the set {Ii, Jj}i,j is almost disjoint, and fj ∈ F (Jj|Tj), j = 1, · · · , s
be a properly intersecting set. Then one can define the distinguished subcomplex

[F (I1|S1)⊗ · · · ⊗ F (Ic|Sc)]I;f .

It is the subcomplex generated by α1 ⊗ · · · ⊗ αc, αi ∈ F (Ii|Si), such that {α1, · · · , αc, fj (j =
1, · · · , s) } is properly intersecting.
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The discussions for tensor products and finite intersections are parallel to (3.4.2). We have
the same properties as Property (1) in (3.4).

(3.6) Variant of (3.2). We explain a particular example of (3.2) in steps (A) to (C). The rest
of this section will be used only in Par II.

(A) This is a special case of (3.2.1)(d-1), but we describe it for clarity. Let I be a finite
ordered set, and I a sub-interval. (Recall in (3.2.1)(d-1), I need not be a sub-interval.) Assume
given a sequence of fiberings Mi indexed by I. Note one has the space MI, the fiber product of
Mi for i ∈ I.

Assume given, for each interval J ⊂ I− I of cardinality ≥ 1, an element f(J) ∈ Z(MJ ,mJ);
they are subject to the following condition: For any disjoint set of intervals J1, · · · , Ja contained
in I− I, the set

{f(J1), · · · , f(Ja), faces }

is properly intersecting in MI ×□∗.

Then the subcomplex of
⊗̂

i∈I Z(Mi) generated by ⊗i∈Iαi satisfying the following condition is
distinguished: For each disjoint set of intervals J1, · · · , Ja contained in I− I, the set

{αi (i ∈ I), f(J1), · · · f(Ja), faces }

is properly intersecting in MI. The subcomplex is denoted [
⊗̂

i∈I Z(Mi)]I;f or [
⊗̂

i∈I Z(Mi)]f .
If J satisfies tm(I) + 1 = in(J), there is a map

(−)⊗ f(J) : [
⊗̂
i∈I

Z(Mi)]f → [
⊗̂
i∈I

Z(Mi)⊗̂Z(MJ)]f

that sends ⊗i∈I αi to ⊗i∈I αi ⊗ f(J). The target is the distinguished subcomplex of the same
kind associated to the sequence consisting of Mi for i ∈ I and MJ . More precisely let I ∪ {J}
be the finite ordered set obtained by adjoining to I a single point J ; any element of I is smaller
than J . Let I/J be the finite ordered set obtained from I by contracting J to a point. Then
I ∪ {J} is a sub-interval of I/J . There is a sequence of varieties indexed by I/J , in which J
corresponds to MJ . To J ′ ⊂ I/J − (I ∪ {J}) there corresponds f(J ′) ∈ Z(MJ ′). Then the

target complex is of the form [
⊗̂

I Z(Mi)⊗̂Z(MJ)]I/J ;f .
If J satisfies tm(J) + 1 = in(I), one has a similar map f(J)⊗ (−).
As in (3.2), one can generalize the notion of constraint and take elements f(J) ∈

⊗̂
λ Z(MJλ),

where Jλ is a partition of J .
If I1, · · · , Ir is a partitioned of I, there is the product map

ρ : [
⊗̂
i∈I

Z(Mi)]f → [
⊗̂

i=1,··· ,r
Z(MIi)]f .

(B) Let I1 = [1, n] and I2 = [m, ℓ] be sub-intervals of I1, I2, respectively. Assume given are:
• a sequence of fiberings Mi on I1: (Mi → Yi ←Mi+1), and
• a sequence of fiberings Li on I2: (Li → Zi ← Li+1).

If n < m assume that (n,m) ⊂ I1 ∩ I2, namely m − 1 ≤ tm(I1), in(I2) ≤ n + 1, and (Mi) and
(Li) coincide on (n,m) as a sequence of fiberings, namely Mi = Li for i ∈ (n,m), Yi = Zi for

48



i ∈ [n,m − 1], and the projections coincide. In the following figure a solid line segment (resp.
dotted line segment) represents I (resp. I).

n tm(I1)

in(I2) m

I1

I2

One can then define another sequence of fiberings (M̃i, Ỹi) on Ĩ := [in(I1), tm(I2)] by

M̃i =


Mi if i ≤ n,

Mi = Li if n < i < m,

Li if i ≥ m.

We call it the glueing of Mi and Li along (n,m). The subset I1 ∪ I2 of Ĩ is an interval if
m = n+ 1. Note in this case the condition Mi = Li on (n,m) is vacuous.

In addition, assume given a constraining set of cycles, which consists of:
• for each interval J ⊂ I1− I1 an element f(J) ∈ Z(MJ), and for J ⊂ I2− I2 an element

g(J) ∈ Z(LJ). As in Step(A) one may take f(J) ∈
⊗̂

λ Z(MJλ) where {Jλ} is a partition of J .
For simplicity, though, we assume in the following f(J) ∈ Z(MJ). The general case is left to
the reader.

We require:
(i) For a disjoint set of intervals J1, · · · , Ja contained in I1 − I1, the set

{f(Jν) (ν = 1, · · · , a), faces }

is properly intersecting in MI1 . Similar condition with respect to Li and g(J).
(ii) If n < m, there is a further condition. We say an interval J is between I1 and I2 if

n < in(J) ≤ tm(J) < m; for such J we require f(J) = g(J) ∈ Z(MJ). Let J be an interval
contained in Ĩ− (I1 ∪ I2); then J is either to the left of I1, between I1 and I2, or to the right
of I2. Define f̃(J) ∈ Z(M̃J) by

f̃(J) =


f(J) if J is to the left of I1,

f(J) = g(J) if J is between I1 and I2,

g(J) if J is to the right of I2.

The set {f̃(J)} is the glueing of {f(J)} and {g(J)}.
We also require: For a disjoint set of intervals J1, · · · , Ja contained in Ĩ− (I1 ∪ I2), the set

{f̃(Jν) (ν = 1, · · · , a), faces } is properly intersecting in M̃Ĩ.

Given such data we will define a quasi-isomorphic complex

[
⊗̂
I1

Z(Mi) ⊗̃
⊗̂
I2

Z(Lj)]I1,I2;f,g

of the complex
⊗̂

i∈I1 Z(Mi)⊗
⊗̂

j∈I2 Z(Lj). It is generated by (α1⊗· · ·⊗αn)⊗ (βm⊗· · ·⊗βℓ),
with each αi or βj irreducible non-degenerate, such that the following conditions are satisfied:
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(i) For a disjoint set of intervals J1, · · · , Ja contained in I1 − I1, the set

{α1, · · · , αn, f(Jν) (ν = 1, · · · , a), faces }

is properly intersecting in MI1 . Similar condition for β’s and g(J).
(ii) Assume n < m. For a disjoint set of intervals J1, · · · , Ja contained in Ĩ− (I1 ∪ I2), the

set {α1, · · · , αn, βm, · · · , βℓ, f̃(Jν) (ν = 1, · · · , a), faces } is properly intersecting in M̃Ĩ. In
case n ≥ m, there is no condition (ii).

This is a distinguished subcomplex of the form (3.2.1)(d-3). The subcomplex, denoted
Z(I1; I2)f,g for short, has the following properties.

(1) Z(I1; I2)f,g is contained in Z(I1; I2) =
⊗̂

I1 Z(Mi) ⊗
⊗̂

I2 Z(Li). There are three cases
according to n = m− 1, n ≥ m, or n < m− 1. If m = n+ 1, Z(I1; I2)f,g is contained in

[⊗̂I1∪I2Z(M̃i)]f̃ ,

the distinguished subcomplex of ⊗̂I1∪I2Z(M̃i) = Z(M1)⊗̂ · · · ⊗ Z(Mn)⊗̂Z(Ln+1)⊗̂ · · · ⊗̂Z(Lℓ)
with respect to the constraint {f̃(J)}. If n ≥ m,

Z(I1; I2)f,g = [
⊗̂
I1

Z(Mi)]f ⊗ [
⊗̂
I2

Z(Li)]g .

(2) Assume that J satisfies tm(I1) + 1 = in(J), but not necessarily that it lies between I1

and I2. Then one has the map

(−)⊗ f(J)⊗ id : Z(I1; I2)f,g → Z(I1 ∪ {J}; I2)f,g

which sends (⊗i∈I1αi) ⊗ (⊗j∈I2βj) to (⊗i∈I1αi ⊗ f(J)) ⊗ (⊗j∈I2βj). To explain the target,
I1 ∪ {J} is the finite ordered set which is the disjoint union of I1 and one point {J} (J is
viewed as a point); it is regarded as a sub-interval of I1/J , the finite ordered set obtained
from I1 by contracting J to a single point. There is a sequence of varieties on I1/J , in which
J corresponds to MJ . To (I ′ ∪ {J} ↪→ I/J,M ; f) and (I2 ↪→ I2, L, g) we may associate the
distinguished subcomplex Z(I1 ∪ {J}; I2)I1/J,I2;f,g. Note the target group Z(I1 ∪ J ; I2)f,g may
be of type n ≥ m in the classification in (1).

If J satisfies tm(J) = in(I1)− 1, one has

f(J)⊗ (−)⊗ id : Z(I1; I2)f,g → Z({J} ∪ I1; I2)f,g .

Similarly one has the maps id⊗g(J)⊗(−) : Z(I1; I2)f,g → Z(I1; {J}∪I2)f,g and id⊗(−)⊗g(J) :
Z(I1; I2)f,g → Z(I1; I2 ∪ {J})f,g.

(3) Given a partition of I1 (or I2) there is the product map, as in (A).

(C) For a further generalization assume given, for k = 1, · · · , c,
• finite ordered set Ik and a sub-interval Ik, and
• a sequence of fiberings Mk

i on Ik,
satisfying the following condition: If n = tm(Ik) < m = in(Ik+1), one has (n,m) ⊂ Ik ∩ Ik+1,
and the sequences Mk, Mk+1 coincide on (n,m).

Note if r < s and tm(Ik) < in(Ik+1) for k = r, · · · , s − 1, one can “glue” Mk, k = r, · · · , s
to another sequence of fiberings M̃ on Ĩ := [in(Ir), tm(Is)]. One has inclusion Ir ∪ · · · ∪ Is ⊂ Ĩ.

As a constraint, given a collection of cycles
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• for each interval J ⊂ Ik − Ik, an element fk(J) ∈ Z(Mk
J ),

satisfying the following condition:
(i) For a disjoint set of intervals J1, · · · , Ja contained in Ik − Ik, the set

{fk(Jν) (ν = 1, · · · , a), faces }

is properly intersecting in Mk
Ik .

(ii) If n = tm(Ik) < m = in(Ik+1) and J is an interval between Ik and Ik+1, then fk(J) =
fk+1(J) ∈ Z(Mk

J ).
If r < s and tm(Ik) < in(Ik+1) for k = r, · · · , s − 1, one can glue fk(J) so that for each

J ⊂ Ĩ−(Ir∪· · ·∪Is) there corresponds f̃(J) ∈ Z(M̃J). We require, for a disjoint set of intervals
J1, · · · , Ja contained in Ĩ− (Ir ∪ · · · ∪ Is), the set {f̃(Jν), faces } is properly intersecting in M̃Ĩ.

We will define a distinguished subcomplex denoted

[
⊗̂
I1

Z(M1
i )⊗̃

⊗̂
I2

Z(M2
i )⊗̃ · · · ⊗̃

⊗̂
Ic

Z(M c
i )]f1,··· ,fc ,

or Z(I1; · · · ; Ic)f for short. It is generated by tensors

(⊗i∈I1α
1
i )⊗ · · · ⊗ (⊗i∈Icα

c
i), αk

i ∈ Z(Mk
i ) ,

satisfying the following condition. Let αk = {αk
i | i ∈ Ik}.

• For each pair r ≤ s as in (ii) above, and a set of intervals J1, · · · , Ja contained in
Ĩ− (Ir ∪ · · · ∪ Is), the set

{αr, · · · , αs, f̃(Jν), faces}
is properly intersecting in M̃Ĩ. (If r = s = k, the condition reads: For each k, the set
{αk, f(Jν) , faces } is properly intersecting in Mk

Ik . ) The subcomplex is distinguished, and
satisfies the following properties.

Properties. (1) Z(I1; · · · ; Ic)f is a subcomplex of
⊗̂

I1 Z(M
1
i ) ⊗

⊗̂
I2 Z(M

2
i ) ⊗ · · · ⊗⊗̂

Ic Z(M
c
i ). For r < s as in (ii) above, if Ir ∪ · · · ∪ Is is an interval,

Z(I1; · · · ; Ic)f ⊂ Z(I1; · · · ; Ir−1; Ir ∪ · · · ∪ Is; · · · ; Ic)f̃ .

The latter is the distinguished subcomplex associated with the intervals Ik ⊂ Ik for k ̸= r, · · · , s,
Ir ∪ · · · ∪ Is ⊂ Ĩ, the sequences Mk for k ̸= r, · · · , s and M̃ , and the constraint consisting of
fk(J), k ̸= r, · · · , s, and f̃(J).

(2) For an interval J with tm(Ik) + 1 = in(J), one has the map

Z(I1; · · · ; Ic)f → Z(I1; · · · ; Ik ∪ {J}; · · · ; Ic)f

which sends (⊗i∈I1α
1
i )⊗ · · ·⊗ (⊗i∈Icα

c
i ) to (⊗i∈I1α

1
i )⊗ · · ·⊗ (⊗i∈Ikα

k
i ⊗ f(J))⊗ · · ·⊗ (⊗i∈Icα

c
i ).

Similarly for the operation f(J)⊗ (−) on the k-th spot.
(3) Given a partition of Ik, there is the corresponding product map.

(3.7) Variant of (3.3). We have variants of (3.3), as (3.6) for (3.2). We have only to replace
Z(Mi) with Z(Mi,Ui). In Step (C), one has a distinguished subcomplex of the form

[
⊗̂
I1

Z(M1
i ,U

1
i )⊗̃

⊗̂
I2

Z(M2
i ,U

2
i )⊗̃ · · · ⊗̃

⊗̂
Ic

Z(M c
i ,U

c
i)]f1,··· ,fc ,
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having the same properties as in (3.6).

(3.8) Variant of (3.4). In the setting of (3.4), the variant of (3.7) can be described as follows.
Assume given:

• For each k = 1, · · · , c, finite ordered set Ik, a sub-interval Ik ⊂ Ik, a subset Σk ⊂
◦
I k,

and a sequence of smooth varieties Xk
• indexed by Ik.

It is required that if n = tm(Ik) ≤ m = in(Ik+1), then [n,m] ⊂ Ik ∩ Ik+1 and Xk
i and Xk+1

i

coincide on [n,m]. If r < s and tm(Ik) ≤ in(Ik+1) for k = r, · · · , s − 1, one can glue Xk
• for

k = r, · · · , s to obtain another sequence of smooth varieties X̃ indexed by Ĩ := Ir∪· · ·∪ Is. One
has Ir∪· · ·∪ Is ⊂ Ĩ. The set Ir∪· · ·∪ Is is an interval if tm(Ik) = in(Ik+1) for k = r, · · · , s−1.

• For each interval J ⊂ Ik −
◦
I k and a subset T ⊂

◦
I there is given an element fk(J |T ) ∈

F(J |T ) = F(J |T ;Xk
• ).

If n = tm(Ik) ≤ m = in(Ik+1) and J is between Ik and Ik+1, then require fk(J |T ) =
fk+1(J |T ) ∈ F(J |T ;Xk

• ). If r < s and tm(Ik) < in(Ik+1) for k = r, · · · , s − 1, one can glue

fk(J |T ) so that for each J ⊂ Ĩ− (
◦
I r ∪ · · · ∪

◦
I s) there corresponds an element f̃(J |T ) ∈ F(J |T ).

We require that for any almost disjoint set of intervals J1, · · · , Ja in Ĩ − (
◦
I r ∪ · · · ∪

◦
I s) and

Tν ⊂
◦
Jν , the set {f̃(Jν |Tν) (ν = 1, · · · , a), faces } is properly intersecting in XI.

One can then define a distinguished subcomplex of the form

[F(I1|Σ1)⊗̃ · · · ⊗̃F(Ic|Σc)]I;f .

Properties. (1) [F(I1|Σ1)⊗̃ · · · ⊗̃F(Ic|Σc)]f is a quasi-isomorphic subcomplex of
F(I1|Σ1)⊗ · · · ⊗ F(Ic|Σc). For r < s, if in addition Ir ∪ · · · ∪ Is is an interval, then

[F(I1|Σ1)⊗̃ · · · ⊗̃F(Ic|Σc)]f

coincides with

[F(I1|Σ1)⊗̃ · · · ⊗̃F(Ir ∪ · · · ∪ Is|Σr ∪ · · · ∪ Σs ∪ {tm(Ir), · · · , tm(Is−1)} )⊗̃ · · · ⊗̃F(Ic|Σc)]f̃ .

(2) If J ⊂ Ik −
◦
Ik with tm(Ik) = in(J) = c, then (−)⊗ fk(J |T ) on the k-th factor gives a

map

[F(I1|Σ1)⊗̃ · · · ⊗̃F(Ic|Σc)]f → [F(I1|Σ1)⊗̃ · · · ⊗̃F(Ik ∪ J |Σk ∪ {c} ∪ T )⊗̃ · · · ⊗̃F(Ic|Σc)]f .

Similarly for fk(J |T )⊗ (−) on the k-th factor.
(3) If Σk ⊃ Σ′k, there is the corresponding product map

[F(I1|Σ1)⊗̃ · · · ⊗̃F(Ic|Σc)]f → [F(I1|Σ′1)⊗̃ · · · ⊗̃F(Ic|Σ′c)]f .

(3.9) Variant of (3.5). One can do the same as (3.8), with F(I|Σ) replaced with F (I|S). One
thus has a distinguishes subcomplex of the form

[F (I1|S1)⊗̃ · · · ⊗̃F (Ic|Sc)]f

where Sk ⊂
◦
Ik, and fk is a set of elements fk(J |T ) ∈ F (J |T ;Xk

• ). One has the same properties
as in Properties (1), (2) in (3.8).
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4 The diagonal cycle and the diagonal extension

We keep the notation of §2. We abbreviate XJ
I to XI , and U J

I to UI . The map rJ,J′ : F(I, J|Σ)→
F(I, J′|Σ) is written rk if J′ = J ∪ {k}.

(4.1) The diagonal cycles ∆(I). Let X be a smooth variety, projective over S, and Xi = X
be a constant sequence of varieties on [1, n]. There is the diagonal embedding ∆ : X → X ×S

· · · ×S X; denote the image of the fundamental class of X by ∆(1, · · · , n) ∈ Z(X ×S · · · ×S X).
There is a natural quasi-isomorphism

ι : Z(X ×S · · · ×S X)→ Z(X[1,n], {U[1,n]}) = F([1, n], ∅) .

We use the same ∆(1, · · · , n) to denote its image under this map. It thus consists of ∆(1, · · · , n)
in Z(X[1,n]), and the zero element in Z(U[1,n]). Similarly for any I ⊂ [1, n] we have an element
∆(I) ∈ F(I, ∅); it is a cocycle of degree zero. As an element of F(I), it has degree 1.

For a subset Σ ⊂
◦
I , letting I1, · · · , Ic be the segmentation of I given by Σ, one verifies the

tensor product

∆(I|Σ) := ∆(I1)⊗∆(I2)⊗ · · · ⊗∆(Ic) ∈ F(I1, ∅)⊗ · · · ⊗ F(Ic, ∅)

is indeed in the subcomplex F(I, ∅|Σ). As an element of the complex F(I|Σ), its degree is c.
The elements ∆(I) are closed under ρ and π, namely:

(1) For k ∈ Σ, ρk(∆(I|Σ) ) = rk(∆(I|Σ− {k}) ) in F(I, {k}|Σ− {k}).
(2) For K ⊂

◦
I − Σ, πK(∆(I|Σ) ) = ∆(I −K|Σ) in F(I −K|Σ).

By (1) one sees that the collection

∆(I) := (∆(I|Σ) )Σ ∈ ⊕F(I, ∅|Σ) ⊂ F (I)

is a cocycle of degree 0 in the complex F (I). If I = [1, n], one should think of ∆(I) as
∆([1, 2]) ⊗ · · · ⊗ ∆([n − 1, n]), not as ∆([1, n]). The following proposition contains a more
precise statement.

(4.2) Proposition. (1) If |I| = 2, then ∆(I) = ∆(I) ∈ F (I).

(2) If S ⊂
◦
I , and I1, · · · , Ic the corresponding segmentation, one has

τS(∆(I) ) = ∆(I1)⊗ · · · ⊗∆(Ic)

in F (I ⌉⌈S) = F (I1) ⊗ · · · ⊗ F (Ic). (Recall τS : F (I) → F (I ⌉⌈S) is the composition of σS :
F (I)→ F (I|S) and ιS : F (I|S)→ F (I ⌉⌈S).)

(3) For K ⊂
◦
I , φK(∆(I) ) = ∆(I −K).

Since ∆(I) depends on X, we will write ∆X(I) for ∆(I) and ∆X(I) for ∆(I). If |I| = 2,
∆X(I) is the usual diagonal ∆X .

(4.3) The diagonal embedding δ∗. Let X be a sequence of varieties on I = [1, n]. Given an
element k ∈ I (we allow k = 1 or k = n) and an integer m ≥ 2, let I˜= [1, n]̃ be the ordered
set

{1, · · · , k − 1, k1, · · · , km, k + 1, · · · , n} ,
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where k is repeated m times. There is a natural surjection I ˜→ I which sends kj to k and
is the identity on I ˜− {kj}, so there is an induced sequence of varieties on I .̃ Let XI and
XI ˜ be the corresponding varieties. There is a closed embedding δ : XI → XI ˜ given by
(x1, · · · , xn) 7→ (x1, · · · , xk−1, xk, · · · , xk, xk+1, · · · , xn) (xk repeated m times). Note all this
makes sense for any subset I ⊂ [1, n], an element k ∈ I, and m ≥ 2.

For the statement of the following proposition only, we write I (resp. I )̃ instead of I (resp.
I )̃. Recall for a subset I ⊂ I there corresponds a closed set AI ⊂ XI, and UI is its complement.
Thus for I ′ ⊂ I˜the corresponding set is AI′ ⊂ XI .̃ One verifies:

Proposition. (1) Let I ⊂ I and I ′ ⊂ I˜ be subsets such that I ′ − {kj}
∼→ I − {k} and

I ′ → I is a surjection. Then the following square is Cartesian:

AI ↪→ XIy yδ

AI′ ↪→ XI˜ .

Hence δ−1(UI′) = UI .

(2) If J ⊂
◦
I and J′ ⊂ (I )̃◦ are subsets such that J′

∼→ J, then δ−1U(J′) = U(J). We thus
have a map of complexes (see (1.3) )

δ∗ : Z(XI,U(J) )→ Z(XI ,̃U(J
′) ) .

We refer to this δ∗ : F(I, J)→ F(I ,̃ J′) as the diagonal embedding associated to the surjection
I˜→ I.

Proof. (1) Left to the reader.
(2) If k ̸∈ J, let {J0, · · · , Jr} be the segmentation of I by J. There is i such that k ∈ J i.

Then the segmentation of I ˜by J′ is {J̃0, · · · , J̃r}, where J̃ j is the inverse image of J j; J̃ j is
bijective to J j if j ̸= i. Apply (1) to J̃ j and J j for each j to obtain the claim. The case k ∈ J

is similar.

(4.4) The maps δ∗ and ∆(Σ,Σ′). Keeping the notation, we will define a map of complexes

F(I, J|Σ)→ F(I ,̃ J′|Σ′)

when the following condition is satisfied:

J′
∼→ J, Σ′ − {kj}

∼→ Σ− {k}, and, if k ∈ Σ then Σ′ ∩ {k1, · · · , km} is non-empty.

(If k ̸∈ Σ, Σ′ ∩ {k1, · · · , km} may be empty.) According to cases, we will give it the name δ∗ or
∆(Σ,Σ′). From now on we assume k ̸= 1, n; at the end of this subsection we will mention the
necessary changes in the case k = 1 or n.

(0) Case k ̸∈ Σ. If Σ is the empty set, we have the map δ∗ : F(I, J|Σ) → F(I ,̃ J′|Σ′)
defined in the previous subsection. There are two subcases:

(a) Case k ̸∈ J. Then J′ as above is uniquely determined.
(b) Case k ∈ J. Then J′ = (J− {k}) ∪ {kj} for j = 1, · · · ,m. So we write (δj)∗ for δ∗.

One shows:
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(4.4.1) Lemma. (1) In cases (a) and (b), δ∗ commutes with rk′, k
′ ̸= k. For δ∗ in (a),

the following commutes:

F(I, J)
δ∗−−−→ F(I ,̃ J′)yrk yrkj

F(I, J ∪ {k}) (δj)∗−−−→ F(I ,̃ J′ ∪ {kj}) .

(2) In case (b), let J = J0 ∪ {k}. If k ̸∈ J and j ̸= j′, the following commutes:

F(I, J)
(δj)∗−−−→ F(I ,̃ J0 ∪ {kj})y(δj′ )∗

yrkj′

F(I, J0 ∪ {kj′})
rkj−−−→ F(I ,̃ J0 ∪ {kj, kj′}) .

Proof. (1) is left to the reader. The point in the proof of (2) is, if δ : Uk,··· ,n ↪→ Ukj ,··· ,km,k+1,··· ,n
denotes the diagonal embedding, its image is disjoint from the subset Ukj ,··· ,kj′ , kj < kj′ .

For each c ≥ 0 consider the direct sum
⊕

|J|=c F(I, J), where J ⊂
◦
I varies over subsets with

cardinality c, and similarly
⊕

|J′|=c F(I ,̃ J′). Let
∑

δ∗ :
⊕

|J|=c F(I, J) →
⊕

|J′|=c F(I ,̃ J′) be

the sum of all δ∗ defined above. The lemma implies that it commutes with r (the signed sum
of ri), so it gives a map of complexes F(I)→ F(I )̃.

If Σ is not empty, but does not contain k, one generalizes the above in the obvious way and
defines the map δ∗ : F(I, J|Σ)→ F(I ,̃ J′|Σ′). The above lemma also generalizes, so the sum of
δ∗ commutes with r.

Assume now k ∈ Σ, Σ′ ⊂ (I )̃◦ such that Σ′ − {k1, · · · , km}
∼→ Σ − {k} and Σ′ ↠ Σ. Let

J′ ⊂ (I )̃◦ be a subset such that J′
∼→ J; since k ̸∈ J, J′ is uniquely determined. We have two

cases:

(I) Case k ∈ Σ and |Σ′| = |Σ|. One can define ∆(Σ,Σ′) : F(I, J|Σ) → F(I ,̃ J′|Σ′). For
simplicity assume Σ = {k}, and let I1, I2 be the segmentation of I by k. Let ℓ = kj be the
element in Σ′, I ′1, I

′
2 be the segmentation of I˜by ℓ, and δ′, δ′′ be the embeddings corresponding

to the surjections I ′i → Ii. Then the map ∆(Σ,Σ′) : F(I, J|Σ) → F(I ,̃ J′|Σ′) is defined by
∆(Σ,Σ′)(u′⊗u′′) = δ′∗(u

′)⊗ δ′′∗(u
′′). That this definition makes sense follows from the following

claim.

Claim. Let ui be elements in Z(XIi) for i = 1, 2, such that {u1, u2, faces} is properly
intersecting in XI (so one has u1 ◦ u2 ∈ Z(XI) defined). Then for the cycles δ′∗(u1), δ

′′
∗(u2),

respectively on XI′i
, i = 1, 2, the set {δ′∗(u1), δ

′′
∗(u2), faces } is properly intersecting in XI ,̃ and

one has
δ∗(u1 ◦ u2) = δ′∗(u1) ◦ δ′′∗(u2)

in Z(XI )̃.

(4.4.2) Lemma. Assume we are in case (I); let Σ′ = (Σ− {k}) ∪ {kj}.
(1) ∆(Σ,Σ′) commutes with rk′ if k

′ ∈
◦
I − (J ∪ Σ).
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(2) ∆(Σ,Σ′) commutes with ρk′ if k
′ ̸= k. Further, the following square commutes:

F(I, J|Σ) ∆(Σ,Σ′)−−−→ F(I ,̃ J′|Σ′)yρk

yρkj

F(I, J ∪ {k}|Σ− {k}) (δj)∗−−−→ F(I ,̃ J′ ∪ {kj}|Σ′ − {kj}) .

The assertion (2) follows from the identity δ∗(u1 ◦ u2) = δ′∗(u1) ◦ δ′′∗(u2) in the claim.

(II) Case |Σ′| > |Σ|. We will define the map

∆(Σ,Σ′) : F(I, J|Σ)→ F(I ,̃ J′|Σ′)

as follows. For simplicity assume Σ = {k}, the general case being similar. Let I1, I2 be the
segmentation of I by k, and I ′1, · · · , I ′b+1 the segmentation of I˜by Σ′. One has F(I, J|Σ) =
F(I1, J1)⊗̂F(I2, J2), and

F(I ,̃ J′|Σ′) = F(I ′1, J
′
1)⊗̂F(I ′2, ∅)⊗̂ · · · ⊗̂F(I ′b, ∅)⊗̂F(I ′b+1, J

′
b+1) .

Note I ′2, · · · , I ′b correspond to constant sequences on Xk. The map ∆(Σ,Σ′) is defined by

u′ ⊗ u′′ 7→ δ′∗(u
′)⊗∆(I ′2)⊗ · · · ⊗∆(I ′b)⊗ δ′′∗(u

′′)

where δ′∗ : F(I1, J1) → F(I ′1, J
′
1) is the map associated to the surjection I ′1 → I1, and similarly

for the map δ′′∗ . We have used the following claim.

Claim. Let ui be elements in Z(XIi) for i = 1, 2, such that {u1, u2, faces} is properly
intersecting in XI (so one has u1 ◦ u2 ∈ Z(XI) defined). Then the set of cycles

{δ′∗(u1),∆(I ′2), · · · ,∆(I ′b), δ
′′
∗(u2), faces }

is properly intersecting in XI .̃ One has

δ′∗(u1) ◦∆(I ′2) = δ̄′∗(u1)

where δ̄′ is associated to the surjection I ′1 ∪ I ′2 → I1; similarly for ∆(I ′b) ◦ δ′′∗(u2).

(4.4.3) Lemma. Assume we are in case (II).
(1) ∆(Σ,Σ′) commutes with rk′ if k

′ ̸= k, and with ρk′ if k
′ ̸= k.

(2) If ℓ = kj ∈ Σ′, the following commutes:

F(I, J|Σ) ∆(Σ,Σ′)−−−→ F(I ,̃ J′|Σ′)y∆(Σ,Σ′−{ℓ})
yρℓ

F(I ,̃ J′|Σ′ − {ℓ}) rℓ−−−→ F(I ,̃ J′ ∪ {ℓ}|Σ′ − {ℓ}) .

(4.4.4) Case k = 1 or n. If k = n, minor changes are needed as follows.
(a) In case Σ′ ∩ {n1, · · · , nm} = ∅ we have the map δ∗ : F(I, J|Σ) → F(I ,̃ J′|Σ′). This is

defined as in case (0) above. Lemma (4.4.1) holds without change.
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(b) In case Σ′ ∩ {n1, · · · , nm} ̸= ∅, we have ∆(Σ,Σ′) : F(I, J|Σ) → F(I ,̃ J′|Σ′), defined as
in case (II) above, by the formula u 7→ δ′∗(u)⊗∆⊗ · · · ⊗∆. Lemma (4.4.3) holds, where if Σ′

consists of a single element one replaces ∆(Σ,Σ′ − {ℓ}) by δ′∗.

(4.5) Consider now the map

diag = diag(I, I )̃ =
∑

δ∗ +
∑

∆(Σ,Σ′) :
⊕

F(I, J|Σ)→
⊕

F(I ,̃ J′|Σ′)

which is the sum of δ∗ and ∆(Σ,Σ′). The three lemmas jointly imply:

Proposition. The map diag commutes with r̄ + ρ̄.

Proof. Assume k ̸= 1, n (the proof is similar in those cases). By the lemmas, we have:

r(
∑

δ∗) = (
∑

δ∗)r ;

For ∆(Σ,Σ′) of type (I) or (II), k′ ̸= kj,

rk′∆(Σ,Σ′) = ∆(Σ,Σ′)rk′ ,

ρk′∆(Σ,Σ′) = ∆(Σ,Σ′)ρk′ ;

For ∆(Σ,Σ′) of type (I),
ρkj∆(Σ,Σ′) = (δj)∗ρk ;

Also, ∑
type(II)

∑
kj∈Σ′

overk

ρkj∆(Σ,Σ′) =
∑

type(I)or(II)

∑
kj∈Σ′

rkj∆(Σ,Σ′) .

In calculating (r̄+ρ̄) diag, in light of the last identity one can disregard the terms
∑

ρkj∆(Σ,Σ′),
the sum over type (II), and

∑
rkj∆(Σ,Σ′), the sum over type (I) or (II). For the other identities

above, careful examination of the signs show that they still hold if rk′ (resp. ρk′) is replaced by
r̄k′ (resp. ρ̄k′). Hence we obtain the assertion.

(4.6) The map diag : F (I)→ F (I )̃ is compatible with φ and τ :

Proposition. (1) If k′ ̸= k, φk′ diag(I, I )̃ = diag(I − {k′}, I˜− {k′})φk′, namely the
following square commutes:

F (I)
diag(I,I )̃−−−−→ F (I )̃yφk′

yφk′

F (I − {k}) diag(I−{k′},I −̃{k′})−−−−−−−−−−−→ F (I˜− {k′}) .

If ℓ ∈ {k1, · · · , km}, φℓ diag(I, I )̃ = diag(I, I˜− {ℓ}); if m = 2 interpret the right hand side as
the identity.

(2) If k = n, ℓ ∈ {n1, · · · , nm}, let I ′1, I ′′ be the segmentation of I˜by ℓ. Then the following
diagram commutes:

F (I)
diag(I,I )̃−−−−→ F (I )̃ydiag(I,I′1)

yτℓ

F (I ′1) −−−→ F (I ′1)⊗ F (I ′′) .
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The lower horizontal map is u 7→ u ⊗ ∆(I ′′). Note I ′′ parametrizes a constant sequence of
varieties, so one has ∆(I ′′) ∈ F (I ′′). Similarly in case k = 1, ℓ ∈ {11, · · · , 1m}.

If 1 < k < n and ℓ ∈ {k1, · · · , km}, let I1, I2 be the segmentation of I by k, and I ′1, I
′
2 of I˜

by ℓ. One then has a commutative diagram:

F (I)
diag(I,I )̃−−−−→ F (I )̃yτk yτℓ

F (I1)⊗ F (I2) −−−→ F (I ′1)⊗ F (I ′2) ,

where the lower horizontal arrow is diag(I1, I
′
1)⊗ diag(I2, I

′
2).

Proof. We only verify the last statement. The map ∆(Σ,Σ′) is defined so that if ℓ ∈ Σ′,
the following commutes:

F(I, J|Σ) ∆(Σ,Σ′)−−−→ F(I ,̃ J′|Σ′)y y
F(I1, J1|Σ1)⊗ F(I2, J2|Σ2) −−−→ F(I ′1, J

′
1|Σ′

1)⊗ F(I ′2, J
′
2|Σ′

2) .

Here Ji = J ∩
◦
I i, Σi = Σ ∩

◦
I i, and similarly for J′i and Σ′

i. The vertical inclusions are the
canonical ones, and the lower horizontal arrow is ∆(Σ1,Σ

′
1)⊗∆(Σ2,Σ

′
2). Taking the sum over

∆(Σ,Σ′) we obtain the claim.

(4.7) All of (4.3)-(4.6) can be extended as follows. Given a subset {k, k′, k′′, · · · } of I = [1, n],
and a set of integers ≥ 2, m,m′,m′′, · · · , let

I˜= {1, · · · , k − 1, k1, · · · , km, · · · , k′
1, · · · , k′

m′ , · · · , n}

be the ordered set where k, k′, k′′, · · · are repeated m,m′,m′′, · · · times. One can then define
the diagonal extension diag : F (I)→ F (I )̃ that satisfies properties as above.

(4.8) One can state more generally assumptions on a set of complexes A(I, J|Σ) satisfying
Assumption (A) in §2, under which the same constructions can be performed.

For a constant sequence I ∋ i 7→ X, we assume, as in (4.1), the existence of a distinguished
element ∆(I) ∈ A(I, ∅), which is a cocycle of degree 0. Require that the tensor products
∆(I|Σ) are in A(I, ∅|Σ), and they are subject to the same identities with respect to ρ, r, π as
in (4.1). Then the element ∆(I) ∈ A(I) is defined, and (4.2) satisfied, with F (I|S) replaced
with B(I|S).

Also assume there are maps of complexes δ∗ : A(I, J|Σ) → A(I ,̃ J′|Σ′) when k ̸∈ Σ, and
require Lemma (4.4.1) to hold. When k ∈ Σ, assume there are maps ∆(Σ,Σ′) : A(I, J|Σ) →
A(I ,̃ J′|Σ′), that are defined using δ∗ and tensor product as in (4.4), for which (4.4.2) and
(4.4.3) hold.

Under these assumptions one can define the the map diag : B(I)→ B(I )̃ and Proposition
(4.6) is satisfied.
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