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Consolidating Part I and Part II, we will construct the homological Hodge complex for a pair
of smooth varieties. More precisely, we take a smooth complete variety X, a pair of normal
crossing divisors Y and H on X, consider the pair (X —Y,H —Y), and construct a Hodge
complex for the pair. In Part I we considered the case Y empty, and in Part II the case H
empty.

1 Preliminaries

In this section we will consider complexes of vector spaces over C to fix the idea; nothing
changes if we take any other coefficient field.

(1.1) For a complex K, let D(K) be the complex with Hom(K %, C) as the degree i part, and
with differential
f— fod.

Let K and L be complexes of C-vector spaces. A map of complexes (, ) : K ® L — C is the
same as a graded map such that for any 2 € K* and y € L=""!, one has

(dz,y) + (=1)"(z,dy) = 0.
Such a map is said to be a pairing between between K and L.

There is an isomorphism of complexes 0 : K ® L — L ® K which sends z ® y € K* @ L to
(-1)"y®z € [ ® K'. One obtains a pairing ( , ) : L ® K — C which commutes with the
original pairing via this isomorphism.

A pairing induces a map of complexes P : K — D(L), given for x € K" and y € L™ by

i(i+1)

P)() = ()" w,y), () = =

(1.2) Suppose K ® L — C and K’ ® L' — C are pairings of complexes, and v : K — K/,
v: L' — L are maps of complexes.



We say that the pairings are compatible with respect to the maps u and v, if the identity
(u(x),y) = (r,v(y')) holds for x € K and 3’ € L', namely if the diagram

KeL-1sC

ul T (1.2.1)

K/®L,T>C

commutes. If P: K — D(L) and P : K/ — D(L') are the maps associated with the pairings,
and v' = D(v) : D(L) — D(L’) is the map induced from v, then the diagram

K "> D(L)

K'—~D(L)

commutes.
Instead of commutativity on (1.2.1), suppose we have a map h : K ® L' — C of degree —1
such that
h(dz @) = (u(z),y) — (z,v(y)) for ze K’ y L',

Such a map is said to be a homotopy between the two pairings. Consider then a map of degree
—1, H: K — D(L') given for x € K*, 3y € L'""*1 by
H(x)(y') = (=1)"2h(z @ y/).

One has the identity do H + Hod =P ou—1v" o P.

(1.3) Let
Sy Ke_ Y gatl Y

be a finite compex of complexes. This means that given a sequence of complexes K* = (K**,d),
with K being the zero complex for all but finitely many a, and that given a map of complexes
u: K% — K% for each a satisfying u o u = 0.

The total complex of this, denoted by Tot(K*®) is a complex with degree i part

(Tot(K®))" = P K",

a

and with differential (—1)%dga +u on K.
If (K%u) is a complex of complexes, then the the dual of u : K% — K% is a map of
complexes D(K*!)—=D(K?). So there is a complex of complexes

.o = DK™ DK DK — - -

with D(K®) in horizontal degree —a.



The identity map gives an isomorphism of complexes

D(Tot(K*)) = Tot(D(K*)). (1.3.1)

(1.4) Suppose
o L L — -

is another finite complex of complexes, and assume given pairings (, ), : K, ® L, — C such
that the pairings (, ), and (, )41 are compatible via the maps u, v, meaning that the identity

<U<l‘a), ya+1>a = <xa7 U(ya+1)>a

holds for z, € K and y,11 € Lyy1 of the same degree.
Then one can define a pairing of the total complexes

(,): Tot(K)® Tot(L) — C
by the formula

((a), (Wa)) = D (=1 a0, ya)a, (i, a) =ia + s(a — 1) (1.4.1)

a

for (z,) € @ K* and (y,) € @ L, "™ The reader may verify that this gives a pairing.
For each a the pairing (, ), induces a map of complexes

Po: K*— D(L,)
according to (1.1), which form a morphism between the complexes of complexes
K. — D(L,).
Taking the total complexes, one has
Tot(K,) — Tot(D(L,) ) ;

composing with the identification D(Tot(L.)) — Tot(D(L,)) one may view this as a map
Tot(K.) — D(Tot(L,)). It can be verified that this coincides with the map induced from the
pairing (1.4.1) according to (1.1).

(1.5) The considerations for complexes of complexes in the preceding subsections extend to
double complexes of complexes. Suppose (K%’;u/,u") is a finite double complex of complexes.
This means each K®® is a complex, v/ : K% — K*"? (horizontal differential) and u” : K®* —
K%Y+ (vertical differential) are maps of complexes that satisfy the identities



We can then define its total complex Tot(K) by
(Tot(K*))i = @ Jeasbi—a—b
as a graded group, together with differential (write d for dga.s)
(=1)*d + (=1)% +u”

on Kb,
One may view the double complex K% as a complex of complexes by totalizing in the vertical
differential v” and d,
_>@Ka,bL’>®Ka+1,bL>“_
b b

The totalization of this coincides with Tot(K) give above. One may likewise totalize in the
differential «’ and d to obtain a complex of complexes, and the totalize it; one obtains the same

result.

Suppose given another double complex of complexes (Lgp, v, v") with v' : Ly — L,—1 and
V"t Lgp — Lgp—1, and pairings K @b @ L, — C that are compatible with respect to the maps
u' and v/, and u” and v”. Then there is an induced map pairing of the total complexes.



2 Complexes of topological chains, forms and currents

We use the same notations as in Part I and II.
We will consider complexes of sheaves of A-vector spaces on a variety X, with A = Q or C;
they may be simply called complexes on X when there is no possibility of confusion.

(2.1) A pair (X, H) consisting of a smooth complete variety X and a simple normal crossing
divisor H is called a smooth pair.

We always assume that the irreducible components of H are totally ordered, Hy,--- , H,; we
say {1,---,7} is the index set for H, and write it as Ind(H) when necessary.

If I and J is a pair of the subsets {1,--- 7} with J D [ and |J| = |I| + 1, we will write
J > 1I. For a subset I of {1,--- ,r}, we set

Hp = NierH;

and Hy = X. Hj is a non-singular variety. Also let
-/H\I = Z HJ )
J

where J varies over the subsets with J > I; it is a normal crossing divisor on H;. Thus a smooth
pair (H, P/I\[) is reproduced.
For an a > 0, set
H® = H(Hb[/{\l)

[Il=a

the disjoint union of the smooth pairs (H I,I/{\I); we will write H* for H® when there is no

confusion.
Suppose Y is another normal crossing divisor on X that meets H transversally; let Y7, .-+, Y}
are the irreducible components. Then to a subset J of {1,--- , s} there corresponds the subva-

riety Y;. On the smooth variety H; N'Y;, we have a pair of normal crossing divisors P/I\I ny;,
and H; N'Y; which meet transversally.

Complexes of topological chains

(2.2) Let C(X) = C(X)*® be the complex of topological chains on X; it is concentrated in
cohomological degree [0, 2n].

Given a normal crossing divisor H on X, let C(X )y = C(X)$}, be the subcomplex of sheaves
of C(X)* consisting of chains « that are admissible with respect to H. The inclusion C(X )y —
C(X) is a quasi-isomorphism.

For Z a closed smooth subvariety of X of codimension ¢, which meets H transversally, there
is a map of complexes inyg : C(Z)znu[—2c¢| — C(X )y which takes an element « to itself.

Suppose H is a normal crossing divisor on X. For each H; we have a map rest; : C(X)y —
C(H1)z; which sends a chain « to i*(a) = a.H;; more generally for a pair with I C J, there



is resty; © C(Hr)g, — C(H;)g;,. One has transitivity: for subsets I C J C K one has
rest; g = rest; k resty ;.
For a > 0 set G<H(a))§<§> = 11—, C(H1) 7, and define the map

it CHW) — — (H)) _—

H@ Hat1)

as the sum of the maps ([, J) - rest; ; over the pairs (/,J) with I < J and I of order a.
Here the sign € = +1 is defined as follows: I = (i1, -+ ,i,) in the increasing order and J =
(in,-+ yigs g insrs -+ da), let e(I, J) = (—1)*.

One has 13,17, = 0, so that there is a complex of complexes

0= C(X)g—CHW) o — - ——C(H®) = s

with the term C(X )y placed in degree 0. This and its total complex will be denoted by C(X | H).

For Y a normal crossing divisor, one has the inclusion map
iny j: C(Y))[—2|J]] = C(Yr)[—2|1]]
for I C J. For b > 0 define the map iy, : Q(Y*+1)[=2] — C(Y®) by

iy, =Y _€(I,J) ing,
for I < J and I of order b. We have a complex of complexes
— (Y ) [—25] 2 - (Y1) [-2] 5 e(X) — 0

(with €(X) in degree 0) which will be denoted C(X\Y).

For a variant of this, suppose now H be another normal crossing divisor on X meeting YV
transversally. On each Y; we have the normal crossing divisor Y; N H and the corresponding
complex C(Y;)y,nm. The map in; ; for I C J in the previous paragraph restricts to a map

ing s C(Y7)y,nm [=2|J]] = C(YD)yynm [—2/1]].

As before we get maps iy, : QYD) _— [-2] — (Y ®)

vor) and the complex of complexes

7®
—>6(Y<b>)y(bm[—2b]&> . —>6(Y<1>)Y(1>0H[—2]&>6(X)H —0.

This we denote as C(X\Y)y. The inclusion into C(X\Y) is a quasi-isomorphism.
On the smooth variety Y; N H; there is a normal crossing divisor Y; N H; and the complex

CY;NH)yng- EJ C T [ =]J[+1and I C I', |I'| = |I|+1, then we have a commutative
diagram .
an’J/
G(YJ/ N HI')YJ/QFI;[_Q] G(YJ N HI’)YJQI/{;
resty s resty s
C(Yy NH)y o [=2) == C(Y;NHp)y



Define now, for a,b > 0,

e(Y®n H<a>)y<b>mﬁ[ - @ C(Yy N Hy)y, o [—20].

|T|=b,/T|=a

With the maps iy, and i * defined as the signed sums as before, we have iy iy, =0, ig"ig* =0,
and the diagrams

ely®n H(aJrl))Y(b-&-l)mHm) — e(y®n H(GH))y(bmHﬁ)
a Y a
eYCInH®) .\ = =5 YO nH®)

commute. Hence we obtain a double complex of complexes with terms C(Y® N H (“))Y(b)m 7

in (=b,a), a,b > 0, and the maps i, and i*. We denote this double complex, as well as its total
complex, by C(X\Y |H).

The 0-th row of (X \Y'| H) coincides with the complex C(X\Y)y introduced before, and the
0-th column coincides with C(X|H ).

Complexes of sheaves of forms

(2.3) The complex A(X)y. Let Ax be the complex of sheaves of smooth differential forms on
X, is also denoted A(X). For a closed subset Z of X, Ax|Z denotes the restriction of Ay to Z,
often viewed as a complex of sheaves on X. If Z is a smooth subvariety, there is the complex
Az of forms on Z. The induced map Ax|Z — Az is a quasi-isomorphism of sheaves on Z.

For each I there is a map of complexes, called the Poincaré residue map
Ry, = Ry« AX)(H) — A(H;)(Hp)[- 1))
with I C J one has the map
Ryy + AHL)Hy)[=1]] = AH){H) (=] 7]]:

recall the change of signs of the differential when a complex is shifted. To be precise, [ s is a
map of complexes of sheaves on Hy, where the target complex is identified with its direct image
under the inclusion ¢ : H; — Hj.

If J=1U{j}, one may write R, for R; ;. We have identities (shifts are omitted)

Ri=R;, - Ry, ifl=_(i1, - ia),

R;R; = —R;R; : A(H;){(H;) — A(Hx){Hg)
if K =1U{i,j}, and

Ry Rr = (=1)"* R, : A(X)(H) — A(H,)(H,)
if I = (i17"' ,ia) and J = (il,“‘ 7ik7j7ik+17"' aia)‘

7



For a > 0 consider the sum @‘I|ZGA(HI)(}/E> which is a complex on X, and let

re @ AHNH)] = @ AH))H)=|J]

[I|=a |J|=a+1

be the sum of the maps Ry ;. Then r or = 0, so that we have a complex of complexes (on X)

0 — A(X)(H)—= @ A(H,) (H;)[-1]— |IE|E2A(H1)<P/I\1>[—2] =
(the term A(X)(H) is placed in degree 0).
Noting the identity -
AH®)(H®) = @ A(H;)(Hy),

[Il=a
the above may be written

—

0 = A(X)(H) = A(HD)(HO)[-1] " AHD ) H?) -2 ">

This double complex, as well as its total complex, will be denoted A(X)y.
The differential of the total complex, restricted to A(H @) (H @) equals the sum of (—1)2
times the differential of A(H@)(H(@)[—a] and 7, see (1.3). Recall also that shift of a complex

changes the sign of the differential. Thus a section of A(X)g of degree p is of the form
© = (1)1, with ¢ a section 0fA(H1)<f/I\I> of degree p — 2|I| ,

and its differential dp has components (dy); that are

(dp)r = d(er) + > Rruler),
<l
where we recall I’ < I means I' C I with |I'| = |I| — 1.
The complex A(X)p naturally contains the subcomplex A(Hr)g-[—2a] for each I of order a.
More generally for J D I, there is an inclusion

ingy: .A(HJ)fTJ[—2|J|] — -A(HI)H\I[_2|I|]

of complexes on Hj.

The inclusion ey : A(X) — A(X)g is a quasi-isomorphism. There is a canonical map
q: A(X)g — A(X)(H) obtained by projection; the composition A(X) — A(X)y — A(X)(H)
coincides with the natural inclusion.

The object A(X)gy is contravariantly functorial in X. If Z is a smooth closed subvariety
meeting H transversally, one has the restriction map i}, : A(X) — A(Z); it extends to a map
is,  A(X)(H) - A(Z)(ZNH).

There are also the restriction maps %, : A(Hj) (E) — A(ZOH1)<ZQE>, and they commute
with the residue maps. Hence the maps

— —_

ity A(HOYH@) - A(Z N HY)(ZnH®)

8



commute with r, giving a map of complexes

Also the maps in; ; and i}, commute with each other, namely the diagram (shifts omitted)

ing, s

AH)) g, A(Hn) g
| | | (2.3.1)
A(Z O Hy) g, 2 A(ZN Hy) yegr.

commutes.
Further, the object A(X )y behaves in a natural way with respect to enlarging H, see a later
subsection for this variance in H.

(2.4) The complex A(X\H). For each b let

ime: D AH)F[-200+1)] = D A(H) 7 [—20] (2.4.1)
|T|=b+1 |1|=b
be defined as the sum of ¢(I,.J) - ins s; the sign €(I,J) was defined in (2.2). Then we have
iy ot = 0, and we have a complex of complexes.

Since we have A(H®) 70 = D= A(Hr) g, the complex in question is expressed as

e AH®Y — (2] 2 S AHD)) — [—2] S A(X) gy — O (2.4.2)

H®) H®)
(with A(X)y in degree 0); recall H® = X and HO = H by convention, so that A(X)y =
A(H) 7o We write A(X\H) for this complex and for its total complex. It depends on
the pair (X, H), not just on the open set X — H, and A(X\H) is just a notation chosen for

simplicity. According to (1.3) the differential of A(X\H) is of the form
(_1>bdA(Hb);ﬁ + ZH* on .A(Hb)l/{\b .

A section § of A(X\H) of degree p is a sum ), (&, where &, is a section of A(Hb)@ of
degree p—b. Fach &, is a sum Y &;, where I varies over subsets with order b, and &; € A(Hf)g;
is an element of degree p — |/].

Each &; in turn is of the form
&r=(8r1),

where J varies over subsets J D I, and & is a section of A(H;)z of degree p + [I| — 2|J].
Combining all, one has & = (§;), and we call £;; be the I.J-component of .
Using this expression the differential d¢ has the I.J-components given by the formula

(d€)ry = (—1)' (d(éu) + ZRM(&I)) + > eI, 1epy i A(H)) g,



where the index J’ in the first sum varies over subsets with I € J’ < J, and I’ in the second
sum over subsets with [ <1’ C J.

One has a canonical injection A(X)y — A(X\H). Since the composition of iy, with the
map q : A(X)g — A(X)(H) is zero, the latter extends to a map of complexes (also written ¢)
AX\H) = A(X)(H).

(2.5) The map s. We show that the map A(X)y — A(X\H) “replaces” the natural map
AX) — A(X)(H).
There is a map of complexes

s: AX)(HY - AX\H),

which sends a section w € A(X)(H) to the element s(w) with [.J-components specified as

follows:
(- Ry (w) if T =,
S(M)[J = .
0 if I #£J.
The verification that s commutes with d is left to the reader. The map s is a section to
q: AX\H) — A(X)(H).

The complexes and the maps we have introduced appear in the following commutative dia-

gram:

AX)——A(X)(H)

eHi i (2.5.1)
AX)p— A(X\H)

We also have the next proposition.

(2.6) Proposition. The maps q : A(X\H) — A(X)(H) and s : A(X)(H) — A(X\H) satisfy
qs = id and sq ~ id (homotopy equivalence); in particular they are quasi-isomorphisms.

(2.7) Contravariant functoriality. Furthering the case for A(X)y, one shows that the contents
of (2.4) and (2.5) are contravariantly functorial in X.

Suppose Z is a smooth closed subvariety meeting H transversally. From the commutativity
(2.3.1) we deduce that the maps iy, and i}, commute with each other, namely the diagram

AHDY i [~2] (He, AHD) )
AZNHOD) g [-2] 5 AZNHD) 40 p

commutes, so there is an induced map of complexes
iy AX\H) = A(Z\ZNH). (2.7.2)

10



Let us say that any one of the four maps in the diagram (2.5.1) is a map of comparison .
Then each map of comparison commutes with the restriction maps ¢7,. Equivalently one can say
that the diagram (2.5.1) be contravariantly functorial. Equivalently still, the following diagram

commutes:
A(X) A(X)(H)
\ . \
A(Z) AZNZ N H)
| (2.7.3)
A(X) — A(X\H) s
\ \
A(Z)y A(Z\Z N H).

(2.8) Variance in H. The constructions in subsections (2.3) — (2.5) behave with respect to H
as follows.

Suppose H' is a normal crossing divisor with H < H’; note that Ind(H) C [nd(H/) Then for
I € Ind(H), one has H; = H} and H; < HI, hence there is inclusion A(H;)(H;) C A(HI)(H’>
Also if I C J are in Ind(H), then the diagram (shifts omitted) with vertical maps inclusions

A(H)(Hy) 5 A(H,)(H;)

|

A(H})(HY)

Rry
L

A(H7)(H})
commutes. So there is a natural inclusion ey g : A(X)g — A(X)p. If H is the zero divisor,
this is the canonical inclusion egs. From the identity ey greny = e, it follows that ey g is a

quasi-isomorphism.
If H” is another normal crossing divisor with H' < H”, we have transitivity

€H,H" = €H/ g €H.H' -
For subsets I C J of Ind(H), the diagram (the vertical maps are the inclusions)

A(Hp)g — A(H))g,

|

Az, = A,

commutes. Thus there is an inclusion ey g : A(X\H) — A(X\H’). This also has transitivity
for H< H < H".

Each map of comparison in (2.5.1) commutes with the map of variance. For the inclusion
A(X)y — A(X\H) this means the commutativity of the diagram

AX)gr — AX\H)
eH,H/l leH,H,

AX)p — AX\H').

11



Similarly for the map s. Hence, with regard to the commutative diagrams (2.5.1) for H and
for H', there is a map of diagrams from the former to the latter.

The maps of variance and contravariant functoriality commute. Specifically the diagram

AX)y 2

-k
ZZJ

A2 gon 25 A(Z) om0

Sk
tz

commutes. Similarly for ey : A(X\H) = A(X\H').

(2.9) The complex A(X|Y). Suppose Y is a normal crossing divisor. For I C J subsets of
Ind(Y), there is the restriction

restr ; : A(Yr) = A(Y;).

For subsets I, .J with J > I with [ =iy ---iq, J =iy i, J, g1, ,ia, let €(I,J) = (=1)* as
before. Define the map
iy AY ) = A(Y D) (2.9.1)

to be the sum of (I, J) - rest; s for |I| = b. Consider the complex of complexes
0= AX) AV s S AV O —s (2.9.2)

(with A(X) in degree 0); the total complex of which we denote by A(X|Y). The differential
of the total complex is
(—=1)’d+i* on AYWY).

Thus a section ¢ of A(X|Y) of degree p is a collection (¢;), with I subsets of Ind(Y'), where
Yy is a section of A(Y7) of degree p — |I|. With this expression di) consists of components

(d)r = (=D)"Md(r) + Y eI, 1) by in A(H). (2.9.3)

'«

With the convention Y = X one may write A(Y®)) for A(X|Y). There is a canonical map
AX]Y) = A(X).
Denoting the restriction of Ax to Y by Ax|Y, one has a complex of complexes

0= Ax|]Y = AYWY) = ... 5 AY") =0,
which one verifies to be exact (cf. [Br], II, §13). So the induced map
Ax|Y = [AY D) = - = AY )]
is a quasi-isomorphism of complexes on Y, and the induced map
Cone(Ax — Ax|Y )[—1] = A(X]Y)

12



is also a quasi-isomorphism.

(2.10) One may combine subsections (2.3) and (2.9) and introduce further variants of the

complexes.

1. Suppose given Y a normal crossing divisor meeting H transversally. For each pair of
subsets .J, J' with J > .J', one has restriction A(Y;)y,nz — A(Yy )y, nm, see (2.7.2). Taking the
sum of them with signs as in (2.9) one obtains the maps

i AY ) ing = AV oy, (2.10.1)
which yield a complex of complexes
0— A( )H—>.A( )Y(l)mH—> - — ‘A(Y(b)>y(b)mH — e

The total complex of this is denoted by A(X|Y) gy
There is a canonical map A(X |Y )y — A(X) g and a quasi-isomorphism A(X |Y) — A(X|Y) g

2. With the same notation we have the restriction map A(Y;)(Y; N H)Y — A7) {(Yynm)-
Taking as 7} the signed sum of them we have a complex of complexes

0= A H) S AV HAYO) D A O HAY )Y .

and its total complex is written A(X |Y)(H).
There is then a map of complexes A(X |Y )y — A(X|Y)(H) obtained by projection.

(2.11) The complex A(X\H|Y). Suppose Y is a normal crossing divisor meeting H transver-
sally. For pairs I <1’ and J < J’ one has a commutative diagram (see (2.3.1))

rest ; ;s

.A(H] M YJ)I/{;myJ .A(H[ N YJ/) TNy,
inLﬂT Tlnl I
rest y y/
.A(H[/ N Yj)ﬁ;myJ A(H[/ N YJ/)H Y,
Taking signed sums we have commutative squares
b a iy b+1 a
A(y( )N H ))wbmfﬁ?) EELEN A(y( +1) N HY( )>y<b+1>mhﬂ€>

iH* iH*

A(Y(b) N H(aJrl)) i> A(y(bJrl) N H(a+1))

Yy nH@E+) [—2] Yo+ (atl) *

Therefore we obtain a double complex of complexes

AX)r 5 YOy s
TH TH «
AHY) =2 == AYONHD) =2 (2.11.1)

H] H]

13



which has the term

AV A HD) ) e [—2a]

in bidegree (b, —a); the maps i} give differential of degree (1,0) and the map iy, that of degree
(0,1). We write A(X\H|Y) for this, as well as for its total complex.

The columns are A(Y®\Y® N H), and one may view diagram (2.11.1) as the total complex
of the complex of complexes

0— AX\H) S AYNYD 0 H)-Zs ..
There is a canonical surjection A(X\H|Y) — A(X\H).
Likewise the rows are A(H@|H@ N Y) 7@ [—2d], and (2.11.1) may be viewed as

L A(HOTHD NY) 5 [ A Y ) — 0.

HD)
There is a canonical injection A(X|Y)y — A(X\H|Y).
Generalizing (2.5.1) there is a commutative diagram
AXY ) —— AX]Y)(H)

l i (2.11.2)
AX|Y) = A(X\H|Y).

The four canonical maps such as A(X]Y) — A(X) from the vertices of (2.5.1) to the corre-
sponding vertices of (2.10.2) form a commutative diagram:

A(X) A(X)(H)
\ s \
A(X|Y) A(X|Y)(H)
| | (2.11.3)
AX) A(X\H) s
~ ~
AX|Y ) AX\H|Y).

Note that all the variants of A(X) introduced thus far appear in this diagram. The verification
of commutativity is straightforward. One also has the following proposition.

(2.12) Proposition. The maps q : A(X\H|Y) — AX|Y)(H) and s : A(X|Y)(H) —
A(X\H|Y) satisty gs = id and sq ~ id (homotopy equivalence); in particular they are quasi-
isomorphisms.

(2.13) The objects and contents of (2.9) — (2.11) are contravariantly functorial in X, and have
expected variance in H and in Y.

Suppose Z is a smooth closed subvariety transversal to Y'; there is then a map i3, : A(X]Y) —
A(Z|ZNY). If Z meets Y +H transversally, then there are maps of complexes i%, : A(X|Y)(H) —
A(Z|Z Y )NZ A H),

iy  AX| YY)y = AZ|ZNY)z0m
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and
iy AX\H|Y) > AZ\ZNH|ZNY).

Each comparison map in (2.11.2) is compatible with %, and the commutative diagram (2.7.3)
generalizes accordingly.

The complex A(X|Y)y has variance for H < H’, and the same holds for the complex
A(X\H|Y). The details are omitted.

Suppose now Y is another normal crossing divisor with Y < Y’. Then we have a natural
map of complexes eyys : A(X|Y’) = A(X]Y); it is transitive for Y <Y’ <Y”. One also has
similar variance in Y for the complexes A(X |Y)y and A(X\H|Y).

(2.14) There are further variants of the complexes. Suppose H’ is another normal crossing
divisor meeting H transversally. Then one has the complex A(X\H)p/, a variant of A(X\H),
which is of the form

o A(H®) L — Y & O (2] 5 A(X ) gy — 0

HO+HONH [ HO+HOAH

Likewise if Y + H is transversal to H' one has the complex A(X\H |Y)ys which is a variant of
AX\H|Y).

(2.15) With assumptions as in (2.3), let U = X — H. The complexes A(X), A(X)y, A(X)(H)
and A(X\ H) appearing in diagrams (2.5.1) all restrict to Ay on U, and all the maps appearing
in (2.5.1) restrict to the identity. Thus the induced maps from the four complexes to j. Ay all

commute with the maps, resulting in commutative diagrams

A(X) > A(X)(H) — j. Ay

nl | lid (2.15.1)

A(X) 5 AX\H) —= Ay

More generally, in the presence of a normal crossing divisor Y that meet H transversally,
introduce the complex
.AU‘YQU = Tot [.AU — ‘AUDY(U — ] .

Then there are induced maps A(X|Y)(H) — j.Ayjynu and A(X\H|Y) — j.Ayjyeu, that
extend commutative diagrams (2.10.2). For example the left diagram extends to

AXY)—— AX|Y)(H) — j(Avjyro)

is Jia (2.15.2)
AXNY ) —— AX\H|Y) — j.(Avjyau) -

Complexes of sheaves of currents.
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We recall the notion of dual cosheaf from [Br], Chap.V, §1. For a c-soft sheaf £, its dual
cosheaf, denoted by I'.{£}, is given by

ViTJ(V,L).

When £ is a sheaf of C-vector spaces, this implies that V' +— T'.(V, £)* is a sheaf.

If £° is a complex of c-soft sheaves, then I'.{L*} is a complex of cosheaves, and V >
[.(V,L%)* is a complex of sheaves; we denote this by D(£*). The functor £* — T'.{L°} is
exact and takes quasi-isomorphisms to quasi-isomorphisms.

(2.16) Let D(X) = D(A(X))[—2n], the dual of the complex A(X) on X.

If Z is a smooth closed subvariety of codimension ¢, the restriction map %, : A(X) — A(Z)
induces a map iz, : D(Z)[—2c] — D(X).

We will successively introduce variants of D(X), taking duals of variants of A(X) in the
previous subsections. Along the way the facts we have obtained for the variants of A(X) will
also be dualized.

1. Let D(X)y = D(A(X)n)[—2n], which is of the form

- S D(AH®)(H®)[~2] ) D(AHD ) (HD)[ 1] )~ D(A(X)(H)) = 0

where 7" are the duals of the maps r in (2.3), and the term D(A(X)(H)) is in degree 2n.
The quasi-isomorphism ey : A(X) — A(X)py induces a quasi-isomorphism

ehr  D(X)y — D(X).

2. The map in; : A(H;)g [-21J]] = A(Hp)g[-2[I]] in (2.3) induces a map inj; :
D(Hi)g, — D(H,)g,- Hence the maps ip, : A(H(“H))Hm) [—2] — A(H(“))ﬁ(;) induce the
maps

Z*H : @(H(a)>i@ — D(H(Q—H))Hm) .

We define D(X|H) = D(A(X\H))[—2n] which is of the form
0 = D(X )y D(HD) oy 2y ...

There is a canonical surjection D(X|H) — D(X)y.
The map ¢ : A(X\H) — A(X)(H) in (2.5) induces a map ¢ : D(A(X)(H))[—2n] —
D(X|H). The map s induces s’ : D(X|H) — D(A(X)(H))[—2n].

There is a commutative diagrams dual to (2.5.1):

D(X) =— D(A(X)(H))[-2n]

HT T (2.16.1)
D(X) D(X|H)
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Proposition (2.6) has its dual statement. In particular s’ is a quasi-isomorphism.
Dualize (2.7): Under the same assumption, the diagram (2.7.1) may be dualized. One has
maps
ize: D(Z)zom[—2¢] = D(X)u

and
ize : D(Z|ZNH)[—2c] - D(X|H).

The diagram (2.16.1) is covariantly functorial, in other words there is a commutative diagram
dual to (2.7.3).

Dualize (2.8): Under the same condition, one has a map of variance ey g : D(X)g —
D(X) g, a quasi-isomorphism, and a map

e DIX|H') — D(X|H).

Both maps are transitive in H.
Each map of comparison in the diagram (2.16.1) commutes with a map of variance. A map
of variance and covariant functoriality commutes.

3. The maps i% : A(Y®) — A(Y®+D) in (2.4) induce maps iy, : D(Y D) — DY), We
define D(X\Y) = D(A(XY))[—2n], which is of the form

DY W) [—2] D (X) = 0.

4. The map % : AY®)y — AY )y in (2.10) induce maps iy, : DY)y —
DY)y, Let D(X\Y )y = D(A(X|Y)r)[—2n], which is of the form

DYDY, o[- D(X )y — 0.

5. The dual of the double complex A(X\H|Y) looks like, after the shift [—2n],

% ;%
ZHT ZHT

BLAN D(Y(I)HH(I))y<1>mﬁ>[_z] 2 DHW) —

* ;%
o o

vy DY D)y iy 2] D DXy

It has terms

DY N HW) —2d]

y®nFm |
in degree (—b,a), a,b > 0, and the two differentials sums of i, and i*. This we denote this by
D(X\Y |H), namely

D(X\Y|H)=DAX\H|Y))[—2n].

17



It has 0-th row equal to D(X\Y )y and 0-th column equal to D(X |H).
Dualizing (2.11.2) we obtain a commutative a diagram

DX\Y) <— D(A(X[Y)(H))[—2n]

T T (2.16.2)
DX\Y)u D(X\Y|H).

There is also a commutative diagram dual to (2.11.3).

Just as contravariant functoriality i}, : A(X) — A(Z) induces covariant functoriality for the
complexes D(X), other instances of the maps i}, for variants of the complexes of A(X) induce
maps iz, for the corresponding dual complexes. They are compiled in the next table where
maps on the left induce maps on the right.

iy AX)g — A(Z)znm ize: D(Z) z0m|—2¢] = D(X) g

iy A(X\H) > A(Z\ZNH) ize : D(Z|ZNH)[-2c] - D(XVY)

iy AXY) = AZ|ZNY) ize : D(Z\Z N H)[—2c] - D(X\Y)

iy  AX|Y)NH) - AZ|ZNY)ZNH) iz : DIAZIZNY)ZNH)) — DAX|Y)(H))
iy AX|\YV)g = AZ|ZNY)zam ize: D(Z\Z N H)zap|—2c) = D(X\Y)z

iy AX\H|Y) = AZ\ZNH|ZNY) iz : D(Z\ZNY|ZNH)[-2c] = DX\Y|H).

The complexes D(X\Y)y and D(X\Y | H) have variance in H, induced from variance of the
complexes A(X|Y )y and A(X\H|Y). Similarly for the variance in Y.

3 The maps ¢ and P

(3.1) Let
dO : e(X)y = D(A(X)(H))[—2n]

be the map of degree zero given by

(@ (a),¢) = / ©.
This is not a map of complexes; one has the equality
30 (9a) = 60O (a) + ' (a|H), (3.1.1)

where 7/ is the dual of the map r : A(X)(H) — A(H(O))(@[—l].
We have likewise maps & : @(H) — — D(A(H))(H@)[-2(n—a)]. Define now a map

O C(X)y — D(X)y[-2n]

18



to be the one given by
®(a) = (©“(a|H')),

>0 °

This is a map of complexes, as can be verified using (3.1.1).

(3.2) Proposition. The diagram

CHW) = — DHW) o

commutes.
Let Z C X be a smooth closed subvariety of codimension d. Then the diagram

CX)y —— DX

iz*T Tiz*

C(Z)znm[=2d] -2 D(Z)znm[—2d]

commutes.

(3.3) For each J and I one has a map of complexex

(ID:G(YJHHI) A—)‘D(YJHH[)

Y;NHy YJQI'/I\I

defined by integration, hence there are maps

o: YO nH®) > DYPNH®)

YA @ ) (@)

for (b,a). These are compatible with the maps i, and ¢* in the respective double complexes for
C(X\Y|H) and D(X\Y|H). They give a map of complexes

®: C(X\Y|H) = D(X\Y|H)

(3.4) Suppose for simplicity all sheaves are ones of C-vector spaces. If A is another sheaf, by
a pairing A ® I'.{L} — C we mean a collection of maps

fr: T(VA)@T(V,L) = C

for each V', such that for a smaller open set W, the maps fi, and fi are commute via restriction
in the first variable and corestriction in the second variable, namely that the digram

D(V,A) @ T(V,L) — C

| | H

IWA) ® T.(W,L) — C
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commutes.

When A® is a complex of sheaves, one can speak of a paring A®* @ I'.{£*} — C, which
by definition is a collection of parings of complexes fy : T'(V, A®) @ T'.(V, £L*) — C satisfying
commutativity as above with respect to restriction and corestriction. A pairing induces a map
of complexes of sheaves A®* — D(L*), see (1.1) for the sign to be attached.

(3.5) Poincaré duality pairings. For each open set V' of X, one has the canonical pairing
(,): T(VAx)®@T.(V,Ax)[2n] = C (3.5.1)

given for w of degree ¢ and ¢ of degree 2n — i by

<w790>=/va90-

The integral makes sense since ¢ has compact support.

This pairing is compatible with respect to restrictions to smaller open sets, namely if W is
a smaller open set, then the above pairing and the paring on W commute via the restriction
IV, Ax) — I'(W,Ax) and corestriction I'.(W, Ax) — T'.(V,Ax). We have thus a pairing
Ax @ {Ax}[2n] — C.

It induces a map of complexes of sheaves

P AX) = D(X)

which sends a form w of degree i on V' to the section (—1)*® - [w] of D(X) on V defined by
(w](p) = (w, @). Tt is a quasi-isomorphism.
There is also a pairing

(,): TV, Ax)®T'(V,Ax)[2n] — C

given by the same formula. This is, however, no different from the paring (3.5.1). Indeed one
verifies that this is obtained from (3.5.1) by means of the isomorphism o that exchanges the
factors; note that for w of degree i and ¢ of degree 2n — i, one has w A ¢ = (—1)'p A w.

(3.6) We introduce variants of the above. Let H and Y be normal crossing divisors on X
which meet transversally. One has a pairing (for V' open)

(,): TV, AX)m) @ To(V,A(X)y)[2n] = C (3.6.1)

given as follows. Take a section ¢ = (¢7) of A(X)y of degree i, and a section ¢ = (p;) of
A(X)y of degree 2n — i. We define

(¢, ) = Z/VQHIOY] (TRAN

1,J
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This is a map of complexes. Also this clearly commutes with restriction and corestriction, and
defines a paring A(X)g @ I'.{A(X)y} — C.
It gives a map of complexes
PAX)g = D(X)y. (3.6.2)

For a section ¢ = (¢7) € I'(V, A(X)g), the components of P(¢)) are given by

P => [Wiluny,);

1

here v, restricts to the form ¢7|g,ny, on VN H;NY,, which determines the current [¢|g,ny,] €
I'VNH NY;, D(H;NYy)), which we view as an element in I'(V N Y, D(Y;) ).
As a particular case where H and Y are empty, we have

P AX) = D(X).

One verifies that the diagram

commutes.

(3.7) For a normal crossing divisor H, there is a pairing
(L) TV AQX)(H)) @ To(V, A(X | H) )2n] = C (3.7.1)

given by

(o)) = 3 s(w, 1) / R () A g1

I Hr

with s(w, I) := (—=1)"+2@=D/2 for w of degree i and (¢;) of degree 2n — 4. The verification of
the condition of pairing is left to the reader.

(3.8) Suppose H and Y are normal crossing divisors meeting transversally. For each I (of order
a) one has a pairing

() D(VLAHD gnv) @ De(V, A(Hp) g )[2(n —a)] = C
For J t> I the pairings for H; and for H; commute (shifts are omitted):

LV AHDmy) @ Te(V,A(Hg) — C

] -

F'(V,AH ) u,ny) ©@ LoV, A(HJ)EG) s C
For each a > 0 we have thus a paring

() )a: DV, AMH D)y ) @ TV AHY) ) )[2(n — )] = €
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and the parings for a and for a + 1 are commute via the maps ¢}; and ip,, since the signs used
for the two maps, (2.4) and (2.9), are equal. Therefore we have an induced pairing as in (1.4)

DV, A(X | H)y) @ To(V, A(X\H))[20] - C.
Because of commutativity with respect to restriction and corestriction, one has a pairing
AX|H)@ T A{A(X\H)}[2n] — C. (3.8.1)
It induces a map of complexes
PrAX|H)y — DX|H). (3.8.1)
An alternative way to obtain this last map is this: there is a map of complexes of complexes

0— AX)y HDY) pyqy — H) yany — -

fPl P P

0= DX)g — DHW) - — DHP) - —...

HD HE

from which the map results by totalization.

Starting instead with the pairing I'(V, A(H1) ) @Le(V, A(H1) i,y )[2(n—a)] — C, we obtain
another paring

PV, A(X\H)) @ T'o(V, A(X[H)y)[2n] = C.

and hence a paring
AX\H)@ T {A(X|H)y}[2n] — C. (3.8.2)

and thence a map of complexes
PrAX\H) — D(X\H)y. (3.8.2)
This map also arises from the following map of complexes of complexes

—  AHWY) &5 — AX)g —0

| |

— ‘D(H(l))Hu)my — D(X)y — 0.

In the next proposition we compare the latter pairing (3.8.2) for Y the zero divisor with the
paring in the previous subsection.
(3.9) Proposition. The pairings defined in the previous subsections are compatible, namely

the following diagram commutes:

F(V,AX)(H)) @ L(V.AX\H)[2n] — C

| | u

D(V,AX\H))) ® T(V,AX|H)2n] —> C.
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(3.10) For a pair of subsets I, .J consider the variety H; NY;. There is a paring
LV, A(H; N YJ);I\myj) @I (V,AH N YJ)HIm?J) — C.
For each pair of integers a, b, the sum of these give a paring

TV, AHY NY®) o) @T(VAHD NY®) | ) = C.

H@NY Y ®)

It is compatible with the iy, and 4};, meaning the commutativity of the diagram of pairings:

P(VAHONYO) = ) © TVAHINY®) =) — C
iH i |
PV, AHSIAYO) o ) © T(VLAHCTNY®) =) — C.

The same holds with respect to the maps iy, and 7j.. We have thus a pairing of double complex

of complexes
F(V,AX\HY)) @ To(V,AX\Y |H))[2n] — C,

which are compatible with respect to restriction and corestriction. Hence results an induced

map of complexes
PrAX\H|Y) = D(X\H|Y). (3.11.1)

This extends the maps A(X\H) — D(X\H)y and A(X|Y)y — D(X]|Y) introduced just

above.

One verifies that the square

AX)r -5 DX)

| |

AX\H) L D(X\H)
commutes; more generally, when Y is transversal to H, the diagram

AX)y - DX)y

| !

AX\H) —2» D(X\H)y

commutes. The following diagram commutes, part of which are the squares just mentioned:

A(X) ’ D(X)
~ | T~
A(X) l D(X)y
AX\H) —~ D(X\H)
s .
A(X\H) D(X\H)y .
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Also we have a commutative diagram

AXY)n - D(X|Y)
\ P ‘ \
AX\H|Y) l D(X\H|Y)
AX)y u ‘ D(X)y
\ i P \
A(X\H) D(X\H)y .

(3.11) Proposition. The maps (3.8.1), (3.8.2) and (3.8.3) are quasi-isomorphisms.

(3.12) Composing the map s : A(X)(H) - A(X\H) with P : A(X\H) - D(X\H), we get a
quasi-isomorphism
PrAX)(H) - D(X\H).

More generally we have P : A(X)(H) — D(X\H)y if H and Y are transversal.
Also, composing s : A(X|Y)(H) — A(X\H|Y) we have a quasi-isomorphism

P AX|Y)WH) — DX\H|Y).

We now define the homological Hodge complex of (X\Y|H).

(3.13) We have a triple of complexes
CX\Y|H)-2D(X\Y |H)+—A(X|H)(Y) (3.13.1)

When H is empty, we each of the three complexes is equipped with the weight filtration W,
and third complex with additional filtration F', and the triple gives a mixed Hodge complexes
of sheaves on X, see Part II.

In general, viewing the complex C(X\Y|H) as a complex of complexes

0—CX\Y) = HEHW\NHY NY) - ...

one has an induced filtration W on the total complex. Similarly the complexes D(X\Y|H)
and A(X|H)(Y) have the filtration W. In addition, A(X|H)(Y') has the Hodge filtration F as
well.

Thus the triple (3.13.1) gives a mixed Hodge complex, which will be denoted by L(X\Y'|H).
We call this the homological Hodge complex for (X\Y|H).

The next result follows from the case H empty, which was shown in Part II.

(3.14) Theorem. The mixed Hodge complex L(X\Y |H) is isomorphic to the mixed Hodge
complex given by Deligne-Beilinson.
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