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We construct the homological Hodge complex of a smooth complex variety, and verify that the
existence of a comparison isomorphism to the standard (or the cohomological) Hodge complex.

1 Filtered complexes and Hodge complexes

We review the notion of (mixed) Hodge complexes from [De] and [Be].

(1.1) In what follows a complex are always assumed to be bounded below.
Consider a diagram of the form

(K§ W) —2(K'8., W)¢—— (K&, W, F) (1.1.1)

where

e K§ is a complex of Q-vector spaces with a (finite) increasing filtration W,, K’ is a complex
of C-vector spaces with an increasing filtration W,, K¢ is a complex of C-vector spaces with
two filtrations W, F' (W increasing and F' decreasing),

e aisamap of complexes that induces a filtered quasi-isomorphism (K¢, W)®@C — (K’ &, W),
and b gives a filtered quasi-isomorphism (K&, W) — (K'¢, W).
Such a diagram K will be called a triple of filtered complexes of vector spaces.

Definition. We call K a Q-Hodge complex if in addition the following conditions are
satisfied:

(i) H'(Kg) are finite dimensional Q-vector spaces.

(ii) For any a, the differential d of the filtered complex (Gr" K¢, F) is strictly compatible
with the filtration F.

(iii) The isomorphism H(Gr! Kg) ® C = HY(Gr)" K¢) induced by the diagram and the
filtration F' on H*(Cr! K¢) gives H(Gr)V Kg) the structure of a pure Q-Hodge structure of
weight a.

This notion (indeed for a more general coeffficient) is due to Beilinson [Be|. It is known that,
if K is a Q-Hodge complex then the filtered vector spaces (H'(Kg), W), (H'(K¢),W, F') and
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the filtered isomorphism (H*(Kg), W)®C = (H'(K¢), W) define on H'(Kg) a Q-mixed Hodge
structure (by an argument parallel to [De], II, (3.2.10) and III, (8.1.9) ).

(1.2) A triple of filtered complexes (1.1.1) satisfying the same conditions (i), (ii) as above and,
in place of (iii), condition (iii)" below, will be called a Q-mixed Hodge complex.

(i)’ The isomorphism H*(Gr)' Kq) ® C = H*(Gr!” K¢) given by the diagram and the filtra-
tion F on H'(Gr! K¢) is a pure Q-Hodge structure of weight i + a.

If K is a Q-mixed Hodge complex, by taking décalage with respect to the filtration W we
obtain another triple of filtered complexes

(K&, Dec(W))—2—(K's, Dec(W))+—— (K2, Dec(W), F);

this is a Q-Hodge complex.

Remark. 1. Our notion of mixed Hodge complex differs from Deligne’s [De], III. A mixed
Hodge complex in [De] consists a pair of objects in filtered derived categories, together with a
comparison isomorpism in the (filtered) derived category. Of course precedes Deligne’s notion
precedes [Be].

A @Q-mixed Hodge complex in our sense clearly gives rise to a mixed Hodge complex in the
sense of Deligne.

2. In the literature more general notion of A-(mixed) Hodge complexes, for a coefficient ring
A, are considered; the formulations need to be changed in the obvious manner. We restrict

ourselves to the case A = Q.

(1.3) For Q-Hodge complexes one can construct the associated derived category as follows. For
details see [Be].

Let €, denote the category of Q-Hodge complexes. A morphism of Q-Hodge complexes is
a triple of filtered complexes making the obvious diagram commutative. One has the notion
of homotopy between morphisms, thus one can form the homotopy category Xi.. There is
the cohomology functor H*® : K, — (Q — Vect) to the category of Q-vector spaces. Via the
cohomology functor one has the class of quasi-isomorphisms. By inverting them one arrives at
a triangulated category Dy, which may be called the derived category of Q-Hodge complexes.

In this paper, we will have Q-mixed Hodge complexes K, which we turn to Q-Hodge com-
plexes, then view them as objects in the category Dy,.

The Q-mixed Hodge complexes K we encounter will come from Q-mixed Hodge complexes
of sheaves, to be explained below.

(1.4) Consider now sheaves on a topological space X.

A triple of filtered complexes of sheaves is a diagram
(K, W)—" (K8, W)e—— (K2, W, F). (1.4.1)
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Here

o (X%, W) is a complex of Q-sheaves with a (finite) increasing filtration W,, (X', W) is a
complex of C-sheaves with an increasing filtration W,, and (X, W, F') is a complex of C-sheaves
with an increasing filtration W, and a decreasing filtration F’;

e the arrow a is a morphism of filtered complexes (K¢, W) — (X'¢, W) which induces a
filtered quasi-isomorphism (X, W) ® C — (X' &, W), and b is a filtered quasi-isomorphism
(&, W) = (X'e, W).

Definition. The filtered triple (1.4.1) is said to be a Q-Hodge complex of sheaves (resp.
Q-mixed Hodge complex of sheaves) if in addition the following condition holds:

(i) For each term IK(’Q of the complex K, the graded object GrW(KfQ) is [-acyclic, where I' =
I'(X, —); similarly for K'c the object Gr'(X}) is T-acyclic; and for K¢, the object Gr" Gr'(K%)
is ['-acyclic.

(ii) By the first condition, application of the functor I'( X, —) yields a triple of filtered com-

plexes of vector spaces. It is a Q-Hodge complex.

A @-mixed Hodge complex of sheaves gives a Q-Hodge complex of sheaves by taking décalage
for W.

A Q-mixed Hodge complex of sheaves in our sense gives, by passing to the derived category,
a cohomological Q-mixed Hodge complex as defined in [De], (8.1.6).

2 Push-out of complexes and functorial properties

We collect the basic properties of push-out of complexes, to be used later.

(2.1) Given maps of complexes u : K — L and v : K — M, consider the map (u,v) : K —
L & M, take its cone: Q = Cone(K — L& M):

K —— L

M Q
There are canonical maps v’ and v’ as indicated. @ is called the push-out of (K;u,v). Recall
that QP = KP*'@ [P MP, and the differential sends (z;y, z) € QP to (—dx; u(x)+dy, v(x)+dz).
We will also say that M — (@) is obtained from K — L by pushing out along v.

If we define a map of degree —1, S : K* — Q*~! by S(z) = (z;0,0) then we have the identity

dS + Sd = v'u + u'v.

(2.1.1) The push-out square satisfies the following universal property. Assume given a square

K
M

of complexes
N

T~ =
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and a map U : K* — R*! such that dU + Ud = fu + gv. There is then a unique map of
complexes q : () — R such that

g =qg, qu=f, and ¢S=T.

(2.1.2) The push-out has the obvious functoriality: Suppose we have another pair of maps
of complexes u; : K; — Ly and vy : Ky — M;; also given are maps of complexes k : K — K,
(:L— Ly, and m : M — M, satisfying fu = u;k and mv = v1k. Let ()1 be the push-out of
(K1;up,v1) with maps v] : Ly — @4, v} : M; — @, and degree —1 map S; : K3 — Q1. Then
there is a unique map of complexes ¢ : Q — @)1 such that qu’ = mu}, qv' = ¢v}, and ¢S = Siq.

(2.2) We formulate more of the functorial properties. Suppose we are given

(i) maps of complexes u: K — L, v: K — M, uy : Ky — Ly and v, : K3 — My,
(ii) maps of complexes k: K — Ky, {: L — Ly, and m : M — M,
(iii) maps of degree —1, T': K — Ly and 7" : K — M satisfying the identities

dT +Td = lu — u k, dT" +T'd = mv — vk,

and
(iv) another complex R together with maps of complexes v} : L1 — R and v} : M; — R,
and a map U : K1 — R of degree —1 satistying

dU + Ud = viuy + ujvy .

Let @ be the push-out of (K;u,v) as in the previous paragraph. Then there exists a unique
map of complexes ¢ : () — R such that the following identities hold:

qu' =uim, q' =vl and ¢S =Uk+v\T+u\T.

The verification is straightforward. Note the special cases:
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(1) The universal property (2.1.1) is the case where k: K — Ky, ¢ : L — Ly, and m : M —
M; are the identity maps and T'=T" = 0.

(2) If R = @ is the push-out of (Kj;uy,v1) and Sy is the associated homotopy, then there
exists an induced map of complexes ¢ : () — ()1 that satisfy the mentioned conditions with
U = 5. Note that if further T'=T" = 0, then it reduces to the obvious case (2.1.2).

(2.3) The following properties are easily shown.

For the push-out (2.1), if u is a quasi-isomorphism, then so is u’'.

In (2.2), if k, £, m are quasi-isomorphisms, and R = @1, then ¢ is also a quasi-isomorphism.



3 Semi-analytic triangulations and the semi-analytic chain

complex

In what follows simplicial complex means a geometric, locally finite simplicial complex in
an RV, as in [Mu], §2. Thus a simplicial complex K is set of simplices o, satisfying certain
conditions. The polytope of K, denoted by | K|, is the union of the simplices in K. The relative
interior of a simplex o will be denoted by 7. Let C,(K) be the complex of oriented simplices
of K, with coefficients in Z (see [Mu], §5). It is known that the homology of this complex is
canonically isomorphic to the Borel-Moore homology H.(|K|) = H.(|K|;Z) of |K|, (cf. [Br],

[Ha]). One can also take Q as the coefficient ring; from §2 on we will always do so.

(3.1) We recall a theorem in [Lo]. Let M a real analytic manifold satisfying the second axiom
of countability. By [Lo], Theorem 2, there exist a locally finite simplicial complex K and a
homeomorphism h : |K| — M satisfiying the following condition:

(i) For each simplex o in K, h(c;) is a semi-analytic subset as well as an analytic submanifold
of M, and the map o — h(g) is an analytic isomorphism.

Given a locally finite collection of semi-analytic subsets {B,} of M, one may arrange that
we also have:

(ii) Each B, is a union of some of the sets h(), for o a simplex of K. (We will then say
that the collection {h(c)} is compatible with (B,). )

Such a pair (K;h : |K| — M) is called a semi-analytic trialgulation of M. (When it does
not cause confusion, we will simply refer to the map h for a triangulation. ) If it also satisfies
(i), then the triangulation is compatible with {B,}.

(3.2) Let K and L be simplicial complexes. Suppose f : |L| — |K| is a homeomorphism
satisfying the following condition:

Each simplex ¢ in K is a finite union of f(7), for some simplices 7 of L.

We then say that f is a subdivision of simplicial complexes.

Remark. (1) An equivalent condition is that for each simplex o of K, its interior & is a
finite union of f(7) for some simplices 7 of L.

(2) This is a generalization of subdivision of K in the sense of [Mu]. If K and L are simplicial
complexes of the same RY and |K| = |L|, then id : |L| — | K| is a subdivision in our sense iff
L is a subdivision of K in the sense of [Mu].

For a simplex ¢ in K, the set

L(o)={r€ L|h(r) Co}



is a subcomplex of L. Since |L(c)| = h™!(c), which is homeomorphic to o, L(o) is an acyclic
simplicial complex. The proof of the following result is parallel to that of [Mu], §17.

(3.3) Proposition. Given a subdivision of simplicial complexes f as above, there exists a
unique augmentation preserving chain map

A Cu(K) — Cu(L)
such that (o) is carried by L(o) for each simplex o of K. It is a quasi-isomorphism.

The assignment of A\ to f is contravariantly functorial.
We give here a direct definition of the map A. For each oriented p-simplex ¢ of K, we have

o =Uf(d")

a finite union of p-simplices ¢’ of L. Orient each ¢’ such that the induced orientation (by the
homeomorphism f) on f(o’) is compatible with the orientation of o. Let

AMo) = Z o

and extend it by linearity to define a map A. One verifies easily that this gives an augmentation-
preserving chain map, and clearly carried by L(c) by definition, thus it coincides with the map
A in the theorem.

(3.4) Let (K;h : |K| - M) and (L;h' : |L| — M) be semi-analytic triangulations of M. A
morphism of semi-analytic triangulations from (L;h') to (K;h) is a subdivision f : |L| — |K|
satisfying ho f = h'.

Note first that there is at most one morphism f between two triangulations, which is given
as f=h"1lohl.

Second, if f is a morphism of semi-analytic triangulations, and if 7 is a simplex of L, 0 is K
such that f (?) C o, then f (;) is a semi-analytic subset as well as an analytic submanifold of
o.

We consider the category of triangulations of M, and denote it by Tr(M). The objects are
the semi-analytic triangulations of A, (K;h : |K| — A). The arrows are the morphisms defined
above.

When we are given a locally finite collection of semi-analytic subsets B = {B,}, we may
consider the full subcategory T'r(M; B) of T'r(M), consisting of those triangulations compatible
with B.

(3.5) Proposition. The category of semi-analytic triangulations Tr(M) is cofiltered. The
same holds for Tr(M;{B,}), given a locally finite collection {B,}. Further, the subcategory
Tr(M;{B,}) is cofinal in Tr(M).



Proof. Given two triangulations h : |K| — M and ' : |L| — M, consider the collection of
semi-analytic sets in | K|,

B={ho)Nk () |ceK, oeclL},

and apply (3.1). There is a simplicial complex L and a homeomorphism g : |L| — M such
that the collection {g()} (for v simplices of L) is compatible with B. If f : |L| — |K| and
f'+|L| = |K'| are homeomorphisms such that g = ho f = I’ o f', then one sees that {f(v)}
is compatible with {c}, and {f'()} is compatible with {c(;’ }; then f and f’ are morphisms of
triangulations. This shows the connectivity of the category T'r(M).

Suppose that f : |L| — |K| and f’' : |L'| — |K| are morphisms of triangulations of M.
Considering the collection of subsets

FENFE) | rel, ©el)

and using the same theorem, we find another triagulation |L”| — M and morphisms of trian-
gulations ¢ : |[L”| — |L| and ¢’ : |L”| — |L| so that go f = ¢' o f'.

Also it is clear that if f and f" are morphisms of triangulations |L| — | K|, then f = f’. Thus
the category is cofiltered.

The argument for Tr(M;{B,}) is an obvious modification. That it is cofinal in Tr(M)
follows easily from (3.1). O

(3.6) We have a contravariant functor from 7'r(M) to the category of chain complexes, which
assigns to a triangulation (K;h : |K| — M) the simplicial chain complex C\,(K') and assigns to
each morphism f : (L;h') — (K;h) the homomorphism A : C,(K) — C.(L).

One can form the inductive limit over the cofiltered category T'r(M), and obtain a chain
complex

lim C..(K) ;

we denote it by C,(M). This is the complex of semi-analytic chains in M.

Given a locally finite collection B = {B,}, the same inductive limit over the subcategory
Tr(M;B) gives us a quasi-isomorphic subcomplex, denoted by C,(M;B). There is an inclusion
Cy(M;B) = C.(M), and it is a quasi-isomorphism.

(3.7) Let X be a closed semi-analytic subset of M. Let h be an object of (M;{X}), namely an
analytic triangulation h : |K| — M compatible with X.
Then the subset of K given by

Kx:={oce K|h(oc)C X}
is a subcomplex of K, and h restricts to a homeomorphism

hx|Kx|—>X,



this is the induced triangulation of X from (K;h).
There is a natural inclusion C,(Kx) — C.(K). The next proposition is obvious.

(3.8) Proposition. Suppose (K;h) is an analytic triangulation of (M;{X}). If f: (L, ') —
(K, h) is a morphism in Tr(M), then (L, h') is also an analytic triangulation of (M;{X}). Hence
one has a subcomplex Ly of L and f restricts to a morphism of triangulations fx : Lx — Kx
over X.

Consequently there is a commutative diagram of complexes

C(Kx) —2= C.(Ly)

| |

C(K) —25 C.(L).

(3.9) We define
Ci(X) = LHEC*(KX) : limit over the category Tr(M;{X}).
More generally if B contains X as a member, we have
Ci(X;B) = LHEC*(KX) : limit over T'r(M;B).

(More precise notation would be C.(X; M) and C.(X; (M, B)), respectively. ) There is an
inclusion C,(X;B) — C.(X), which is a quasi-isomorphism.

(3.10) Let U be an open set of M. Consider a semi-analytic triangulation h : |K| — M of M,
and a semi-analytic triangulation (Ky;hy @ |[Ky| — U) of U. Let j : |Ky| — | K| be the map
making the diagram
K| = M
JT U
Ky -2 UL
commute; it is a homeomorphism to the open set h=*(U). The triangulation hy is said to be
subordinate to h if for any simplex 7 of Ky, there exists a simplex o of K such that j(7) C o.
For any semi-analytic triangulation h : |K| — M of M and for any open set U, there is a
semi-analytic triangulation of U that subordinate to h. Indeed, if K is in RY, one may choose
Ky to be a simplicial complex in the same RY in such a way that |Ky| is a subset of K, and
that each simplex of K is an affine subset of a simplex of K. However we will need the more
general notion we introduced above.
If hy : |Ky| — U is compatible with h, there is an induced map of complexes p : C,.(K) —
C.(Ky) called restriction, defined as follows.
For each oriented p-simplex o of K, write 0 N U as the union of p-simplices ¢’ of Ky that
are contained in o, so that c NU = Uo’. Give each ¢’ the orientation compatible with that for
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o, and let p(c) = > o’. Extending by linearity, one obtains the map p, and one verifies it is a
map of complexes. Note that |p(a)| = || N U for any chain « in C,(K) (recall || denotes the
support of a chain).

(3.11) Proposition. Suppose (K;h) and (L; h') are semi-analytic triangulations of an analytic
manifold M, and f : |L| — |K| is a morphism of triangulations. Suppose also U is an open set
of M, hy : |Ky| — U is a semi-analytic triangulation subordinate to the triangulation h. Then
there exists a semi-analytic triangulation hy, : |Ly| — U subordinate to h', and a morphism of
triangulations fy : |Ly| — |Ky| from hy; to hy such that the diagram

] - K|
JT Tj
Lyl % Kyl

commutes.

Proof. Consider the collection of semi-analytic sets of U,
B={W(T)Nhylo)|T€L, ocKy}.

Choose a semi-analytic triangulation hy; : |Ly| — U that is compatible with B. We then have
the required properties. O

(3.12) Under the assumption of Proposition (3.11) we have a commutative diagram of complexes

C(K) —25 (L)

i g

C.(Ky) — C.(Ly)

where the horizontal maps are the subdivisions operators and the vertical ones the restrictions.
Passing to the limit over the triangulations of M, we get a map of complexes

C.(M) — C,(U)

which we call restriction. The image of a will be written «|y.

If U and V are open sets of M, arguing as above with M replaced with U, we have restriction
Cy(U) — C.(V). This gives us a complex of presheaves on M; we will denote it by €. or
C.(M).

(3.13) A chain « in C;(M) determines the subsets A = |a| and B = |0a| of M; both are
semi-analytic subsets of M, A D B, and dim A = i, dim B = ¢ — 1 (unless empty). Also «
determines a class ¢(§) € H;(A, B) in the Borel-Moore homology of the pair (A, B). There is a
canonical isomorphism H;(A, B) = H;(A\B).
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Conversely if A, B are closed semi-analytic subsets of M of dimension ¢ and 7 — 1, respectively
(unless empty), and ¢ € H;(A, B) is a class, there corresponds a chain a € C;(M) such that
la| € A, |0a] C B, and such that the image of ¢(§) € H;(|a|,|0a|) equals ¢. For this one
applies (3.1) to M and the collection {A, B} to find a triangulation which supports c.

Using this viewpoint, one can show that the presheaf U — C;(U) is sheaf. Indeed suppose U
is an open set of M, U = UU,, is its open covering, and &, be elements of C;(U,) that satisfy
the compatibility condition. Let A, = [£,], Ba = |0(£,)| which are semi-analytic subsets of
Uy. Then (A,) (resp. (B,)) glue to define a semi-analytic set of M of dimension ¢ and i — 1,
respectively. Let H; be the homology sheaf V' +— H;(V)) on A\B. Then the sections &, on
A, \B, glue to a section £ € I'(A\B, H;) = H;(A\B). It determines an element o € C;(U) that
restrict to &, on U,.

This we call the complex of sheaves of semi-analytic chains on M, and denote it by Cp . or

e.(M).

(3.14) If h : |K| — M is a semi-analytic triangulation of M, there is an injective map of
complexes

Cu(K) — 877(M)
where the right hand side is the complex of sheaves of semi-analytic chains as introduced
by Bloom-Herrera. (See [B-H]J, §2.7.) This induces an isomorphism of complexes C,(M) —

S§BH(M). This being the case for each open set of M, we have an isomorphism of complexes of
sheaves C,(U) — 83/L(U).

We refer to [Br], Chap. V for the notion of cosheaves and corresolutions. The following

theorem is proved using Theorem 12.20 of loc. cit. .

(3.15) Theorem. The complex Cx,. consists of c-soft sheaves. The associated complex of
cosheaves U +— I' (U, Cx ) has an augmentation to Zy, which makes it a quasi-corresolution. In
particular the cohomology of I'( X, Cx .) is canonically isomorphic to the Borel-Moore homology
of X.

(3.16) Generalizing (3.10) we verify the following.

Suppose U is an open set of M, X is a closed semi-analytic set of M, and V = X NU.
Suppose an object (K;h) of Tr(M;{X}) is given; let hx be the induced triangulation of X.
Then there exists an object (Ky; hy) of Tr(U; {V'}) such that the following conditions hold:

e (Ky;hy) is subordinate to (K;h), and

e (Ky;hy) is subordinate to (Kx;hx). (Here (Ky;hy) is the triangulation of V' induced
from (Ky;hy)).

Consequently we have a commutative diagram of complexes
Ci(Kx) —— CL(K)
pl P

Ci(Ky) —— Ci(Ky)

11



(3.17) Generalizing Proposition (3.11), we can show:

Suppose given a morphism f : (L;h') — (K;h) in Tr(M;{X}). Also given an open set U of
M, and an object (Ky; hy) of Tr(U) that is subordinate to (K h). Then there exists an object
(Lu; hy) of Tr(U; {V}) such that

(Lu; hyy) is subordinate to (L;h'), and  (Ly;hj,) is subordinate to (Lx;h'y).
We have thus a commutative diagram of complexes
C.(Kx) —— C.(Lx)
p lp
Cu(Ky) —— C.(Lv)

which is compatible with the commutative diagram in (3.8). It induces a map p : Ci(X) —
C.(V), giving us a complex of sheaves Cx ..

(3.18) Let M be an analytic manifold. For any element o € C,(M) there exists an analytic
triangulation A : |K| — M such that a € C,(K) (obvious from the definitions).
It follows from this and the previous subsection that, if X is a closed semi-analytic subset of
M, then one has
Ci(X)={a e C,(M)| |a| C X}.

If i : X — M denotes the inclusion, one has i'Cp/, = Cx...
Let j: U =M — X — M be the inclusion of the open set. We have a quasi-isomorphism

GM/GX — ]*GU .
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4 Complexes of forms and currents

Let X be a smooth connected complex variety of dimension n. We will consider sheaves of
A-vector spaces on a smooth complex variety, where A = Q or C; a sheaf is denoted by F. Also
consider complexes of such sheaves F°, and filtered complexes of sheaves (F°*, W) where W is
a filtration by subcomplexes. We always assume that a filtration is finite, namely it is a finite
filtration on each component.

One may apply the global section functor to get a filtered complex of A-vector spaces
L(X, (F*,W)); similarly for the direct image f. for a map f : X — X', or for any other
left exact functor.

One has the derived functor on the filtered derived category of sheaves. If (F*, W) is a
filtered complex (of sheaves) and (F*, W) — (F'*, W) is a filtered quasi-isomorphism such that
the graded pieces of F are I'-acyclic, then one has RI'(X, (F*,W)) = I'(X, (F"*,W)). The
same applies to the direct image f, and its derived functor.

(4.1) In the rest of this paper we work mainly under the following assumption. U is a smooth
complex variety, contained in a smooth complete variety X, with complement Y a simple
normal crossing divisor. Also assume that the irreducible components Yj,--- .Y, of Y are
totally ordered.

For a subset I of {1,---,r}, set Y; = Nie;Y; and Yy = X. If J D I, there is an inclusion
Y; =Y.

For 0 < a < r we set Y@ = [1j5j=0 Y7 and YO = X, If k =0, -+ ,a, the sum of the
inclusions Yj, i, — Y; .7 ., gives a map dj, : y(@) — yle=1),

1°la Q1 dggyeei

(4.2) Recall from §3 that Cx . denotes the complex of sheaves of semi-analytic chains on X
0—=Cy —=Cog = —=C—0

which is concentrated in homological degree [0, 2n]. One has Cx ,(U) = C,(U) for U open in X.
We also use the notation Co(X) instead of Cx .; but we avoid expressions such as Co(X)(U).
We view it as a cohomological complex concentrated in degree [—2n, 0], and then shift it to

define the complex C% as
63( = GX7.[—27’L] .

It is concentrated in cohomological degree [0,2n]; C% consists of chains of real codimension p.
The fundamental orientation chain of X gives an augmentation map Qx — €%, which is a
quasi-isomorphism.

Instead of C% we may write C*(X), or just C(X) dropping the superscript; on the contrary
we will not drop the subscript from Cq(X).

Suppose X is complete and smooth. If 7 : Y C X is the inclusion of a smooth divisor one has
a map of sheaves complexes on X, namely i, : C*(Y)[—2] — C*(X). As usual we have identified
a sheaf F on Y as a sheaf 7,F on X.
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Next assume Y = Y;+- - -+Y, is a normal crossing divisor on X. For J D [ with |J| = |I|+1,
one has the map i, : C*(Y;)[-2] — C*(Y;). If I = {iy, -+ ,is} with iy < --- < i, and
J = {i1, - i, Jyigs1, - ,9q} also in the increasing order, set €(J,I) = (—1)*. Then define
the map § : C(Y@*D)[—2] — C(Y@) as follows: for a section T = (1) of @*~2(Y(a+1),

(6T); == e(J,1)iu(Ty) € €*(Y).

JDI

One verifies the identity 60 = 0 and obtains a complex of complexes
0 — (YD) =21 —25C(Y D) [=2r + 2] = -+ = (YD) [-2] —25C(X) = 0

(C(X) placed in degree 0). The total complex of which is denoted by C*(X\Y), the differential
of which is the sum of § and (—1)%d on €(Y(®)). This is just a notation; note it is different from
€%y which a complex of sheaves on X \Y.

We equip it with an increasing filtration W given by

WnC(X\Y)=[0— = 0= CY"™)[-2m] — .- = C(X)] .

for 0 <m <rand by W_; =0, W,, = C(X\Y) for m > r.

(4.3) For a c-soft sheaf F of vector spaces over a field A, let D(F) be its dual sheaf, which
by definition is given by the assignment U — I'.(U, F)*, the linear dual of the A-vector space
I'.(U,F). One may apply the functor D to a complex of c-soft sheaves. We also define D(F) =
D(F)[—2n].
Let A% be the complex of sheaves of C°-forms on X. We define a complex of sheaves D x
by
Dy =D(Ax) = D(Ax)[—2n]

and call it the complex of (algebraic) currents. Note D% = D(A").

The complex D% is concentrated in cohomological degree [0,2n], and there is a canonical
map ¢ : € — D%, that sends o to the current

[l

It is a quasi-isomorphism. We also write D*(X) or D(X) for Dx.
For a smooth divisor Y C X there is a canonical map of complexes D(Y)[—2] — D(X).
Thus for Y =Y; + --- + Y, a normal crossing divisor, there is a complex of complexes

DY N [=2r] = DY) [=2r +2] = --- = DYD)[-2] — D(X),
the total complex will be denoted D(X\Y'). On this complex is there a filtration W given by
WuD(X\Y)=[0— =0 DY"™)[-2m] —» - = D(X)] .

14



Denote by 7 = 7<. the canonical filtration on any complex in an abelian category (see [De],
§1.4). It is an increasing filtration, functorial for maps of complexes.

(4.4) Proposition. One has inclusion (C(X\Y),7) — (C(X\Y'), W), which is a filtered quasi-
isomorphism. Similarly one has a filtered quasi-isomorphism (D(X\Y),7) — (D(X\Y),W).

Proof. The complex in question is of the form
0O—-+K, = —=K,— - —=Ky—0

with K, placed in degree —a, and if the total complex K is equipped with filtration W, given
by
WpK=[-—>0->K,— - — Ky—0].

The a-th column K, = C(Y(@)[—2d] is concentrated in degree > 2a. One has K' = @, Ki*e.
If the intersection (7<,,K)* N K™ is nonzero, one must have m > i and i + a > 2a, hence
m > a. This shows the inclusion 7, K C W,,, K.

The associated spectral sequence is of the form

EY" = H'(K_,) = H"™(K).
For the complex C(X\Y'), we have
Bp = HY(e(yC0) = HP(E(X\Y))

where
Era {@yw) if ¢g=-2p, —r<p<O0
0 if q# —2p.
It degenerates at F, and gives
Qy(i) if OSZST
0 otherwise

Emwwwzzwz{

For the subcomplex W,,C(X\Y') there is a similar spectral sequence, with terms

Ef’q _ @Y(—p) if q = —2]9, —-_m < P <0
0 if q#-2p
converging to the cohomology of W,,C(X\Y). It follows

, y if 0<i<
(W, ex\y) = { 20 B 0=
0 otherwise

15



Since this coincides with H'(7<,,€(X\Y)), the inclusion 7<,,C(X\Y) — W,,C(X\Y) is a quasi-
isomorphism.
The proof is the same for the complex D(X\Y). O

(4.5) For this subsection details may be found in [De], II, §3. Let Q%(Y) be the logarithmic
de Rham complex of (X,Y’), namely the sheaf of holomorphic forms on X with logarithmic
singularities along Y. There is an increasing filtration W, on this complex, called the weight
filtration. There exists an isomorphism of complexes

GranQB(<Y> = Q% (my [=m]

given by Poincaré residue. Since we have assumed the irreducible components of Y are totally
ordered, there is no ambiguity of signs. One also has the Hodge filtration F'* on the complex
Q% (Y).

Let j: U =X —Y — X be the inclusion. One has inclusions of filtered complexes

(5 V), W) = (% (Y), 1) = (5.0, 7). (4.5.1)

A fact of fundamental importance ([De], (3.18)) states that both maps are filtered quasi-
isomorphisms.

Thanks to the Malgrange preparation theorem we also have the following (cf. [De], II, §3.2).
Let Ax (Y) be its O-resolution, namely the total complex of the double complex Q% (V) ®g, Q%".
Thus it is the sheaf of smooth forms with logarithmic poles along Y. We also write A(X)(Y")
for Ax (Y).

The filtration W on Q% (Y') induces a filtration W on the complex Ax (Y); we have Gr" A x (V)
Cr' Qs (V) ®g, Q%" in particular it is a complex of fine sheaves.

Similarly one has the induced Hodge filtration F" on Ax(Y). The objects GrpAx(Y) and
CGrpGr' Ax (Y) are complexes of fine sheaves.

(4.6) One has a map of complexes A(X) — D(X) which sends a smooth form to the corre-
sponding current. It extends to a map P : A(X)(Y) — D(X) which sends a form w to the

current [w] it represents:
L) = [ wav,
b

the integral being convergent since w is locally integrable. This P is not a map of complexes;
the failure is explained by the residue formula given below.
For each Y7 of Y, one has a map of complexes Ry, : A(X)(Y) — A(Y7)(Y:)[—|I|] which sends

a local section w to its residue along Y;. Here Y] is the divisor on Y; given by
>V, (J varies over J D I with |J| = |I| 4+ 1).

~

In particular for each component Y; of Y, one has residue Ry, : A(X)(Y) — A(Y;)(Y;)[—1].

16
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We state the residue formula, which is easily verified: If w is a section of A(X)(Y") then one
has

dlw] = [dw] = )[Ry, ()]

(4.7) Let v : A(X){(Y) — D(X\Y) be a map given as follows. For each Y; with a = |I| we
have a sequence of maps

A ) HAG)T) > DY) € DY)
which sends a local section w of A(X)(Y) to [Ry,(w)] € D(Y7). By definition

y(w) =Y (~DM[Ry, (w)] € D(X\Y) (4.7.1)

1

the sum over all indices I.

Proposition. The above construction gives a map of complexes v : A(X)(Y) — D(X\Y).
Further it is a filtered quasi-isomorphism with respect to the filtrations W'.

Proof. If Ry : A(YI)({/\A — A(YJ)O//;} is the residue map then with a and k as before, one
verifies

RiyR; = (=1)"" R, A(X)(Y) = AY)(Y,).

Also one has Ry,d = (—1)*dRy,. Hence the assertion in question is reduced to the residue

formula:

d[Ry, (w)] — [dRy, (w)] = > [R1 Ry, (w)].

JDI

(4.8) Let j = U = X\Y — X be the inclusion. The map C(X) — j,Cy given by a — «|U, see
(3.10), induces a map of complexes

C(X\Y) = 5.Cy
which is a quasi-isomorphism. On the complex C(X\Y') there is an inclusion of filtrations
(C(X\Y), 7) = (E(X\Y), W)

which is a filtered quasi-isomorphism.
Similarly one has a map D(X\Y') — j.Dy and the inclusion

(DX\Y),7) = (D(X\Y), W)
which is a filtered quasi-isomorphism.

17



We have thus a commutative square of complexes on X

g€ — (D7)

[ |

C(X\Y),7) —— (DX\Y),7)

! !

(C(X\Y), W) —— (DX\Y), W)

with arrows filtered quasi-isomorphisms.

(4.9) Let 8° be the differential sheaf of smooth singular cochains (see [Br], p.26); in this paper
we always take the coefficient ring to be Q. We know that 8°® is a complex of flabby sheaves
and the augmentation map Q — 8° is a resolution, see [Ha].

Let D(8°) be the dual of €*. The canonical map (given by integration on chains) ¢ : A®* — 8°
induces a map x : D(8°) — D(A®).

There is the cap product pairing

N:D(8*) ®8° — D(8*)

induced from the cup product on 8°, as in [Br], V-(10.3).
If fx € T'(X, D(8*)) is a cocycle representing the fundamental class of X, one has a map of
complexes

k= fxN(=):8° — D(8%)[—2n].

If we give X a triangulation, then the orientation cycle [X]| = > o provides such a cochain.

The diagram
8* —— A°

| |

D(8*)[-2n] —X> D°

(recall the map on the right sends a form v to the current [¢/]) is homotopy commutative.

(4.10) One has a map
€:Cy — D(8%)

given follows. In view of the convention (4.2) this really means a map For a € C,(U) and
u € 8P(U), with supp(u) = K, write a = o' + o” where o/ is compactly supported, and
supp(a’) C U — K; define &(a) € D(87)(U) by

(€(a),u) = (o', u).

The map £ is a quasi-isomorphism.

18



Recall the map & : €, — D*[2n] given by integration. One verifies that the diagram

D(S) — De[2n]

| u

. —25 D°[2n]

commutes.
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5 The Hodge complexes and comparison

(5.1) We refer to [Br], 1I-§9 for the basic notion of family of supports @, and the class of ®-soft,
®-fine and ®-acyclic sheaves. Suppose ® is a paracompactifying family of supports on a space
X. Any flabby sheaf is ®-soft, any ®-fine sheaf is ®-soft, and any ®-soft sheaf is ®-acyclic.

If A is ®-soft and torsion-free over a base ring L, then for any sheaf B over L, A ®; B is
d-soft.

(5.2) Definition. With the definitions and notions in the previous sections, consider the triple
of filtered complexes of sheaves on X

(E(X\Y), W) ——=(D(X\Y), W)¢—"—(Ax (Y), (W, F)) (5.2.1)
and take the global section on X; we get a triple of filtered complexes of vector spaces
[(X, (C(X\Y), W)) = I'(X, (D(X\Y), W) ) < T'(X, (Ax(Y), (W, F))). (5.2.2)

The third term has the Hodge filtration F'® as an additional filtration.

The triple (5.2.2) is a Q-mixed Hodge complex, and hence (5.2.1) is a Q-mixed Hodge complex
of sheaves. By definition either of these is called the homological mixed Hodge complex of X\Y',
and denoted by L(X\Y).

(5.3) We recall the “standard” construction of the Hodge complex for X\Y. Let j : U =
X\Y — X be the inclusion of the open set.

To a complex of sheaves F* on U, one may apply the functor of Godement resolution on U,
C*(—) = C};(—), and then apply the functor j. to get a complex of sheaves j,C*(F*) on X.
Note that Rj,F* = 7.C*(F*) in the derived category.

The canonical maps A% (Y) — j.A* — j.C*(A) are quasi-isomorphisms. There results a
triple of complexes of sheaves on X and quasi-isomorphisms

(1) 3+C(Q) =7, C(A)e——AX(Y) .

If we equip each complex with the canonical filtration 7<, the two maps are filtered quasi-
isomorphisms. We take the latter filtered quasi-isomorphism (A% (Y),7) — (j.C*(A),7), and
take its push-out along the filtered quasi-isomorphism (A% (Y),7) — (A%(Y), W) (see [De]):

(‘A3(<Y>7 T) — (j* C.(‘A>7 T)

| |

(‘AB(<Y>7W) — (j*C.(.A),T)A :

The four maps are filtered quasi-isomorphisms. We obtain a diagram

(1) (7.C*(Q),7) —— (j*C'(fl%T) — <A3(<f>m>
I
(1)~ (7:C°(Q),7) —— (.C(A),7)> +—— (AS(Y),W).
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Take the second row of the diagram; apply the functor C* = C% of Godement resolution over
X to the first and second terms; the third term A% (Y') has additionally the Hodge filtration
F*. Thus we obtain a triple of filtered complexes

(1% CUC@Q,7) — C(GC(A),T)) «— U)W F). (531)

This is a Q-Hodge complex of sheaves, namely if we apply the global section functor I'( X, —),
we get a Q-Hodge complex

D(X, C(7.C(Q), 7)) = T (X, C((j.C*(A), 7)) ) = D(X, (AR (Y), W, F)). (5.3.2)

This is the Q-mixed Hodge complex due essentially to Deligne and Beilinson, that gives mixed
Hodge structure on the cohomology of X\Y; We call (5.3.2), (resp. (5.3.1)), the standard
mixed Hodge complex (resp. mixed Hodge complex of sheaves) for X\Y. We employ the
notation K(X\Y) for either of them.

The proof of the following theorem is the aim of this section.

(5.4) Theorem. There is a canonical isomorphism between the two mixed Hodge complexes

of sheaves K(X\Y') and L(X\Y).

(5.5) The augmentation map Cy — A® is a quasi-isomorphism. Since A® is a complex of Q-
vector spaces (hence flat) and bounded, 8° ® (—) gives a quasi-isomorphism « : 8* — 8°* ®gA°®,
[Hart], I, Lemma 4.1 with conditions a) and 2).

Similarly the augmentation map Qx — 8° is a quasi-isomorphism. Since A® is a complex of
bounded Q-vector spaces, A®* ® (—) gives a quasi-isomorphism 5 : 8* — 8° ®q A°®, the same
lemma with conditions b) and 2).

The complexes 8* and A* are I'(X, —)-acyclic as well as f.-acyclic for any map f: X — X'.

Consider these complexes on U = X\Y. We have a commutative square

Q — A°

| &

§ 2 §'®A
This gives us a commutative diagram of complexes of sheaves on U

CQ — C*(A) — A°

| |

)
c(8) — C(8*A) — A°

T T [

S —_ S A — A
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If we apply the functor j,, and replace j,.A® with Ax(Y") via the quasi-isomorphism A x(Y) —
7+A®, we obtain a commutative diagram on X

[

2) JC(8) — LC(S®A) —— AY(Y)
| | H

(3) i(8)  — @A) L AXY).

As we produced (1)2 out of (1) by means of push-out along (Ax(Y),7) — (Ax(Y), W), by
the same process we get triples out of row (2) and row (3); by functoriality of push-out (2.1.2)
we obtain a commutative diagram of filtered complexes

(DA (]*C.(Q)aT) —_— (j*co(f)ﬂ—)A — (‘A;(<Y>7<W7F))
[

(Q)A (]*C.%SLT) B (]*C.(S?'A%T)A — (‘A;(<Y>7(W7F))
[

(3)% (G.(8),7) —=  (LS®A),TE e (A%Y),(W,F))

where the maps (1) — (2)2 «+ (3)2 are quasi-isomorphisms of triples of filtered complexes.
Further, taking Godement resolution for the first and second terms, and equipping the third
term with the Hodge filtration F'*, we have

12 CU.CQ),7) — ((J*C(fl TA) e (A%(Y), (W, F))
||

(2)% C.(j*?(S)’T) —— C((j.C( STM TA) —— (AX(Y), (W, F))
H

(3)2 CULS)T) — C(ULB®A),TE) L (A%(Y),(W,F))

Each row is a mixed Hodge complex of sheaves.
If we apply the functor I' to (2)2, we obtain a Hodge complex of the form

D(X, C(5:8°,7)) = T (X, C*((ju(8* ® A*),7)%) ) = T(X, CHAX(Y), (W, F))).
The same holds for (3)%.

(5.6) Recall the maps ¢ : A* — 8°, k : 8 — D(8*), and x : D(8°*) — D*. The map c is the
obvious one which takes a form i to the singular cochain it defines.
We consider the map
A=xoko(lUc):8 ®gA® — D*.

One has a diagram of maps of complexes:

(3) g 1 STRAT T A
l Al lid (4)
(4) DY) —X D L A,
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The left square commutes, and the right square commutes up to homotopy, namely there is a
map of degree —1, S : A* — D*~! such that

dS +Sd= -3+ P.

We also have a natural map ¢ : €, — D(8) and a commutative diagram

(4) D) X D o A
J z'dT Tid (17)
(5) e, —25 I 4.

In the preceding subsection we took the first row of diagram (i) and turned it to a triple of
filtered complexes; now we apply the same process to the other rows of (i) and (ii).

First look at (i). Apply the functor j, to get a diagram

J«8° 4a>j*(8. & *A.) <L]*-A.

LT

3.D(8%) — X j. D T jA".

Here j,8°, for example, is short for j.(8};). The left square commutes; for the right square there
is a map S : . A® — J.(D*1) with identity dS + Sd = —\3 + P.
Equip each of the complexes with the canonical filtration 7<; then we have a diagram of

filtered complexes

(u8°,7) —% (1u(8° @ A%), T) <— (j.A®,7)

R

(7.D(8%), 7) ——= (4. D", 7) (jA®,T).

Further one verifies that the map S gives a filtered homotopy, namely it takes 7<,,(j.A®) into
Tem(o (D).

Composing with the quasi-isomorphism Ax(Y) — 7. A®, both equipped with the canonical
filtration, one obtains a diagram of filtered complexes

(3) (j*TT) s <j*<8°7ﬂ°>,r> L <Ax<f>,r>
(4) (.D(8%),7) —= (LD 1) 1 (Ax(Y),7).

with filtered homotopy S for the right hand square.
From (4) one obtains the push-out (j,D*®,7)%, and in light of the functoriality of push-out

(2.2) we have a commutative diagram

(3)% U*TT) — (s ®f‘),7)A L (AxY), (W, F))
K AL H
(4)2 (.D(8%),7) —  (.DN7)A e (Ax(Y), (W, F)).

23



Taking Godement resolutions for the first and second terms, we obtain mixed Hodge complexes
of sheaves and a morphism between them:

(3)2 C°<<j*f°,f)> — C'<j*<8°TA°>,T>A L (Ax(Y), (W, F))
K AL ||
(4)2 C(LD(SY),7) —  C(GD7)A) e (Ax(Y), (W, F)).

Next we look at diagram (ii); we get a commutative diagram

]*9(8.) L> j*®° (L j*'A.
1

J T

e 2y gpe I Al

We replace the complex j,A® on the right with Ax(Y'); then with the canonical filtrations we
have a commutative diagram of filtered complexes

(4) (D), 7) —= (1D7) —— (Ax(Y),7)
T ) idT ? z-dT
(5) (j*e.7T> — (j*D.7T) A— (‘AX<Y>7T) :
By taking push-out and then taking Godement resolutions we have obviously a commutative
diagram
(4" CLDE%). 1) — C((RD7)A) = (Ax(Y), (W, F))
| i [
(5) CGer) —— CEDLA) —— (Ax(Y),(W.F)).

which is a morphism of mixed Hodge complex of sheaves. These give quasi-isomorphisms of
mixed Hodge complexes (3)2 — (4)2 « (5)~.

(5.7) We also have a commutative diagram of filtered complexes

(5) <j*<%r> 2 oﬁ,ﬂ e (AR, T)
[

(6) <e<X\ff>,r> 2 <D<XIY>,T> - <A;(<f>,r>

(7) (CX\Y),7) — (D(X\Y),W) «— (A%(Y), W)

(the commutativity of the upper right corner is obvious). To the first two rows one may apply
the push-out as before, and one has an induced map (6)> — (5)* (obvious functoriality of
push-out). By the universal property (2.1.1), there is a map (6)> — (7), therefore we have
filtered quasi-isomorphisms (5)% < (6)2 — (7).
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This completes the proof of Theorem (5.4).
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