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Consolidating Part I and Part II, we will construct the homological Hodge complex for a pair

of smooth varieties. More precisely, we take a smooth complete variety X, a pair of normal

crossing divisors Y and H on X, consider the pair (X − Y,H − Y ), and construct a Hodge

complex for the pair. In Part I we considered the case Y empty, and in Part II the case H

empty.

1 Preliminaries

In this section we will consider complexes of vector spaces over C to fix the idea; nothing

changes if we take any other coefficient field.

(1.1) For a complex K, let D(K) be the complex with Hom(K−i,C) as the degree i part, and

with differential

f 7→ f ◦ d .

Let K and L be complexes of C-vector spaces. A map of complexes ⟨ , ⟩ : K ⊗L→ C is the

same as a graded map such that for any x ∈ Ki and y ∈ L−i−1, one has

⟨dx, y⟩+ (−1)i⟨x, dy⟩ = 0 .

Such a map is said to be a pairing between between K and L.

There is an isomorphism of complexes σ : K ⊗ L→ L⊗K which sends x⊗ y ∈ Ki ⊗ Lj to

(−1)ijy ⊗ x ∈ Lj ⊗ Ki. One obtains a pairing ⟨ , ⟩′ : L ⊗ K → C which commutes with the

original pairing via this isomorphism.

A pairing induces a map of complexes P : K → D(L), given for x ∈ Ki and y ∈ L−i by

P(x)(y) = (−1)s(i)⟨x, y⟩, s(i) =
i(i+ 1)

2
.

(1.2) Suppose K ⊗ L → C and K ′ ⊗ L′ → C are pairings of complexes, and u : K → K ′,

v : L′ → L are maps of complexes.
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We say that the pairings are compatible with respect to the maps u and v, if the identity

⟨u(x), y′⟩ = ⟨x, v(y′)⟩ holds for x ∈ K and y′ ∈ L′, namely if the diagram

K ⊗ L
u
��

⟨ , ⟩ // C

K ′ ⊗ L′

v

OO

⟨ , ⟩
// C

(1.2.1)

commutes. If P : K → D(L) and P′ : K ′ → D(L′) are the maps associated with the pairings,

and v′ = D(v) : D(L)→ D(L′) is the map induced from v, then the diagram

K P //

u

��

D(L)

v′

��
K ′

P′
// D(L′)

commutes.

Instead of commutativity on (1.2.1), suppose we have a map h : K ⊗ L′ → C of degree −1
such that

h(d(x⊗ y′)) = ⟨u(x), y′⟩ − ⟨x, v(y′)⟩ for x ∈ Ki, y′ ∈ L′−i+1 .

Such a map is said to be a homotopy between the two pairings. Consider then a map of degree

−1, H : K → D(L′) given for x ∈ Ki, y′ ∈ L′−i+1 by

H(x)(y′) = (−1)i(i+1)/2h(x⊗ y′).

One has the identity d ◦H +H ◦ d = P′ ◦ u− v′ ◦ P .

(1.3) Let

−−→Ka u−−→Ka+1 u−−→· · ·

be a finite compex of complexes. This means that given a sequence of complexesKa = (Ka,•, d),

with Ka being the zero complex for all but finitely many a, and that given a map of complexes

u : Ka → Ka+1 for each a satisfying u ◦ u = 0.

The total complex of this, denoted by Tot(K•) is a complex with degree i part

(Tot(K•))i =
⊕
a

Ka,i−a ,

and with differential (−1)adKa + u on Ka.

If (Ka;u) is a complex of complexes, then the the dual of u : Ka → Ka+1 is a map of

complexes D(Ka+1)
u′
−−→D(Ka). So there is a complex of complexes

· · · → D(Ka+1)
u′
−−→D(Ka)

u′
−−→D(Ka−1)→ · · ·

with D(Ka) in horizontal degree −a.
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The identity map gives an isomorphism of complexes

D(Tot(K•)) = Tot(D(K•)) . (1.3.1)

(1.4) Suppose

· · · v←−−La
v←−−La+1 ← · · ·

is another finite complex of complexes, and assume given pairings ⟨ , ⟩a : Ka ⊗ La → C such

that the pairings ⟨ , ⟩a and ⟨ , ⟩a+1 are compatible via the maps u, v, meaning that the identity

⟨u(xa), ya+1⟩a = ⟨xa, v(ya+1)⟩a

holds for xa ∈ Ka and ya+1 ∈ La+1 of the same degree.

Then one can define a pairing of the total complexes

⟨ , ⟩ : Tot(K)⊗ Tot(L)→ C

by the formula

⟨(xa), (ya)⟩ =
∑
a

(−1)γ(i,a)⟨xa, ya⟩a , γ(i, a) = ia+ s(a− 1) (1.4.1)

for (xa) ∈
⊕

Ka,i−a and (ya) ∈
⊕

L−i+a
a . The reader may verify that this gives a pairing.

For each a the pairing ⟨ , ⟩a induces a map of complexes

Pa : K
a → D(La)

according to (1.1), which form a morphism between the complexes of complexes

K• → D(L•) .

Taking the total complexes, one has

Tot(K•)→ Tot(D(L•) ) ;

composing with the identification D(Tot(L•)) → Tot(D(L•)) one may view this as a map

Tot(K•) → D(Tot(L•)). It can be verified that this coincides with the map induced from the

pairing (1.4.1) according to (1.1).

(1.5) The considerations for complexes of complexes in the preceding subsections extend to

double complexes of complexes. Suppose (Ka,b;u′, u′′) is a finite double complex of complexes.

This means each Ka,b is a complex, u′ : Ka,b → Ka+1,b (horizontal differential) and u′′ : Ka,b →
Ka,b+1 (vertical differential) are maps of complexes that satisfy the identities

u′u′ = 0, u′′u′′ = 0, u′u′′ = u′′u′ .
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We can then define its total complex Tot(K) by

(Tot(K•))i =
⊕

Ka,b,i−a−b

as a graded group, together with differential (write d for dKa,b)

(−1)a+bd+ (−1)au′ + u′′

on Ka,b.

One may view the double complexKa,b as a complex of complexes by totalizing in the vertical

differential u′′ and d,

−−→
⊕
b

Ka,b u′
−−→

⊕
b

Ka+1,b u′
−−→· · · .

The totalization of this coincides with Tot(K) give above. One may likewise totalize in the

differential u′ and d to obtain a complex of complexes, and the totalize it; one obtains the same

result.

Suppose given another double complex of complexes (La,b, v
′, v′′) with v′ : La,b → La−1,b and

v′′ : La,b → La,b−1, and pairings Ka,b ⊗ La,b → C that are compatible with respect to the maps

u′ and v′, and u′′ and v′′. Then there is an induced map pairing of the total complexes.
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2 Complexes of topological chains, forms and currents

We use the same notations as in Part I and II.

We will consider complexes of sheaves of Λ-vector spaces on a variety X, with Λ = Q or C;
they may be simply called complexes on X when there is no possibility of confusion.

(2.1) A pair (X,H) consisting of a smooth complete variety X and a simple normal crossing

divisor H is called a smooth pair.

We always assume that the irreducible components of H are totally ordered, H1, · · · , Hr; we

say {1, · · · , r} is the index set for H, and write it as Ind(H) when necessary.

If I and J is a pair of the subsets {1, · · · , r} with J ⊃ I and |J | = |I| + 1, we will write

J � I. For a subset I of {1, · · · , r}, we set

HI = ∩i∈IHi ,

and H∅ = X. HI is a non-singular variety. Also let

ĤI =
∑
J

HJ ,

where J varies over the subsets with J�I; it is a normal crossing divisor on HI . Thus a smooth

pair (HI , ĤI) is reproduced.

For an a ≥ 0, set

H(a) =
⨿
|I|=a

(HI , ĤI)

the disjoint union of the smooth pairs (HI , ĤI); we will write Ha for H(a) when there is no

confusion.

Suppose Y is another normal crossing divisor on X that meets H transversally; let Y1, · · · , Ys
are the irreducible components. Then to a subset J of {1, · · · , s} there corresponds the subva-
riety YJ . On the smooth variety HI ∩ YJ , we have a pair of normal crossing divisors ĤI ∩ YJ
and HI ∩ ŶJ which meet transversally.

Complexes of topological chains

(2.2) Let C(X) = C(X)• be the complex of topological chains on X; it is concentrated in

cohomological degree [0, 2n].

Given a normal crossing divisor H on X, let C(X)H = C(X)•H be the subcomplex of sheaves

of C(X)• consisting of chains α that are admissible with respect to H. The inclusion C(X)H →
C(X) is a quasi-isomorphism.

For Z a closed smooth subvariety of X of codimension c, which meets H transversally, there

is a map of complexes inZ : C(Z)Z∩H [−2c]→ C(X)H which takes an element α to itself.

Suppose H is a normal crossing divisor on X. For each HI we have a map restI : C(X)H →
C(HI)ĤI

which sends a chain α to i∗(α) = α.HI ; more generally for a pair with I ⊂ J , there
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is restI,J : C(HI)ĤI
→ C(HJ)ĤJ

. One has transitivity: for subsets I ⊂ J ⊂ K one has

restI,K = restJ,K restI,J .

For a ≥ 0 set C(H(a))
Ĥ(a) =

⊕
|I|=a C(HI)ĤI

, and define the map

i∗H : C(H(a))
Ĥ(a) → C(H(a+1))

Ĥ(a+1)

as the sum of the maps ϵ(I, J) · restI,J over the pairs (I, J) with I � J and I of order a.

Here the sign ϵ = ±1 is defined as follows: I = (i1, · · · , ia) in the increasing order and J =

(i1, · · · , ik, j, ik+1, · · · ia), let ϵ(I, J) = (−1)k.
One has i∗Hi

∗
H = 0, so that there is a complex of complexes

0→ C(X)H
i∗H−−→C(H(1))

Ĥ(1)−−→· · ·−−→C(H(a))
Ĥ(a)

i∗H−−→· · ·

with the term C(X)H placed in degree 0. This and its total complex will be denoted by C(X |H).

For Y a normal crossing divisor, one has the inclusion map

inI,J : C(YJ)[−2|J |]→ C(YI)[−2|I|]

for I ⊂ J . For b ≥ 0 define the map iY ∗ : C(Y
(b+1)[−2]→ C(Y (b) by

iY ∗ =
∑

ϵ(I, J) · inI,J

for I � J and I of order b. We have a complex of complexes

−−→C(Y (b)[−2b] iY ∗−−→· · ·−−→C(Y (1)[−2] iY ∗−−→C(X)→ 0

(with C(X) in degree 0) which will be denoted C(X\Y ).

For a variant of this, suppose now H be another normal crossing divisor on X meeting Y

transversally. On each YJ we have the normal crossing divisor YJ ∩H and the corresponding

complex C(YJ)YJ∩H . The map inI,J for I ⊂ J in the previous paragraph restricts to a map

inI,J : C(YJ)YJ∩H [−2|J |]→ C(YI)YJ∩H [−2|I|] .

As before we get maps iY ∗ : C(Y
(b+1))

Ŷ (b+1)
[−2]→ C(Y (b))

Ŷ (b) and the complex of complexes

−−→C(Y (b))Y (b)∩H [−2b]
iY ∗−−→· · ·−−→C(Y (1))Y (1)∩H [−2]

iY ∗−−→C(X)H → 0 .

This we denote as C(X\Y )H . The inclusion into C(X\Y ) is a quasi-isomorphism.

On the smooth variety YJ ∩HI there is a normal crossing divisor YJ ∩ ĤI and the complex

C(YJ ∩HI)YJ∩ĤI
. If J ⊂ J ′, |J ′| = |J |+1 and I ⊂ I ′, |I ′| = |I|+1, then we have a commutative

diagram
C(YJ ′ ∩HI′)YJ′∩ĤI′

[−2]
inJ,J′
−−→ C(YJ ∩HI′)YJ∩ĤI′xrestI,I′

xrestI,I′

C(YJ ′ ∩HI)YJ′∩ĤI
[−2]

inJ,J′
−−→ C(YJ ∩HI)YJ∩ĤI
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Define now, for a, b ≥ 0,

C(Y (b) ∩H(a))Y (b)∩ĤI
=

⊕
|J |=b,|I|=a

C(YJ ∩HI)YJ∩ĤI
[−2b] .

With the maps iY ∗ and iH
∗ defined as the signed sums as before, we have iY ∗iY ∗ = 0, iH

∗iH
∗ = 0,

and the diagrams

C(Y (b+1) ∩H(a+1))
Y (b+1)∩Ĥ(a+1)

iY ∗−−→ C(Y (b) ∩H(a+1))
Y (b)∩Ĥ(a+1)xi∗H xi∗H

C(Y (b+1) ∩H(a))
Y (b+1)∩Ĥ(a)

iY ∗−−→ C(Y (b) ∩H(a))
Y (b)∩Ĥ(a)

commute. Hence we obtain a double complex of complexes with terms C(Y (b) ∩H(a))
Y (b)∩Ĥ(a)

in (−b, a), a, b ≥ 0, and the maps i∗ and i
∗. We denote this double complex, as well as its total

complex, by C(X\Y |H).

The 0-th row of C(X\Y |H) coincides with the complex C(X\Y )H introduced before, and the

0-th column coincides with C(X |H).

Complexes of sheaves of forms

(2.3) The complex A(X)H . Let AX be the complex of sheaves of smooth differential forms on

X, is also denoted A(X). For a closed subset Z of X, AX |Z denotes the restriction of AX to Z,

often viewed as a complex of sheaves on X. If Z is a smooth subvariety, there is the complex

AZ of forms on Z. The induced map AX |Z → AZ is a quasi-isomorphism of sheaves on Z.

For each I there is a map of complexes, called the Poincaré residue map

RHI
= RI : A(X)⟨H⟩ → A(HI)⟨ĤI⟩[−|I|] ,

with I ⊂ J one has the map

RI,J : A(HI)⟨ĤI⟩[−|I|]→ A(HJ)⟨ĤJ⟩[−|J |] ;

recall the change of signs of the differential when a complex is shifted. To be precise, RI,J is a

map of complexes of sheaves on HI , where the target complex is identified with its direct image

under the inclusion i : HJ → HI .

If J = I ∪ {j}, one may write Rj for RI,J . We have identities (shifts are omitted)

RI = Ria · · ·Ri1 if I = (i1, · · · , ia),

RiRj = −RjRi : A(HI)⟨ĤI⟩ → A(HK)⟨ĤK⟩

if K = I ∪ {i, j}, and

RI,JRI = (−1)a+kRJ : A(X)⟨H⟩ → A(HJ)⟨ĤJ⟩

if I = (i1, · · · , ia) and J = (i1, · · · , ik, j, ik+1, · · · , ia).
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For a ≥ 0 consider the sum
⊕

|I|=aA(HI)⟨ĤI⟩ which is a complex on X, and let

r :
⊕
|I|=a

A(HI)⟨ĤI⟩[−|I|]→
⊕

|J |=a+1

A(HJ)⟨ĤJ⟩[−|J |]

be the sum of the maps RI,J . Then r ◦ r = 0, so that we have a complex of complexes (on X)

0→ A(X)⟨H⟩ r−−→
⊕
i

A(Hi)⟨Ĥi⟩[−1]
r−−→
⊕
|I|=2

A(HI)⟨ĤI⟩[−2]→ · · ·

(the term A(X)⟨H⟩ is placed in degree 0).

Noting the identity

A(H(a))⟨Ĥ(a)⟩ =
⊕
|I|=a

A(HI)⟨ĤI⟩ ,

the above may be written

0→ A(X)⟨H⟩ r−−→A(H(1))⟨Ĥ(1)⟩[−1] r−−→A(H(2))⟨Ĥ(2)⟩[−2] r−−→· · · .

This double complex, as well as its total complex, will be denoted A(X)H .

The differential of the total complex, restricted to A(H(a))⟨Ĥ(a)⟩, equals the sum of (−1)a

times the differential of A(H(a))⟨Ĥ(a)⟩[−a] and r, see (1.3). Recall also that shift of a complex

changes the sign of the differential. Thus a section of A(X)H of degree p is of the form

φ = (φI)I , with φI a section of A(HI)⟨ĤI⟩ of degree p− 2|I| ,

and its differential dφ has components (dφ)I that are

(dφ)I = d(φI) +
∑
I′�I

RI′I(φI′) ,

where we recall I ′ � I means I ′ ⊂ I with |I ′| = |I| − 1.

The complex A(X)H naturally contains the subcomplex A(HI)ĤI
[−2a] for each I of order a.

More generally for J ⊃ I, there is an inclusion

inI,J : A(HJ)ĤJ
[−2|J |]→ A(HI)ĤI

[−2|I|]

of complexes on HI .

The inclusion eH : A(X) → A(X)H is a quasi-isomorphism. There is a canonical map

q : A(X)H → A(X)⟨H⟩ obtained by projection; the composition A(X)→ A(X)H → A(X)⟨H⟩
coincides with the natural inclusion.

The object A(X)H is contravariantly functorial in X. If Z is a smooth closed subvariety

meeting H transversally, one has the restriction map i∗Z : A(X) → A(Z); it extends to a map

i∗Z : A(X)⟨H⟩ → A(Z)⟨Z ∩H⟩.
There are also the restriction maps i∗Z : A(HI)⟨ĤI⟩ → A(Z∩HI)⟨Z∩ĤI⟩, and they commute

with the residue maps. Hence the maps

i∗Z : A(H(a))⟨Ĥ(a)⟩ → A(Z ∩H(a))⟨Z ∩ Ĥ(a)⟩
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commute with r, giving a map of complexes

i∗Z : A(X)H → A(Z)Z∩H .

Also the maps inI,J and i∗Z commute with each other, namely the diagram (shifts omitted)

A(HJ)ĤJ

inI,J−−→ A(HI)ĤIyi∗Z yi∗Z

A(Z ∩HJ)Ẑ∩HJ

inI,J−−→ A(Z ∩HI)Ẑ∩HI

(2.3.1)

commutes.

Further, the object A(X)H behaves in a natural way with respect to enlarging H, see a later

subsection for this variance in H.

(2.4) The complex A(X\H). For each b let

iH∗ :
⊕

|J |=b+1

A(HJ)ĤJ
[−2(b+ 1)]→

⊕
|I|=b

A(HI)ĤI
[−2b] (2.4.1)

be defined as the sum of ϵ(I, J) · inI,J ; the sign ϵ(I, J) was defined in (2.2). Then we have

iH∗ ◦ iH∗ = 0, and we have a complex of complexes.

Since we have A(H(b))
Ĥ(b) =

⊕
|I|=bA(HI)ĤI

, the complex in question is expressed as

· · · → A(H(b))
Ĥ(b) [−2b]

iH∗−−→· · ·−−→A(H(1))
Ĥ(1) [−2]

iH∗−−→A(X)H → 0 (2.4.2)

(with A(X)H in degree 0); recall H(0) = X and Ĥ(0) = H by convention, so that A(X)H =

A(H(0))
Ĥ(0) . We write A(X\H) for this complex and for its total complex. It depends on

the pair (X,H), not just on the open set X − H, and A(X\H) is just a notation chosen for

simplicity. According to (1.3) the differential of A(X\H) is of the form

(−1)bdA(Hb)
Ĥb

+ iH∗ on A(Hb)
Ĥb .

A section ξ of A(X\H) of degree p is a sum
∑

b≥0 ξb, where ξb is a section of A(Hb)
Ĥb of

degree p−b. Each ξb is a sum
∑
ξI , where I varies over subsets with order b, and ξI ∈ A(HI)ĤI

is an element of degree p− |I|.
Each ξI in turn is of the form

ξI = (ξIJ) ,

where J varies over subsets J ⊃ I, and ξIJ is a section of A(HJ)ĤJ
of degree p + |I| − 2|J |.

Combining all, one has ξ = (ξIJ), and we call ξIJ be the IJ-component of ξ.

Using this expression the differential dξ has the IJ-components given by the formula

(dξ)IJ = (−1)I
(
d(ξIJ) +

∑
J ′

RJ ′J(ξIJ ′)

)
+
∑
I′

ϵ(I, I ′)ξI′J in A(HJ)ĤJ
,
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where the index J ′ in the first sum varies over subsets with I ⊂ J ′ � J , and I ′ in the second

sum over subsets with I � I ′ ⊂ J .

One has a canonical injection A(X)H → A(X\H). Since the composition of iH∗ with the

map q : A(X)H → A(X)⟨H⟩ is zero, the latter extends to a map of complexes (also written q)

A(X\H)→ A(X)⟨H⟩.

(2.5) The map s. We show that the map A(X)H → A(X\H) “replaces” the natural map

A(X)→ A(X)⟨H⟩.
There is a map of complexes

s : A(X)⟨H⟩ → A(X\H) ,

which sends a section ω ∈ A(X)⟨H⟩ to the element s(ω) with IJ-components specified as

follows:

s(ω)IJ =

{
(−1)|I|RI(ω) if I = J ,

0 if I ̸= J .

The verification that s commutes with d is left to the reader. The map s is a section to

q : A(X\H)→ A(X)⟨H⟩.

The complexes and the maps we have introduced appear in the following commutative dia-

gram:

A(X) �
� //

eH
��

A(X)⟨H⟩
s
��

A(X)H
� � // A(X\H)

(2.5.1)

We also have the next proposition.

(2.6) Proposition. The maps q : A(X\H)→ A(X)⟨H⟩ and s : A(X)⟨H⟩ → A(X\H) satisfy

qs = id and sq ≃ id (homotopy equivalence); in particular they are quasi-isomorphisms.

(2.7) Contravariant functoriality. Furthering the case for A(X)H , one shows that the contents

of (2.4) and (2.5) are contravariantly functorial in X.

Suppose Z is a smooth closed subvariety meeting H transversally. From the commutativity

(2.3.1) we deduce that the maps iH∗ and i∗Z commute with each other, namely the diagram

A(H(a+1))H(a+1) [−2] iH∗−−→ A(H(a))H(a)yi∗Z yi∗Z

A(Z ∩H(a+1))Z∩H(a+1) [−2] iH∗−−→ A(Z ∩H(a))Z∩H(a)

(2.7.1)

commutes, so there is an induced map of complexes

i∗Z : A(X\H)→ A(Z\Z ∩H) . (2.7.2)
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Let us say that any one of the four maps in the diagram (2.5.1) is a map of comparison .

Then each map of comparison commutes with the restriction maps i∗Z . Equivalently one can say

that the diagram (2.5.1) be contravariantly functorial. Equivalently still, the following diagram

commutes:
A(X) //

��

&&MM
MMM

M
A(X)⟨H⟩

s

��

))SSS
SSSS

S

A(Z) //

��

A(Z)⟨Z ∩H⟩

s

��

A(X)H //

&&MM
MMM

M
A(X\H)

))SSS
SSSS

S

A(Z)H // A(Z\Z ∩H) .

(2.7.3)

(2.8) Variance in H. The constructions in subsections (2.3) – (2.5) behave with respect to H

as follows.

Suppose H ′ is a normal crossing divisor with H ≤ H ′; note that Ind(H) ⊂ Ind(H ′). Then for

I ∈ Ind(H), one has HI = H ′
I and ĤI ≤ Ĥ ′

I , hence there is inclusion A(HI)⟨ĤI⟩ ⊂ A(H ′
I)⟨Ĥ ′

I⟩.
Also if I ⊂ J are in Ind(H), then the diagram (shifts omitted) with vertical maps inclusions

A(HI)⟨ĤI⟩
RIJ−−→ A(HJ)⟨ĤJ⟩y y

A(H ′
I)⟨Ĥ ′

I⟩
RIJ−−→ A(H ′

J)⟨Ĥ ′
J⟩

commutes. So there is a natural inclusion eH,H′ : A(X)H → A(X)H′ . If H is the zero divisor,

this is the canonical inclusion eH′ . From the identity eH,H′eH = eH′ , it follows that eH,H′ is a

quasi-isomorphism.

If H ′′ is another normal crossing divisor with H ′ ≤ H ′′, we have transitivity

eH,H′′ = eH′,H′′ eH,H′ .

For subsets I ⊂ J of Ind(H), the diagram (the vertical maps are the inclusions)

A(HI)ĤI

inIJ−−→ A(HJ)ĤJy y
A(H ′

I)Ĥ′
I

inIJ−−→ A(H ′
J)Ĥ′

J

commutes. Thus there is an inclusion eH,H′ : A(X\H)→ A(X\H ′). This also has transitivity

for H ≤ H ′ ≤ H ′′.

Each map of comparison in (2.5.1) commutes with the map of variance. For the inclusion

A(X)H → A(X\H) this means the commutativity of the diagram

A(X)H −−→ A(X\H)yeH,H′

yeH,H′

A(X)H′ −−→ A(X\H ′) .
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Similarly for the map s. Hence, with regard to the commutative diagrams (2.5.1) for H and

for H ′, there is a map of diagrams from the former to the latter.

The maps of variance and contravariant functoriality commute. Specifically the diagram

A(X)H
eH,H′
−−→ A(X)H′yi∗Z yi∗Z

A(Z)Z∩H
eH,H′
−−→ A(Z)Z∩H′

commutes. Similarly for eH,H′ : A(X\H)→ A(X\H ′).

(2.9) The complex A(X |Y ). Suppose Y is a normal crossing divisor. For I ⊂ J subsets of

Ind(Y ), there is the restriction

restI,J : A(YI)→ A(YJ) .

For subsets I, J with J � I with I = i1 · · · ia, J = i1 · · · ik, j, ik+1, · · · , ia, let ϵ(I, J) = (−1)k as

before. Define the map

i∗Y : A(Y (b))→ A(Y (b+1)) (2.9.1)

to be the sum of ϵ(I, J) · restI,J for |I| = b. Consider the complex of complexes

0→ A(X)
i∗−−→A(Y (1))

i∗−−→· · ·−−→A(Y (b))−−→· · · , (2.9.2)

(with A(X) in degree 0); the total complex of which we denote by A(X |Y ). The differential

of the total complex is

(−1)bd+ i∗ on A(Y (b)) .

Thus a section ψ of A(X |Y ) of degree p is a collection (ψI), with I subsets of Ind(Y ), where

ψI is a section of A(YI) of degree p− |I|. With this expression dψ consists of components

(dψ)I = (−1)|I|d(ψI) +
∑
I′�I

ϵ(I ′, I) · ψI′ in A(HI) . (2.9.3)

With the convention Y (0) = X one may write A(Y (•)) for A(X |Y ). There is a canonical map

A(X |Y )→ A(X).

Denoting the restriction of AX to Y by AX |Y , one has a complex of complexes

0→ AX |Y → A(Y (1))→ · · · → A(Y (r))→ 0 ,

which one verifies to be exact (cf. [Br], II, §13). So the induced map

AX |Y → [A(Y (1))→ · · · → A(Y (r))]

is a quasi-isomorphism of complexes on Y , and the induced map

Cone(AX → AX |Y )[−1]→ A(X |Y )
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is also a quasi-isomorphism.

(2.10) One may combine subsections (2.3) and (2.9) and introduce further variants of the

complexes.

1. Suppose given Y a normal crossing divisor meeting H transversally. For each pair of

subsets J, J ′ with J �J ′, one has restriction A(YJ)YJ∩H → A(YJ ′)YJ′∩H , see (2.7.2). Taking the

sum of them with signs as in (2.9) one obtains the maps

i∗Y : A(Y (b))Y (b)∩H → A(Y (b+1))Y (b+1)∩H , (2.10.1)

which yield a complex of complexes

0→ A(X)H
i∗Y−−→A(Y (1))Y (1)∩H

i∗Y−−→· · · → A(Y (b))Y (b)∩H → · · · .

The total complex of this is denoted by A(X |Y )H .

There is a canonical mapA(X |Y )H → A(X)H and a quasi-isomorphismA(X |Y )→ A(X |Y )H .

2. With the same notation we have the restriction map A(YJ)⟨YJ ∩ H⟩ → A(YJ ′)⟨YJ ′∩H⟩.
Taking as i∗Y the signed sum of them we have a complex of complexes

0→ A(X)⟨H⟩
i∗Y−−→A(Y (1))⟨H ∩ Y (1)⟩

i∗Y−−→· · · → A(Y (b))⟨H ∩ Y (b)⟩ → · · · ,

and its total complex is written A(X |Y )⟨H⟩.
There is then a map of complexes A(X |Y )H → A(X |Y )⟨H⟩ obtained by projection.

(2.11) The complex A(X\H |Y ). Suppose Y is a normal crossing divisor meeting H transver-

sally. For pairs I � I ′ and J � J ′ one has a commutative diagram (see (2.3.1))

A(HI ∩ YJ)ĤI∩YJ

restJ,J′
−−−→ A(HI ∩ YJ ′)ĤI∩YJ′xinI,I′

xinI,I′

A(HI′ ∩ YJ)ĤI′∩YJ

restJ,J′
−−−→ A(HI′ ∩ YJ ′)ĤI′∩YJ′

.

Taking signed sums we have commutative squares

A(Y (b) ∩H(a))
Y (b)∩Ĥ(a)

i∗Y−−→ A(Y (b+1) ∩H(a))
Y (b+1)∩Ĥ(a)xiH∗

xiH∗

A(Y (b) ∩H(a+1))
Y (b)∩Ĥ(a+1)

[−2]
i∗Y−−→ A(Y (b+1) ∩H(a+1))

Y (b+1)∩Ĥ(a+1)
.

Therefore we obtain a double complex of complexes

A(X)H
i∗Y−−→ A(Y (1))Y (1)∩H

i∗Y−−→ · · ·xiH∗

xiH∗

A(H(1))
Ĥ(1) [−2]

i∗Y−−→ A(Y (1) ∩H(1))
Y (1)∩Ĥ(1) [−2]

i∗Y−−→ · · ·xiH∗

xiH∗

...
...

(2.11.1)
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which has the term

A(Y (b) ∩H(a))
Y (b)∩Ĥ(a) [−2a]

in bidegree (b,−a); the maps i∗Y give differential of degree (1, 0) and the map iH∗ that of degree

(0, 1). We write A(X\H|Y ) for this, as well as for its total complex.

The columns are A(Y (b)\Y (b) ∩H), and one may view diagram (2.11.1) as the total complex

of the complex of complexes

0→ A(X\H)
i∗−−→A(Y (1)\Y (1) ∩H)

i∗−−→· · ·

There is a canonical surjection A(X\H|Y )→ A(X\H).

Likewise the rows are A(H(a) |H(a) ∩ Y )
Ĥ(a) [−2a], and (2.11.1) may be viewed as

· · · i∗−−→A(H(1) |H(1) ∩ Y )
Ĥ(1) [−2]

i∗−−→A(X |Y )H → 0 .

There is a canonical injection A(X |Y )H → A(X\H |Y ).

Generalizing (2.5.1) there is a commutative diagram

A(X |Y ) �
� //

��

A(X |Y )⟨H⟩
s
��

A(X |Y )H
� � // A(X\H |Y ) .

(2.11.2)

The four canonical maps such as A(X |Y ) → A(X) from the vertices of (2.5.1) to the corre-

sponding vertices of (2.10.2) form a commutative diagram:

A(X) //

��

A(X)⟨H⟩
s

��

A(X |Y ) //

ggOOOOOOO

��

A(X |Y )⟨H⟩

s

��

hhRRRRRRR

A(X)H // A(X\H)

A(X |Y )H //

ggOOOOOO

A(X\H |Y ) .

hhRRRRRRR

(2.11.3)

Note that all the variants of A(X) introduced thus far appear in this diagram. The verification

of commutativity is straightforward. One also has the following proposition.

(2.12) Proposition. The maps q : A(X\H |Y ) → A(X |Y )⟨H⟩ and s : A(X |Y )⟨H⟩ →
A(X\H |Y ) satisfy qs = id and sq ≃ id (homotopy equivalence); in particular they are quasi-

isomorphisms.

(2.13) The objects and contents of (2.9) – (2.11) are contravariantly functorial in X, and have

expected variance in H and in Y .

Suppose Z is a smooth closed subvariety transversal to Y ; there is then a map i∗Z : A(X |Y )→
A(Z |Z∩Y ). If Z meets Y+H transversally, then there are maps of complexes i∗Z : A(X |Y )⟨H⟩ →
A(Z |Z ∩ Y )⟨Z ∩H⟩,

i∗Z : A(X |Y )H → A(Z |Z ∩ Y )Z∩H .
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and

i∗Z : A(X\H |Y )→ A(Z\Z ∩H |Z ∩ Y ) .

Each comparison map in (2.11.2) is compatible with i∗Z , and the commutative diagram (2.7.3)

generalizes accordingly.

The complex A(X |Y )H has variance for H ≤ H ′, and the same holds for the complex

A(X\H |Y ). The details are omitted.

Suppose now Y ′ is another normal crossing divisor with Y ≤ Y ′. Then we have a natural

map of complexes eY,Y ′ : A(X |Y ′) → A(X |Y ); it is transitive for Y ≤ Y ′ ≤ Y ′′. One also has

similar variance in Y for the complexes A(X |Y )H and A(X\H |Y ).

(2.14) There are further variants of the complexes. Suppose H ′ is another normal crossing

divisor meeting H transversally. Then one has the complex A(X\H)H′ , a variant of A(X\H),

which is of the form

· · · → A(H(b))
Ĥ(b)+H(b)∩H′ [−2b]

iH∗−−→· · ·−−→A(H(1))
Ĥ(1)+H(1)∩H′ [−2]

iH∗−−→A(X)H+H′ → 0

Likewise if Y +H is transversal to H ′ one has the complex A(X\H |Y )H′ which is a variant of

A(X\H |Y ).

(2.15) With assumptions as in (2.3), let U = X−H. The complexes A(X), A(X)H , A(X)⟨H⟩
and A(X\H) appearing in diagrams (2.5.1) all restrict to AU on U , and all the maps appearing

in (2.5.1) restrict to the identity. Thus the induced maps from the four complexes to j∗AU all

commute with the maps, resulting in commutative diagrams

A(X) �
� //

_�

in
��

A(X)⟨H⟩
s
��

// j∗AU

id
��

A(X)H
� � // A(X\H) // j∗AU .

(2.15.1)

More generally, in the presence of a normal crossing divisor Y that meet H transversally,

introduce the complex

AU |Y ∩U := Tot [AU → AU∩Y (1) → · · · ] .

Then there are induced maps A(X |Y )⟨H⟩ → j∗AU |Y ∩U and A(X\H|Y ) → j∗AU |Y ∩U , that

extend commutative diagrams (2.10.2). For example the left diagram extends to

A(X |Y ) �
� //

_�

��

A(X |Y )⟨H⟩
s
��

// j∗(AU |Y ∩U)

id
��

A(X |Y )H
� � // A(X\H |Y ) // j∗(AU |Y ∩U) .

(2.15.2)

Complexes of sheaves of currents.
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We recall the notion of dual cosheaf from [Br], Chap.V, §1. For a c-soft sheaf L, its dual

cosheaf, denoted by Γc{L}, is given by

V 7→ Γc(V,L) .

When L is a sheaf of C-vector spaces, this implies that V 7→ Γc(V,L)
∗ is a sheaf.

If L• is a complex of c-soft sheaves, then Γc{L•} is a complex of cosheaves, and V 7→
Γc(V,L

•)∗ is a complex of sheaves; we denote this by D(L•). The functor L• 7→ Γc{L•} is

exact and takes quasi-isomorphisms to quasi-isomorphisms.

(2.16) Let D(X) = D(A(X))[−2n], the dual of the complex A(X) on X.

If Z is a smooth closed subvariety of codimension c, the restriction map i∗Z : A(X)→ A(Z)

induces a map iZ∗ : D(Z)[−2c]→ D(X).

We will successively introduce variants of D(X), taking duals of variants of A(X) in the

previous subsections. Along the way the facts we have obtained for the variants of A(X) will

also be dualized.

1. Let D(X)H = D(A(X)H)[−2n], which is of the form

· · · r′−−→D(A(H(2))⟨Ĥ(2)⟩[−2] ) r′−−→D(A(H(1))⟨Ĥ(1)⟩[−1] ) r′−−→D(A(X)⟨H⟩)→ 0

where r′ are the duals of the maps r in (2.3), and the term D(A(X)⟨H⟩) is in degree 2n.

The quasi-isomorphism eH : A(X)→ A(X)H induces a quasi-isomorphism

e′H : D(X)H → D(X) .

2. The map inI,J : A(HJ)ĤJ
[−2|J |] → A(HI)ĤI

[−2|I|] in (2.3) induces a map in′
I,J :

D(HI)ĤI
→ D(HJ)ĤJ

. Hence the maps iH∗ : A(H(a+1))
Ĥ(a+1)

[−2] → A(H(a))
Ĥ(a) induce the

maps

i∗H : D(H(a))
Ĥ(a) → D(H(a+1))

Ĥ(a+1)
.

We define D(X |H) = D(A(X\H))[−2n] which is of the form

0→ D(X)H
i∗H−−→D(H(1))H(1)

i∗H−−→· · · .

There is a canonical surjection D(X |H)→ D(X)H .

The map q : A(X\H) → A(X)⟨H⟩ in (2.5) induces a map q′ : D(A(X)⟨H⟩)[−2n] →
D(X |H). The map s induces s′ : D(X |H)→ D(A(X)⟨H⟩)[−2n].
There is a commutative diagrams dual to (2.5.1):

D(X) D(A(X)⟨H⟩)[−2n]oo

D(X)H

e′H

OO

D(X |H)

s′

OO

oo

(2.16.1)
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Proposition (2.6) has its dual statement. In particular s′ is a quasi-isomorphism.

Dualize (2.7): Under the same assumption, the diagram (2.7.1) may be dualized. One has

maps

iZ∗ : D(Z)Z∩H [−2c]→ D(X)H

and

iZ∗ : D(Z |Z ∩H)[−2c]→ D(X |H) .

The diagram (2.16.1) is covariantly functorial, in other words there is a commutative diagram

dual to (2.7.3).

Dualize (2.8): Under the same condition, one has a map of variance eH,H′ : D(X)H′ →
D(X)H , a quasi-isomorphism, and a map

eH,H′ : D(X |H ′)→ D(X |H) .

Both maps are transitive in H.

Each map of comparison in the diagram (2.16.1) commutes with a map of variance. A map

of variance and covariant functoriality commutes.

3. The maps i∗Y : A(Y (b))→ A(Y (b+1)) in (2.4) induce maps iY ∗ : D(Y (b+1))→ D(Y (b)). We

define D(X\Y ) = D(A(X |Y ))[−2n], which is of the form

· · · i∗−−→D(Y (1))[−2] i∗−−→D(X)→ 0 .

4. The map i∗Y : A(Y (b))H → A(Y (b+1))H in (2.10) induce maps iY ∗ : D(Y (b+1))H →
D(Y (b))H . Let D(X\Y )H = D(A(X |Y )H)[−2n], which is of the form

· · · i∗−−→D(Y (1))H∩Y (1) [−2] i∗−−→D(X)H → 0 .

5. The dual of the double complex A(X\H |Y ) looks like, after the shift [−2n],

...
...xi∗H xi∗H

· · · iY ∗−−→ D(Y (1) ∩H(1))
Y (1)∩Ŷ (1) [−2]

iY ∗−−→ D(H(1))
Ĥ(1)xi∗H xi∗H

· · · iY ∗−−→ D(Y (1))Y (1)∩H [−2]
iY ∗−−→ D(X)H .

It has terms

D(Y (b) ∩H(a))
Y (b)∩Ĥ(a) [−2a]

in degree (−b, a), a, b ≥ 0, and the two differentials sums of i∗ and i∗. This we denote this by

D(X\Y |H), namely

D(X\Y |H) = D(A(X\H |Y ))[−2n] .

17



It has 0-th row equal to D(X\Y )H and 0-th column equal to D(X |H).

Dualizing (2.11.2) we obtain a commutative a diagram

D(X\Y ) D(A(X |Y )⟨H⟩)[−2n]oo

D(X\Y )H

OO

D(X\Y |H) .

s′

OO

oo

(2.16.2)

There is also a commutative diagram dual to (2.11.3).

Just as contravariant functoriality i∗Z : A(X)→ A(Z) induces covariant functoriality for the

complexes D(X), other instances of the maps i∗Z for variants of the complexes of A(X) induce

maps iZ∗ for the corresponding dual complexes. They are compiled in the next table where

maps on the left induce maps on the right.

i∗Z : A(X)H → A(Z)Z∩H iZ∗ : D(Z)Z∩H [−2c]→ D(X)H

i∗Z : A(X\H)→ A(Z\Z ∩H) iZ∗ : D(Z |Z ∩H)[−2c]→ D(X |Y )

i∗Z : A(X |Y )→ A(Z |Z ∩ Y ) iZ∗ : D(Z\Z ∩H)[−2c]→ D(X\Y )

i∗Z : A(X |Y )⟨H⟩ → A(Z |Z ∩ Y )⟨Z ∩H⟩ iZ∗ : D(A(Z |Z ∩ Y )⟨Z ∩H⟩)→ D(A(X |Y )⟨H⟩)
i∗Z : A(X |Y )H → A(Z |Z ∩ Y )Z∩H iZ∗ : D(Z\Z ∩H)Z∩H [−2c]→ D(X\Y )Z

i∗Z : A(X\H |Y )→ A(Z\Z ∩H |Z ∩ Y ) iZ∗ : D(Z\Z ∩ Y |Z ∩H)[−2c]→ D(X\Y |H) .

The complexes D(X\Y )H and D(X\Y |H) have variance in H, induced from variance of the

complexes A(X |Y )H and A(X\H |Y ). Similarly for the variance in Y .

3 The maps Φ and P

(3.1) Let

Φ(0) : C(X)H → D(A(X)⟨H⟩)[−2n]

be the map of degree zero given by

⟨Φ(0)(α), φ⟩ =
∫
α

φ .

This is not a map of complexes; one has the equality

Φ(0)(∂α) = δΦ(0)(α) + r′Φ(0)(α|H(0)) , (3.1.1)

where r′ is the dual of the map r : A(X)⟨H⟩ → A(H(0))⟨Ĥ(0)⟩[−1].
We have likewise maps Φ(a) : C(H(a))

Ĥ(a) → D(A(H(a)))⟨Ĥ(a)⟩[−2(n−a)]. Define now a map

Φ : C(X)H → D(X)H [−2n]
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to be the one given by

Φ(α) =
(
Φ(a)(α|H(a))

)
a≥0

.

This is a map of complexes, as can be verified using (3.1.1).

(3.2) Proposition.The diagram

C(X)H
Φ−−→ D(X)HyiH

∗
yiH

∗

C(H(1))
Ĥ(1)

Φ−−→ D(H(1))
Ĥ(1)

commutes.

Let Z ⊂ X be a smooth closed subvariety of codimension d. Then the diagram

C(X)H
Φ−−→ D(X)HxiZ∗

xiZ∗

C(Z)Z∩H [−2d]
Φ−−→ D(Z)Z∩H [−2d]

commutes.

(3.3) For each J and I one has a map of complexex

Φ : C(YJ ∩HI)YJ∩ĤI
→ D(YJ ∩HI)YJ∩ĤI

defined by integration, hence there are maps

Φ : C(Y (b) ∩H(a))
Y (b)∩Ĥ(a) → D(Y (b) ∩H(a))

Y (b)∩Ĥ(a)

for (b, a). These are compatible with the maps i∗ and i
∗ in the respective double complexes for

C(X\Y |H) and D(X\Y |H). They give a map of complexes

Φ : C(X\Y |H)→ D(X\Y |H)

(3.4) Suppose for simplicity all sheaves are ones of C-vector spaces. If A is another sheaf, by

a pairing A⊗ Γc{L} → C we mean a collection of maps

fV : Γ(V,A)⊗ Γc(V,L)→ C

for each V , such that for a smaller open setW , the maps fV and fW are commute via restriction

in the first variable and corestriction in the second variable, namely that the digram

Γ(V,A) ⊗ Γc(V,L) → Cy x ∥
Γ(W,A) ⊗ Γc(W,L) → C
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commutes.

When A• is a complex of sheaves, one can speak of a paring A• ⊗ Γc{L•} → C, which

by definition is a collection of parings of complexes fV : Γ(V,A•) ⊗ Γc(V,L
•) → C satisfying

commutativity as above with respect to restriction and corestriction. A pairing induces a map

of complexes of sheaves A• → D(L•), see (1.1) for the sign to be attached.

(3.5) Poincaré duality pairings. For each open set V of X, one has the canonical pairing

⟨ , ⟩ : Γ(V,AX)⊗ Γc(V,AX)[2n]→ C (3.5.1)

given for ω of degree i and φ of degree 2n− i by

⟨ω, φ⟩ =
∫
V

ω ∧ φ .

The integral makes sense since φ has compact support.

This pairing is compatible with respect to restrictions to smaller open sets, namely if W is

a smaller open set, then the above pairing and the paring on W commute via the restriction

Γ(V,AX) → Γ(W,AX) and corestriction Γc(W,AX) → Γc(V,AX). We have thus a pairing

AX ⊗ Γc{AX}[2n]→ C.
It induces a map of complexes of sheaves

P : A(X)→ D(X)

which sends a form ω of degree i on V to the section (−1)s(i) · [ω] of D(X) on V defined by

[ω](φ) = ⟨ω, φ⟩. It is a quasi-isomorphism.

There is also a pairing

⟨ , ⟩ : Γc(V,AX)⊗ Γ(V,AX)[2n]→ C

given by the same formula. This is, however, no different from the paring (3.5.1). Indeed one

verifies that this is obtained from (3.5.1) by means of the isomorphism σ that exchanges the

factors; note that for ω of degree i and φ of degree 2n− i, one has ω ∧ φ = (−1)iφ ∧ ω.

(3.6) We introduce variants of the above. Let H and Y be normal crossing divisors on X

which meet transversally. One has a pairing (for V open)

⟨ , ⟩ : Γ(V,A(X)H)⊗ Γc(V,A(X)Y )[2n]→ C (3.6.1)

given as follows. Take a section ψ = (ψI) of A(X)H of degree i, and a section φ = (φJ) of

A(X)Y of degree 2n− i. We define

⟨ψ, φ⟩ =
∑
I,J

∫
V ∩HI∩YJ

ψI ∧ φJ .
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This is a map of complexes. Also this clearly commutes with restriction and corestriction, and

defines a paring A(X)H ⊗ Γc{A(X)Y } → C.
It gives a map of complexes

P : A(X)H → D(X)Y . (3.6.2)

For a section ψ = (ψI) ∈ Γ(V,A(X)H), the components of P(ψ) are given by

P(ψ)J =
∑
I

[ψI |HI∩YJ
] ;

here ψI restricts to the form ψI |HI∩YJ
on V ∩HI ∩YJ , which determines the current [ψ|HI∩YJ

] ∈
Γ(V ∩HI ∩ YJ ,D(HI ∩ YJ) ), which we view as an element in Γ(V ∩ YJ ,D(YJ) ).

As a particular case where H and Y are empty, we have

P : A(X)→ D(X) .

One verifies that the diagram
A(X)

P−−→ D(X)y x
A(X)H

P−−→ D(X)Y

commutes.

(3.7) For a normal crossing divisor H, there is a pairing

⟨ , ⟩ : Γ(V,A(X)⟨H⟩)⊗ Γc(V,A(X |H) )[2n]→ C (3.7.1)

given by

⟨ω, (φI) ⟩ =
∑
I

s(ω, I)

∫
HI

RHI
(ω) ∧ φI ,

with s(ω, I) := (−1)ia+a(a−1)/2, for ω of degree i and (φI) of degree 2n− i. The verification of

the condition of pairing is left to the reader.

(3.8) Suppose H and Y are normal crossing divisors meeting transversally. For each I (of order

a) one has a pairing

⟨ , ⟩I : Γ(V,A(HI)HI∩Y )⊗ Γc(V,A(HI)ĤI
)[2(n− a)]→ C

For J � I the pairings for HI and for HJ commute (shifts are omitted):

Γ(V,A(HI)HI∩Y ) ⊗ Γc(V,A(HI)ĤI
) −−→ Cyi∗ xi∗ ∥

Γ(V,A(HJ)HJ∩Y ) ⊗ Γc(V,A(HJ)ĤJ
) −−→ C

For each a ≥ 0 we have thus a paring

⟨ , ⟩a : Γ(V,A(H(a))Y )⊗ Γc(V,A(H(a))
Ĥ(a) )[2(n− a)]→ C
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and the parings for a and for a+ 1 are commute via the maps i∗H and iH∗, since the signs used

for the two maps, (2.4) and (2.9), are equal. Therefore we have an induced pairing as in (1.4)

Γ(V,A(X |H)Y )⊗ Γc(V,A(X\H))[2n]→ C .

Because of commutativity with respect to restriction and corestriction, one has a pairing

A(X |H)⊗ Γc{A(X\H)}[2n]→ C . (3.8.1)

It induces a map of complexes

P : A(X |H)Y → D(X |H) . (3.8.1′)

An alternative way to obtain this last map is this: there is a map of complexes of complexes

0→ A(X)Y −−→ A(H(1))H(1)∩Y −−→ A(H(2))H(2)∩Y → · · ·yP yP yP
0→ D(X)H −−→ D(H(1))

Ĥ(1) −−→ D(H(2))
Ĥ(2) → · · ·

from which the map results by totalization.

Starting instead with the pairing Γ(V,A(HI)ĤI
)⊗Γc(V,A(HI)HI∩Y )[2(n−a)]→ C, we obtain

another paring

Γ(V,A(X\H))⊗ Γc(V,A(X |H)Y )[2n]→ C .

and hence a paring

A(X\H)⊗ Γc{A(X |H)Y }[2n]→ C . (3.8.2)

and thence a map of complexes

P : A(X\H)→ D(X\H)Y . (3.8.2′)

This map also arises from the following map of complexes of complexes

· · · −−→ A(H(1))
Ĥ(1) −−→ A(X)H → 0yP yP

· · · −−→ D(H(1))H(1)∩Y −−→ D(X)Y → 0 .

In the next proposition we compare the latter pairing (3.8.2) for Y the zero divisor with the

paring in the previous subsection.

(3.9) Proposition. The pairings defined in the previous subsections are compatible, namely

the following diagram commutes:

Γ(V,A(X)⟨H⟩) ⊗ Γc(V,A(X\H)[2n] −−→ Cys yid ∥
Γ(V,A(X\H)) ) ⊗ Γc(V,A(X |H)[2n] −−→ C .
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(3.10) For a pair of subsets I, J consider the variety HI ∩ YJ . There is a paring

Γ(V,A(HI ∩ YJ)ĤI∩YJ
)⊗ Γc(V,A(HI ∩ YJ)HI∩ŶJ

)→ C.

For each pair of integers a, b, the sum of these give a paring

Γ(V,A(H(a) ∩ Y (b))
Ĥ(a)∩Y (b))⊗ Γc(V,A(H(a) ∩ Y (b))

H(a)∩Ŷ (b))→ C.

It is compatible with the iH∗ and i∗H , meaning the commutativity of the diagram of pairings:

Γ(V,A(H(a) ∩ Y (b))
Ĥ(a)∩Y (b)) ⊗ Γc(V,A(H(a) ∩ Y (b))

H(a)∩Ŷ (b)) −−→ CxiH∗

yi∗H ∥
Γ(V,A(H(a+1) ∩ Y (b))

Ĥ(a+1)∩Y (b)
) ⊗ Γc(V,A(H(a+1) ∩ Y (b))

H(a+1)∩Ŷ (b)) −−→ C .

The same holds with respect to the maps iY ∗ and i
∗
Y . We have thus a pairing of double complex

of complexes

Γ(V,A(X\H |Y ))⊗ Γc(V,A(X\Y |H))[2n]→ C ,

which are compatible with respect to restriction and corestriction. Hence results an induced

map of complexes

P : A(X\H |Y )→ D(X\H |Y ) . (3.11.1)

This extends the maps A(X\H) → D(X\H)Y and A(X |Y )H → D(X |Y ) introduced just

above.

One verifies that the square

A(X)H
P−−→ D(X)y y

A(X\H)
P−−→ D(X\H)

commutes; more generally, when Y is transversal to H, the diagram

A(X)H
P−−→ D(X)Yy y

A(X\H)
P−−→ D(X\H)Y

commutes. The following diagram commutes, part of which are the squares just mentioned:

A(X) P //

��

''PP
PPP

PP
D(X)

��

A(X)H
P //

��

D(X)Y

��

hhQQQQQQQQ

A(X\H) P //

id ''PP
PPP

P
D(X\H)

A(X\H) P // D(X\H)Y .

hhQQQQQQQ
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Also we have a commutative diagram

A(X |Y )H
P //

��

((RR
RRR

RR
D(X |Y )

��

((QQ
QQQ

QQ

A(X\H |Y ) P //

��

D(X\H |Y )

��

A(X)H
P //

((RR
RRR

RR
D(X)Y

((QQ
QQQ

QQ

A(X\H) P // D(X\H)Y .

(3.11) Proposition. The maps (3.8.1), (3.8.2) and (3.8.3) are quasi-isomorphisms.

(3.12) Composing the map s : A(X)⟨H⟩ → A(X\H) with P : A(X\H)→ D(X\H), we get a

quasi-isomorphism

P : A(X)⟨H⟩ → D(X\H) .

More generally we have P : A(X)⟨H⟩ → D(X\H)Y if H and Y are transversal.

Also, composing s : A(X |Y )⟨H⟩ → A(X\H |Y ) we have a quasi-isomorphism

P : A(X |Y )⟨H⟩ → D(X\H |Y ) .

We now define the homological Hodge complex of (X\Y |H).

(3.13) We have a triple of complexes

C(X\Y |H)
Φ−−→D(X\Y |H)

P←−−A(X|H)⟨Y ⟩ (3.13.1)

When H is empty, we each of the three complexes is equipped with the weight filtration W ,

and third complex with additional filtration F , and the triple gives a mixed Hodge complexes

of sheaves on X, see Part II.

In general, viewing the complex C(X\Y |H) as a complex of complexes

0→ C(X\Y )→ C(H(1))\H(1)) ∩ Y )→ · · ·

one has an induced filtration W on the total complex. Similarly the complexes D(X\Y |H)

and A(X|H)⟨Y ⟩ have the filtration W . In addition, A(X|H)⟨Y ⟩ has the Hodge filtration F as

well.

Thus the triple (3.13.1) gives a mixed Hodge complex, which will be denoted by L(X\Y |H).

We call this the homological Hodge complex for (X\Y |H).

The next result follows from the case H empty, which was shown in Part II.

(3.14) Theorem. The mixed Hodge complex L(X\Y |H) is isomorphic to the mixed Hodge

complex given by Deligne-Beilinson.
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