Homological Hodge complexes II

Masaki Hanamura

Sept. 8

We construct the *homological* Hodge complex of a smooth complex variety, and verify that the existence of a comparison isomorphism to the standard (or the cohomological) Hodge complex.

1 Filtered complexes and Hodge complexes

We review the notion of (mixed) Hodge complexes from [De] and [Be].

(1.1) In what follows a complex are always assumed to be bounded below.

Consider a diagram of the form

$$(K^{\bullet}_{\mathbb{Q}}, W) \xrightarrow{a} (K'^{\bullet}_{\mathbb{C}}, W) \xleftarrow{b} (K^{\bullet}_{\mathbb{C}}, W, F), \qquad (1.1.1)$$

where

• $K^{\bullet}_{\mathbb{Q}}$ is a complex of \mathbb{Q} -vector spaces with a (finite) increasing filtration W_{\bullet} , $K'^{\bullet}_{\mathbb{C}}$ is a complex of \mathbb{C} -vector spaces with an increasing filtration W_{\bullet} , $K^{\bullet}_{\mathbb{C}}$ is a complex of \mathbb{C} -vector spaces with two filtrations W, F (W increasing and F decreasing),

• a is a map of complexes that induces a filtered quasi-isomorphism $(K^{\bullet}_{\mathbb{Q}}, W) \otimes \mathbb{C} \to (K'^{\bullet}_{\mathbb{C}}, W)$, and b gives a filtered quasi-isomorphism $(K^{\bullet}_{\mathbb{C}}, W) \to (K'^{\bullet}_{\mathbb{C}}, W)$.

Such a diagram K will be called a *triple of filtered complexes* of vector spaces.

Definition. We call K a \mathbb{Q} -Hodge complex if in addition the following conditions are satisfied:

(i) $H^i(K^{\bullet}_{\mathbb{Q}})$ are finite dimensional \mathbb{Q} -vector spaces.

(ii) For any a, the differential d of the filtered complex $(\operatorname{Gr}_a^W K_{\mathbb{C}}, F)$ is strictly compatible with the filtration F.

(iii) The isomorphism $H^i(\operatorname{Gr}_a^W K_{\mathbb{Q}}) \otimes \mathbb{C} \cong H^i(\operatorname{Gr}_a^W K_{\mathbb{C}})$ induced by the diagram and the filtration F on $H^i(\operatorname{Gr}_a^W K_{\mathbb{C}})$ gives $H^i(\operatorname{Gr}_a^W K_{\mathbb{Q}})$ the structure of a pure \mathbb{Q} -Hodge structure of weight a.

This notion (indeed for a more general coefficient) is due to Beilinson [Be]. It is known that, if K is a Q-Hodge complex then the filtered vector spaces $(H^i(K_Q), W), (H^i(K_C), W, F)$ and the filtered isomorphism $(H^i(K_{\mathbb{Q}}), W) \otimes \mathbb{C} \cong (H^i(K_{\mathbb{C}}), W)$ define on $H^i(K_{\mathbb{Q}})$ a \mathbb{Q} -mixed Hodge structure (by an argument parallel to [De], II, (3.2.10) and III, (8.1.9)).

(1.2) A triple of filtered complexes (1.1.1) satisfying the same conditions (i), (ii) as above and, in place of (iii), condition (iii)' below, will be called a \mathbb{Q} -mixed Hodge complex.

(iii)' The isomorphism $H^i(\operatorname{Gr}_a^W K_{\mathbb{Q}}) \otimes \mathbb{C} \cong H^i(\operatorname{Gr}_a^W K_{\mathbb{C}})$ given by the diagram and the filtration F on $H^i(\operatorname{Gr}_a^W K_{\mathbb{C}})$ is a pure \mathbb{Q} -Hodge structure of weight i + a.

If K is a \mathbb{Q} -mixed Hodge complex, by taking décalage with respect to the filtration W we obtain another triple of filtered complexes

$$(K^{\bullet}_{\mathbb{Q}}, \operatorname{Dec}(W)) \xrightarrow{a} (K'^{\bullet}_{\mathbb{C}}, \operatorname{Dec}(W)) \xleftarrow{b} (K^{\bullet}_{\mathbb{C}}, \operatorname{Dec}(W), F);$$

this is a \mathbb{Q} -Hodge complex.

Remark. 1. Our notion of mixed Hodge complex differs from Deligne's [De], III. A mixed Hodge complex in [De] consists a pair of objects in filtered derived categories, together with a comparison isomorpism in the (filtered) derived category. Of course precedes Deligne's notion precedes [Be].

A Q-mixed Hodge complex in our sense clearly gives rise to a mixed Hodge complex in the sense of Deligne.

2. In the literature more general notion of A-(mixed) Hodge complexes, for a coefficient ring A, are considered; the formulations need to be changed in the obvious manner. We restrict ourselves to the case $A = \mathbb{Q}$.

(1.3) For \mathbb{Q} -Hodge complexes one can construct the associated derived category as follows. For details see [Be].

Let $\mathcal{C}^+_{\mathcal{H}}$ denote the category of \mathbb{Q} -Hodge complexes. A morphism of \mathbb{Q} -Hodge complexes is a triple of filtered complexes making the obvious diagram commutative. One has the notion of homotopy between morphisms, thus one can form the homotopy category $\mathcal{K}^+_{\mathcal{H}}$. There is the cohomology functor $H^{\bullet}: \mathcal{K}^+_{\mathcal{H}} \to (\mathbb{Q} - \text{Vect})$ to the category of \mathbb{Q} -vector spaces. Via the cohomology functor one has the class of quasi-isomorphisms. By inverting them one arrives at a triangulated category $\mathcal{D}^+_{\mathcal{H}}$, which may be called the *derived category of* \mathbb{Q} -Hodge complexes.

In this paper, we will have \mathbb{Q} -mixed Hodge complexes K, which we turn to \mathbb{Q} -Hodge complexes, then view them as objects in the category $\mathcal{D}_{\mathcal{H}}^+$.

The \mathbb{Q} -mixed Hodge complexes K we encounter will come from \mathbb{Q} -mixed Hodge complexes of sheaves, to be explained below.

(1.4) Consider now sheaves on a topological space X.

A triple of filtered complexes of sheaves is a diagram

$$(\mathcal{K}^{\bullet}_{\mathbb{Q}}, W) \xrightarrow{a} (\mathcal{K}'^{\bullet}_{\mathbb{C}}, W) \xleftarrow{b} (\mathcal{K}^{\bullet}_{\mathbb{C}}, W, F).$$
(1.4.1)

Here

• $(\mathcal{K}^{\bullet}_{\mathbb{Q}}, W)$ is a complex of \mathbb{Q} -sheaves with a (finite) increasing filtration W_{\bullet} , $(\mathcal{K}'^{\bullet}_{\mathbb{C}}, W)$ is a complex of \mathbb{C} -sheaves with an increasing filtration W_{\bullet} , and $(\mathcal{K}^{\bullet}_{\mathbb{C}}, W, F)$ is a complex of \mathbb{C} -sheaves with an increasing filtration W_{\bullet} and a decreasing filtration F;

• the arrow *a* is a morphism of filtered complexes $(\mathcal{K}^{\bullet}_{\mathbb{Q}}, W) \to (\mathcal{K}'^{\bullet}_{\mathbb{C}}, W)$ which induces a filtered quasi-isomorphism $(\mathcal{K}^{\bullet}_{\mathbb{Q}}, W) \otimes \mathbb{C} \to (\mathcal{K}'^{\bullet}_{\mathbb{C}}, W)$, and *b* is a filtered quasi-isomorphism $(\mathcal{K}^{\bullet}_{\mathbb{C}}, W) \to (\mathcal{K}'^{\bullet}_{\mathbb{C}}, W)$.

Definition. The filtered triple (1.4.1) is said to be a \mathbb{Q} -Hodge complex of sheaves (resp. \mathbb{Q} -mixed Hodge complex of sheaves) if in addition the following condition holds:

(i) For each term $\mathcal{K}^i_{\mathbb{Q}}$ of the complex $\mathcal{K}_{\mathbb{Q}}$, the graded object $\operatorname{Gr}^W(\mathcal{K}^i_{\mathbb{Q}})$ is Γ -acyclic, where $\Gamma = \Gamma(X, -)$; similarly for $\mathcal{K}'_{\mathbb{C}}$ the object $\operatorname{Gr}^W(\mathcal{K}^i_{\mathbb{Q}})$ is Γ -acyclic; and for $\mathcal{K}^{\bullet}_{\mathbb{C}}$, the object $\operatorname{Gr}^W\operatorname{Gr}^F(\mathcal{K}^i_{\mathbb{C}})$ is Γ -acyclic.

(ii) By the first condition, application of the functor $\Gamma(X, -)$ yields a triple of filtered complexes of vector spaces. It is a Q-Hodge complex.

A \mathbb{Q} -mixed Hodge complex of sheaves gives a \mathbb{Q} -Hodge complex of sheaves by taking décalage for W.

A \mathbb{Q} -mixed Hodge complex of sheaves in our sense gives, by passing to the derived category, a cohomological \mathbb{Q} -mixed Hodge complex as defined in [De], (8.1.6).

2 Push-out of complexes and functorial properties

We collect the basic properties of push-out of complexes, to be used later.

(2.1) Given maps of complexes $u: K \to L$ and $v: K \to M$, consider the map $(u, v): K \to L \oplus M$, take its cone: $Q = \text{Cone}(K \to L \oplus M)$:

$$\begin{array}{cccc} K & \stackrel{u}{\longrightarrow} & L \\ v & & & \downarrow v' \\ M & \stackrel{u'}{\longrightarrow} & Q \end{array}$$

There are canonical maps u' and v' as indicated. Q is called the *push-out* of (K; u, v). Recall that $Q^p = K^{p+1} \oplus L^p \oplus M^p$, and the differential sends $(x; y, z) \in Q^p$ to (-dx; u(x) + dy, v(x) + dz). We will also say that $M \to Q$ is obtained from $K \to L$ by pushing out along v.

If we define a map of degree -1, $S: K^{\bullet} \to Q^{\bullet-1}$ by S(x) = (x; 0, 0) then we have the identity dS + Sd = v'u + u'v.

(2.1.1) The push-out square satisfies the following universal property. Assume given a square of complexes

$$\begin{array}{cccc} K & \stackrel{u}{\longrightarrow} & L \\ v & & & \downarrow^{f} \\ M & \stackrel{g}{\longrightarrow} & R \end{array}$$

and a map $U: K^{\bullet} \to R^{\bullet-1}$ such that dU + Ud = fu + gv. There is then a unique map of complexes $q: Q \to R$ such that

$$qu' = g$$
, $qv' = f$, and $qS = T$.

(2.1.2) The push-out has the obvious functoriality: Suppose we have another pair of maps of complexes $u_1: K_1 \to L_1$ and $v_1: K_1 \to M_1$; also given are maps of complexes $k: K \to K_1$, $\ell: L \to L_1$, and $m: M \to M_1$, satisfying $\ell u = u_1 k$ and $mv = v_1 k$. Let Q_1 be the push-out of $(K_1; u_1, v_1)$ with maps $v'_1: L_1 \to Q_1, u'_1: M_1 \to Q_1$ and degree -1 map $S_1: K_1 \to Q_1$. Then there is a unique map of complexes $q: Q \to Q_1$ such that $qu' = mu'_1, qv' = \ell v'_1$, and $qS = S_1q$.

(2.2) We formulate more of the functorial properties. Suppose we are given

- (i) maps of complexes $u: K \to L, v: K \to M, u_1: K_1 \to L_1$ and $v_1: K_1 \to M_1$,
- (ii) maps of complexes $k: K \to K_1, \ell: L \to L_1$, and $m: M \to M_1$,
- (iii) maps of degree $-1, T: K \to L_1$ and $T': K \to M_1$ satisfying the identities

$$dT + Td = \ell u - u_1 k$$
, $dT' + T'd = mv - v_1 k$,

and

(iv) another complex R together with maps of complexes $v'_1 : L_1 \to R$ and $u'_1 : M_1 \to R$, and a map $U : K_1 \to R$ of degree -1 satisfying

$$dU + Ud = v_1'u_1 + u_1'v_1$$
.

Let Q be the push-out of (K; u, v) as in the previous paragraph. Then there exists a unique map of complexes $q: Q \to R$ such that the following identities hold:

 $qu'=u_1'm\,,\quad qv'=v_1'\ell\quad\text{and}\quad qS=Uk+v_1'T+u_1'T'\,.$

The verification is straightforward. Note the special cases:

(1) The universal property (2.1.1) is the case where $k: K \to K_1, \ell: L \to L_1$, and $m: M \to M_1$ are the identity maps and T = T' = 0.

(2) If $R = Q_1$ is the push-out of $(K_1; u_1, v_1)$ and S_1 is the associated homotopy, then there exists an induced map of complexes $q : Q \to Q_1$ that satisfy the mentioned conditions with $U = S_1$. Note that if further T = T' = 0, then it reduces to the obvious case (2.1.2).

(2.3) The following properties are easily shown.

For the push-out (2.1), if u is a quasi-isomorphism, then so is u'. In (2.2), if k, ℓ , m are quasi-isomorphisms, and $R = Q_1$, then q is also a quasi-isomorphism.

3 Semi-analytic triangulations and the semi-analytic chain complex

In what follows simplicial complex means a geometric, locally finite simplicial complex in an \mathbb{R}^N , as in [Mu], §2. Thus a simplicial complex K is set of simplices σ , satisfying certain conditions. The polytope of K, denoted by |K|, is the union of the simplices in K. The relative interior of a simplex σ will be denoted by $\overset{\circ}{\sigma}$. Let $C_*(K)$ be the complex of oriented simplices of K, with coefficients in \mathbb{Z} (see [Mu], §5). It is known that the homology of this complex is canonically isomorphic to the Borel-Moore homology $H_*(|K|) = H_*(|K|;\mathbb{Z})$ of |K|, (cf. [Br], [Ha]). One can also take \mathbb{Q} as the coefficient ring; from §2 on we will always do so.

(3.1) We recall a theorem in [Lo]. Let M a real analytic manifold satisfying the second axiom of countability. By [Lo], Theorem 2, there exist a locally finite simplicial complex K and a homeomorphism $h : |K| \to M$ satisfying the following condition:

(i) For each simplex σ in K, $h(\overset{\circ}{\sigma})$ is a semi-analytic subset as well as an analytic submanifold of M, and the map $\overset{\circ}{\sigma} \to h(\overset{\circ}{\sigma})$ is an analytic isomorphism.

Given a locally finite collection of semi-analytic subsets $\{B_{\nu}\}$ of M, one may arrange that we also have:

(ii) Each B_{ν} is a union of some of the sets $h(\overset{\circ}{\sigma})$, for σ a simplex of K. (We will then say that the collection $\{h(\overset{\circ}{\sigma})\}$ is compatible with (B_{ν}) .)

Such a pair $(K; h : |K| \to M)$ is called a *semi-analytic trialgulation* of M. (When it does not cause confusion, we will simply refer to the map h for a triangulation.) If it also satisfies (ii), then the triangulation is compatible with $\{B_{\nu}\}$.

(3.2) Let K and L be simplicial complexes. Suppose $f : |L| \to |K|$ is a homeomorphism satisfying the following condition:

Each simplex σ in K is a finite union of $f(\tau)$, for some simplices τ of L. We then say that f is a subdivision of simplicial complexes.

Remark. (1) An equivalent condition is that for each simplex σ of K, its interior $\overset{\circ}{\sigma}$ is a finite union of $f(\overset{\circ}{\tau})$ for some simplices τ of L.

(2) This is a generalization of subdivision of K in the sense of [Mu]. If K and L are simplicial complexes of the same \mathbb{R}^N and |K| = |L|, then $id : |L| \to |K|$ is a subdivision in our sense iff L is a subdivision of K in the sense of [Mu].

For a simplex σ in K, the set

$$L(\sigma) = \{ \tau \in L \mid h(\tau) \subset \sigma \}$$

is a subcomplex of L. Since $|L(\sigma)| = h^{-1}(\sigma)$, which is homeomorphic to σ , $L(\sigma)$ is an acyclic simplicial complex. The proof of the following result is parallel to that of [Mu], §17.

(3.3) **Proposition.** Given a subdivision of simplicial complexes f as above, there exists a unique augmentation preserving chain map

$$\lambda: C_*(K) \to C_*(L)$$

such that $\lambda(\sigma)$ is carried by $L(\sigma)$ for each simplex σ of K. It is a quasi-isomorphism.

The assignment of λ to f is contravariantly functorial.

We give here a direct definition of the map λ . For each oriented *p*-simplex σ of K, we have

$$\sigma = \cup f(\sigma')$$

a finite union of p-simplices σ' of L. Orient each σ' such that the induced orientation (by the homeomorphism f) on $f(\sigma')$ is compatible with the orientation of σ . Let

$$\lambda(\sigma) = \sum \sigma'$$

and extend it by linearity to define a map λ . One verifies easily that this gives an augmentationpreserving chain map, and clearly carried by $L(\sigma)$ by definition, thus it coincides with the map λ in the theorem.

(3.4) Let $(K; h : |K| \to M)$ and $(L; h' : |L| \to M)$ be semi-analytic triangulations of M. A morphism of semi-analytic triangulations from (L; h') to (K; h) is a subdivision $f : |L| \to |K|$ satisfying $h \circ f = h'$.

Note first that there is at most one morphism f between two triangulations, which is given as $f = h^{-1} \circ h'$.

Second, if f is a morphism of semi-analytic triangulations, and if τ is a simplex of L, σ is K such that $f(\mathring{\tau}) \subset \mathring{\sigma}$, then $f(\mathring{\tau})$ is a semi-analytic subset as well as an analytic submanifold of $\mathring{\sigma}$.

We consider the category of triangulations of M, and denote it by Tr(M). The objects are the semi-analytic triangulations of A, $(K; h : |K| \to A)$. The arrows are the morphisms defined above.

When we are given a locally finite collection of semi-analytic subsets $\mathcal{B} = \{B_{\nu}\}$, we may consider the full subcategory $Tr(M; \mathcal{B})$ of Tr(M), consisting of those triangulations compatible with \mathcal{B} .

(3.5) **Proposition.** The category of semi-analytic triangulations Tr(M) is cofiltered. The same holds for $Tr(M; \{B_{\nu}\})$, given a locally finite collection $\{B_{\nu}\}$. Further, the subcategory $Tr(M; \{B_{\nu}\})$ is cofinal in Tr(M).

Proof. Given two triangulations $h : |K| \to M$ and $h' : |L| \to M$, consider the collection of semi-analytic sets in |K|,

$$\mathcal{B} = \{h(\overset{\circ}{\sigma}) \cap h'(\overset{\circ}{\sigma'}) \mid \sigma \in K, \quad \sigma' \in L\},\$$

and apply (3.1). There is a simplicial complex L and a homeomorphism $g: |L| \to M$ such that the collection $\{g(\hat{\nu})\}$ (for ν simplices of L) is compatible with \mathcal{B} . If $f: |L| \to |K|$ and $f': |L| \to |K'|$ are homeomorphisms such that $g = h \circ f = h' \circ f'$, then one sees that $\{f(\hat{\nu})\}$ is compatible with $\{\hat{\sigma}\}$, and $\{f'(\hat{\nu})\}$ is compatible with $\{\hat{\sigma'}\}$; then f and f' are morphisms of triangulations. This shows the connectivity of the category Tr(M).

Suppose that $f : |L| \to |K|$ and $f' : |L'| \to |K|$ are morphisms of triangulations of M. Considering the collection of subsets

$$\{f(\overset{\circ}{\tau})\cap f'(\overset{\circ}{\tau'})\mid \tau\in L, \quad \tau'\in L'\}$$

and using the same theorem, we find another triagulation $|L''| \to M$ and morphisms of triangulations $g: |L''| \to |L|$ and $g': |L''| \to |L|$ so that $g \circ f = g' \circ f'$.

Also it is clear that if f and f' are morphisms of triangulations $|L| \to |K|$, then f = f'. Thus the category is cofiltered.

The argument for $Tr(M; \{B_{\nu}\})$ is an obvious modification. That it is cofinal in Tr(M) follows easily from (3.1).

(3.6) We have a contravariant functor from Tr(M) to the category of chain complexes, which assigns to a triangulation $(K; h : |K| \to M)$ the simplicial chain complex $C_*(K)$ and assigns to each morphism $f : (L; h') \to (K; h)$ the homomorphism $\lambda : C_*(K) \to C_*(L)$.

One can form the inductive limit over the cofiltered category Tr(M), and obtain a chain complex

$$\lim C_*(K);$$

we denote it by $C_*(M)$. This is the complex of semi-analytic chains in M.

Given a locally finite collection $\mathcal{B} = \{B_{\nu}\}$, the same inductive limit over the subcategory $Tr(M; \mathcal{B})$ gives us a quasi-isomorphic subcomplex, denoted by $C_*(M; \mathcal{B})$. There is an inclusion $C_*(M; \mathcal{B}) \to C_*(M)$, and it is a quasi-isomorphism.

(3.7) Let X be a closed semi-analytic subset of M. Let h be an object of $(M; \{X\})$, namely an analytic triangulation $h: |K| \to M$ compatible with X.

Then the subset of K given by

$$K_X := \{ \sigma \in K \mid h(\sigma) \subset X \}$$

is a subcomplex of K, and h restricts to a homeomorphism

$$h_X: |K_X| \to X;$$

this is the induced triangulation of X from (K; h).

There is a natural inclusion $C_*(K_X) \to C_*(K)$. The next proposition is obvious.

(3.8) **Proposition.** Suppose (K; h) is an analytic triangulation of $(M; \{X\})$. If $f : (L, h') \to (K, h)$ is a morphism in Tr(M), then (L, h') is also an analytic triangulation of $(M; \{X\})$. Hence one has a subcomplex L_X of L and f restricts to a morphism of triangulations $f_X : L_X \to K_X$ over X.

Consequently there is a commutative diagram of complexes

$$\begin{array}{cccc} C_*(K_X) & \xrightarrow{\lambda} & C_*(L_X) \\ \downarrow & & \downarrow \\ C_*(K) & \xrightarrow{\lambda} & C_*(L) \, . \end{array}$$

(3.9) We define

$$C_*(X) = \lim_{K \to \infty} C_*(K_X),$$
 limit over the category $Tr(M; \{X\})$

More generally if \mathcal{B} contains X as a member, we have

$$C_*(X; \mathcal{B}) := \lim C_*(K_X), \quad \text{limit over } Tr(M; \mathcal{B}).$$

(More precise notation would be $C_*(X; M)$ and $C_*(X; (M, \mathcal{B}))$, respectively.) There is an inclusion $C_*(X; \mathcal{B}) \to C_*(X)$, which is a quasi-isomorphism.

(3.10) Let U be an open set of M. Consider a semi-analytic triangulation $h: |K| \to M$ of M, and a semi-analytic triangulation $(K_U; h_U: |K_U| \to U)$ of U. Let $j: |K_U| \to |K|$ be the map making the diagram

$$\begin{array}{cccc} |K| & \stackrel{h}{\longrightarrow} & M \\ \stackrel{j}{\uparrow} & & \cup \\ |K_U| & \stackrel{h_U}{\longrightarrow} & U \ . \end{array}$$

commute; it is a homeomorphism to the open set $h^{-1}(U)$. The triangulation h_U is said to be subordinate to h if for any simplex τ of K_U , there exists a simplex σ of K such that $j(\tau) \subset \sigma$.

For any semi-analytic triangulation $h : |K| \to M$ of M and for any open set U, there is a semi-analytic triangulation of U that subordinate to h. Indeed, if K is in \mathbb{R}^N , one may choose K_U to be a simplicial complex in the same \mathbb{R}^N in such a way that $|K_U|$ is a subset of K, and that each simplex of K_U is an affine subset of a simplex of K. However we will need the more general notion we introduced above.

If $h_U : |K_U| \to U$ is compatible with h, there is an induced map of complexes $\rho : C_*(K) \to C_*(K_U)$ called restriction, defined as follows.

For each oriented p-simplex σ of K, write $\sigma \cap U$ as the union of p-simplices σ' of K_U that are contained in σ , so that $\sigma \cap U = \bigcup \sigma'$. Give each σ' the orientation compatible with that for

 σ , and let $\rho(\sigma) = \sum \sigma'$. Extending by linearity, one obtains the map ρ , and one verifies it is a map of complexes. Note that $|\rho(\alpha)| = |\alpha| \cap U$ for any chain α in $C_*(K)$ (recall $|\alpha|$ denotes the support of a chain).

(3.11) **Proposition.** Suppose (K; h) and (L; h') are semi-analytic triangulations of an analytic manifold M, and $f : |L| \to |K|$ is a morphism of triangulations. Suppose also U is an open set of M, $h_U : |K_U| \to U$ is a semi-analytic triangulation subordinate to the triangulation h. Then there exists a semi-analytic triangulation $h'_U : |L_U| \to U$ subordinate to h', and a morphism of triangulations $f_U : |L_U| \to |K_U|$ from h'_U to h_U such that the diagram

$$\begin{array}{ccc} |L| & \xrightarrow{f} & |K| \\ \downarrow & & \uparrow j \\ |L_U| & \xrightarrow{f_U} & |K_U| \end{array}$$

commutes.

Proof. Consider the collection of semi-analytic sets of U,

$$\mathcal{B} = \{ h'(\overset{\circ}{\tau}) \cap h_U(\overset{\circ}{\sigma}) \mid \tau \in L, \quad \sigma \in K_U \}.$$

Choose a semi-analytic triangulation $h'_U : |L_U| \to U$ that is compatible with \mathcal{B} . We then have the required properties.

(3.12) Under the assumption of Proposition (3.11) we have a commutative diagram of complexes

$$\begin{array}{cccc} C_*(K) & \xrightarrow{\lambda} & C_*(L) \\ & & & & & & \\ \rho \downarrow & & & & \downarrow \rho \\ C_*(K_U) & \xrightarrow{\lambda} & C_*(L_U) \end{array}$$

where the horizontal maps are the subdivisions operators and the vertical ones the restrictions. Passing to the limit over the triangulations of M, we get a map of complexes

$$C_*(M) \to C_*(U)$$

which we call restriction. The image of α will be written $\alpha|_U$.

If U and V are open sets of M, arguing as above with M replaced with U, we have restriction $C_*(U) \to C_*(V)$. This gives us a complex of presheaves on M; we will denote it by \mathcal{C}_{M*} or $\mathcal{C}_*(M)$.

(3.13) A chain α in $C_i(M)$ determines the subsets $A = |\alpha|$ and $B = |\partial \alpha|$ of M; both are semi-analytic subsets of M, $A \supset B$, and dim A = i, dim B = i - 1 (unless empty). Also α determines a class $c(\xi) \in H_i(A, B)$ in the Borel-Moore homology of the pair (A, B). There is a canonical isomorphism $H_i(A, B) \cong H_i(A \setminus B)$. Conversely if A, B are closed semi-analytic subsets of M of dimension i and i-1, respectively (unless empty), and $c \in H_i(A, B)$ is a class, there corresponds a chain $\alpha \in C_i(M)$ such that $|\alpha| \subset A, |\partial\alpha| \subset B$, and such that the image of $c(\xi) \in H_i(|\alpha|, |\partial\alpha|)$ equals c. For this one applies (3.1) to M and the collection $\{A, B\}$ to find a triangulation which supports c.

Using this viewpoint, one can show that the presheaf $U \mapsto C_i(U)$ is sheaf. Indeed suppose Uis an open set of M, $U = \bigcup U_{\alpha}$ is its open covering, and ξ_{α} be elements of $C_i(U_{\alpha})$ that satisfy the compatibility condition. Let $A_{\alpha} = |\xi_{\alpha}|, B_{\alpha} = |\partial(\xi_{\alpha})|$ which are semi-analytic subsets of U_{α} . Then (A_{α}) (resp. (B_{α})) glue to define a semi-analytic set of M of dimension i and i - 1, respectively. Let \mathcal{H}_i be the homology sheaf $V \mapsto H_i(V)$ on $A \setminus B$. Then the sections ξ_{α} on $A_{\alpha} \setminus B_{\alpha}$ glue to a section $\xi \in \Gamma(A \setminus B, \mathcal{H}_i) = H_i(A \setminus B)$. It determines an element $\alpha \in C_i(U)$ that restrict to ξ_{α} on U_{α} .

This we call the complex of sheaves of semi-analytic chains on M, and denote it by $\mathcal{C}_{M,*}$ or $\mathcal{C}_*(M)$.

(3.14) If $h : |K| \to M$ is a semi-analytic triangulation of M, there is an injective map of complexes

$$C_*(K) \to \mathcal{S}^{BH}_*(M)$$

where the right hand side is the complex of sheaves of semi-analytic chains as introduced by Bloom-Herrera. (See [B-H], §2.7.) This induces an isomorphism of complexes $C_*(M) \rightarrow S_*^{BH}(M)$. This being the case for each open set of M, we have an isomorphism of complexes of sheaves $C_*(U) \rightarrow S_{M,*}^{BH}(U)$.

We refer to [Br], Chap. V for the notion of cosheaves and corresolutions. The following theorem is proved using Theorem 12.20 of *loc. cit.*.

(3.15) **Theorem.** The complex $\mathcal{C}_{X,*}$ consists of c-soft sheaves. The associated complex of cosheaves $U \mapsto \Gamma_c(U, \mathcal{C}_{X,*})$ has an augmentation to \mathbb{Z}_X , which makes it a quasi-corresolution. In particular the cohomology of $\Gamma(X, \mathcal{C}_{X,*})$ is canonically isomorphic to the Borel-Moore homology of X.

(3.16) Generalizing (3.10) we verify the following.

Suppose U is an open set of M, X is a closed semi-analytic set of M, and $V = X \cap U$. Suppose an object (K;h) of $Tr(M; \{X\})$ is given; let h_X be the induced triangulation of X. Then there exists an object $(K_U; h_U)$ of $Tr(U; \{V\})$ such that the following conditions hold:

• $(K_U; h_U)$ is subordinate to (K; h), and

• $(K_V; h_V)$ is subordinate to $(K_X; h_X)$. (Here $(K_V; h_V)$ is the triangulation of V induced from $(K_U; h_U)$).

Consequently we have a commutative diagram of complexes

$$\begin{array}{cccc} C_*(K_X) & \longrightarrow & C_*(K) \\ \rho & & & \downarrow \rho \\ C_*(K_V) & \longrightarrow & C_*(K_U) \end{array}$$

(3.17) Generalizing Proposition (3.11), we can show:

Suppose given a morphism $f: (L; h') \to (K; h)$ in $Tr(M; \{X\})$. Also given an open set U of M, and an object $(K_U; h_U)$ of Tr(U) that is subordinate to (K; h). Then there exists an object $(L_U; h'_U)$ of $Tr(U; \{V\})$ such that

 $(L_U; h'_U)$ is subordinate to (L; h'), and $(L_V; h'_V)$ is subordinate to $(L_X; h'_X)$.

We have thus a commutative diagram of complexes

$$\begin{array}{cccc} C_*(K_X) & \stackrel{\lambda}{\longrightarrow} & C_*(L_X) \\ \rho & & & \downarrow \rho \\ C_*(K_V) & \stackrel{\lambda}{\longrightarrow} & C_*(L_V) \end{array}$$

which is compatible with the commutative diagram in (3.8). It induces a map $\rho : C_*(X) \to C_*(V)$, giving us a complex of sheaves $\mathcal{C}_{X,*}$.

(3.18) Let M be an analytic manifold. For any element $\alpha \in C_*(M)$ there exists an analytic triangulation $h: |K| \to M$ such that $\alpha \in C_*(K)$ (obvious from the definitions).

It follows from this and the previous subsection that, if X is a closed semi-analytic subset of M, then one has

$$C_*(X) = \{ \alpha \in C_*(M) \mid |\alpha| \subset X \}.$$

If $i: X \to M$ denotes the inclusion, one has $i' \mathcal{C}_{M,*} = \mathcal{C}_{X,*}$.

Let $j: U = M - X \to M$ be the inclusion of the open set. We have a quasi-isomorphism

$$\mathfrak{C}_M/\mathfrak{C}_X \to j_*\mathfrak{C}_U$$

4 Complexes of forms and currents

Let X be a smooth connected complex variety of dimension n. We will consider sheaves of Λ -vector spaces on a smooth complex variety, where $\Lambda = \mathbb{Q}$ or \mathbb{C} ; a sheaf is denoted by \mathcal{F} . Also consider complexes of such sheaves \mathcal{F}^{\bullet} , and filtered complexes of sheaves $(\mathcal{F}^{\bullet}, W)$ where W is a filtration by subcomplexes. We always assume that a filtration is finite, namely it is a finite filtration on each component.

One may apply the global section functor to get a filtered complex of Λ -vector spaces $\Gamma(X, (\mathcal{F}^{\bullet}, W))$; similarly for the direct image f_* for a map $f : X \to X'$, or for any other left exact functor.

One has the derived functor on the filtered derived category of sheaves. If $(\mathcal{F}^{\bullet}, W)$ is a filtered complex (of sheaves) and $(\mathcal{F}^{\bullet}, W) \to (\mathcal{F}'^{\bullet}, W)$ is a filtered quasi-isomorphism such that the graded pieces of \mathcal{F}' are Γ -acyclic, then one has $\mathbb{R}\Gamma(X, (\mathcal{F}^{\bullet}, W)) = \Gamma(X, (\mathcal{F}'^{\bullet}, W))$. The same applies to the direct image f_* and its derived functor.

(4.1) In the rest of this paper we work mainly under the following assumption. U is a smooth complex variety, contained in a smooth complete variety X, with complement Y a simple normal crossing divisor. Also assume that the irreducible components Y_1, \dots, Y_r of Y are totally ordered.

For a subset I of $\{1, \dots, r\}$, set $Y_I = \bigcap_{i \in I} Y_i$ and $Y_{\emptyset} = X$. If $J \supset I$, there is an inclusion $Y_J \to Y_I$.

For $0 \leq a \leq r$ we set $Y^{(a)} = \coprod_{|I|=a} Y_I$ and $Y^{(0)} = X$. If $k = 0, \dots, a$, the sum of the inclusions $Y_{i_1 \dots i_a} \to Y_{i_1 \dots \widehat{i_k}, \dots i_a}$ gives a map $d_k : Y^{(a)} \to Y^{(a-1)}$.

(4.2) Recall from §3 that $\mathcal{C}_{X,\bullet}$ denotes the complex of sheaves of semi-analytic chains on X

$$0 \to \mathcal{C}_{2n} \to \mathcal{C}_{2n-1} \to \cdots \to \mathcal{C}_0 \to 0$$

which is concentrated in homological degree [0, 2n]. One has $\mathcal{C}_{X,p}(U) = C_p(U)$ for U open in X. We also use the notation $\mathcal{C}_{\bullet}(X)$ instead of $\mathcal{C}_{X,\bullet}$; but we avoid expressions such as $\mathcal{C}_{\bullet}(X)(U)$.

We view it as a cohomological complex concentrated in degree [-2n, 0], and then shift it to define the complex \mathcal{C}_X^{\bullet} as

$$\mathfrak{C}^{\bullet}_X = \mathfrak{C}_{X,\bullet}[-2n] \, .$$

It is concentrated in cohomological degree [0, 2n]; \mathcal{C}_X^p consists of chains of real codimension p. The fundamental orientation chain of X gives an augmentation map $\mathbb{Q}_X \to \mathcal{C}_X^{\bullet}$, which is a quasi-isomorphism.

Instead of \mathcal{C}^{\bullet}_X we may write $\mathcal{C}^{\bullet}(X)$, or just $\mathcal{C}(X)$ dropping the superscript; on the contrary we will not drop the subscript from $\mathcal{C}_{\bullet}(X)$.

Suppose X is complete and smooth. If $i: Y \subset X$ is the inclusion of a smooth divisor one has a map of sheaves complexes on X, namely $i_* : \mathcal{C}^{\bullet}(Y)[-2] \to \mathcal{C}^{\bullet}(X)$. As usual we have identified a sheaf \mathcal{F} on Y as a sheaf $i_*\mathcal{F}$ on X. Next assume $Y = Y_1 + \cdots + Y_r$ is a normal crossing divisor on X. For $J \supset I$ with |J| = |I| + 1, one has the map $i_* : \mathbb{C}^{\bullet}(Y_J)[-2] \to \mathbb{C}^{\bullet}(Y_I)$. If $I = \{i_1, \cdots, i_a\}$ with $i_1 < \cdots < i_a$ and $J = \{i_1, \cdots, i_k, j, i_{k+1}, \cdots, i_a\}$ also in the increasing order, set $\epsilon(J, I) = (-1)^k$. Then define the map $\delta : \mathbb{C}(Y^{(a+1)})[-2] \to \mathbb{C}(Y^{(a)})$ as follows: for a section $T = (T_J)$ of $\mathbb{C}^{\bullet-2}(Y^{(a+1)})$,

$$(\delta T)_I := \sum_{J \supset I} \epsilon(J, I) \, i_*(T_J) \in \mathfrak{C}^{\bullet}(Y^{(a)}) \, .$$

One verifies the identity $\delta \delta = 0$ and obtains a complex of complexes

$$0 \to \mathcal{C}(Y^{(r)})[-2r] \xrightarrow{\delta} \mathcal{C}(Y^{(r-1)})[-2r+2] \to \dots \to \mathcal{C}(Y^{(1)})[-2] \xrightarrow{\delta} \mathcal{C}(X) \to 0$$

 $(\mathcal{C}(X) \text{ placed in degree 0})$. The total complex of which is denoted by $\mathcal{C}^{\bullet}(X \setminus Y)$, the differential of which is the sum of δ and $(-1)^a d$ on $\mathcal{C}(Y^{(a)})$. This is just a notation; note it is different from $\mathcal{C}^{\bullet}_{X \setminus Y}$ which a complex of sheaves on $X \setminus Y$.

We equip it with an increasing filtration W given by

$$W_m \mathfrak{C}(X \setminus Y) = \left[0 \to \dots \to 0 \to \mathfrak{C}(Y^{(m)})[-2m] \to \dots \to \mathfrak{C}(X) \right].$$

for $0 \le m \le r$ and by $W_{-1} = 0$, $W_m = \mathcal{C}(X \setminus Y)$ for $m \ge r$.

(4.3) For a *c*-soft sheaf \mathcal{F} of vector spaces over a field Λ , let $D(\mathcal{F})$ be its dual sheaf, which by definition is given by the assignment $U \mapsto \Gamma_c(U, \mathcal{F})^*$, the linear dual of the Λ -vector space $\Gamma_c(U, \mathcal{F})$. One may apply the functor D to a complex of *c*-soft sheaves. We also define $\mathcal{D}(\mathcal{F}) = D(\mathcal{F})[-2n]$.

Let \mathcal{A}_X^{\bullet} be the complex of sheaves of C^{∞} -forms on X. We define a complex of sheaves \mathcal{D}_X by

$$\mathcal{D}_X = \mathcal{D}(\mathcal{A}_X) = D(\mathcal{A}_X)[-2n]$$

and call it the complex of (algebraic) currents. Note $\mathcal{D}_X^i = D(\mathcal{A}_X^{-i+2n})$.

The complex \mathcal{D}_X^{\bullet} is concentrated in cohomological degree [0, 2n], and there is a canonical map $\Phi : \mathfrak{C}_X^{\bullet} \to \mathcal{D}_X^{\bullet}$, that sends α to the current

$$\int_{\alpha} : \quad \omega \mapsto \int_{\alpha} \omega \, .$$

It is a quasi-isomorphism. We also write $\mathcal{D}^{\bullet}(X)$ or $\mathcal{D}(X)$ for \mathcal{D}_X .

For a smooth divisor $Y \subset X$ there is a canonical map of complexes $\mathcal{D}(Y)[-2] \to \mathcal{D}(X)$. Thus for $Y = Y_1 + \cdots + Y_r$ a normal crossing divisor, there is a complex of complexes

$$\mathcal{D}(Y^{(r)})[-2r] \to \mathcal{D}(Y^{(r-1)})[-2r+2] \to \dots \to \mathcal{D}(Y^{(1)})[-2] \to \mathcal{D}(X),$$

the total complex will be denoted $\mathcal{D}(X \setminus Y)$. On this complex is there a filtration W given by

$$W_m \mathcal{D}(X \setminus Y) = \left[0 \to \dots \to 0 \to \mathcal{D}(Y^{(m)})[-2m] \to \dots \to \mathcal{D}(X) \right]$$

Denote by $\tau = \tau_{\leq \bullet}$ the canonical filtration on any complex in an abelian category (see [De], §1.4). It is an increasing filtration, functorial for maps of complexes.

(4.4) **Proposition.** One has inclusion $(\mathfrak{C}(X \setminus Y), \tau) \hookrightarrow (\mathfrak{C}(X \setminus Y), W)$, which is a filtered quasiisomorphism. Similarly one has a filtered quasi-isomorphism $(\mathfrak{D}(X \setminus Y), \tau) \hookrightarrow (\mathfrak{D}(X \setminus Y), W)$.

Proof. The complex in question is of the form

$$0 \to K_r \to \cdots \to K_a \to \cdots \to K_0 \to 0$$

with K_a placed in degree -a, and if the total complex K is equipped with filtration W_{\bullet} given by

$$W_m K = [\dots \to 0 \to K_m \to \dots \to K_0 \to 0]$$

The *a*-th column $K_a = \mathcal{C}(Y^{(a)})[-2a]$ is concentrated in degree $\geq 2a$. One has $K^i = \bigoplus_a K_a^{i+a}$. If the intersection $(\tau_{\leq m}K)^i \cap K_a^{i+a}$ is nonzero, one must have $m \geq i$ and $i + a \geq 2a$, hence $m \geq a$. This shows the inclusion $\tau_{\leq m}K \subset W_mK$.

The associated spectral sequence is of the form

$$E_1^{p,q} = \underline{H}^q(K_{-p}) \Rightarrow \underline{H}^{p+q}(K) \,.$$

For the complex $\mathcal{C}(X \setminus Y)$, we have

$$E_1^{p,q} = \underline{H}^{q+2p}(\mathcal{C}(Y^{(-p)})) \Rightarrow \underline{H}^{p+q}(\mathcal{C}(X \setminus Y))$$

where

$$E_1^{p,q} = \begin{cases} \mathbb{Q}_{Y^{(-p)}} & \text{if } q = -2p, \quad -r \le p \le 0\\ 0 & \text{if } q \ne -2p. \end{cases}$$

It degenerates at E_1 and gives

$$\underline{H}^{i}(\mathbb{C}(X \setminus Y)) = E_{1}^{-i,2i} = \begin{cases} \mathbb{Q}_{Y^{(i)}} & \text{if } 0 \le i \le r \\ 0 & \text{otherwise} \end{cases}$$

For the subcomplex $W_m \mathcal{C}(X \setminus Y)$ there is a similar spectral sequence, with terms

$$E_1^{p,q} = \begin{cases} \mathbb{Q}_{Y^{(-p)}} & \text{if } q = -2p, \quad -m \le p \le 0\\ 0 & \text{if } q \ne -2p \end{cases}$$

converging to the cohomology of $W_m \mathcal{C}(X \setminus Y)$. It follows

$$\underline{H}^{i}(W_{m}\mathcal{C}(X\backslash Y)) = \begin{cases} \mathbb{Q}_{Y^{(i)}} & \text{if } 0 \leq i \leq m \\ 0 & \text{otherwise} \end{cases}$$

Since this coincides with $\underline{H}^i(\tau_{\leq m} \mathfrak{C}(X \setminus Y))$, the inclusion $\tau_{\leq m} \mathfrak{C}(X \setminus Y) \to W_m \mathfrak{C}(X \setminus Y)$ is a quasiisomorphism.

The proof is the same for the complex $\mathcal{D}(X \setminus Y)$.

(4.5) For this subsection details may be found in [De], II, §3. Let $\Omega^{\bullet}_X \langle Y \rangle$ be the logarithmic de Rham complex of (X, Y), namely the sheaf of holomorphic forms on X with logarithmic singularities along Y. There is an increasing filtration W_{\bullet} on this complex, called the weight filtration. There exists an isomorphism of complexes

$$\operatorname{Gr}_m^W \Omega^{\bullet}_X \langle Y \rangle \to \Omega^{\bullet}_{Y^{(m)}}[-m]$$

given by Poincaré residue. Since we have assumed the irreducible components of Y are totally ordered, there is no ambiguity of signs. One also has the Hodge filtration F^{\bullet} on the complex $\Omega^{\bullet}_X \langle Y \rangle$.

Let $j: U = X - Y \to X$ be the inclusion. One has inclusions of filtered complexes

$$(\Omega_X^{\bullet}\langle Y \rangle, W) \leftarrow (\Omega_X^{\bullet}\langle Y \rangle, \tau) \to (j_*\Omega_U^{\bullet}, \tau).$$
(4.5.1)

A fact of fundamental importance ([De], (3.18)) states that both maps are filtered quasiisomorphisms.

Thanks to the Malgrange preparation theorem we also have the following (cf. [De], II, §3.2). Let $\mathcal{A}_X \langle Y \rangle$ be its $\bar{\partial}$ -resolution, namely the total complex of the double complex $\Omega^{\bullet}_X \langle Y \rangle \otimes_{\mathfrak{O}_X} \Omega^{0,\bullet}_X$. Thus it is the sheaf of smooth forms with logarithmic poles along Y. We also write $\mathcal{A}(X) \langle Y \rangle$ for $\mathcal{A}_X \langle Y \rangle$.

The filtration W on $\Omega^{\bullet}_X \langle Y \rangle$ induces a filtration W on the complex $\mathcal{A}_X \langle Y \rangle$; we have $\mathrm{Gr}^W \mathcal{A}_X \langle Y \rangle \cong$ $\mathrm{Gr}^W \Omega^{\bullet}_X \langle Y \rangle \otimes_{\mathfrak{O}_X} \Omega^{0,\bullet}_X$, in particular it is a complex of fine sheaves.

Similarly one has the induced Hodge filtration F on $\mathcal{A}_X\langle Y \rangle$. The objects $\operatorname{Gr}_F \mathcal{A}_X\langle Y \rangle$ and $\operatorname{Gr}_F \operatorname{Gr}^W \mathcal{A}_X\langle Y \rangle$ are complexes of fine sheaves.

(4.6) One has a map of complexes $\mathcal{A}(X) \to \mathcal{D}(X)$ which sends a smooth form to the corresponding current. It extends to a map $\mathcal{P} : \mathcal{A}(X)\langle Y \rangle \to \mathcal{D}(X)$ which sends a form ω to the current $[\omega]$ it represents:

$$[\omega](\psi) = \int_X \omega \wedge \psi \,,$$

the integral being convergent since ω is locally integrable. This \mathcal{P} is not a map of complexes; the failure is explained by the residue formula given below.

For each Y_I of Y, one has a map of complexes $R_{Y_I} : \mathcal{A}(X)\langle Y \rangle \to \mathcal{A}(Y_I)\langle \widehat{Y}_I \rangle [-|I|]$ which sends a local section ω to its residue along Y_I . Here \widehat{Y}_I is the divisor on Y_I given by

$$\sum Y_J$$
 (*J* varies over $J \supset I$ with $|J| = |I| + 1$).

In particular for each component Y_i of Y, one has residue $R_{Y_i} : \mathcal{A}(X)\langle Y \rangle \to \mathcal{A}(Y_i)\langle \widehat{Y}_i \rangle [-1].$

We state the residue formula, which is easily verified: If ω is a section of $\mathcal{A}(X)\langle Y \rangle$ then one has

$$d[\omega] - [d\omega] = \sum [R_{Y_i}(\omega)].$$

(4.7) Let $\gamma : \mathcal{A}(X)\langle Y \rangle \to \mathcal{D}(X \setminus Y)$ be a map given as follows. For each Y_I with a = |I| we have a sequence of maps

$$\mathcal{A}(X)\langle Y\rangle \xrightarrow{R_{Y_I}} \mathcal{A}(Y_I)\langle \widehat{Y}_I \rangle \to \mathcal{D}(Y_I) \subset \mathcal{D}(Y^{(a)})$$

which sends a local section ω of $\mathcal{A}(X)\langle Y \rangle$ to $[R_{Y_I}(\omega)] \in \mathcal{D}(Y_I)$. By definition

$$\gamma(\omega) = \sum_{I} (-1)^{|I|} [R_{Y_I}(\omega)] \in \mathcal{D}(X \setminus Y)$$
(4.7.1)

the sum over all indices I.

Proposition. The above construction gives a map of complexes $\gamma : \mathcal{A}(X)\langle Y \rangle \to \mathcal{D}(X \setminus Y)$. Further it is a filtered quasi-isomorphism with respect to the filtrations W.

Proof. If $R_{I,J} : \mathcal{A}(Y_I) \langle \widehat{Y}_I \rangle \to \mathcal{A}(Y_J) \langle \widehat{Y}_J \rangle$ is the residue map then with a and k as before, one verifies

$$R_{I,J}R_I = (-1)^{a+k}R_J : \mathcal{A}(X)\langle Y \rangle \to \mathcal{A}(Y_J)\langle \widehat{Y_J} \rangle$$

Also one has $R_{Y_I}d = (-1)^a dR_{Y_I}$. Hence the assertion in question is reduced to the residue formula:

$$d[R_{Y_I}(\omega)] - [dR_{Y_I}(\omega)] = \sum_{J \supset I} [R_{I,J}R_{Y_I}(\omega)].$$

(4.8) Let $j = U = X \setminus Y \to X$ be the inclusion. The map $\mathcal{C}(X) \to j_* \mathcal{C}_U$ given by $\alpha \mapsto \alpha | U$, see (3.10), induces a map of complexes

$$\mathcal{C}(X \setminus Y) \to j_* \mathcal{C}_U$$

which is a quasi-isomorphism. On the complex $\mathcal{C}(X \setminus Y)$ there is an inclusion of filtrations

$$(\mathfrak{C}(X \backslash Y), \tau) \hookrightarrow (\mathfrak{C}(X \backslash Y), W)$$

which is a filtered quasi-isomorphism.

Similarly one has a map $\mathcal{D}(X \setminus Y) \to j_* \mathcal{D}_U$ and the inclusion

$$(\mathcal{D}(X \backslash Y), \tau) \hookrightarrow (\mathcal{D}(X \backslash Y), W)$$

which is a filtered quasi-isomorphism.

We have thus a commutative square of complexes on X

$$\begin{array}{cccc} (j_* \mathbb{C}, \tau) & \longrightarrow & (j_* \mathcal{D}, \tau) \\ & \uparrow & & \uparrow \\ (\mathbb{C}(X \backslash Y), \tau) & \longrightarrow & (\mathcal{D}(X \backslash Y), \tau) \\ & \downarrow & & \downarrow \\ (\mathbb{C}(X \backslash Y), W) & \longrightarrow & (\mathcal{D}(X \backslash Y), W) \end{array}$$

with arrows filtered quasi-isomorphisms.

(4.9) Let S^{\bullet} be the differential sheaf of smooth singular cochains (see [Br], p.26); in this paper we always take the coefficient ring to be \mathbb{Q} . We know that S^{\bullet} is a complex of flabby sheaves and the augmentation map $\mathbb{Q} \to S^{\bullet}$ is a resolution, see [Ha].

Let $D(\mathbb{S}^{\bullet})$ be the dual of \mathbb{C}^{\bullet} . The canonical map (given by integration on chains) $c : \mathcal{A}^{\bullet} \to \mathbb{S}^{\bullet}$ induces a map $\chi : D(\mathbb{S}^{\bullet}) \to D(\mathcal{A}^{\bullet})$.

There is the cap product pairing

$$\cap: D(\mathcal{S}^{\bullet}) \otimes \mathcal{S}^{\bullet} \to D(\mathcal{S}^{\bullet})$$

induced from the cup product on S^{\bullet} , as in [Br], V-(10.3).

If $f_X \in \Gamma(X, D(\mathbb{S}^{2n}))$ is a cocycle representing the fundamental class of X, one has a map of complexes

$$\kappa := f_X \cap (-) : \mathcal{S}^{\bullet} \to D(\mathcal{S}^{\bullet})[-2n].$$

If we give X a triangulation, then the orientation cycle $[X] = \sum \sigma$ provides such a cochain. The diagram

(recall the map on the right sends a form ψ to the current $[\psi]$) is homotopy commutative.

(4.10) One has a map

$$\xi: \mathfrak{C}_{\bullet} \to D(\mathfrak{S}^{\bullet})$$

given follows. In view of the convention (4.2) this really means a map For $\alpha \in \mathcal{C}_p(U)$ and $u \in S^p(U)$, with $\operatorname{supp}(u) = K$, write $\alpha = \alpha' + \alpha''$ where α' is compactly supported, and $\operatorname{supp}(\alpha'') \subset U - K$; define $\xi(\alpha) \in D(S^p)(U)$ by

$$\langle \xi(\alpha), u \rangle = \langle \alpha', u \rangle.$$

The map ξ is a quasi-isomorphism.

Recall the map $\Phi: \mathfrak{C}_{\bullet} \to \mathcal{D}^{\bullet}[2n]$ given by integration. One verifies that the diagram

$$\begin{array}{cccc} D(\mathcal{S}^{\bullet}) & \xrightarrow{\chi} & \mathcal{D}^{\bullet}[2n] \\ & \stackrel{f}{\leftarrow} & & \parallel \\ & \mathcal{C}_{\bullet} & \xrightarrow{\Phi} & \mathcal{D}^{\bullet}[2n] \end{array}$$

commutes.

5 The Hodge complexes and comparison

(5.1) We refer to [Br], II-§9 for the basic notion of family of supports Φ , and the class of Φ -soft, Φ -fine and Φ -acyclic sheaves. Suppose Φ is a paracompactifying family of supports on a space X. Any flabby sheaf is Φ -soft, any Φ -fine sheaf is Φ -soft, and any Φ -soft sheaf is Φ -acyclic.

If \mathcal{A} is Φ -soft and torsion-free over a base ring L, then for any sheaf \mathcal{B} over L, $\mathcal{A} \otimes_L \mathcal{B}$ is Φ -soft.

(5.2) **Definition.** With the definitions and notions in the previous sections, consider the triple of filtered complexes of sheaves on X

$$(\mathcal{C}(X \setminus Y), W) \longrightarrow (\mathcal{D}(X \setminus Y), W) \xleftarrow{\gamma} (\mathcal{A}_X \langle Y \rangle, (W, F))$$
(5.2.1)

and take the global section on X; we get a triple of filtered complexes of vector spaces

$$\Gamma(X, (\mathfrak{C}(X \setminus Y), W)) \to \Gamma(X, (\mathcal{D}(X \setminus Y), W)) \leftarrow \Gamma(X, (\mathcal{A}_X \langle Y \rangle, (W, F))).$$
(5.2.2)

The third term has the Hodge filtration F^{\bullet} as an additional filtration.

The triple (5.2.2) is a Q-mixed Hodge complex, and hence (5.2.1) is a Q-mixed Hodge complex of sheaves. By definition either of these is called the homological mixed Hodge complex of $X \setminus Y$, and denoted by $\mathbb{L}(X \setminus Y)$.

(5.3) We recall the "standard" construction of the Hodge complex for $X \setminus Y$. Let $j : U = X \setminus Y \to X$ be the inclusion of the open set.

To a complex of sheaves \mathcal{F}^{\bullet} on U, one may apply the functor of Godement resolution on U, $C^{\bullet}(-) = C_{U}^{\bullet}(-)$, and then apply the functor j_{*} to get a complex of sheaves $j_{*}C^{\bullet}(\mathcal{F}^{\bullet})$ on X. Note that $\mathbb{R}j_{*}\mathcal{F}^{\bullet} = j_{*}C^{\bullet}(\mathcal{F}^{\bullet})$ in the derived category.

The canonical maps $\mathcal{A}^{\bullet}_X \langle Y \rangle \to j_* \mathcal{A}^{\bullet} \to j_* \mathbb{C}^{\bullet}(\mathcal{A})$ are quasi-isomorphisms. There results a triple of complexes of sheaves on X and quasi-isomorphisms

(1)
$$j_* \mathsf{C}^{\bullet}(\mathbb{Q}) \longrightarrow j_* \mathsf{C}^{\bullet}(\mathcal{A}) \longleftrightarrow \mathcal{A}^{\bullet}_X \langle Y \rangle.$$

If we equip each complex with the canonical filtration τ_{\leq} , the two maps are filtered quasiisomorphisms. We take the latter filtered quasi-isomorphism $(\mathcal{A}^{\bullet}_X\langle Y \rangle, \tau) \to (j_*\mathsf{C}^{\bullet}(\mathcal{A}), \tau)$, and take its push-out along the filtered quasi-isomorphism $(\mathcal{A}^{\bullet}_X\langle Y \rangle, \tau) \to (\mathcal{A}^{\bullet}_X\langle Y \rangle, W)$ (see [De]):

$$\begin{array}{cccc} (\mathcal{A}^{\bullet}_X \langle Y \rangle, \tau) & \longrightarrow & (j_* \mathbb{C}^{\bullet}(\mathcal{A}), \tau) \\ & & & \downarrow \\ (\mathcal{A}^{\bullet}_X \langle Y \rangle, W) & \longrightarrow & (j_* \mathbb{C}^{\bullet}(\mathcal{A}), \tau)^{\triangle} \end{array}$$

The four maps are filtered quasi-isomorphisms. We obtain a diagram

Take the second row of the diagram; apply the functor $C^{\bullet} = C_X^{\bullet}$ of Godement resolution over X to the first and second terms; the third term $\mathcal{A}_X^{\bullet}\langle Y \rangle$ has additionally the Hodge filtration F^{\bullet} . Thus we obtain a triple of filtered complexes

$$(1)^{\triangle} \qquad \mathsf{C}^{\bullet}(j_*\mathsf{C}^{\bullet}(\mathbb{Q}),\tau) \longrightarrow \mathsf{C}^{\bullet}((j_*\mathsf{C}^{\bullet}(\mathcal{A}),\tau)^{\triangle}) \longleftarrow (\mathcal{A}^{\bullet}_X\langle Y \rangle, W, F) \,. \tag{5.3.1}$$

This is a Q-Hodge complex of sheaves, namely if we apply the global section functor $\Gamma(X, -)$, we get a Q-Hodge complex

$$\Gamma(X, \mathsf{C}^{\bullet}(j_*\mathsf{C}^{\bullet}(\mathbb{Q}), \tau)) \to \Gamma\left(X, \mathsf{C}^{\bullet}((j_*\mathsf{C}^{\bullet}(\mathcal{A}), \tau)^{\triangle})\right) \leftarrow \Gamma(X, (\mathcal{A}^{\bullet}_X\langle Y \rangle, W, F)).$$
(5.3.2)

This is the Q-mixed Hodge complex due essentially to Deligne and Beilinson, that gives mixed Hodge structure on the cohomology of $X \setminus Y$; We call (5.3.2), (resp. (5.3.1)), the standard mixed Hodge complex (resp. mixed Hodge complex of sheaves) for $X \setminus Y$. We employ the notation $\mathbb{K}(X \setminus Y)$ for either of them.

The proof of the following theorem is the aim of this section.

(5.4) **Theorem.** There is a canonical isomorphism between the two mixed Hodge complexes of sheaves $\mathbb{K}(X \setminus Y)$ and $\mathbb{L}(X \setminus Y)$.

(5.5) The augmentation map $\mathbb{C}_X \to \mathcal{A}^{\bullet}$ is a quasi-isomorphism. Since \mathcal{A}^{\bullet} is a complex of \mathbb{Q} -vector spaces (hence flat) and bounded, $\mathfrak{S}^{\bullet} \otimes (-)$ gives a quasi-isomorphism $\alpha : \mathfrak{S}^{\bullet} \to \mathfrak{S}^{\bullet} \otimes_{\mathbb{Q}} \mathcal{A}^{\bullet}$, [Hart], II, Lemma 4.1 with conditions a) and 2).

Similarly the augmentation map $\mathbb{Q}_X \to S^{\bullet}$ is a quasi-isomorphism. Since \mathcal{A}^{\bullet} is a complex of bounded \mathbb{Q} -vector spaces, $\mathcal{A}^{\bullet} \otimes (-)$ gives a quasi-isomorphism $\beta : S^{\bullet} \to S^{\bullet} \otimes_{\mathbb{Q}} \mathcal{A}^{\bullet}$, the same lemma with conditions b) and 2).

The complexes S^{\bullet} and \mathcal{A}^{\bullet} are $\Gamma(X, -)$ -acyclic as well as f_* -acyclic for any map $f : X \to X'$. Consider these complexes on $U = X \setminus Y$. We have a commutative square

This gives us a commutative diagram of complexes of sheaves on U

If we apply the functor j_* , and replace $j_*\mathcal{A}^{\bullet}$ with $\mathcal{A}_X\langle Y \rangle$ via the quasi-isomorphism $\mathcal{A}_X\langle Y \rangle \rightarrow j_*\mathcal{A}^{\bullet}$, we obtain a commutative diagram on X

As we produced $(1)^{\triangle}$ out of (1) by means of push-out along $(\mathcal{A}_X \langle Y \rangle, \tau) \to (\mathcal{A}_X \langle Y \rangle, W)$, by the same process we get triples out of row (2) and row (3); by functoriality of push-out (2.1.2) we obtain a commutative diagram of filtered complexes

where the maps $(1)^{\triangle} \to (2)^{\triangle} \leftarrow (3)^{\triangle}$ are quasi-isomorphisms of triples of filtered complexes.

Further, taking Godement resolution for the first and second terms, and equipping the third term with the Hodge filtration F^{\bullet} , we have

Each row is a mixed Hodge complex of sheaves.

If we apply the functor Γ to $(2)^{\triangle}$, we obtain a Hodge complex of the form

$$\Gamma(X, \mathsf{C}^{\bullet}(j_*\mathcal{S}^{\bullet}, \tau)) \to \Gamma\left(X, \mathsf{C}^{\bullet}((j_*(\mathcal{S}^{\bullet} \otimes \mathcal{A}^{\bullet}), \tau)^{\triangle})\right) \leftarrow \Gamma(X, \mathsf{C}^{\bullet}(\mathcal{A}^{\bullet}_X \langle Y \rangle, (W, F)))$$

The same holds for $(3)^{\triangle}$.

(5.6) Recall the maps $c : \mathcal{A}^{\bullet} \to \mathcal{S}^{\bullet}$, $\kappa : \mathcal{S}^{\bullet} \to \mathcal{D}(\mathcal{S}^{\bullet})$, and $\chi : \mathcal{D}(\mathcal{S}^{\bullet}) \to \mathcal{D}^{\bullet}$. The map c is the obvious one which takes a form ψ to the singular cochain it defines.

We consider the map

$$\lambda = \chi \circ \kappa \circ (1 \cup c) : \mathbb{S}^{\bullet} \otimes_{\mathbb{Q}} \mathcal{A}^{\bullet} \to \mathcal{D}^{\bullet}.$$

One has a diagram of maps of complexes:

The left square commutes, and the right square commutes up to homotopy, namely there is a map of degree $-1, S : \mathcal{A}^{\bullet} \to \mathcal{D}^{\bullet -1}$ such that

$$dS + Sd = -\lambda\beta + \mathcal{P}.$$

We also have a natural map $\xi : \mathcal{C}_{\bullet} \to D(S)$ and a commutative diagram

(4)
$$\mathcal{D}(\mathbb{S}^{\bullet}) \xrightarrow{\chi} \mathcal{D}^{\bullet} \xleftarrow{\mathbb{P}} \mathcal{A}^{\bullet}$$

 $\stackrel{f}{\notin} \qquad id \qquad \uparrow id \qquad (ii)$
(5) $\mathcal{C}_{\bullet} \xrightarrow{\Phi} \mathcal{D}^{\bullet} \xleftarrow{\mathbb{P}} \mathcal{A}^{\bullet}.$

In the preceding subsection we took the first row of diagram (i) and turned it to a triple of filtered complexes; now we apply the same process to the other rows of (i) and (ii).

First look at (i). Apply the functor j_* to get a diagram

$$j_* \mathcal{S}^{\bullet} \xrightarrow{\alpha} j_* (\mathcal{S}^{\bullet} \otimes \mathcal{A}^{\bullet}) \xleftarrow{\beta} j_* \mathcal{A}^{\bullet}$$

$$\begin{array}{c} \kappa \\ \kappa \\ \downarrow \\ j_* \mathcal{D}(\mathcal{S}^{\bullet}) \xrightarrow{\chi} j_* \mathcal{D}^{\bullet} \xleftarrow{\mathcal{P}} j_* \mathcal{A}^{\bullet}. \end{array}$$

Here j_*S^{\bullet} , for example, is short for $j_*(S_U^{\bullet})$. The left square commutes; for the right square there is a map $S: j_*\mathcal{A}^{\bullet} \to j_*(\mathcal{D}^{\bullet-1})$ with identity $dS + Sd = -\lambda\beta + \mathcal{P}$.

Equip each of the complexes with the canonical filtration τ_{\leq} ; then we have a diagram of filtered complexes

$$\begin{array}{c|c} (j_* \mathbb{S}^{\bullet}, \tau) & \xrightarrow{\alpha} (j_* (\mathbb{S}^{\bullet} \otimes \mathcal{A}^{\bullet}), \tau) < \xrightarrow{\beta} (j_* \mathcal{A}^{\bullet}, \tau) \\ & & & \\ & & & \\ & & & \\ & & & \\ (j_* \mathcal{D}(\mathbb{S}^{\bullet}), \tau) & \xrightarrow{\chi} (j_* \mathcal{D}^{\bullet}, \tau) < \xrightarrow{\mathcal{P}} (j_* \mathcal{A}^{\bullet}, \tau) \,. \end{array}$$

Further one verifies that the map S gives a filtered homotopy, namely it takes $\tau_{\leq m}(j_*\mathcal{A}^{\bullet})$ into $\tau_{\leq m}(j_*(\mathcal{D}^{\bullet-1})).$

Composing with the quasi-isomorphism $\mathcal{A}_X \langle Y \rangle \to j_* \mathcal{A}^{\bullet}$, both equipped with the canonical filtration, one obtains a diagram of filtered complexes

with filtered homotopy S for the right hand square.

From (4) one obtains the push-out $(j_*\mathcal{D}^{\bullet}, \tau)^{\triangle}$, and in light of the functoriality of push-out (2.2) we have a *commutative* diagram

Taking Godement resolutions for the first and second terms, we obtain mixed Hodge complexes of sheaves and a morphism between them:

$$(3)^{\triangle} \qquad \begin{array}{ccc} \mathsf{C}^{\bullet}((j_{*}\mathbb{S}^{\bullet},\tau)) & \longrightarrow & \mathsf{C}^{\bullet}(j_{*}(\mathbb{S}^{\bullet}\otimes\mathcal{A}^{\bullet}),\tau)^{\triangle} & \xleftarrow{\beta'} & (\mathcal{A}_{X}\langle Y\rangle,(W,F)) \\ & & & & & & \\ & & & & & & \\ (4)^{\triangle} & & & \mathsf{C}^{\bullet}(j_{*}\mathcal{D}(\mathbb{S}^{\bullet}),\tau) & \longrightarrow & \mathsf{C}^{\bullet}((j_{*}\mathcal{D}^{\bullet},\tau)^{\triangle}) & \xleftarrow{\beta'} & (\mathcal{A}_{X}\langle Y\rangle,(W,F)) \,. \end{array}$$

Next we look at diagram (ii); we get a commutative diagram

We replace the complex $j_*\mathcal{A}^{\bullet}$ on the right with $\mathcal{A}_X\langle Y \rangle$; then with the canonical filtrations we have a commutative diagram of filtered complexes

By taking push-out and then taking Godement resolutions we have obviously a commutative diagram

which is a morphism of mixed Hodge complex of sheaves. These give quasi-isomorphisms of mixed Hodge complexes $(3)^{\triangle} \rightarrow (4)^{\triangle} \leftarrow (5)^{\triangle}$.

(5.7) We also have a commutative diagram of filtered complexes

(the commutativity of the upper right corner is obvious). To the first two rows one may apply the push-out as before, and one has an induced map $(6)^{\triangle} \rightarrow (5)^{\triangle}$ (obvious functoriality of push-out). By the universal property (2.1.1), there is a map $(6)^{\triangle} \rightarrow (7)$, therefore we have filtered quasi-isomorphisms $(5)^{\triangle} \leftarrow (6)^{\triangle} \rightarrow (7)$. This completes the proof of Theorem (5.4).

References

[Be] Beilinson, A., Notes on absolute Hodge cohomology, Contemp. Math., 55 American Mathematical Society, Providence, RI, 1986, 35-68.

[BK] Bloch, S.; Kriz, I. Mixed Tate motives, Ann. of Math. (2) 140(1994), 557-605.

[B-H] Bloom, T., Herrera, M.: De Rham cohomology of an analytic space, Invent. Math. 7 (1969), 275–296.

[Br] Bredon, G. E. : Sheaf theory. Second edition. Graduate Texts in Mathematics, 170. Springer-Verlag, New York, 1997.

[De] Deligne, P., Théorie de Hodge. II and III, Inst. Hautes Études Sci. Publ. Math. 40(1971), 5-57; ibd. 44(1974), 5-77.

[Go] Godement, R. : Topologie algébrique et Théorie des faisceaux. Hermann, 1958.

[Ha] Hanamura, M. : Borel-Moore homology and cap product operations, preprint.

[Hart] Hartshorne, R.: Residues and Duality, Springer Lecture Notes in Math., 20 (1966).

[Lo] Lojasiewicz, S.: Triangulations of semi-analytic sets, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3^e série, 18 (1964), p. 449–474.

[Mu] Munkres, J.: Elements of algebraic topology. Addison-Wesley, Menlo Park, CA, 1984.